Sink.cpp revision 303975
1//===-- Sink.cpp - Code Sinking -------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass moves instructions into successor blocks, when possible, so that
11// they aren't executed on paths where their results aren't needed.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/ADT/Statistic.h"
17#include "llvm/Analysis/AliasAnalysis.h"
18#include "llvm/Analysis/LoopInfo.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/IR/CFG.h"
21#include "llvm/IR/DataLayout.h"
22#include "llvm/IR/Dominators.h"
23#include "llvm/IR/IntrinsicInst.h"
24#include "llvm/IR/Module.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/raw_ostream.h"
27using namespace llvm;
28
29#define DEBUG_TYPE "sink"
30
31STATISTIC(NumSunk, "Number of instructions sunk");
32STATISTIC(NumSinkIter, "Number of sinking iterations");
33
34namespace {
35  class Sinking : public FunctionPass {
36    DominatorTree *DT;
37    LoopInfo *LI;
38    AliasAnalysis *AA;
39
40  public:
41    static char ID; // Pass identification
42    Sinking() : FunctionPass(ID) {
43      initializeSinkingPass(*PassRegistry::getPassRegistry());
44    }
45
46    bool runOnFunction(Function &F) override;
47
48    void getAnalysisUsage(AnalysisUsage &AU) const override {
49      AU.setPreservesCFG();
50      FunctionPass::getAnalysisUsage(AU);
51      AU.addRequired<AAResultsWrapperPass>();
52      AU.addRequired<DominatorTreeWrapperPass>();
53      AU.addRequired<LoopInfoWrapperPass>();
54      AU.addPreserved<DominatorTreeWrapperPass>();
55      AU.addPreserved<LoopInfoWrapperPass>();
56    }
57  private:
58    bool ProcessBlock(BasicBlock &BB);
59    bool SinkInstruction(Instruction *I, SmallPtrSetImpl<Instruction*> &Stores);
60    bool AllUsesDominatedByBlock(Instruction *Inst, BasicBlock *BB) const;
61    bool IsAcceptableTarget(Instruction *Inst, BasicBlock *SuccToSinkTo) const;
62  };
63} // end anonymous namespace
64
65char Sinking::ID = 0;
66INITIALIZE_PASS_BEGIN(Sinking, "sink", "Code sinking", false, false)
67INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
68INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
69INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
70INITIALIZE_PASS_END(Sinking, "sink", "Code sinking", false, false)
71
72FunctionPass *llvm::createSinkingPass() { return new Sinking(); }
73
74/// AllUsesDominatedByBlock - Return true if all uses of the specified value
75/// occur in blocks dominated by the specified block.
76bool Sinking::AllUsesDominatedByBlock(Instruction *Inst,
77                                      BasicBlock *BB) const {
78  // Ignoring debug uses is necessary so debug info doesn't affect the code.
79  // This may leave a referencing dbg_value in the original block, before
80  // the definition of the vreg.  Dwarf generator handles this although the
81  // user might not get the right info at runtime.
82  for (Use &U : Inst->uses()) {
83    // Determine the block of the use.
84    Instruction *UseInst = cast<Instruction>(U.getUser());
85    BasicBlock *UseBlock = UseInst->getParent();
86    if (PHINode *PN = dyn_cast<PHINode>(UseInst)) {
87      // PHI nodes use the operand in the predecessor block, not the block with
88      // the PHI.
89      unsigned Num = PHINode::getIncomingValueNumForOperand(U.getOperandNo());
90      UseBlock = PN->getIncomingBlock(Num);
91    }
92    // Check that it dominates.
93    if (!DT->dominates(BB, UseBlock))
94      return false;
95  }
96  return true;
97}
98
99bool Sinking::runOnFunction(Function &F) {
100  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
101  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
102  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
103
104  bool MadeChange, EverMadeChange = false;
105
106  do {
107    MadeChange = false;
108    DEBUG(dbgs() << "Sinking iteration " << NumSinkIter << "\n");
109    // Process all basic blocks.
110    for (Function::iterator I = F.begin(), E = F.end();
111         I != E; ++I)
112      MadeChange |= ProcessBlock(*I);
113    EverMadeChange |= MadeChange;
114    NumSinkIter++;
115  } while (MadeChange);
116
117  return EverMadeChange;
118}
119
120bool Sinking::ProcessBlock(BasicBlock &BB) {
121  // Can't sink anything out of a block that has less than two successors.
122  if (BB.getTerminator()->getNumSuccessors() <= 1) return false;
123
124  // Don't bother sinking code out of unreachable blocks. In addition to being
125  // unprofitable, it can also lead to infinite looping, because in an
126  // unreachable loop there may be nowhere to stop.
127  if (!DT->isReachableFromEntry(&BB)) return false;
128
129  bool MadeChange = false;
130
131  // Walk the basic block bottom-up.  Remember if we saw a store.
132  BasicBlock::iterator I = BB.end();
133  --I;
134  bool ProcessedBegin = false;
135  SmallPtrSet<Instruction *, 8> Stores;
136  do {
137    Instruction *Inst = &*I; // The instruction to sink.
138
139    // Predecrement I (if it's not begin) so that it isn't invalidated by
140    // sinking.
141    ProcessedBegin = I == BB.begin();
142    if (!ProcessedBegin)
143      --I;
144
145    if (isa<DbgInfoIntrinsic>(Inst))
146      continue;
147
148    if (SinkInstruction(Inst, Stores))
149      ++NumSunk, MadeChange = true;
150
151    // If we just processed the first instruction in the block, we're done.
152  } while (!ProcessedBegin);
153
154  return MadeChange;
155}
156
157static bool isSafeToMove(Instruction *Inst, AliasAnalysis *AA,
158                         SmallPtrSetImpl<Instruction *> &Stores) {
159
160  if (Inst->mayWriteToMemory()) {
161    Stores.insert(Inst);
162    return false;
163  }
164
165  if (LoadInst *L = dyn_cast<LoadInst>(Inst)) {
166    MemoryLocation Loc = MemoryLocation::get(L);
167    for (Instruction *S : Stores)
168      if (AA->getModRefInfo(S, Loc) & MRI_Mod)
169        return false;
170  }
171
172  if (isa<TerminatorInst>(Inst) || isa<PHINode>(Inst) || Inst->isEHPad() ||
173      Inst->mayThrow())
174    return false;
175
176  // Convergent operations cannot be made control-dependent on additional
177  // values.
178  if (auto CS = CallSite(Inst)) {
179    if (CS.hasFnAttr(Attribute::Convergent))
180      return false;
181  }
182
183  return true;
184}
185
186/// IsAcceptableTarget - Return true if it is possible to sink the instruction
187/// in the specified basic block.
188bool Sinking::IsAcceptableTarget(Instruction *Inst,
189                                 BasicBlock *SuccToSinkTo) const {
190  assert(Inst && "Instruction to be sunk is null");
191  assert(SuccToSinkTo && "Candidate sink target is null");
192
193  // It is not possible to sink an instruction into its own block.  This can
194  // happen with loops.
195  if (Inst->getParent() == SuccToSinkTo)
196    return false;
197
198  // It's never legal to sink an instruction into a block which terminates in an
199  // EH-pad.
200  if (SuccToSinkTo->getTerminator()->isExceptional())
201    return false;
202
203  // If the block has multiple predecessors, this would introduce computation
204  // on different code paths.  We could split the critical edge, but for now we
205  // just punt.
206  // FIXME: Split critical edges if not backedges.
207  if (SuccToSinkTo->getUniquePredecessor() != Inst->getParent()) {
208    // We cannot sink a load across a critical edge - there may be stores in
209    // other code paths.
210    if (!isSafeToSpeculativelyExecute(Inst))
211      return false;
212
213    // We don't want to sink across a critical edge if we don't dominate the
214    // successor. We could be introducing calculations to new code paths.
215    if (!DT->dominates(Inst->getParent(), SuccToSinkTo))
216      return false;
217
218    // Don't sink instructions into a loop.
219    Loop *succ = LI->getLoopFor(SuccToSinkTo);
220    Loop *cur = LI->getLoopFor(Inst->getParent());
221    if (succ != nullptr && succ != cur)
222      return false;
223  }
224
225  // Finally, check that all the uses of the instruction are actually
226  // dominated by the candidate
227  return AllUsesDominatedByBlock(Inst, SuccToSinkTo);
228}
229
230/// SinkInstruction - Determine whether it is safe to sink the specified machine
231/// instruction out of its current block into a successor.
232bool Sinking::SinkInstruction(Instruction *Inst,
233                              SmallPtrSetImpl<Instruction *> &Stores) {
234
235  // Don't sink static alloca instructions.  CodeGen assumes allocas outside the
236  // entry block are dynamically sized stack objects.
237  if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
238    if (AI->isStaticAlloca())
239      return false;
240
241  // Check if it's safe to move the instruction.
242  if (!isSafeToMove(Inst, AA, Stores))
243    return false;
244
245  // FIXME: This should include support for sinking instructions within the
246  // block they are currently in to shorten the live ranges.  We often get
247  // instructions sunk into the top of a large block, but it would be better to
248  // also sink them down before their first use in the block.  This xform has to
249  // be careful not to *increase* register pressure though, e.g. sinking
250  // "x = y + z" down if it kills y and z would increase the live ranges of y
251  // and z and only shrink the live range of x.
252
253  // SuccToSinkTo - This is the successor to sink this instruction to, once we
254  // decide.
255  BasicBlock *SuccToSinkTo = nullptr;
256
257  // Instructions can only be sunk if all their uses are in blocks
258  // dominated by one of the successors.
259  // Look at all the postdominators and see if we can sink it in one.
260  DomTreeNode *DTN = DT->getNode(Inst->getParent());
261  for (DomTreeNode::iterator I = DTN->begin(), E = DTN->end();
262      I != E && SuccToSinkTo == nullptr; ++I) {
263    BasicBlock *Candidate = (*I)->getBlock();
264    if ((*I)->getIDom()->getBlock() == Inst->getParent() &&
265        IsAcceptableTarget(Inst, Candidate))
266      SuccToSinkTo = Candidate;
267  }
268
269  // If no suitable postdominator was found, look at all the successors and
270  // decide which one we should sink to, if any.
271  for (succ_iterator I = succ_begin(Inst->getParent()),
272      E = succ_end(Inst->getParent()); I != E && !SuccToSinkTo; ++I) {
273    if (IsAcceptableTarget(Inst, *I))
274      SuccToSinkTo = *I;
275  }
276
277  // If we couldn't find a block to sink to, ignore this instruction.
278  if (!SuccToSinkTo)
279    return false;
280
281  DEBUG(dbgs() << "Sink" << *Inst << " (";
282        Inst->getParent()->printAsOperand(dbgs(), false);
283        dbgs() << " -> ";
284        SuccToSinkTo->printAsOperand(dbgs(), false);
285        dbgs() << ")\n");
286
287  // Move the instruction.
288  Inst->moveBefore(&*SuccToSinkTo->getFirstInsertionPt());
289  return true;
290}
291