Sink.cpp revision 234353
1//===-- Sink.cpp - Code Sinking -------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass moves instructions into successor blocks, when possible, so that
11// they aren't executed on paths where their results aren't needed.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "sink"
16#include "llvm/Transforms/Scalar.h"
17#include "llvm/IntrinsicInst.h"
18#include "llvm/Analysis/Dominators.h"
19#include "llvm/Analysis/LoopInfo.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ValueTracking.h"
22#include "llvm/Assembly/Writer.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/Support/CFG.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/raw_ostream.h"
27using namespace llvm;
28
29STATISTIC(NumSunk, "Number of instructions sunk");
30
31namespace {
32  class Sinking : public FunctionPass {
33    DominatorTree *DT;
34    LoopInfo *LI;
35    AliasAnalysis *AA;
36
37  public:
38    static char ID; // Pass identification
39    Sinking() : FunctionPass(ID) {
40      initializeSinkingPass(*PassRegistry::getPassRegistry());
41    }
42
43    virtual bool runOnFunction(Function &F);
44
45    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
46      AU.setPreservesCFG();
47      FunctionPass::getAnalysisUsage(AU);
48      AU.addRequired<AliasAnalysis>();
49      AU.addRequired<DominatorTree>();
50      AU.addRequired<LoopInfo>();
51      AU.addPreserved<DominatorTree>();
52      AU.addPreserved<LoopInfo>();
53    }
54  private:
55    bool ProcessBlock(BasicBlock &BB);
56    bool SinkInstruction(Instruction *I, SmallPtrSet<Instruction *, 8> &Stores);
57    bool AllUsesDominatedByBlock(Instruction *Inst, BasicBlock *BB) const;
58  };
59} // end anonymous namespace
60
61char Sinking::ID = 0;
62INITIALIZE_PASS_BEGIN(Sinking, "sink", "Code sinking", false, false)
63INITIALIZE_PASS_DEPENDENCY(LoopInfo)
64INITIALIZE_PASS_DEPENDENCY(DominatorTree)
65INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
66INITIALIZE_PASS_END(Sinking, "sink", "Code sinking", false, false)
67
68FunctionPass *llvm::createSinkingPass() { return new Sinking(); }
69
70/// AllUsesDominatedByBlock - Return true if all uses of the specified value
71/// occur in blocks dominated by the specified block.
72bool Sinking::AllUsesDominatedByBlock(Instruction *Inst,
73                                      BasicBlock *BB) const {
74  // Ignoring debug uses is necessary so debug info doesn't affect the code.
75  // This may leave a referencing dbg_value in the original block, before
76  // the definition of the vreg.  Dwarf generator handles this although the
77  // user might not get the right info at runtime.
78  for (Value::use_iterator I = Inst->use_begin(),
79       E = Inst->use_end(); I != E; ++I) {
80    // Determine the block of the use.
81    Instruction *UseInst = cast<Instruction>(*I);
82    BasicBlock *UseBlock = UseInst->getParent();
83    if (PHINode *PN = dyn_cast<PHINode>(UseInst)) {
84      // PHI nodes use the operand in the predecessor block, not the block with
85      // the PHI.
86      unsigned Num = PHINode::getIncomingValueNumForOperand(I.getOperandNo());
87      UseBlock = PN->getIncomingBlock(Num);
88    }
89    // Check that it dominates.
90    if (!DT->dominates(BB, UseBlock))
91      return false;
92  }
93  return true;
94}
95
96bool Sinking::runOnFunction(Function &F) {
97  DT = &getAnalysis<DominatorTree>();
98  LI = &getAnalysis<LoopInfo>();
99  AA = &getAnalysis<AliasAnalysis>();
100
101  bool EverMadeChange = false;
102
103  while (1) {
104    bool MadeChange = false;
105
106    // Process all basic blocks.
107    for (Function::iterator I = F.begin(), E = F.end();
108         I != E; ++I)
109      MadeChange |= ProcessBlock(*I);
110
111    // If this iteration over the code changed anything, keep iterating.
112    if (!MadeChange) break;
113    EverMadeChange = true;
114  }
115  return EverMadeChange;
116}
117
118bool Sinking::ProcessBlock(BasicBlock &BB) {
119  // Can't sink anything out of a block that has less than two successors.
120  if (BB.getTerminator()->getNumSuccessors() <= 1 || BB.empty()) return false;
121
122  // Don't bother sinking code out of unreachable blocks. In addition to being
123  // unprofitable, it can also lead to infinite looping, because in an unreachable
124  // loop there may be nowhere to stop.
125  if (!DT->isReachableFromEntry(&BB)) return false;
126
127  bool MadeChange = false;
128
129  // Walk the basic block bottom-up.  Remember if we saw a store.
130  BasicBlock::iterator I = BB.end();
131  --I;
132  bool ProcessedBegin = false;
133  SmallPtrSet<Instruction *, 8> Stores;
134  do {
135    Instruction *Inst = I;  // The instruction to sink.
136
137    // Predecrement I (if it's not begin) so that it isn't invalidated by
138    // sinking.
139    ProcessedBegin = I == BB.begin();
140    if (!ProcessedBegin)
141      --I;
142
143    if (isa<DbgInfoIntrinsic>(Inst))
144      continue;
145
146    if (SinkInstruction(Inst, Stores))
147      ++NumSunk, MadeChange = true;
148
149    // If we just processed the first instruction in the block, we're done.
150  } while (!ProcessedBegin);
151
152  return MadeChange;
153}
154
155static bool isSafeToMove(Instruction *Inst, AliasAnalysis *AA,
156                         SmallPtrSet<Instruction *, 8> &Stores) {
157
158  if (Inst->mayWriteToMemory()) {
159    Stores.insert(Inst);
160    return false;
161  }
162
163  if (LoadInst *L = dyn_cast<LoadInst>(Inst)) {
164    AliasAnalysis::Location Loc = AA->getLocation(L);
165    for (SmallPtrSet<Instruction *, 8>::iterator I = Stores.begin(),
166         E = Stores.end(); I != E; ++I)
167      if (AA->getModRefInfo(*I, Loc) & AliasAnalysis::Mod)
168        return false;
169  }
170
171  if (isa<TerminatorInst>(Inst) || isa<PHINode>(Inst))
172    return false;
173
174  return true;
175}
176
177/// SinkInstruction - Determine whether it is safe to sink the specified machine
178/// instruction out of its current block into a successor.
179bool Sinking::SinkInstruction(Instruction *Inst,
180                              SmallPtrSet<Instruction *, 8> &Stores) {
181  // Check if it's safe to move the instruction.
182  if (!isSafeToMove(Inst, AA, Stores))
183    return false;
184
185  // FIXME: This should include support for sinking instructions within the
186  // block they are currently in to shorten the live ranges.  We often get
187  // instructions sunk into the top of a large block, but it would be better to
188  // also sink them down before their first use in the block.  This xform has to
189  // be careful not to *increase* register pressure though, e.g. sinking
190  // "x = y + z" down if it kills y and z would increase the live ranges of y
191  // and z and only shrink the live range of x.
192
193  // Loop over all the operands of the specified instruction.  If there is
194  // anything we can't handle, bail out.
195  BasicBlock *ParentBlock = Inst->getParent();
196
197  // SuccToSinkTo - This is the successor to sink this instruction to, once we
198  // decide.
199  BasicBlock *SuccToSinkTo = 0;
200
201  // FIXME: This picks a successor to sink into based on having one
202  // successor that dominates all the uses.  However, there are cases where
203  // sinking can happen but where the sink point isn't a successor.  For
204  // example:
205  //   x = computation
206  //   if () {} else {}
207  //   use x
208  // the instruction could be sunk over the whole diamond for the
209  // if/then/else (or loop, etc), allowing it to be sunk into other blocks
210  // after that.
211
212  // Instructions can only be sunk if all their uses are in blocks
213  // dominated by one of the successors.
214  // Look at all the successors and decide which one
215  // we should sink to.
216  for (succ_iterator SI = succ_begin(ParentBlock),
217       E = succ_end(ParentBlock); SI != E; ++SI) {
218    if (AllUsesDominatedByBlock(Inst, *SI)) {
219      SuccToSinkTo = *SI;
220      break;
221    }
222  }
223
224  // If we couldn't find a block to sink to, ignore this instruction.
225  if (SuccToSinkTo == 0)
226    return false;
227
228  // It is not possible to sink an instruction into its own block.  This can
229  // happen with loops.
230  if (Inst->getParent() == SuccToSinkTo)
231    return false;
232
233  DEBUG(dbgs() << "Sink instr " << *Inst);
234  DEBUG(dbgs() << "to block ";
235        WriteAsOperand(dbgs(), SuccToSinkTo, false));
236
237  // If the block has multiple predecessors, this would introduce computation on
238  // a path that it doesn't already exist.  We could split the critical edge,
239  // but for now we just punt.
240  // FIXME: Split critical edges if not backedges.
241  if (SuccToSinkTo->getUniquePredecessor() != ParentBlock) {
242    // We cannot sink a load across a critical edge - there may be stores in
243    // other code paths.
244    if (!isSafeToSpeculativelyExecute(Inst)) {
245      DEBUG(dbgs() << " *** PUNTING: Wont sink load along critical edge.\n");
246      return false;
247    }
248
249    // We don't want to sink across a critical edge if we don't dominate the
250    // successor. We could be introducing calculations to new code paths.
251    if (!DT->dominates(ParentBlock, SuccToSinkTo)) {
252      DEBUG(dbgs() << " *** PUNTING: Critical edge found\n");
253      return false;
254    }
255
256    // Don't sink instructions into a loop.
257    if (LI->isLoopHeader(SuccToSinkTo)) {
258      DEBUG(dbgs() << " *** PUNTING: Loop header found\n");
259      return false;
260    }
261
262    // Otherwise we are OK with sinking along a critical edge.
263    DEBUG(dbgs() << "Sinking along critical edge.\n");
264  }
265
266  // Determine where to insert into.  Skip phi nodes.
267  BasicBlock::iterator InsertPos = SuccToSinkTo->begin();
268  while (InsertPos != SuccToSinkTo->end() && isa<PHINode>(InsertPos))
269    ++InsertPos;
270
271  // Move the instruction.
272  Inst->moveBefore(InsertPos);
273  return true;
274}
275