LoopStrengthReduce.cpp revision 288943
1//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into forms suitable for efficient execution
12// on the target.
13//
14// This pass performs a strength reduction on array references inside loops that
15// have as one or more of their components the loop induction variable, it
16// rewrites expressions to take advantage of scaled-index addressing modes
17// available on the target, and it performs a variety of other optimizations
18// related to loop induction variables.
19//
20// Terminology note: this code has a lot of handling for "post-increment" or
21// "post-inc" users. This is not talking about post-increment addressing modes;
22// it is instead talking about code like this:
23//
24//   %i = phi [ 0, %entry ], [ %i.next, %latch ]
25//   ...
26//   %i.next = add %i, 1
27//   %c = icmp eq %i.next, %n
28//
29// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30// it's useful to think about these as the same register, with some uses using
31// the value of the register before the add and some using it after. In this
32// example, the icmp is a post-increment user, since it uses %i.next, which is
33// the value of the induction variable after the increment. The other common
34// case of post-increment users is users outside the loop.
35//
36// TODO: More sophistication in the way Formulae are generated and filtered.
37//
38// TODO: Handle multiple loops at a time.
39//
40// TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
41//       of a GlobalValue?
42//
43// TODO: When truncation is free, truncate ICmp users' operands to make it a
44//       smaller encoding (on x86 at least).
45//
46// TODO: When a negated register is used by an add (such as in a list of
47//       multiple base registers, or as the increment expression in an addrec),
48//       we may not actually need both reg and (-1 * reg) in registers; the
49//       negation can be implemented by using a sub instead of an add. The
50//       lack of support for taking this into consideration when making
51//       register pressure decisions is partly worked around by the "Special"
52//       use kind.
53//
54//===----------------------------------------------------------------------===//
55
56#include "llvm/Transforms/Scalar.h"
57#include "llvm/ADT/DenseSet.h"
58#include "llvm/ADT/Hashing.h"
59#include "llvm/ADT/STLExtras.h"
60#include "llvm/ADT/SetVector.h"
61#include "llvm/ADT/SmallBitVector.h"
62#include "llvm/Analysis/IVUsers.h"
63#include "llvm/Analysis/LoopPass.h"
64#include "llvm/Analysis/ScalarEvolutionExpander.h"
65#include "llvm/Analysis/TargetTransformInfo.h"
66#include "llvm/IR/Constants.h"
67#include "llvm/IR/DerivedTypes.h"
68#include "llvm/IR/Dominators.h"
69#include "llvm/IR/Instructions.h"
70#include "llvm/IR/IntrinsicInst.h"
71#include "llvm/IR/Module.h"
72#include "llvm/IR/ValueHandle.h"
73#include "llvm/Support/CommandLine.h"
74#include "llvm/Support/Debug.h"
75#include "llvm/Support/raw_ostream.h"
76#include "llvm/Transforms/Utils/BasicBlockUtils.h"
77#include "llvm/Transforms/Utils/Local.h"
78#include <algorithm>
79using namespace llvm;
80
81#define DEBUG_TYPE "loop-reduce"
82
83/// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for
84/// bail out. This threshold is far beyond the number of users that LSR can
85/// conceivably solve, so it should not affect generated code, but catches the
86/// worst cases before LSR burns too much compile time and stack space.
87static const unsigned MaxIVUsers = 200;
88
89// Temporary flag to cleanup congruent phis after LSR phi expansion.
90// It's currently disabled until we can determine whether it's truly useful or
91// not. The flag should be removed after the v3.0 release.
92// This is now needed for ivchains.
93static cl::opt<bool> EnablePhiElim(
94  "enable-lsr-phielim", cl::Hidden, cl::init(true),
95  cl::desc("Enable LSR phi elimination"));
96
97#ifndef NDEBUG
98// Stress test IV chain generation.
99static cl::opt<bool> StressIVChain(
100  "stress-ivchain", cl::Hidden, cl::init(false),
101  cl::desc("Stress test LSR IV chains"));
102#else
103static bool StressIVChain = false;
104#endif
105
106namespace {
107
108/// RegSortData - This class holds data which is used to order reuse candidates.
109class RegSortData {
110public:
111  /// UsedByIndices - This represents the set of LSRUse indices which reference
112  /// a particular register.
113  SmallBitVector UsedByIndices;
114
115  void print(raw_ostream &OS) const;
116  void dump() const;
117};
118
119}
120
121void RegSortData::print(raw_ostream &OS) const {
122  OS << "[NumUses=" << UsedByIndices.count() << ']';
123}
124
125#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
126void RegSortData::dump() const {
127  print(errs()); errs() << '\n';
128}
129#endif
130
131namespace {
132
133/// RegUseTracker - Map register candidates to information about how they are
134/// used.
135class RegUseTracker {
136  typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
137
138  RegUsesTy RegUsesMap;
139  SmallVector<const SCEV *, 16> RegSequence;
140
141public:
142  void CountRegister(const SCEV *Reg, size_t LUIdx);
143  void DropRegister(const SCEV *Reg, size_t LUIdx);
144  void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx);
145
146  bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
147
148  const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
149
150  void clear();
151
152  typedef SmallVectorImpl<const SCEV *>::iterator iterator;
153  typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
154  iterator begin() { return RegSequence.begin(); }
155  iterator end()   { return RegSequence.end(); }
156  const_iterator begin() const { return RegSequence.begin(); }
157  const_iterator end() const   { return RegSequence.end(); }
158};
159
160}
161
162void
163RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
164  std::pair<RegUsesTy::iterator, bool> Pair =
165    RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
166  RegSortData &RSD = Pair.first->second;
167  if (Pair.second)
168    RegSequence.push_back(Reg);
169  RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
170  RSD.UsedByIndices.set(LUIdx);
171}
172
173void
174RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
175  RegUsesTy::iterator It = RegUsesMap.find(Reg);
176  assert(It != RegUsesMap.end());
177  RegSortData &RSD = It->second;
178  assert(RSD.UsedByIndices.size() > LUIdx);
179  RSD.UsedByIndices.reset(LUIdx);
180}
181
182void
183RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
184  assert(LUIdx <= LastLUIdx);
185
186  // Update RegUses. The data structure is not optimized for this purpose;
187  // we must iterate through it and update each of the bit vectors.
188  for (auto &Pair : RegUsesMap) {
189    SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
190    if (LUIdx < UsedByIndices.size())
191      UsedByIndices[LUIdx] =
192        LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0;
193    UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
194  }
195}
196
197bool
198RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
199  RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
200  if (I == RegUsesMap.end())
201    return false;
202  const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
203  int i = UsedByIndices.find_first();
204  if (i == -1) return false;
205  if ((size_t)i != LUIdx) return true;
206  return UsedByIndices.find_next(i) != -1;
207}
208
209const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
210  RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
211  assert(I != RegUsesMap.end() && "Unknown register!");
212  return I->second.UsedByIndices;
213}
214
215void RegUseTracker::clear() {
216  RegUsesMap.clear();
217  RegSequence.clear();
218}
219
220namespace {
221
222/// Formula - This class holds information that describes a formula for
223/// computing satisfying a use. It may include broken-out immediates and scaled
224/// registers.
225struct Formula {
226  /// Global base address used for complex addressing.
227  GlobalValue *BaseGV;
228
229  /// Base offset for complex addressing.
230  int64_t BaseOffset;
231
232  /// Whether any complex addressing has a base register.
233  bool HasBaseReg;
234
235  /// The scale of any complex addressing.
236  int64_t Scale;
237
238  /// BaseRegs - The list of "base" registers for this use. When this is
239  /// non-empty. The canonical representation of a formula is
240  /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
241  /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
242  /// #1 enforces that the scaled register is always used when at least two
243  /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
244  /// #2 enforces that 1 * reg is reg.
245  /// This invariant can be temporarly broken while building a formula.
246  /// However, every formula inserted into the LSRInstance must be in canonical
247  /// form.
248  SmallVector<const SCEV *, 4> BaseRegs;
249
250  /// ScaledReg - The 'scaled' register for this use. This should be non-null
251  /// when Scale is not zero.
252  const SCEV *ScaledReg;
253
254  /// UnfoldedOffset - An additional constant offset which added near the
255  /// use. This requires a temporary register, but the offset itself can
256  /// live in an add immediate field rather than a register.
257  int64_t UnfoldedOffset;
258
259  Formula()
260      : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0),
261        ScaledReg(nullptr), UnfoldedOffset(0) {}
262
263  void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
264
265  bool isCanonical() const;
266
267  void Canonicalize();
268
269  bool Unscale();
270
271  size_t getNumRegs() const;
272  Type *getType() const;
273
274  void DeleteBaseReg(const SCEV *&S);
275
276  bool referencesReg(const SCEV *S) const;
277  bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
278                                  const RegUseTracker &RegUses) const;
279
280  void print(raw_ostream &OS) const;
281  void dump() const;
282};
283
284}
285
286/// DoInitialMatch - Recursion helper for InitialMatch.
287static void DoInitialMatch(const SCEV *S, Loop *L,
288                           SmallVectorImpl<const SCEV *> &Good,
289                           SmallVectorImpl<const SCEV *> &Bad,
290                           ScalarEvolution &SE) {
291  // Collect expressions which properly dominate the loop header.
292  if (SE.properlyDominates(S, L->getHeader())) {
293    Good.push_back(S);
294    return;
295  }
296
297  // Look at add operands.
298  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
299    for (const SCEV *S : Add->operands())
300      DoInitialMatch(S, L, Good, Bad, SE);
301    return;
302  }
303
304  // Look at addrec operands.
305  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
306    if (!AR->getStart()->isZero()) {
307      DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
308      DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
309                                      AR->getStepRecurrence(SE),
310                                      // FIXME: AR->getNoWrapFlags()
311                                      AR->getLoop(), SCEV::FlagAnyWrap),
312                     L, Good, Bad, SE);
313      return;
314    }
315
316  // Handle a multiplication by -1 (negation) if it didn't fold.
317  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
318    if (Mul->getOperand(0)->isAllOnesValue()) {
319      SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
320      const SCEV *NewMul = SE.getMulExpr(Ops);
321
322      SmallVector<const SCEV *, 4> MyGood;
323      SmallVector<const SCEV *, 4> MyBad;
324      DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
325      const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
326        SE.getEffectiveSCEVType(NewMul->getType())));
327      for (const SCEV *S : MyGood)
328        Good.push_back(SE.getMulExpr(NegOne, S));
329      for (const SCEV *S : MyBad)
330        Bad.push_back(SE.getMulExpr(NegOne, S));
331      return;
332    }
333
334  // Ok, we can't do anything interesting. Just stuff the whole thing into a
335  // register and hope for the best.
336  Bad.push_back(S);
337}
338
339/// InitialMatch - Incorporate loop-variant parts of S into this Formula,
340/// attempting to keep all loop-invariant and loop-computable values in a
341/// single base register.
342void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
343  SmallVector<const SCEV *, 4> Good;
344  SmallVector<const SCEV *, 4> Bad;
345  DoInitialMatch(S, L, Good, Bad, SE);
346  if (!Good.empty()) {
347    const SCEV *Sum = SE.getAddExpr(Good);
348    if (!Sum->isZero())
349      BaseRegs.push_back(Sum);
350    HasBaseReg = true;
351  }
352  if (!Bad.empty()) {
353    const SCEV *Sum = SE.getAddExpr(Bad);
354    if (!Sum->isZero())
355      BaseRegs.push_back(Sum);
356    HasBaseReg = true;
357  }
358  Canonicalize();
359}
360
361/// \brief Check whether or not this formula statisfies the canonical
362/// representation.
363/// \see Formula::BaseRegs.
364bool Formula::isCanonical() const {
365  if (ScaledReg)
366    return Scale != 1 || !BaseRegs.empty();
367  return BaseRegs.size() <= 1;
368}
369
370/// \brief Helper method to morph a formula into its canonical representation.
371/// \see Formula::BaseRegs.
372/// Every formula having more than one base register, must use the ScaledReg
373/// field. Otherwise, we would have to do special cases everywhere in LSR
374/// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
375/// On the other hand, 1*reg should be canonicalized into reg.
376void Formula::Canonicalize() {
377  if (isCanonical())
378    return;
379  // So far we did not need this case. This is easy to implement but it is
380  // useless to maintain dead code. Beside it could hurt compile time.
381  assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
382  // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
383  ScaledReg = BaseRegs.back();
384  BaseRegs.pop_back();
385  Scale = 1;
386  size_t BaseRegsSize = BaseRegs.size();
387  size_t Try = 0;
388  // If ScaledReg is an invariant, try to find a variant expression.
389  while (Try < BaseRegsSize && !isa<SCEVAddRecExpr>(ScaledReg))
390    std::swap(ScaledReg, BaseRegs[Try++]);
391}
392
393/// \brief Get rid of the scale in the formula.
394/// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
395/// \return true if it was possible to get rid of the scale, false otherwise.
396/// \note After this operation the formula may not be in the canonical form.
397bool Formula::Unscale() {
398  if (Scale != 1)
399    return false;
400  Scale = 0;
401  BaseRegs.push_back(ScaledReg);
402  ScaledReg = nullptr;
403  return true;
404}
405
406/// getNumRegs - Return the total number of register operands used by this
407/// formula. This does not include register uses implied by non-constant
408/// addrec strides.
409size_t Formula::getNumRegs() const {
410  return !!ScaledReg + BaseRegs.size();
411}
412
413/// getType - Return the type of this formula, if it has one, or null
414/// otherwise. This type is meaningless except for the bit size.
415Type *Formula::getType() const {
416  return !BaseRegs.empty() ? BaseRegs.front()->getType() :
417         ScaledReg ? ScaledReg->getType() :
418         BaseGV ? BaseGV->getType() :
419         nullptr;
420}
421
422/// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
423void Formula::DeleteBaseReg(const SCEV *&S) {
424  if (&S != &BaseRegs.back())
425    std::swap(S, BaseRegs.back());
426  BaseRegs.pop_back();
427}
428
429/// referencesReg - Test if this formula references the given register.
430bool Formula::referencesReg(const SCEV *S) const {
431  return S == ScaledReg ||
432         std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
433}
434
435/// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
436/// which are used by uses other than the use with the given index.
437bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
438                                         const RegUseTracker &RegUses) const {
439  if (ScaledReg)
440    if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
441      return true;
442  for (const SCEV *BaseReg : BaseRegs)
443    if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
444      return true;
445  return false;
446}
447
448void Formula::print(raw_ostream &OS) const {
449  bool First = true;
450  if (BaseGV) {
451    if (!First) OS << " + "; else First = false;
452    BaseGV->printAsOperand(OS, /*PrintType=*/false);
453  }
454  if (BaseOffset != 0) {
455    if (!First) OS << " + "; else First = false;
456    OS << BaseOffset;
457  }
458  for (const SCEV *BaseReg : BaseRegs) {
459    if (!First) OS << " + "; else First = false;
460    OS << "reg(" << *BaseReg << ')';
461  }
462  if (HasBaseReg && BaseRegs.empty()) {
463    if (!First) OS << " + "; else First = false;
464    OS << "**error: HasBaseReg**";
465  } else if (!HasBaseReg && !BaseRegs.empty()) {
466    if (!First) OS << " + "; else First = false;
467    OS << "**error: !HasBaseReg**";
468  }
469  if (Scale != 0) {
470    if (!First) OS << " + "; else First = false;
471    OS << Scale << "*reg(";
472    if (ScaledReg)
473      OS << *ScaledReg;
474    else
475      OS << "<unknown>";
476    OS << ')';
477  }
478  if (UnfoldedOffset != 0) {
479    if (!First) OS << " + ";
480    OS << "imm(" << UnfoldedOffset << ')';
481  }
482}
483
484#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
485void Formula::dump() const {
486  print(errs()); errs() << '\n';
487}
488#endif
489
490/// isAddRecSExtable - Return true if the given addrec can be sign-extended
491/// without changing its value.
492static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
493  Type *WideTy =
494    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
495  return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
496}
497
498/// isAddSExtable - Return true if the given add can be sign-extended
499/// without changing its value.
500static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
501  Type *WideTy =
502    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
503  return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
504}
505
506/// isMulSExtable - Return true if the given mul can be sign-extended
507/// without changing its value.
508static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
509  Type *WideTy =
510    IntegerType::get(SE.getContext(),
511                     SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
512  return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
513}
514
515/// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
516/// and if the remainder is known to be zero,  or null otherwise. If
517/// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
518/// to Y, ignoring that the multiplication may overflow, which is useful when
519/// the result will be used in a context where the most significant bits are
520/// ignored.
521static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
522                                ScalarEvolution &SE,
523                                bool IgnoreSignificantBits = false) {
524  // Handle the trivial case, which works for any SCEV type.
525  if (LHS == RHS)
526    return SE.getConstant(LHS->getType(), 1);
527
528  // Handle a few RHS special cases.
529  const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
530  if (RC) {
531    const APInt &RA = RC->getValue()->getValue();
532    // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
533    // some folding.
534    if (RA.isAllOnesValue())
535      return SE.getMulExpr(LHS, RC);
536    // Handle x /s 1 as x.
537    if (RA == 1)
538      return LHS;
539  }
540
541  // Check for a division of a constant by a constant.
542  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
543    if (!RC)
544      return nullptr;
545    const APInt &LA = C->getValue()->getValue();
546    const APInt &RA = RC->getValue()->getValue();
547    if (LA.srem(RA) != 0)
548      return nullptr;
549    return SE.getConstant(LA.sdiv(RA));
550  }
551
552  // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
553  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
554    if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
555      const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
556                                      IgnoreSignificantBits);
557      if (!Step) return nullptr;
558      const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
559                                       IgnoreSignificantBits);
560      if (!Start) return nullptr;
561      // FlagNW is independent of the start value, step direction, and is
562      // preserved with smaller magnitude steps.
563      // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
564      return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
565    }
566    return nullptr;
567  }
568
569  // Distribute the sdiv over add operands, if the add doesn't overflow.
570  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
571    if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
572      SmallVector<const SCEV *, 8> Ops;
573      for (const SCEV *S : Add->operands()) {
574        const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
575        if (!Op) return nullptr;
576        Ops.push_back(Op);
577      }
578      return SE.getAddExpr(Ops);
579    }
580    return nullptr;
581  }
582
583  // Check for a multiply operand that we can pull RHS out of.
584  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
585    if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
586      SmallVector<const SCEV *, 4> Ops;
587      bool Found = false;
588      for (const SCEV *S : Mul->operands()) {
589        if (!Found)
590          if (const SCEV *Q = getExactSDiv(S, RHS, SE,
591                                           IgnoreSignificantBits)) {
592            S = Q;
593            Found = true;
594          }
595        Ops.push_back(S);
596      }
597      return Found ? SE.getMulExpr(Ops) : nullptr;
598    }
599    return nullptr;
600  }
601
602  // Otherwise we don't know.
603  return nullptr;
604}
605
606/// ExtractImmediate - If S involves the addition of a constant integer value,
607/// return that integer value, and mutate S to point to a new SCEV with that
608/// value excluded.
609static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
610  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
611    if (C->getValue()->getValue().getMinSignedBits() <= 64) {
612      S = SE.getConstant(C->getType(), 0);
613      return C->getValue()->getSExtValue();
614    }
615  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
616    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
617    int64_t Result = ExtractImmediate(NewOps.front(), SE);
618    if (Result != 0)
619      S = SE.getAddExpr(NewOps);
620    return Result;
621  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
622    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
623    int64_t Result = ExtractImmediate(NewOps.front(), SE);
624    if (Result != 0)
625      S = SE.getAddRecExpr(NewOps, AR->getLoop(),
626                           // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
627                           SCEV::FlagAnyWrap);
628    return Result;
629  }
630  return 0;
631}
632
633/// ExtractSymbol - If S involves the addition of a GlobalValue address,
634/// return that symbol, and mutate S to point to a new SCEV with that
635/// value excluded.
636static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
637  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
638    if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
639      S = SE.getConstant(GV->getType(), 0);
640      return GV;
641    }
642  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
643    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
644    GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
645    if (Result)
646      S = SE.getAddExpr(NewOps);
647    return Result;
648  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
649    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
650    GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
651    if (Result)
652      S = SE.getAddRecExpr(NewOps, AR->getLoop(),
653                           // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
654                           SCEV::FlagAnyWrap);
655    return Result;
656  }
657  return nullptr;
658}
659
660/// isAddressUse - Returns true if the specified instruction is using the
661/// specified value as an address.
662static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
663  bool isAddress = isa<LoadInst>(Inst);
664  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
665    if (SI->getOperand(1) == OperandVal)
666      isAddress = true;
667  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
668    // Addressing modes can also be folded into prefetches and a variety
669    // of intrinsics.
670    switch (II->getIntrinsicID()) {
671      default: break;
672      case Intrinsic::prefetch:
673      case Intrinsic::x86_sse_storeu_ps:
674      case Intrinsic::x86_sse2_storeu_pd:
675      case Intrinsic::x86_sse2_storeu_dq:
676      case Intrinsic::x86_sse2_storel_dq:
677        if (II->getArgOperand(0) == OperandVal)
678          isAddress = true;
679        break;
680    }
681  }
682  return isAddress;
683}
684
685/// getAccessType - Return the type of the memory being accessed.
686static Type *getAccessType(const Instruction *Inst) {
687  Type *AccessTy = Inst->getType();
688  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
689    AccessTy = SI->getOperand(0)->getType();
690  else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
691    // Addressing modes can also be folded into prefetches and a variety
692    // of intrinsics.
693    switch (II->getIntrinsicID()) {
694    default: break;
695    case Intrinsic::x86_sse_storeu_ps:
696    case Intrinsic::x86_sse2_storeu_pd:
697    case Intrinsic::x86_sse2_storeu_dq:
698    case Intrinsic::x86_sse2_storel_dq:
699      AccessTy = II->getArgOperand(0)->getType();
700      break;
701    }
702  }
703
704  // All pointers have the same requirements, so canonicalize them to an
705  // arbitrary pointer type to minimize variation.
706  if (PointerType *PTy = dyn_cast<PointerType>(AccessTy))
707    AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
708                                PTy->getAddressSpace());
709
710  return AccessTy;
711}
712
713/// isExistingPhi - Return true if this AddRec is already a phi in its loop.
714static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
715  for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
716       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
717    if (SE.isSCEVable(PN->getType()) &&
718        (SE.getEffectiveSCEVType(PN->getType()) ==
719         SE.getEffectiveSCEVType(AR->getType())) &&
720        SE.getSCEV(PN) == AR)
721      return true;
722  }
723  return false;
724}
725
726/// Check if expanding this expression is likely to incur significant cost. This
727/// is tricky because SCEV doesn't track which expressions are actually computed
728/// by the current IR.
729///
730/// We currently allow expansion of IV increments that involve adds,
731/// multiplication by constants, and AddRecs from existing phis.
732///
733/// TODO: Allow UDivExpr if we can find an existing IV increment that is an
734/// obvious multiple of the UDivExpr.
735static bool isHighCostExpansion(const SCEV *S,
736                                SmallPtrSetImpl<const SCEV*> &Processed,
737                                ScalarEvolution &SE) {
738  // Zero/One operand expressions
739  switch (S->getSCEVType()) {
740  case scUnknown:
741  case scConstant:
742    return false;
743  case scTruncate:
744    return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
745                               Processed, SE);
746  case scZeroExtend:
747    return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
748                               Processed, SE);
749  case scSignExtend:
750    return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
751                               Processed, SE);
752  }
753
754  if (!Processed.insert(S).second)
755    return false;
756
757  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
758    for (const SCEV *S : Add->operands()) {
759      if (isHighCostExpansion(S, Processed, SE))
760        return true;
761    }
762    return false;
763  }
764
765  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
766    if (Mul->getNumOperands() == 2) {
767      // Multiplication by a constant is ok
768      if (isa<SCEVConstant>(Mul->getOperand(0)))
769        return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
770
771      // If we have the value of one operand, check if an existing
772      // multiplication already generates this expression.
773      if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
774        Value *UVal = U->getValue();
775        for (User *UR : UVal->users()) {
776          // If U is a constant, it may be used by a ConstantExpr.
777          Instruction *UI = dyn_cast<Instruction>(UR);
778          if (UI && UI->getOpcode() == Instruction::Mul &&
779              SE.isSCEVable(UI->getType())) {
780            return SE.getSCEV(UI) == Mul;
781          }
782        }
783      }
784    }
785  }
786
787  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
788    if (isExistingPhi(AR, SE))
789      return false;
790  }
791
792  // Fow now, consider any other type of expression (div/mul/min/max) high cost.
793  return true;
794}
795
796/// DeleteTriviallyDeadInstructions - If any of the instructions is the
797/// specified set are trivially dead, delete them and see if this makes any of
798/// their operands subsequently dead.
799static bool
800DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
801  bool Changed = false;
802
803  while (!DeadInsts.empty()) {
804    Value *V = DeadInsts.pop_back_val();
805    Instruction *I = dyn_cast_or_null<Instruction>(V);
806
807    if (!I || !isInstructionTriviallyDead(I))
808      continue;
809
810    for (Use &O : I->operands())
811      if (Instruction *U = dyn_cast<Instruction>(O)) {
812        O = nullptr;
813        if (U->use_empty())
814          DeadInsts.emplace_back(U);
815      }
816
817    I->eraseFromParent();
818    Changed = true;
819  }
820
821  return Changed;
822}
823
824namespace {
825class LSRUse;
826}
827
828/// \brief Check if the addressing mode defined by \p F is completely
829/// folded in \p LU at isel time.
830/// This includes address-mode folding and special icmp tricks.
831/// This function returns true if \p LU can accommodate what \p F
832/// defines and up to 1 base + 1 scaled + offset.
833/// In other words, if \p F has several base registers, this function may
834/// still return true. Therefore, users still need to account for
835/// additional base registers and/or unfolded offsets to derive an
836/// accurate cost model.
837static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
838                                 const LSRUse &LU, const Formula &F);
839// Get the cost of the scaling factor used in F for LU.
840static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
841                                     const LSRUse &LU, const Formula &F);
842
843namespace {
844
845/// Cost - This class is used to measure and compare candidate formulae.
846class Cost {
847  /// TODO: Some of these could be merged. Also, a lexical ordering
848  /// isn't always optimal.
849  unsigned NumRegs;
850  unsigned AddRecCost;
851  unsigned NumIVMuls;
852  unsigned NumBaseAdds;
853  unsigned ImmCost;
854  unsigned SetupCost;
855  unsigned ScaleCost;
856
857public:
858  Cost()
859    : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
860      SetupCost(0), ScaleCost(0) {}
861
862  bool operator<(const Cost &Other) const;
863
864  void Lose();
865
866#ifndef NDEBUG
867  // Once any of the metrics loses, they must all remain losers.
868  bool isValid() {
869    return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds
870             | ImmCost | SetupCost | ScaleCost) != ~0u)
871      || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds
872           & ImmCost & SetupCost & ScaleCost) == ~0u);
873  }
874#endif
875
876  bool isLoser() {
877    assert(isValid() && "invalid cost");
878    return NumRegs == ~0u;
879  }
880
881  void RateFormula(const TargetTransformInfo &TTI,
882                   const Formula &F,
883                   SmallPtrSetImpl<const SCEV *> &Regs,
884                   const DenseSet<const SCEV *> &VisitedRegs,
885                   const Loop *L,
886                   const SmallVectorImpl<int64_t> &Offsets,
887                   ScalarEvolution &SE, DominatorTree &DT,
888                   const LSRUse &LU,
889                   SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
890
891  void print(raw_ostream &OS) const;
892  void dump() const;
893
894private:
895  void RateRegister(const SCEV *Reg,
896                    SmallPtrSetImpl<const SCEV *> &Regs,
897                    const Loop *L,
898                    ScalarEvolution &SE, DominatorTree &DT);
899  void RatePrimaryRegister(const SCEV *Reg,
900                           SmallPtrSetImpl<const SCEV *> &Regs,
901                           const Loop *L,
902                           ScalarEvolution &SE, DominatorTree &DT,
903                           SmallPtrSetImpl<const SCEV *> *LoserRegs);
904};
905
906}
907
908/// RateRegister - Tally up interesting quantities from the given register.
909void Cost::RateRegister(const SCEV *Reg,
910                        SmallPtrSetImpl<const SCEV *> &Regs,
911                        const Loop *L,
912                        ScalarEvolution &SE, DominatorTree &DT) {
913  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
914    // If this is an addrec for another loop, don't second-guess its addrec phi
915    // nodes. LSR isn't currently smart enough to reason about more than one
916    // loop at a time. LSR has already run on inner loops, will not run on outer
917    // loops, and cannot be expected to change sibling loops.
918    if (AR->getLoop() != L) {
919      // If the AddRec exists, consider it's register free and leave it alone.
920      if (isExistingPhi(AR, SE))
921        return;
922
923      // Otherwise, do not consider this formula at all.
924      Lose();
925      return;
926    }
927    AddRecCost += 1; /// TODO: This should be a function of the stride.
928
929    // Add the step value register, if it needs one.
930    // TODO: The non-affine case isn't precisely modeled here.
931    if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
932      if (!Regs.count(AR->getOperand(1))) {
933        RateRegister(AR->getOperand(1), Regs, L, SE, DT);
934        if (isLoser())
935          return;
936      }
937    }
938  }
939  ++NumRegs;
940
941  // Rough heuristic; favor registers which don't require extra setup
942  // instructions in the preheader.
943  if (!isa<SCEVUnknown>(Reg) &&
944      !isa<SCEVConstant>(Reg) &&
945      !(isa<SCEVAddRecExpr>(Reg) &&
946        (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
947         isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
948    ++SetupCost;
949
950    NumIVMuls += isa<SCEVMulExpr>(Reg) &&
951                 SE.hasComputableLoopEvolution(Reg, L);
952}
953
954/// RatePrimaryRegister - Record this register in the set. If we haven't seen it
955/// before, rate it. Optional LoserRegs provides a way to declare any formula
956/// that refers to one of those regs an instant loser.
957void Cost::RatePrimaryRegister(const SCEV *Reg,
958                               SmallPtrSetImpl<const SCEV *> &Regs,
959                               const Loop *L,
960                               ScalarEvolution &SE, DominatorTree &DT,
961                               SmallPtrSetImpl<const SCEV *> *LoserRegs) {
962  if (LoserRegs && LoserRegs->count(Reg)) {
963    Lose();
964    return;
965  }
966  if (Regs.insert(Reg).second) {
967    RateRegister(Reg, Regs, L, SE, DT);
968    if (LoserRegs && isLoser())
969      LoserRegs->insert(Reg);
970  }
971}
972
973void Cost::RateFormula(const TargetTransformInfo &TTI,
974                       const Formula &F,
975                       SmallPtrSetImpl<const SCEV *> &Regs,
976                       const DenseSet<const SCEV *> &VisitedRegs,
977                       const Loop *L,
978                       const SmallVectorImpl<int64_t> &Offsets,
979                       ScalarEvolution &SE, DominatorTree &DT,
980                       const LSRUse &LU,
981                       SmallPtrSetImpl<const SCEV *> *LoserRegs) {
982  assert(F.isCanonical() && "Cost is accurate only for canonical formula");
983  // Tally up the registers.
984  if (const SCEV *ScaledReg = F.ScaledReg) {
985    if (VisitedRegs.count(ScaledReg)) {
986      Lose();
987      return;
988    }
989    RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
990    if (isLoser())
991      return;
992  }
993  for (const SCEV *BaseReg : F.BaseRegs) {
994    if (VisitedRegs.count(BaseReg)) {
995      Lose();
996      return;
997    }
998    RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
999    if (isLoser())
1000      return;
1001  }
1002
1003  // Determine how many (unfolded) adds we'll need inside the loop.
1004  size_t NumBaseParts = F.getNumRegs();
1005  if (NumBaseParts > 1)
1006    // Do not count the base and a possible second register if the target
1007    // allows to fold 2 registers.
1008    NumBaseAdds +=
1009        NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F)));
1010  NumBaseAdds += (F.UnfoldedOffset != 0);
1011
1012  // Accumulate non-free scaling amounts.
1013  ScaleCost += getScalingFactorCost(TTI, LU, F);
1014
1015  // Tally up the non-zero immediates.
1016  for (int64_t O : Offsets) {
1017    int64_t Offset = (uint64_t)O + F.BaseOffset;
1018    if (F.BaseGV)
1019      ImmCost += 64; // Handle symbolic values conservatively.
1020                     // TODO: This should probably be the pointer size.
1021    else if (Offset != 0)
1022      ImmCost += APInt(64, Offset, true).getMinSignedBits();
1023  }
1024  assert(isValid() && "invalid cost");
1025}
1026
1027/// Lose - Set this cost to a losing value.
1028void Cost::Lose() {
1029  NumRegs = ~0u;
1030  AddRecCost = ~0u;
1031  NumIVMuls = ~0u;
1032  NumBaseAdds = ~0u;
1033  ImmCost = ~0u;
1034  SetupCost = ~0u;
1035  ScaleCost = ~0u;
1036}
1037
1038/// operator< - Choose the lower cost.
1039bool Cost::operator<(const Cost &Other) const {
1040  return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost,
1041                  ImmCost, SetupCost) <
1042         std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls,
1043                  Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost,
1044                  Other.SetupCost);
1045}
1046
1047void Cost::print(raw_ostream &OS) const {
1048  OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
1049  if (AddRecCost != 0)
1050    OS << ", with addrec cost " << AddRecCost;
1051  if (NumIVMuls != 0)
1052    OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
1053  if (NumBaseAdds != 0)
1054    OS << ", plus " << NumBaseAdds << " base add"
1055       << (NumBaseAdds == 1 ? "" : "s");
1056  if (ScaleCost != 0)
1057    OS << ", plus " << ScaleCost << " scale cost";
1058  if (ImmCost != 0)
1059    OS << ", plus " << ImmCost << " imm cost";
1060  if (SetupCost != 0)
1061    OS << ", plus " << SetupCost << " setup cost";
1062}
1063
1064#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1065void Cost::dump() const {
1066  print(errs()); errs() << '\n';
1067}
1068#endif
1069
1070namespace {
1071
1072/// LSRFixup - An operand value in an instruction which is to be replaced
1073/// with some equivalent, possibly strength-reduced, replacement.
1074struct LSRFixup {
1075  /// UserInst - The instruction which will be updated.
1076  Instruction *UserInst;
1077
1078  /// OperandValToReplace - The operand of the instruction which will
1079  /// be replaced. The operand may be used more than once; every instance
1080  /// will be replaced.
1081  Value *OperandValToReplace;
1082
1083  /// PostIncLoops - If this user is to use the post-incremented value of an
1084  /// induction variable, this variable is non-null and holds the loop
1085  /// associated with the induction variable.
1086  PostIncLoopSet PostIncLoops;
1087
1088  /// LUIdx - The index of the LSRUse describing the expression which
1089  /// this fixup needs, minus an offset (below).
1090  size_t LUIdx;
1091
1092  /// Offset - A constant offset to be added to the LSRUse expression.
1093  /// This allows multiple fixups to share the same LSRUse with different
1094  /// offsets, for example in an unrolled loop.
1095  int64_t Offset;
1096
1097  bool isUseFullyOutsideLoop(const Loop *L) const;
1098
1099  LSRFixup();
1100
1101  void print(raw_ostream &OS) const;
1102  void dump() const;
1103};
1104
1105}
1106
1107LSRFixup::LSRFixup()
1108  : UserInst(nullptr), OperandValToReplace(nullptr), LUIdx(~size_t(0)),
1109    Offset(0) {}
1110
1111/// isUseFullyOutsideLoop - Test whether this fixup always uses its
1112/// value outside of the given loop.
1113bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1114  // PHI nodes use their value in their incoming blocks.
1115  if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1116    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1117      if (PN->getIncomingValue(i) == OperandValToReplace &&
1118          L->contains(PN->getIncomingBlock(i)))
1119        return false;
1120    return true;
1121  }
1122
1123  return !L->contains(UserInst);
1124}
1125
1126void LSRFixup::print(raw_ostream &OS) const {
1127  OS << "UserInst=";
1128  // Store is common and interesting enough to be worth special-casing.
1129  if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1130    OS << "store ";
1131    Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1132  } else if (UserInst->getType()->isVoidTy())
1133    OS << UserInst->getOpcodeName();
1134  else
1135    UserInst->printAsOperand(OS, /*PrintType=*/false);
1136
1137  OS << ", OperandValToReplace=";
1138  OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1139
1140  for (const Loop *PIL : PostIncLoops) {
1141    OS << ", PostIncLoop=";
1142    PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1143  }
1144
1145  if (LUIdx != ~size_t(0))
1146    OS << ", LUIdx=" << LUIdx;
1147
1148  if (Offset != 0)
1149    OS << ", Offset=" << Offset;
1150}
1151
1152#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1153void LSRFixup::dump() const {
1154  print(errs()); errs() << '\n';
1155}
1156#endif
1157
1158namespace {
1159
1160/// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
1161/// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
1162struct UniquifierDenseMapInfo {
1163  static SmallVector<const SCEV *, 4> getEmptyKey() {
1164    SmallVector<const SCEV *, 4>  V;
1165    V.push_back(reinterpret_cast<const SCEV *>(-1));
1166    return V;
1167  }
1168
1169  static SmallVector<const SCEV *, 4> getTombstoneKey() {
1170    SmallVector<const SCEV *, 4> V;
1171    V.push_back(reinterpret_cast<const SCEV *>(-2));
1172    return V;
1173  }
1174
1175  static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1176    return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1177  }
1178
1179  static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1180                      const SmallVector<const SCEV *, 4> &RHS) {
1181    return LHS == RHS;
1182  }
1183};
1184
1185/// LSRUse - This class holds the state that LSR keeps for each use in
1186/// IVUsers, as well as uses invented by LSR itself. It includes information
1187/// about what kinds of things can be folded into the user, information about
1188/// the user itself, and information about how the use may be satisfied.
1189/// TODO: Represent multiple users of the same expression in common?
1190class LSRUse {
1191  DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1192
1193public:
1194  /// KindType - An enum for a kind of use, indicating what types of
1195  /// scaled and immediate operands it might support.
1196  enum KindType {
1197    Basic,   ///< A normal use, with no folding.
1198    Special, ///< A special case of basic, allowing -1 scales.
1199    Address, ///< An address use; folding according to TargetLowering
1200    ICmpZero ///< An equality icmp with both operands folded into one.
1201    // TODO: Add a generic icmp too?
1202  };
1203
1204  typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair;
1205
1206  KindType Kind;
1207  Type *AccessTy;
1208
1209  SmallVector<int64_t, 8> Offsets;
1210  int64_t MinOffset;
1211  int64_t MaxOffset;
1212
1213  /// AllFixupsOutsideLoop - This records whether all of the fixups using this
1214  /// LSRUse are outside of the loop, in which case some special-case heuristics
1215  /// may be used.
1216  bool AllFixupsOutsideLoop;
1217
1218  /// RigidFormula is set to true to guarantee that this use will be associated
1219  /// with a single formula--the one that initially matched. Some SCEV
1220  /// expressions cannot be expanded. This allows LSR to consider the registers
1221  /// used by those expressions without the need to expand them later after
1222  /// changing the formula.
1223  bool RigidFormula;
1224
1225  /// WidestFixupType - This records the widest use type for any fixup using
1226  /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different
1227  /// max fixup widths to be equivalent, because the narrower one may be relying
1228  /// on the implicit truncation to truncate away bogus bits.
1229  Type *WidestFixupType;
1230
1231  /// Formulae - A list of ways to build a value that can satisfy this user.
1232  /// After the list is populated, one of these is selected heuristically and
1233  /// used to formulate a replacement for OperandValToReplace in UserInst.
1234  SmallVector<Formula, 12> Formulae;
1235
1236  /// Regs - The set of register candidates used by all formulae in this LSRUse.
1237  SmallPtrSet<const SCEV *, 4> Regs;
1238
1239  LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T),
1240                                      MinOffset(INT64_MAX),
1241                                      MaxOffset(INT64_MIN),
1242                                      AllFixupsOutsideLoop(true),
1243                                      RigidFormula(false),
1244                                      WidestFixupType(nullptr) {}
1245
1246  bool HasFormulaWithSameRegs(const Formula &F) const;
1247  bool InsertFormula(const Formula &F);
1248  void DeleteFormula(Formula &F);
1249  void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1250
1251  void print(raw_ostream &OS) const;
1252  void dump() const;
1253};
1254
1255}
1256
1257/// HasFormula - Test whether this use as a formula which has the same
1258/// registers as the given formula.
1259bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1260  SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1261  if (F.ScaledReg) Key.push_back(F.ScaledReg);
1262  // Unstable sort by host order ok, because this is only used for uniquifying.
1263  std::sort(Key.begin(), Key.end());
1264  return Uniquifier.count(Key);
1265}
1266
1267/// InsertFormula - If the given formula has not yet been inserted, add it to
1268/// the list, and return true. Return false otherwise.
1269/// The formula must be in canonical form.
1270bool LSRUse::InsertFormula(const Formula &F) {
1271  assert(F.isCanonical() && "Invalid canonical representation");
1272
1273  if (!Formulae.empty() && RigidFormula)
1274    return false;
1275
1276  SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1277  if (F.ScaledReg) Key.push_back(F.ScaledReg);
1278  // Unstable sort by host order ok, because this is only used for uniquifying.
1279  std::sort(Key.begin(), Key.end());
1280
1281  if (!Uniquifier.insert(Key).second)
1282    return false;
1283
1284  // Using a register to hold the value of 0 is not profitable.
1285  assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1286         "Zero allocated in a scaled register!");
1287#ifndef NDEBUG
1288  for (const SCEV *BaseReg : F.BaseRegs)
1289    assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1290#endif
1291
1292  // Add the formula to the list.
1293  Formulae.push_back(F);
1294
1295  // Record registers now being used by this use.
1296  Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1297  if (F.ScaledReg)
1298    Regs.insert(F.ScaledReg);
1299
1300  return true;
1301}
1302
1303/// DeleteFormula - Remove the given formula from this use's list.
1304void LSRUse::DeleteFormula(Formula &F) {
1305  if (&F != &Formulae.back())
1306    std::swap(F, Formulae.back());
1307  Formulae.pop_back();
1308}
1309
1310/// RecomputeRegs - Recompute the Regs field, and update RegUses.
1311void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1312  // Now that we've filtered out some formulae, recompute the Regs set.
1313  SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1314  Regs.clear();
1315  for (const Formula &F : Formulae) {
1316    if (F.ScaledReg) Regs.insert(F.ScaledReg);
1317    Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1318  }
1319
1320  // Update the RegTracker.
1321  for (const SCEV *S : OldRegs)
1322    if (!Regs.count(S))
1323      RegUses.DropRegister(S, LUIdx);
1324}
1325
1326void LSRUse::print(raw_ostream &OS) const {
1327  OS << "LSR Use: Kind=";
1328  switch (Kind) {
1329  case Basic:    OS << "Basic"; break;
1330  case Special:  OS << "Special"; break;
1331  case ICmpZero: OS << "ICmpZero"; break;
1332  case Address:
1333    OS << "Address of ";
1334    if (AccessTy->isPointerTy())
1335      OS << "pointer"; // the full pointer type could be really verbose
1336    else
1337      OS << *AccessTy;
1338  }
1339
1340  OS << ", Offsets={";
1341  bool NeedComma = false;
1342  for (int64_t O : Offsets) {
1343    if (NeedComma) OS << ',';
1344    OS << O;
1345    NeedComma = true;
1346  }
1347  OS << '}';
1348
1349  if (AllFixupsOutsideLoop)
1350    OS << ", all-fixups-outside-loop";
1351
1352  if (WidestFixupType)
1353    OS << ", widest fixup type: " << *WidestFixupType;
1354}
1355
1356#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1357void LSRUse::dump() const {
1358  print(errs()); errs() << '\n';
1359}
1360#endif
1361
1362static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1363                                 LSRUse::KindType Kind, Type *AccessTy,
1364                                 GlobalValue *BaseGV, int64_t BaseOffset,
1365                                 bool HasBaseReg, int64_t Scale) {
1366  switch (Kind) {
1367  case LSRUse::Address:
1368    return TTI.isLegalAddressingMode(AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale);
1369
1370  case LSRUse::ICmpZero:
1371    // There's not even a target hook for querying whether it would be legal to
1372    // fold a GV into an ICmp.
1373    if (BaseGV)
1374      return false;
1375
1376    // ICmp only has two operands; don't allow more than two non-trivial parts.
1377    if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1378      return false;
1379
1380    // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1381    // putting the scaled register in the other operand of the icmp.
1382    if (Scale != 0 && Scale != -1)
1383      return false;
1384
1385    // If we have low-level target information, ask the target if it can fold an
1386    // integer immediate on an icmp.
1387    if (BaseOffset != 0) {
1388      // We have one of:
1389      // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1390      // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1391      // Offs is the ICmp immediate.
1392      if (Scale == 0)
1393        // The cast does the right thing with INT64_MIN.
1394        BaseOffset = -(uint64_t)BaseOffset;
1395      return TTI.isLegalICmpImmediate(BaseOffset);
1396    }
1397
1398    // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1399    return true;
1400
1401  case LSRUse::Basic:
1402    // Only handle single-register values.
1403    return !BaseGV && Scale == 0 && BaseOffset == 0;
1404
1405  case LSRUse::Special:
1406    // Special case Basic to handle -1 scales.
1407    return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1408  }
1409
1410  llvm_unreachable("Invalid LSRUse Kind!");
1411}
1412
1413static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1414                                 int64_t MinOffset, int64_t MaxOffset,
1415                                 LSRUse::KindType Kind, Type *AccessTy,
1416                                 GlobalValue *BaseGV, int64_t BaseOffset,
1417                                 bool HasBaseReg, int64_t Scale) {
1418  // Check for overflow.
1419  if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1420      (MinOffset > 0))
1421    return false;
1422  MinOffset = (uint64_t)BaseOffset + MinOffset;
1423  if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1424      (MaxOffset > 0))
1425    return false;
1426  MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1427
1428  return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1429                              HasBaseReg, Scale) &&
1430         isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1431                              HasBaseReg, Scale);
1432}
1433
1434static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1435                                 int64_t MinOffset, int64_t MaxOffset,
1436                                 LSRUse::KindType Kind, Type *AccessTy,
1437                                 const Formula &F) {
1438  // For the purpose of isAMCompletelyFolded either having a canonical formula
1439  // or a scale not equal to zero is correct.
1440  // Problems may arise from non canonical formulae having a scale == 0.
1441  // Strictly speaking it would best to just rely on canonical formulae.
1442  // However, when we generate the scaled formulae, we first check that the
1443  // scaling factor is profitable before computing the actual ScaledReg for
1444  // compile time sake.
1445  assert((F.isCanonical() || F.Scale != 0));
1446  return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1447                              F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1448}
1449
1450/// isLegalUse - Test whether we know how to expand the current formula.
1451static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1452                       int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy,
1453                       GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg,
1454                       int64_t Scale) {
1455  // We know how to expand completely foldable formulae.
1456  return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1457                              BaseOffset, HasBaseReg, Scale) ||
1458         // Or formulae that use a base register produced by a sum of base
1459         // registers.
1460         (Scale == 1 &&
1461          isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1462                               BaseGV, BaseOffset, true, 0));
1463}
1464
1465static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1466                       int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy,
1467                       const Formula &F) {
1468  return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1469                    F.BaseOffset, F.HasBaseReg, F.Scale);
1470}
1471
1472static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1473                                 const LSRUse &LU, const Formula &F) {
1474  return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1475                              LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1476                              F.Scale);
1477}
1478
1479static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1480                                     const LSRUse &LU, const Formula &F) {
1481  if (!F.Scale)
1482    return 0;
1483
1484  // If the use is not completely folded in that instruction, we will have to
1485  // pay an extra cost only for scale != 1.
1486  if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1487                            LU.AccessTy, F))
1488    return F.Scale != 1;
1489
1490  switch (LU.Kind) {
1491  case LSRUse::Address: {
1492    // Check the scaling factor cost with both the min and max offsets.
1493    int ScaleCostMinOffset =
1494      TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV,
1495                               F.BaseOffset + LU.MinOffset,
1496                               F.HasBaseReg, F.Scale);
1497    int ScaleCostMaxOffset =
1498      TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV,
1499                               F.BaseOffset + LU.MaxOffset,
1500                               F.HasBaseReg, F.Scale);
1501
1502    assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1503           "Legal addressing mode has an illegal cost!");
1504    return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1505  }
1506  case LSRUse::ICmpZero:
1507  case LSRUse::Basic:
1508  case LSRUse::Special:
1509    // The use is completely folded, i.e., everything is folded into the
1510    // instruction.
1511    return 0;
1512  }
1513
1514  llvm_unreachable("Invalid LSRUse Kind!");
1515}
1516
1517static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1518                             LSRUse::KindType Kind, Type *AccessTy,
1519                             GlobalValue *BaseGV, int64_t BaseOffset,
1520                             bool HasBaseReg) {
1521  // Fast-path: zero is always foldable.
1522  if (BaseOffset == 0 && !BaseGV) return true;
1523
1524  // Conservatively, create an address with an immediate and a
1525  // base and a scale.
1526  int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1527
1528  // Canonicalize a scale of 1 to a base register if the formula doesn't
1529  // already have a base register.
1530  if (!HasBaseReg && Scale == 1) {
1531    Scale = 0;
1532    HasBaseReg = true;
1533  }
1534
1535  return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1536                              HasBaseReg, Scale);
1537}
1538
1539static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1540                             ScalarEvolution &SE, int64_t MinOffset,
1541                             int64_t MaxOffset, LSRUse::KindType Kind,
1542                             Type *AccessTy, const SCEV *S, bool HasBaseReg) {
1543  // Fast-path: zero is always foldable.
1544  if (S->isZero()) return true;
1545
1546  // Conservatively, create an address with an immediate and a
1547  // base and a scale.
1548  int64_t BaseOffset = ExtractImmediate(S, SE);
1549  GlobalValue *BaseGV = ExtractSymbol(S, SE);
1550
1551  // If there's anything else involved, it's not foldable.
1552  if (!S->isZero()) return false;
1553
1554  // Fast-path: zero is always foldable.
1555  if (BaseOffset == 0 && !BaseGV) return true;
1556
1557  // Conservatively, create an address with an immediate and a
1558  // base and a scale.
1559  int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1560
1561  return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1562                              BaseOffset, HasBaseReg, Scale);
1563}
1564
1565namespace {
1566
1567/// IVInc - An individual increment in a Chain of IV increments.
1568/// Relate an IV user to an expression that computes the IV it uses from the IV
1569/// used by the previous link in the Chain.
1570///
1571/// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1572/// original IVOperand. The head of the chain's IVOperand is only valid during
1573/// chain collection, before LSR replaces IV users. During chain generation,
1574/// IncExpr can be used to find the new IVOperand that computes the same
1575/// expression.
1576struct IVInc {
1577  Instruction *UserInst;
1578  Value* IVOperand;
1579  const SCEV *IncExpr;
1580
1581  IVInc(Instruction *U, Value *O, const SCEV *E):
1582    UserInst(U), IVOperand(O), IncExpr(E) {}
1583};
1584
1585// IVChain - The list of IV increments in program order.
1586// We typically add the head of a chain without finding subsequent links.
1587struct IVChain {
1588  SmallVector<IVInc,1> Incs;
1589  const SCEV *ExprBase;
1590
1591  IVChain() : ExprBase(nullptr) {}
1592
1593  IVChain(const IVInc &Head, const SCEV *Base)
1594    : Incs(1, Head), ExprBase(Base) {}
1595
1596  typedef SmallVectorImpl<IVInc>::const_iterator const_iterator;
1597
1598  // begin - return the first increment in the chain.
1599  const_iterator begin() const {
1600    assert(!Incs.empty());
1601    return std::next(Incs.begin());
1602  }
1603  const_iterator end() const {
1604    return Incs.end();
1605  }
1606
1607  // hasIncs - Returns true if this chain contains any increments.
1608  bool hasIncs() const { return Incs.size() >= 2; }
1609
1610  // add - Add an IVInc to the end of this chain.
1611  void add(const IVInc &X) { Incs.push_back(X); }
1612
1613  // tailUserInst - Returns the last UserInst in the chain.
1614  Instruction *tailUserInst() const { return Incs.back().UserInst; }
1615
1616  // isProfitableIncrement - Returns true if IncExpr can be profitably added to
1617  // this chain.
1618  bool isProfitableIncrement(const SCEV *OperExpr,
1619                             const SCEV *IncExpr,
1620                             ScalarEvolution&);
1621};
1622
1623/// ChainUsers - Helper for CollectChains to track multiple IV increment uses.
1624/// Distinguish between FarUsers that definitely cross IV increments and
1625/// NearUsers that may be used between IV increments.
1626struct ChainUsers {
1627  SmallPtrSet<Instruction*, 4> FarUsers;
1628  SmallPtrSet<Instruction*, 4> NearUsers;
1629};
1630
1631/// LSRInstance - This class holds state for the main loop strength reduction
1632/// logic.
1633class LSRInstance {
1634  IVUsers &IU;
1635  ScalarEvolution &SE;
1636  DominatorTree &DT;
1637  LoopInfo &LI;
1638  const TargetTransformInfo &TTI;
1639  Loop *const L;
1640  bool Changed;
1641
1642  /// IVIncInsertPos - This is the insert position that the current loop's
1643  /// induction variable increment should be placed. In simple loops, this is
1644  /// the latch block's terminator. But in more complicated cases, this is a
1645  /// position which will dominate all the in-loop post-increment users.
1646  Instruction *IVIncInsertPos;
1647
1648  /// Factors - Interesting factors between use strides.
1649  SmallSetVector<int64_t, 8> Factors;
1650
1651  /// Types - Interesting use types, to facilitate truncation reuse.
1652  SmallSetVector<Type *, 4> Types;
1653
1654  /// Fixups - The list of operands which are to be replaced.
1655  SmallVector<LSRFixup, 16> Fixups;
1656
1657  /// Uses - The list of interesting uses.
1658  SmallVector<LSRUse, 16> Uses;
1659
1660  /// RegUses - Track which uses use which register candidates.
1661  RegUseTracker RegUses;
1662
1663  // Limit the number of chains to avoid quadratic behavior. We don't expect to
1664  // have more than a few IV increment chains in a loop. Missing a Chain falls
1665  // back to normal LSR behavior for those uses.
1666  static const unsigned MaxChains = 8;
1667
1668  /// IVChainVec - IV users can form a chain of IV increments.
1669  SmallVector<IVChain, MaxChains> IVChainVec;
1670
1671  /// IVIncSet - IV users that belong to profitable IVChains.
1672  SmallPtrSet<Use*, MaxChains> IVIncSet;
1673
1674  void OptimizeShadowIV();
1675  bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1676  ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1677  void OptimizeLoopTermCond();
1678
1679  void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1680                        SmallVectorImpl<ChainUsers> &ChainUsersVec);
1681  void FinalizeChain(IVChain &Chain);
1682  void CollectChains();
1683  void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1684                       SmallVectorImpl<WeakVH> &DeadInsts);
1685
1686  void CollectInterestingTypesAndFactors();
1687  void CollectFixupsAndInitialFormulae();
1688
1689  LSRFixup &getNewFixup() {
1690    Fixups.push_back(LSRFixup());
1691    return Fixups.back();
1692  }
1693
1694  // Support for sharing of LSRUses between LSRFixups.
1695  typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy;
1696  UseMapTy UseMap;
1697
1698  bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1699                          LSRUse::KindType Kind, Type *AccessTy);
1700
1701  std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
1702                                    LSRUse::KindType Kind,
1703                                    Type *AccessTy);
1704
1705  void DeleteUse(LSRUse &LU, size_t LUIdx);
1706
1707  LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1708
1709  void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1710  void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1711  void CountRegisters(const Formula &F, size_t LUIdx);
1712  bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1713
1714  void CollectLoopInvariantFixupsAndFormulae();
1715
1716  void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1717                              unsigned Depth = 0);
1718
1719  void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1720                                  const Formula &Base, unsigned Depth,
1721                                  size_t Idx, bool IsScaledReg = false);
1722  void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1723  void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1724                                   const Formula &Base, size_t Idx,
1725                                   bool IsScaledReg = false);
1726  void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1727  void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1728                                   const Formula &Base,
1729                                   const SmallVectorImpl<int64_t> &Worklist,
1730                                   size_t Idx, bool IsScaledReg = false);
1731  void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1732  void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1733  void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1734  void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1735  void GenerateCrossUseConstantOffsets();
1736  void GenerateAllReuseFormulae();
1737
1738  void FilterOutUndesirableDedicatedRegisters();
1739
1740  size_t EstimateSearchSpaceComplexity() const;
1741  void NarrowSearchSpaceByDetectingSupersets();
1742  void NarrowSearchSpaceByCollapsingUnrolledCode();
1743  void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1744  void NarrowSearchSpaceByPickingWinnerRegs();
1745  void NarrowSearchSpaceUsingHeuristics();
1746
1747  void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1748                    Cost &SolutionCost,
1749                    SmallVectorImpl<const Formula *> &Workspace,
1750                    const Cost &CurCost,
1751                    const SmallPtrSet<const SCEV *, 16> &CurRegs,
1752                    DenseSet<const SCEV *> &VisitedRegs) const;
1753  void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1754
1755  BasicBlock::iterator
1756    HoistInsertPosition(BasicBlock::iterator IP,
1757                        const SmallVectorImpl<Instruction *> &Inputs) const;
1758  BasicBlock::iterator
1759    AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1760                                  const LSRFixup &LF,
1761                                  const LSRUse &LU,
1762                                  SCEVExpander &Rewriter) const;
1763
1764  Value *Expand(const LSRFixup &LF,
1765                const Formula &F,
1766                BasicBlock::iterator IP,
1767                SCEVExpander &Rewriter,
1768                SmallVectorImpl<WeakVH> &DeadInsts) const;
1769  void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1770                     const Formula &F,
1771                     SCEVExpander &Rewriter,
1772                     SmallVectorImpl<WeakVH> &DeadInsts,
1773                     Pass *P) const;
1774  void Rewrite(const LSRFixup &LF,
1775               const Formula &F,
1776               SCEVExpander &Rewriter,
1777               SmallVectorImpl<WeakVH> &DeadInsts,
1778               Pass *P) const;
1779  void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
1780                         Pass *P);
1781
1782public:
1783  LSRInstance(Loop *L, Pass *P);
1784
1785  bool getChanged() const { return Changed; }
1786
1787  void print_factors_and_types(raw_ostream &OS) const;
1788  void print_fixups(raw_ostream &OS) const;
1789  void print_uses(raw_ostream &OS) const;
1790  void print(raw_ostream &OS) const;
1791  void dump() const;
1792};
1793
1794}
1795
1796/// OptimizeShadowIV - If IV is used in a int-to-float cast
1797/// inside the loop then try to eliminate the cast operation.
1798void LSRInstance::OptimizeShadowIV() {
1799  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1800  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1801    return;
1802
1803  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1804       UI != E; /* empty */) {
1805    IVUsers::const_iterator CandidateUI = UI;
1806    ++UI;
1807    Instruction *ShadowUse = CandidateUI->getUser();
1808    Type *DestTy = nullptr;
1809    bool IsSigned = false;
1810
1811    /* If shadow use is a int->float cast then insert a second IV
1812       to eliminate this cast.
1813
1814         for (unsigned i = 0; i < n; ++i)
1815           foo((double)i);
1816
1817       is transformed into
1818
1819         double d = 0.0;
1820         for (unsigned i = 0; i < n; ++i, ++d)
1821           foo(d);
1822    */
1823    if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
1824      IsSigned = false;
1825      DestTy = UCast->getDestTy();
1826    }
1827    else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
1828      IsSigned = true;
1829      DestTy = SCast->getDestTy();
1830    }
1831    if (!DestTy) continue;
1832
1833    // If target does not support DestTy natively then do not apply
1834    // this transformation.
1835    if (!TTI.isTypeLegal(DestTy)) continue;
1836
1837    PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1838    if (!PH) continue;
1839    if (PH->getNumIncomingValues() != 2) continue;
1840
1841    Type *SrcTy = PH->getType();
1842    int Mantissa = DestTy->getFPMantissaWidth();
1843    if (Mantissa == -1) continue;
1844    if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1845      continue;
1846
1847    unsigned Entry, Latch;
1848    if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1849      Entry = 0;
1850      Latch = 1;
1851    } else {
1852      Entry = 1;
1853      Latch = 0;
1854    }
1855
1856    ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1857    if (!Init) continue;
1858    Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
1859                                        (double)Init->getSExtValue() :
1860                                        (double)Init->getZExtValue());
1861
1862    BinaryOperator *Incr =
1863      dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1864    if (!Incr) continue;
1865    if (Incr->getOpcode() != Instruction::Add
1866        && Incr->getOpcode() != Instruction::Sub)
1867      continue;
1868
1869    /* Initialize new IV, double d = 0.0 in above example. */
1870    ConstantInt *C = nullptr;
1871    if (Incr->getOperand(0) == PH)
1872      C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1873    else if (Incr->getOperand(1) == PH)
1874      C = dyn_cast<ConstantInt>(Incr->getOperand(0));
1875    else
1876      continue;
1877
1878    if (!C) continue;
1879
1880    // Ignore negative constants, as the code below doesn't handle them
1881    // correctly. TODO: Remove this restriction.
1882    if (!C->getValue().isStrictlyPositive()) continue;
1883
1884    /* Add new PHINode. */
1885    PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
1886
1887    /* create new increment. '++d' in above example. */
1888    Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1889    BinaryOperator *NewIncr =
1890      BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1891                               Instruction::FAdd : Instruction::FSub,
1892                             NewPH, CFP, "IV.S.next.", Incr);
1893
1894    NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1895    NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
1896
1897    /* Remove cast operation */
1898    ShadowUse->replaceAllUsesWith(NewPH);
1899    ShadowUse->eraseFromParent();
1900    Changed = true;
1901    break;
1902  }
1903}
1904
1905/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1906/// set the IV user and stride information and return true, otherwise return
1907/// false.
1908bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
1909  for (IVStrideUse &U : IU)
1910    if (U.getUser() == Cond) {
1911      // NOTE: we could handle setcc instructions with multiple uses here, but
1912      // InstCombine does it as well for simple uses, it's not clear that it
1913      // occurs enough in real life to handle.
1914      CondUse = &U;
1915      return true;
1916    }
1917  return false;
1918}
1919
1920/// OptimizeMax - Rewrite the loop's terminating condition if it uses
1921/// a max computation.
1922///
1923/// This is a narrow solution to a specific, but acute, problem. For loops
1924/// like this:
1925///
1926///   i = 0;
1927///   do {
1928///     p[i] = 0.0;
1929///   } while (++i < n);
1930///
1931/// the trip count isn't just 'n', because 'n' might not be positive. And
1932/// unfortunately this can come up even for loops where the user didn't use
1933/// a C do-while loop. For example, seemingly well-behaved top-test loops
1934/// will commonly be lowered like this:
1935//
1936///   if (n > 0) {
1937///     i = 0;
1938///     do {
1939///       p[i] = 0.0;
1940///     } while (++i < n);
1941///   }
1942///
1943/// and then it's possible for subsequent optimization to obscure the if
1944/// test in such a way that indvars can't find it.
1945///
1946/// When indvars can't find the if test in loops like this, it creates a
1947/// max expression, which allows it to give the loop a canonical
1948/// induction variable:
1949///
1950///   i = 0;
1951///   max = n < 1 ? 1 : n;
1952///   do {
1953///     p[i] = 0.0;
1954///   } while (++i != max);
1955///
1956/// Canonical induction variables are necessary because the loop passes
1957/// are designed around them. The most obvious example of this is the
1958/// LoopInfo analysis, which doesn't remember trip count values. It
1959/// expects to be able to rediscover the trip count each time it is
1960/// needed, and it does this using a simple analysis that only succeeds if
1961/// the loop has a canonical induction variable.
1962///
1963/// However, when it comes time to generate code, the maximum operation
1964/// can be quite costly, especially if it's inside of an outer loop.
1965///
1966/// This function solves this problem by detecting this type of loop and
1967/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1968/// the instructions for the maximum computation.
1969///
1970ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
1971  // Check that the loop matches the pattern we're looking for.
1972  if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1973      Cond->getPredicate() != CmpInst::ICMP_NE)
1974    return Cond;
1975
1976  SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1977  if (!Sel || !Sel->hasOneUse()) return Cond;
1978
1979  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1980  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1981    return Cond;
1982  const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
1983
1984  // Add one to the backedge-taken count to get the trip count.
1985  const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
1986  if (IterationCount != SE.getSCEV(Sel)) return Cond;
1987
1988  // Check for a max calculation that matches the pattern. There's no check
1989  // for ICMP_ULE here because the comparison would be with zero, which
1990  // isn't interesting.
1991  CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1992  const SCEVNAryExpr *Max = nullptr;
1993  if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
1994    Pred = ICmpInst::ICMP_SLE;
1995    Max = S;
1996  } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
1997    Pred = ICmpInst::ICMP_SLT;
1998    Max = S;
1999  } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2000    Pred = ICmpInst::ICMP_ULT;
2001    Max = U;
2002  } else {
2003    // No match; bail.
2004    return Cond;
2005  }
2006
2007  // To handle a max with more than two operands, this optimization would
2008  // require additional checking and setup.
2009  if (Max->getNumOperands() != 2)
2010    return Cond;
2011
2012  const SCEV *MaxLHS = Max->getOperand(0);
2013  const SCEV *MaxRHS = Max->getOperand(1);
2014
2015  // ScalarEvolution canonicalizes constants to the left. For < and >, look
2016  // for a comparison with 1. For <= and >=, a comparison with zero.
2017  if (!MaxLHS ||
2018      (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2019    return Cond;
2020
2021  // Check the relevant induction variable for conformance to
2022  // the pattern.
2023  const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2024  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2025  if (!AR || !AR->isAffine() ||
2026      AR->getStart() != One ||
2027      AR->getStepRecurrence(SE) != One)
2028    return Cond;
2029
2030  assert(AR->getLoop() == L &&
2031         "Loop condition operand is an addrec in a different loop!");
2032
2033  // Check the right operand of the select, and remember it, as it will
2034  // be used in the new comparison instruction.
2035  Value *NewRHS = nullptr;
2036  if (ICmpInst::isTrueWhenEqual(Pred)) {
2037    // Look for n+1, and grab n.
2038    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2039      if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2040         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2041           NewRHS = BO->getOperand(0);
2042    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2043      if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2044        if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2045          NewRHS = BO->getOperand(0);
2046    if (!NewRHS)
2047      return Cond;
2048  } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2049    NewRHS = Sel->getOperand(1);
2050  else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2051    NewRHS = Sel->getOperand(2);
2052  else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2053    NewRHS = SU->getValue();
2054  else
2055    // Max doesn't match expected pattern.
2056    return Cond;
2057
2058  // Determine the new comparison opcode. It may be signed or unsigned,
2059  // and the original comparison may be either equality or inequality.
2060  if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2061    Pred = CmpInst::getInversePredicate(Pred);
2062
2063  // Ok, everything looks ok to change the condition into an SLT or SGE and
2064  // delete the max calculation.
2065  ICmpInst *NewCond =
2066    new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2067
2068  // Delete the max calculation instructions.
2069  Cond->replaceAllUsesWith(NewCond);
2070  CondUse->setUser(NewCond);
2071  Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2072  Cond->eraseFromParent();
2073  Sel->eraseFromParent();
2074  if (Cmp->use_empty())
2075    Cmp->eraseFromParent();
2076  return NewCond;
2077}
2078
2079/// OptimizeLoopTermCond - Change loop terminating condition to use the
2080/// postinc iv when possible.
2081void
2082LSRInstance::OptimizeLoopTermCond() {
2083  SmallPtrSet<Instruction *, 4> PostIncs;
2084
2085  BasicBlock *LatchBlock = L->getLoopLatch();
2086  SmallVector<BasicBlock*, 8> ExitingBlocks;
2087  L->getExitingBlocks(ExitingBlocks);
2088
2089  for (BasicBlock *ExitingBlock : ExitingBlocks) {
2090
2091    // Get the terminating condition for the loop if possible.  If we
2092    // can, we want to change it to use a post-incremented version of its
2093    // induction variable, to allow coalescing the live ranges for the IV into
2094    // one register value.
2095
2096    BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2097    if (!TermBr)
2098      continue;
2099    // FIXME: Overly conservative, termination condition could be an 'or' etc..
2100    if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2101      continue;
2102
2103    // Search IVUsesByStride to find Cond's IVUse if there is one.
2104    IVStrideUse *CondUse = nullptr;
2105    ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2106    if (!FindIVUserForCond(Cond, CondUse))
2107      continue;
2108
2109    // If the trip count is computed in terms of a max (due to ScalarEvolution
2110    // being unable to find a sufficient guard, for example), change the loop
2111    // comparison to use SLT or ULT instead of NE.
2112    // One consequence of doing this now is that it disrupts the count-down
2113    // optimization. That's not always a bad thing though, because in such
2114    // cases it may still be worthwhile to avoid a max.
2115    Cond = OptimizeMax(Cond, CondUse);
2116
2117    // If this exiting block dominates the latch block, it may also use
2118    // the post-inc value if it won't be shared with other uses.
2119    // Check for dominance.
2120    if (!DT.dominates(ExitingBlock, LatchBlock))
2121      continue;
2122
2123    // Conservatively avoid trying to use the post-inc value in non-latch
2124    // exits if there may be pre-inc users in intervening blocks.
2125    if (LatchBlock != ExitingBlock)
2126      for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2127        // Test if the use is reachable from the exiting block. This dominator
2128        // query is a conservative approximation of reachability.
2129        if (&*UI != CondUse &&
2130            !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2131          // Conservatively assume there may be reuse if the quotient of their
2132          // strides could be a legal scale.
2133          const SCEV *A = IU.getStride(*CondUse, L);
2134          const SCEV *B = IU.getStride(*UI, L);
2135          if (!A || !B) continue;
2136          if (SE.getTypeSizeInBits(A->getType()) !=
2137              SE.getTypeSizeInBits(B->getType())) {
2138            if (SE.getTypeSizeInBits(A->getType()) >
2139                SE.getTypeSizeInBits(B->getType()))
2140              B = SE.getSignExtendExpr(B, A->getType());
2141            else
2142              A = SE.getSignExtendExpr(A, B->getType());
2143          }
2144          if (const SCEVConstant *D =
2145                dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2146            const ConstantInt *C = D->getValue();
2147            // Stride of one or negative one can have reuse with non-addresses.
2148            if (C->isOne() || C->isAllOnesValue())
2149              goto decline_post_inc;
2150            // Avoid weird situations.
2151            if (C->getValue().getMinSignedBits() >= 64 ||
2152                C->getValue().isMinSignedValue())
2153              goto decline_post_inc;
2154            // Check for possible scaled-address reuse.
2155            Type *AccessTy = getAccessType(UI->getUser());
2156            int64_t Scale = C->getSExtValue();
2157            if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ nullptr,
2158                                          /*BaseOffset=*/ 0,
2159                                          /*HasBaseReg=*/ false, Scale))
2160              goto decline_post_inc;
2161            Scale = -Scale;
2162            if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ nullptr,
2163                                          /*BaseOffset=*/ 0,
2164                                          /*HasBaseReg=*/ false, Scale))
2165              goto decline_post_inc;
2166          }
2167        }
2168
2169    DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2170                 << *Cond << '\n');
2171
2172    // It's possible for the setcc instruction to be anywhere in the loop, and
2173    // possible for it to have multiple users.  If it is not immediately before
2174    // the exiting block branch, move it.
2175    if (&*++BasicBlock::iterator(Cond) != TermBr) {
2176      if (Cond->hasOneUse()) {
2177        Cond->moveBefore(TermBr);
2178      } else {
2179        // Clone the terminating condition and insert into the loopend.
2180        ICmpInst *OldCond = Cond;
2181        Cond = cast<ICmpInst>(Cond->clone());
2182        Cond->setName(L->getHeader()->getName() + ".termcond");
2183        ExitingBlock->getInstList().insert(TermBr, Cond);
2184
2185        // Clone the IVUse, as the old use still exists!
2186        CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2187        TermBr->replaceUsesOfWith(OldCond, Cond);
2188      }
2189    }
2190
2191    // If we get to here, we know that we can transform the setcc instruction to
2192    // use the post-incremented version of the IV, allowing us to coalesce the
2193    // live ranges for the IV correctly.
2194    CondUse->transformToPostInc(L);
2195    Changed = true;
2196
2197    PostIncs.insert(Cond);
2198  decline_post_inc:;
2199  }
2200
2201  // Determine an insertion point for the loop induction variable increment. It
2202  // must dominate all the post-inc comparisons we just set up, and it must
2203  // dominate the loop latch edge.
2204  IVIncInsertPos = L->getLoopLatch()->getTerminator();
2205  for (Instruction *Inst : PostIncs) {
2206    BasicBlock *BB =
2207      DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2208                                    Inst->getParent());
2209    if (BB == Inst->getParent())
2210      IVIncInsertPos = Inst;
2211    else if (BB != IVIncInsertPos->getParent())
2212      IVIncInsertPos = BB->getTerminator();
2213  }
2214}
2215
2216/// reconcileNewOffset - Determine if the given use can accommodate a fixup
2217/// at the given offset and other details. If so, update the use and
2218/// return true.
2219bool
2220LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
2221                                LSRUse::KindType Kind, Type *AccessTy) {
2222  int64_t NewMinOffset = LU.MinOffset;
2223  int64_t NewMaxOffset = LU.MaxOffset;
2224  Type *NewAccessTy = AccessTy;
2225
2226  // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2227  // something conservative, however this can pessimize in the case that one of
2228  // the uses will have all its uses outside the loop, for example.
2229  if (LU.Kind != Kind)
2230    return false;
2231
2232  // Check for a mismatched access type, and fall back conservatively as needed.
2233  // TODO: Be less conservative when the type is similar and can use the same
2234  // addressing modes.
2235  if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
2236    NewAccessTy = Type::getVoidTy(AccessTy->getContext());
2237
2238  // Conservatively assume HasBaseReg is true for now.
2239  if (NewOffset < LU.MinOffset) {
2240    if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2241                          LU.MaxOffset - NewOffset, HasBaseReg))
2242      return false;
2243    NewMinOffset = NewOffset;
2244  } else if (NewOffset > LU.MaxOffset) {
2245    if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2246                          NewOffset - LU.MinOffset, HasBaseReg))
2247      return false;
2248    NewMaxOffset = NewOffset;
2249  }
2250
2251  // Update the use.
2252  LU.MinOffset = NewMinOffset;
2253  LU.MaxOffset = NewMaxOffset;
2254  LU.AccessTy = NewAccessTy;
2255  if (NewOffset != LU.Offsets.back())
2256    LU.Offsets.push_back(NewOffset);
2257  return true;
2258}
2259
2260/// getUse - Return an LSRUse index and an offset value for a fixup which
2261/// needs the given expression, with the given kind and optional access type.
2262/// Either reuse an existing use or create a new one, as needed.
2263std::pair<size_t, int64_t>
2264LSRInstance::getUse(const SCEV *&Expr,
2265                    LSRUse::KindType Kind, Type *AccessTy) {
2266  const SCEV *Copy = Expr;
2267  int64_t Offset = ExtractImmediate(Expr, SE);
2268
2269  // Basic uses can't accept any offset, for example.
2270  if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2271                        Offset, /*HasBaseReg=*/ true)) {
2272    Expr = Copy;
2273    Offset = 0;
2274  }
2275
2276  std::pair<UseMapTy::iterator, bool> P =
2277    UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2278  if (!P.second) {
2279    // A use already existed with this base.
2280    size_t LUIdx = P.first->second;
2281    LSRUse &LU = Uses[LUIdx];
2282    if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2283      // Reuse this use.
2284      return std::make_pair(LUIdx, Offset);
2285  }
2286
2287  // Create a new use.
2288  size_t LUIdx = Uses.size();
2289  P.first->second = LUIdx;
2290  Uses.push_back(LSRUse(Kind, AccessTy));
2291  LSRUse &LU = Uses[LUIdx];
2292
2293  // We don't need to track redundant offsets, but we don't need to go out
2294  // of our way here to avoid them.
2295  if (LU.Offsets.empty() || Offset != LU.Offsets.back())
2296    LU.Offsets.push_back(Offset);
2297
2298  LU.MinOffset = Offset;
2299  LU.MaxOffset = Offset;
2300  return std::make_pair(LUIdx, Offset);
2301}
2302
2303/// DeleteUse - Delete the given use from the Uses list.
2304void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2305  if (&LU != &Uses.back())
2306    std::swap(LU, Uses.back());
2307  Uses.pop_back();
2308
2309  // Update RegUses.
2310  RegUses.SwapAndDropUse(LUIdx, Uses.size());
2311}
2312
2313/// FindUseWithFormula - Look for a use distinct from OrigLU which is has
2314/// a formula that has the same registers as the given formula.
2315LSRUse *
2316LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2317                                       const LSRUse &OrigLU) {
2318  // Search all uses for the formula. This could be more clever.
2319  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2320    LSRUse &LU = Uses[LUIdx];
2321    // Check whether this use is close enough to OrigLU, to see whether it's
2322    // worthwhile looking through its formulae.
2323    // Ignore ICmpZero uses because they may contain formulae generated by
2324    // GenerateICmpZeroScales, in which case adding fixup offsets may
2325    // be invalid.
2326    if (&LU != &OrigLU &&
2327        LU.Kind != LSRUse::ICmpZero &&
2328        LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2329        LU.WidestFixupType == OrigLU.WidestFixupType &&
2330        LU.HasFormulaWithSameRegs(OrigF)) {
2331      // Scan through this use's formulae.
2332      for (const Formula &F : LU.Formulae) {
2333        // Check to see if this formula has the same registers and symbols
2334        // as OrigF.
2335        if (F.BaseRegs == OrigF.BaseRegs &&
2336            F.ScaledReg == OrigF.ScaledReg &&
2337            F.BaseGV == OrigF.BaseGV &&
2338            F.Scale == OrigF.Scale &&
2339            F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2340          if (F.BaseOffset == 0)
2341            return &LU;
2342          // This is the formula where all the registers and symbols matched;
2343          // there aren't going to be any others. Since we declined it, we
2344          // can skip the rest of the formulae and proceed to the next LSRUse.
2345          break;
2346        }
2347      }
2348    }
2349  }
2350
2351  // Nothing looked good.
2352  return nullptr;
2353}
2354
2355void LSRInstance::CollectInterestingTypesAndFactors() {
2356  SmallSetVector<const SCEV *, 4> Strides;
2357
2358  // Collect interesting types and strides.
2359  SmallVector<const SCEV *, 4> Worklist;
2360  for (const IVStrideUse &U : IU) {
2361    const SCEV *Expr = IU.getExpr(U);
2362
2363    // Collect interesting types.
2364    Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2365
2366    // Add strides for mentioned loops.
2367    Worklist.push_back(Expr);
2368    do {
2369      const SCEV *S = Worklist.pop_back_val();
2370      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2371        if (AR->getLoop() == L)
2372          Strides.insert(AR->getStepRecurrence(SE));
2373        Worklist.push_back(AR->getStart());
2374      } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2375        Worklist.append(Add->op_begin(), Add->op_end());
2376      }
2377    } while (!Worklist.empty());
2378  }
2379
2380  // Compute interesting factors from the set of interesting strides.
2381  for (SmallSetVector<const SCEV *, 4>::const_iterator
2382       I = Strides.begin(), E = Strides.end(); I != E; ++I)
2383    for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2384         std::next(I); NewStrideIter != E; ++NewStrideIter) {
2385      const SCEV *OldStride = *I;
2386      const SCEV *NewStride = *NewStrideIter;
2387
2388      if (SE.getTypeSizeInBits(OldStride->getType()) !=
2389          SE.getTypeSizeInBits(NewStride->getType())) {
2390        if (SE.getTypeSizeInBits(OldStride->getType()) >
2391            SE.getTypeSizeInBits(NewStride->getType()))
2392          NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2393        else
2394          OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2395      }
2396      if (const SCEVConstant *Factor =
2397            dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2398                                                        SE, true))) {
2399        if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2400          Factors.insert(Factor->getValue()->getValue().getSExtValue());
2401      } else if (const SCEVConstant *Factor =
2402                   dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2403                                                               NewStride,
2404                                                               SE, true))) {
2405        if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2406          Factors.insert(Factor->getValue()->getValue().getSExtValue());
2407      }
2408    }
2409
2410  // If all uses use the same type, don't bother looking for truncation-based
2411  // reuse.
2412  if (Types.size() == 1)
2413    Types.clear();
2414
2415  DEBUG(print_factors_and_types(dbgs()));
2416}
2417
2418/// findIVOperand - Helper for CollectChains that finds an IV operand (computed
2419/// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped
2420/// Instructions to IVStrideUses, we could partially skip this.
2421static User::op_iterator
2422findIVOperand(User::op_iterator OI, User::op_iterator OE,
2423              Loop *L, ScalarEvolution &SE) {
2424  for(; OI != OE; ++OI) {
2425    if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2426      if (!SE.isSCEVable(Oper->getType()))
2427        continue;
2428
2429      if (const SCEVAddRecExpr *AR =
2430          dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2431        if (AR->getLoop() == L)
2432          break;
2433      }
2434    }
2435  }
2436  return OI;
2437}
2438
2439/// getWideOperand - IVChain logic must consistenctly peek base TruncInst
2440/// operands, so wrap it in a convenient helper.
2441static Value *getWideOperand(Value *Oper) {
2442  if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2443    return Trunc->getOperand(0);
2444  return Oper;
2445}
2446
2447/// isCompatibleIVType - Return true if we allow an IV chain to include both
2448/// types.
2449static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2450  Type *LType = LVal->getType();
2451  Type *RType = RVal->getType();
2452  return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy());
2453}
2454
2455/// getExprBase - Return an approximation of this SCEV expression's "base", or
2456/// NULL for any constant. Returning the expression itself is
2457/// conservative. Returning a deeper subexpression is more precise and valid as
2458/// long as it isn't less complex than another subexpression. For expressions
2459/// involving multiple unscaled values, we need to return the pointer-type
2460/// SCEVUnknown. This avoids forming chains across objects, such as:
2461/// PrevOper==a[i], IVOper==b[i], IVInc==b-a.
2462///
2463/// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2464/// SCEVUnknown, we simply return the rightmost SCEV operand.
2465static const SCEV *getExprBase(const SCEV *S) {
2466  switch (S->getSCEVType()) {
2467  default: // uncluding scUnknown.
2468    return S;
2469  case scConstant:
2470    return nullptr;
2471  case scTruncate:
2472    return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2473  case scZeroExtend:
2474    return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2475  case scSignExtend:
2476    return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2477  case scAddExpr: {
2478    // Skip over scaled operands (scMulExpr) to follow add operands as long as
2479    // there's nothing more complex.
2480    // FIXME: not sure if we want to recognize negation.
2481    const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2482    for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2483           E(Add->op_begin()); I != E; ++I) {
2484      const SCEV *SubExpr = *I;
2485      if (SubExpr->getSCEVType() == scAddExpr)
2486        return getExprBase(SubExpr);
2487
2488      if (SubExpr->getSCEVType() != scMulExpr)
2489        return SubExpr;
2490    }
2491    return S; // all operands are scaled, be conservative.
2492  }
2493  case scAddRecExpr:
2494    return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2495  }
2496}
2497
2498/// Return true if the chain increment is profitable to expand into a loop
2499/// invariant value, which may require its own register. A profitable chain
2500/// increment will be an offset relative to the same base. We allow such offsets
2501/// to potentially be used as chain increment as long as it's not obviously
2502/// expensive to expand using real instructions.
2503bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2504                                    const SCEV *IncExpr,
2505                                    ScalarEvolution &SE) {
2506  // Aggressively form chains when -stress-ivchain.
2507  if (StressIVChain)
2508    return true;
2509
2510  // Do not replace a constant offset from IV head with a nonconstant IV
2511  // increment.
2512  if (!isa<SCEVConstant>(IncExpr)) {
2513    const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2514    if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2515      return 0;
2516  }
2517
2518  SmallPtrSet<const SCEV*, 8> Processed;
2519  return !isHighCostExpansion(IncExpr, Processed, SE);
2520}
2521
2522/// Return true if the number of registers needed for the chain is estimated to
2523/// be less than the number required for the individual IV users. First prohibit
2524/// any IV users that keep the IV live across increments (the Users set should
2525/// be empty). Next count the number and type of increments in the chain.
2526///
2527/// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2528/// effectively use postinc addressing modes. Only consider it profitable it the
2529/// increments can be computed in fewer registers when chained.
2530///
2531/// TODO: Consider IVInc free if it's already used in another chains.
2532static bool
2533isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
2534                  ScalarEvolution &SE, const TargetTransformInfo &TTI) {
2535  if (StressIVChain)
2536    return true;
2537
2538  if (!Chain.hasIncs())
2539    return false;
2540
2541  if (!Users.empty()) {
2542    DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2543          for (Instruction *Inst : Users) {
2544            dbgs() << "  " << *Inst << "\n";
2545          });
2546    return false;
2547  }
2548  assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2549
2550  // The chain itself may require a register, so intialize cost to 1.
2551  int cost = 1;
2552
2553  // A complete chain likely eliminates the need for keeping the original IV in
2554  // a register. LSR does not currently know how to form a complete chain unless
2555  // the header phi already exists.
2556  if (isa<PHINode>(Chain.tailUserInst())
2557      && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2558    --cost;
2559  }
2560  const SCEV *LastIncExpr = nullptr;
2561  unsigned NumConstIncrements = 0;
2562  unsigned NumVarIncrements = 0;
2563  unsigned NumReusedIncrements = 0;
2564  for (const IVInc &Inc : Chain) {
2565    if (Inc.IncExpr->isZero())
2566      continue;
2567
2568    // Incrementing by zero or some constant is neutral. We assume constants can
2569    // be folded into an addressing mode or an add's immediate operand.
2570    if (isa<SCEVConstant>(Inc.IncExpr)) {
2571      ++NumConstIncrements;
2572      continue;
2573    }
2574
2575    if (Inc.IncExpr == LastIncExpr)
2576      ++NumReusedIncrements;
2577    else
2578      ++NumVarIncrements;
2579
2580    LastIncExpr = Inc.IncExpr;
2581  }
2582  // An IV chain with a single increment is handled by LSR's postinc
2583  // uses. However, a chain with multiple increments requires keeping the IV's
2584  // value live longer than it needs to be if chained.
2585  if (NumConstIncrements > 1)
2586    --cost;
2587
2588  // Materializing increment expressions in the preheader that didn't exist in
2589  // the original code may cost a register. For example, sign-extended array
2590  // indices can produce ridiculous increments like this:
2591  // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2592  cost += NumVarIncrements;
2593
2594  // Reusing variable increments likely saves a register to hold the multiple of
2595  // the stride.
2596  cost -= NumReusedIncrements;
2597
2598  DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2599               << "\n");
2600
2601  return cost < 0;
2602}
2603
2604/// ChainInstruction - Add this IV user to an existing chain or make it the head
2605/// of a new chain.
2606void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2607                                   SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2608  // When IVs are used as types of varying widths, they are generally converted
2609  // to a wider type with some uses remaining narrow under a (free) trunc.
2610  Value *const NextIV = getWideOperand(IVOper);
2611  const SCEV *const OperExpr = SE.getSCEV(NextIV);
2612  const SCEV *const OperExprBase = getExprBase(OperExpr);
2613
2614  // Visit all existing chains. Check if its IVOper can be computed as a
2615  // profitable loop invariant increment from the last link in the Chain.
2616  unsigned ChainIdx = 0, NChains = IVChainVec.size();
2617  const SCEV *LastIncExpr = nullptr;
2618  for (; ChainIdx < NChains; ++ChainIdx) {
2619    IVChain &Chain = IVChainVec[ChainIdx];
2620
2621    // Prune the solution space aggressively by checking that both IV operands
2622    // are expressions that operate on the same unscaled SCEVUnknown. This
2623    // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2624    // first avoids creating extra SCEV expressions.
2625    if (!StressIVChain && Chain.ExprBase != OperExprBase)
2626      continue;
2627
2628    Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2629    if (!isCompatibleIVType(PrevIV, NextIV))
2630      continue;
2631
2632    // A phi node terminates a chain.
2633    if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2634      continue;
2635
2636    // The increment must be loop-invariant so it can be kept in a register.
2637    const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2638    const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2639    if (!SE.isLoopInvariant(IncExpr, L))
2640      continue;
2641
2642    if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2643      LastIncExpr = IncExpr;
2644      break;
2645    }
2646  }
2647  // If we haven't found a chain, create a new one, unless we hit the max. Don't
2648  // bother for phi nodes, because they must be last in the chain.
2649  if (ChainIdx == NChains) {
2650    if (isa<PHINode>(UserInst))
2651      return;
2652    if (NChains >= MaxChains && !StressIVChain) {
2653      DEBUG(dbgs() << "IV Chain Limit\n");
2654      return;
2655    }
2656    LastIncExpr = OperExpr;
2657    // IVUsers may have skipped over sign/zero extensions. We don't currently
2658    // attempt to form chains involving extensions unless they can be hoisted
2659    // into this loop's AddRec.
2660    if (!isa<SCEVAddRecExpr>(LastIncExpr))
2661      return;
2662    ++NChains;
2663    IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2664                                 OperExprBase));
2665    ChainUsersVec.resize(NChains);
2666    DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2667                 << ") IV=" << *LastIncExpr << "\n");
2668  } else {
2669    DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2670                 << ") IV+" << *LastIncExpr << "\n");
2671    // Add this IV user to the end of the chain.
2672    IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2673  }
2674  IVChain &Chain = IVChainVec[ChainIdx];
2675
2676  SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2677  // This chain's NearUsers become FarUsers.
2678  if (!LastIncExpr->isZero()) {
2679    ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2680                                            NearUsers.end());
2681    NearUsers.clear();
2682  }
2683
2684  // All other uses of IVOperand become near uses of the chain.
2685  // We currently ignore intermediate values within SCEV expressions, assuming
2686  // they will eventually be used be the current chain, or can be computed
2687  // from one of the chain increments. To be more precise we could
2688  // transitively follow its user and only add leaf IV users to the set.
2689  for (User *U : IVOper->users()) {
2690    Instruction *OtherUse = dyn_cast<Instruction>(U);
2691    if (!OtherUse)
2692      continue;
2693    // Uses in the chain will no longer be uses if the chain is formed.
2694    // Include the head of the chain in this iteration (not Chain.begin()).
2695    IVChain::const_iterator IncIter = Chain.Incs.begin();
2696    IVChain::const_iterator IncEnd = Chain.Incs.end();
2697    for( ; IncIter != IncEnd; ++IncIter) {
2698      if (IncIter->UserInst == OtherUse)
2699        break;
2700    }
2701    if (IncIter != IncEnd)
2702      continue;
2703
2704    if (SE.isSCEVable(OtherUse->getType())
2705        && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
2706        && IU.isIVUserOrOperand(OtherUse)) {
2707      continue;
2708    }
2709    NearUsers.insert(OtherUse);
2710  }
2711
2712  // Since this user is part of the chain, it's no longer considered a use
2713  // of the chain.
2714  ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
2715}
2716
2717/// CollectChains - Populate the vector of Chains.
2718///
2719/// This decreases ILP at the architecture level. Targets with ample registers,
2720/// multiple memory ports, and no register renaming probably don't want
2721/// this. However, such targets should probably disable LSR altogether.
2722///
2723/// The job of LSR is to make a reasonable choice of induction variables across
2724/// the loop. Subsequent passes can easily "unchain" computation exposing more
2725/// ILP *within the loop* if the target wants it.
2726///
2727/// Finding the best IV chain is potentially a scheduling problem. Since LSR
2728/// will not reorder memory operations, it will recognize this as a chain, but
2729/// will generate redundant IV increments. Ideally this would be corrected later
2730/// by a smart scheduler:
2731///        = A[i]
2732///        = A[i+x]
2733/// A[i]   =
2734/// A[i+x] =
2735///
2736/// TODO: Walk the entire domtree within this loop, not just the path to the
2737/// loop latch. This will discover chains on side paths, but requires
2738/// maintaining multiple copies of the Chains state.
2739void LSRInstance::CollectChains() {
2740  DEBUG(dbgs() << "Collecting IV Chains.\n");
2741  SmallVector<ChainUsers, 8> ChainUsersVec;
2742
2743  SmallVector<BasicBlock *,8> LatchPath;
2744  BasicBlock *LoopHeader = L->getHeader();
2745  for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
2746       Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
2747    LatchPath.push_back(Rung->getBlock());
2748  }
2749  LatchPath.push_back(LoopHeader);
2750
2751  // Walk the instruction stream from the loop header to the loop latch.
2752  for (SmallVectorImpl<BasicBlock *>::reverse_iterator
2753         BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend();
2754       BBIter != BBEnd; ++BBIter) {
2755    for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end();
2756         I != E; ++I) {
2757      // Skip instructions that weren't seen by IVUsers analysis.
2758      if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I))
2759        continue;
2760
2761      // Ignore users that are part of a SCEV expression. This way we only
2762      // consider leaf IV Users. This effectively rediscovers a portion of
2763      // IVUsers analysis but in program order this time.
2764      if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I)))
2765        continue;
2766
2767      // Remove this instruction from any NearUsers set it may be in.
2768      for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
2769           ChainIdx < NChains; ++ChainIdx) {
2770        ChainUsersVec[ChainIdx].NearUsers.erase(I);
2771      }
2772      // Search for operands that can be chained.
2773      SmallPtrSet<Instruction*, 4> UniqueOperands;
2774      User::op_iterator IVOpEnd = I->op_end();
2775      User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE);
2776      while (IVOpIter != IVOpEnd) {
2777        Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
2778        if (UniqueOperands.insert(IVOpInst).second)
2779          ChainInstruction(I, IVOpInst, ChainUsersVec);
2780        IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
2781      }
2782    } // Continue walking down the instructions.
2783  } // Continue walking down the domtree.
2784  // Visit phi backedges to determine if the chain can generate the IV postinc.
2785  for (BasicBlock::iterator I = L->getHeader()->begin();
2786       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2787    if (!SE.isSCEVable(PN->getType()))
2788      continue;
2789
2790    Instruction *IncV =
2791      dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
2792    if (IncV)
2793      ChainInstruction(PN, IncV, ChainUsersVec);
2794  }
2795  // Remove any unprofitable chains.
2796  unsigned ChainIdx = 0;
2797  for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
2798       UsersIdx < NChains; ++UsersIdx) {
2799    if (!isProfitableChain(IVChainVec[UsersIdx],
2800                           ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
2801      continue;
2802    // Preserve the chain at UsesIdx.
2803    if (ChainIdx != UsersIdx)
2804      IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
2805    FinalizeChain(IVChainVec[ChainIdx]);
2806    ++ChainIdx;
2807  }
2808  IVChainVec.resize(ChainIdx);
2809}
2810
2811void LSRInstance::FinalizeChain(IVChain &Chain) {
2812  assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2813  DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
2814
2815  for (const IVInc &Inc : Chain) {
2816    DEBUG(dbgs() << "        Inc: " << Inc.UserInst << "\n");
2817    auto UseI = std::find(Inc.UserInst->op_begin(), Inc.UserInst->op_end(),
2818                          Inc.IVOperand);
2819    assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
2820    IVIncSet.insert(UseI);
2821  }
2822}
2823
2824/// Return true if the IVInc can be folded into an addressing mode.
2825static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
2826                             Value *Operand, const TargetTransformInfo &TTI) {
2827  const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
2828  if (!IncConst || !isAddressUse(UserInst, Operand))
2829    return false;
2830
2831  if (IncConst->getValue()->getValue().getMinSignedBits() > 64)
2832    return false;
2833
2834  int64_t IncOffset = IncConst->getValue()->getSExtValue();
2835  if (!isAlwaysFoldable(TTI, LSRUse::Address,
2836                        getAccessType(UserInst), /*BaseGV=*/ nullptr,
2837                        IncOffset, /*HaseBaseReg=*/ false))
2838    return false;
2839
2840  return true;
2841}
2842
2843/// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to
2844/// materialize the IV user's operand from the previous IV user's operand.
2845void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
2846                                  SmallVectorImpl<WeakVH> &DeadInsts) {
2847  // Find the new IVOperand for the head of the chain. It may have been replaced
2848  // by LSR.
2849  const IVInc &Head = Chain.Incs[0];
2850  User::op_iterator IVOpEnd = Head.UserInst->op_end();
2851  // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
2852  User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
2853                                             IVOpEnd, L, SE);
2854  Value *IVSrc = nullptr;
2855  while (IVOpIter != IVOpEnd) {
2856    IVSrc = getWideOperand(*IVOpIter);
2857
2858    // If this operand computes the expression that the chain needs, we may use
2859    // it. (Check this after setting IVSrc which is used below.)
2860    //
2861    // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
2862    // narrow for the chain, so we can no longer use it. We do allow using a
2863    // wider phi, assuming the LSR checked for free truncation. In that case we
2864    // should already have a truncate on this operand such that
2865    // getSCEV(IVSrc) == IncExpr.
2866    if (SE.getSCEV(*IVOpIter) == Head.IncExpr
2867        || SE.getSCEV(IVSrc) == Head.IncExpr) {
2868      break;
2869    }
2870    IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
2871  }
2872  if (IVOpIter == IVOpEnd) {
2873    // Gracefully give up on this chain.
2874    DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
2875    return;
2876  }
2877
2878  DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
2879  Type *IVTy = IVSrc->getType();
2880  Type *IntTy = SE.getEffectiveSCEVType(IVTy);
2881  const SCEV *LeftOverExpr = nullptr;
2882  for (const IVInc &Inc : Chain) {
2883    Instruction *InsertPt = Inc.UserInst;
2884    if (isa<PHINode>(InsertPt))
2885      InsertPt = L->getLoopLatch()->getTerminator();
2886
2887    // IVOper will replace the current IV User's operand. IVSrc is the IV
2888    // value currently held in a register.
2889    Value *IVOper = IVSrc;
2890    if (!Inc.IncExpr->isZero()) {
2891      // IncExpr was the result of subtraction of two narrow values, so must
2892      // be signed.
2893      const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
2894      LeftOverExpr = LeftOverExpr ?
2895        SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
2896    }
2897    if (LeftOverExpr && !LeftOverExpr->isZero()) {
2898      // Expand the IV increment.
2899      Rewriter.clearPostInc();
2900      Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
2901      const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
2902                                             SE.getUnknown(IncV));
2903      IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
2904
2905      // If an IV increment can't be folded, use it as the next IV value.
2906      if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
2907        assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
2908        IVSrc = IVOper;
2909        LeftOverExpr = nullptr;
2910      }
2911    }
2912    Type *OperTy = Inc.IVOperand->getType();
2913    if (IVTy != OperTy) {
2914      assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
2915             "cannot extend a chained IV");
2916      IRBuilder<> Builder(InsertPt);
2917      IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
2918    }
2919    Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
2920    DeadInsts.emplace_back(Inc.IVOperand);
2921  }
2922  // If LSR created a new, wider phi, we may also replace its postinc. We only
2923  // do this if we also found a wide value for the head of the chain.
2924  if (isa<PHINode>(Chain.tailUserInst())) {
2925    for (BasicBlock::iterator I = L->getHeader()->begin();
2926         PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
2927      if (!isCompatibleIVType(Phi, IVSrc))
2928        continue;
2929      Instruction *PostIncV = dyn_cast<Instruction>(
2930        Phi->getIncomingValueForBlock(L->getLoopLatch()));
2931      if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
2932        continue;
2933      Value *IVOper = IVSrc;
2934      Type *PostIncTy = PostIncV->getType();
2935      if (IVTy != PostIncTy) {
2936        assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
2937        IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
2938        Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
2939        IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
2940      }
2941      Phi->replaceUsesOfWith(PostIncV, IVOper);
2942      DeadInsts.emplace_back(PostIncV);
2943    }
2944  }
2945}
2946
2947void LSRInstance::CollectFixupsAndInitialFormulae() {
2948  for (const IVStrideUse &U : IU) {
2949    Instruction *UserInst = U.getUser();
2950    // Skip IV users that are part of profitable IV Chains.
2951    User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(),
2952                                       U.getOperandValToReplace());
2953    assert(UseI != UserInst->op_end() && "cannot find IV operand");
2954    if (IVIncSet.count(UseI))
2955      continue;
2956
2957    // Record the uses.
2958    LSRFixup &LF = getNewFixup();
2959    LF.UserInst = UserInst;
2960    LF.OperandValToReplace = U.getOperandValToReplace();
2961    LF.PostIncLoops = U.getPostIncLoops();
2962
2963    LSRUse::KindType Kind = LSRUse::Basic;
2964    Type *AccessTy = nullptr;
2965    if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
2966      Kind = LSRUse::Address;
2967      AccessTy = getAccessType(LF.UserInst);
2968    }
2969
2970    const SCEV *S = IU.getExpr(U);
2971
2972    // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
2973    // (N - i == 0), and this allows (N - i) to be the expression that we work
2974    // with rather than just N or i, so we can consider the register
2975    // requirements for both N and i at the same time. Limiting this code to
2976    // equality icmps is not a problem because all interesting loops use
2977    // equality icmps, thanks to IndVarSimplify.
2978    if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
2979      if (CI->isEquality()) {
2980        // Swap the operands if needed to put the OperandValToReplace on the
2981        // left, for consistency.
2982        Value *NV = CI->getOperand(1);
2983        if (NV == LF.OperandValToReplace) {
2984          CI->setOperand(1, CI->getOperand(0));
2985          CI->setOperand(0, NV);
2986          NV = CI->getOperand(1);
2987          Changed = true;
2988        }
2989
2990        // x == y  -->  x - y == 0
2991        const SCEV *N = SE.getSCEV(NV);
2992        if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
2993          // S is normalized, so normalize N before folding it into S
2994          // to keep the result normalized.
2995          N = TransformForPostIncUse(Normalize, N, CI, nullptr,
2996                                     LF.PostIncLoops, SE, DT);
2997          Kind = LSRUse::ICmpZero;
2998          S = SE.getMinusSCEV(N, S);
2999        }
3000
3001        // -1 and the negations of all interesting strides (except the negation
3002        // of -1) are now also interesting.
3003        for (size_t i = 0, e = Factors.size(); i != e; ++i)
3004          if (Factors[i] != -1)
3005            Factors.insert(-(uint64_t)Factors[i]);
3006        Factors.insert(-1);
3007      }
3008
3009    // Set up the initial formula for this use.
3010    std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3011    LF.LUIdx = P.first;
3012    LF.Offset = P.second;
3013    LSRUse &LU = Uses[LF.LUIdx];
3014    LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3015    if (!LU.WidestFixupType ||
3016        SE.getTypeSizeInBits(LU.WidestFixupType) <
3017        SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3018      LU.WidestFixupType = LF.OperandValToReplace->getType();
3019
3020    // If this is the first use of this LSRUse, give it a formula.
3021    if (LU.Formulae.empty()) {
3022      InsertInitialFormula(S, LU, LF.LUIdx);
3023      CountRegisters(LU.Formulae.back(), LF.LUIdx);
3024    }
3025  }
3026
3027  DEBUG(print_fixups(dbgs()));
3028}
3029
3030/// InsertInitialFormula - Insert a formula for the given expression into
3031/// the given use, separating out loop-variant portions from loop-invariant
3032/// and loop-computable portions.
3033void
3034LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3035  // Mark uses whose expressions cannot be expanded.
3036  if (!isSafeToExpand(S, SE))
3037    LU.RigidFormula = true;
3038
3039  Formula F;
3040  F.InitialMatch(S, L, SE);
3041  bool Inserted = InsertFormula(LU, LUIdx, F);
3042  assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3043}
3044
3045/// InsertSupplementalFormula - Insert a simple single-register formula for
3046/// the given expression into the given use.
3047void
3048LSRInstance::InsertSupplementalFormula(const SCEV *S,
3049                                       LSRUse &LU, size_t LUIdx) {
3050  Formula F;
3051  F.BaseRegs.push_back(S);
3052  F.HasBaseReg = true;
3053  bool Inserted = InsertFormula(LU, LUIdx, F);
3054  assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3055}
3056
3057/// CountRegisters - Note which registers are used by the given formula,
3058/// updating RegUses.
3059void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3060  if (F.ScaledReg)
3061    RegUses.CountRegister(F.ScaledReg, LUIdx);
3062  for (const SCEV *BaseReg : F.BaseRegs)
3063    RegUses.CountRegister(BaseReg, LUIdx);
3064}
3065
3066/// InsertFormula - If the given formula has not yet been inserted, add it to
3067/// the list, and return true. Return false otherwise.
3068bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3069  // Do not insert formula that we will not be able to expand.
3070  assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3071         "Formula is illegal");
3072  if (!LU.InsertFormula(F))
3073    return false;
3074
3075  CountRegisters(F, LUIdx);
3076  return true;
3077}
3078
3079/// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
3080/// loop-invariant values which we're tracking. These other uses will pin these
3081/// values in registers, making them less profitable for elimination.
3082/// TODO: This currently misses non-constant addrec step registers.
3083/// TODO: Should this give more weight to users inside the loop?
3084void
3085LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3086  SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3087  SmallPtrSet<const SCEV *, 32> Visited;
3088
3089  while (!Worklist.empty()) {
3090    const SCEV *S = Worklist.pop_back_val();
3091
3092    // Don't process the same SCEV twice
3093    if (!Visited.insert(S).second)
3094      continue;
3095
3096    if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3097      Worklist.append(N->op_begin(), N->op_end());
3098    else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3099      Worklist.push_back(C->getOperand());
3100    else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3101      Worklist.push_back(D->getLHS());
3102      Worklist.push_back(D->getRHS());
3103    } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3104      const Value *V = US->getValue();
3105      if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3106        // Look for instructions defined outside the loop.
3107        if (L->contains(Inst)) continue;
3108      } else if (isa<UndefValue>(V))
3109        // Undef doesn't have a live range, so it doesn't matter.
3110        continue;
3111      for (const Use &U : V->uses()) {
3112        const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3113        // Ignore non-instructions.
3114        if (!UserInst)
3115          continue;
3116        // Ignore instructions in other functions (as can happen with
3117        // Constants).
3118        if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3119          continue;
3120        // Ignore instructions not dominated by the loop.
3121        const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3122          UserInst->getParent() :
3123          cast<PHINode>(UserInst)->getIncomingBlock(
3124            PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3125        if (!DT.dominates(L->getHeader(), UseBB))
3126          continue;
3127        // Ignore uses which are part of other SCEV expressions, to avoid
3128        // analyzing them multiple times.
3129        if (SE.isSCEVable(UserInst->getType())) {
3130          const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3131          // If the user is a no-op, look through to its uses.
3132          if (!isa<SCEVUnknown>(UserS))
3133            continue;
3134          if (UserS == US) {
3135            Worklist.push_back(
3136              SE.getUnknown(const_cast<Instruction *>(UserInst)));
3137            continue;
3138          }
3139        }
3140        // Ignore icmp instructions which are already being analyzed.
3141        if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3142          unsigned OtherIdx = !U.getOperandNo();
3143          Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3144          if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3145            continue;
3146        }
3147
3148        LSRFixup &LF = getNewFixup();
3149        LF.UserInst = const_cast<Instruction *>(UserInst);
3150        LF.OperandValToReplace = U;
3151        std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, nullptr);
3152        LF.LUIdx = P.first;
3153        LF.Offset = P.second;
3154        LSRUse &LU = Uses[LF.LUIdx];
3155        LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3156        if (!LU.WidestFixupType ||
3157            SE.getTypeSizeInBits(LU.WidestFixupType) <
3158            SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3159          LU.WidestFixupType = LF.OperandValToReplace->getType();
3160        InsertSupplementalFormula(US, LU, LF.LUIdx);
3161        CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3162        break;
3163      }
3164    }
3165  }
3166}
3167
3168/// CollectSubexprs - Split S into subexpressions which can be pulled out into
3169/// separate registers. If C is non-null, multiply each subexpression by C.
3170///
3171/// Return remainder expression after factoring the subexpressions captured by
3172/// Ops. If Ops is complete, return NULL.
3173static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3174                                   SmallVectorImpl<const SCEV *> &Ops,
3175                                   const Loop *L,
3176                                   ScalarEvolution &SE,
3177                                   unsigned Depth = 0) {
3178  // Arbitrarily cap recursion to protect compile time.
3179  if (Depth >= 3)
3180    return S;
3181
3182  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3183    // Break out add operands.
3184    for (const SCEV *S : Add->operands()) {
3185      const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3186      if (Remainder)
3187        Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3188    }
3189    return nullptr;
3190  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3191    // Split a non-zero base out of an addrec.
3192    if (AR->getStart()->isZero())
3193      return S;
3194
3195    const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3196                                            C, Ops, L, SE, Depth+1);
3197    // Split the non-zero AddRec unless it is part of a nested recurrence that
3198    // does not pertain to this loop.
3199    if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3200      Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3201      Remainder = nullptr;
3202    }
3203    if (Remainder != AR->getStart()) {
3204      if (!Remainder)
3205        Remainder = SE.getConstant(AR->getType(), 0);
3206      return SE.getAddRecExpr(Remainder,
3207                              AR->getStepRecurrence(SE),
3208                              AR->getLoop(),
3209                              //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3210                              SCEV::FlagAnyWrap);
3211    }
3212  } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3213    // Break (C * (a + b + c)) into C*a + C*b + C*c.
3214    if (Mul->getNumOperands() != 2)
3215      return S;
3216    if (const SCEVConstant *Op0 =
3217        dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3218      C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3219      const SCEV *Remainder =
3220        CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3221      if (Remainder)
3222        Ops.push_back(SE.getMulExpr(C, Remainder));
3223      return nullptr;
3224    }
3225  }
3226  return S;
3227}
3228
3229/// \brief Helper function for LSRInstance::GenerateReassociations.
3230void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3231                                             const Formula &Base,
3232                                             unsigned Depth, size_t Idx,
3233                                             bool IsScaledReg) {
3234  const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3235  SmallVector<const SCEV *, 8> AddOps;
3236  const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3237  if (Remainder)
3238    AddOps.push_back(Remainder);
3239
3240  if (AddOps.size() == 1)
3241    return;
3242
3243  for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3244                                                     JE = AddOps.end();
3245       J != JE; ++J) {
3246
3247    // Loop-variant "unknown" values are uninteresting; we won't be able to
3248    // do anything meaningful with them.
3249    if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3250      continue;
3251
3252    // Don't pull a constant into a register if the constant could be folded
3253    // into an immediate field.
3254    if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3255                         LU.AccessTy, *J, Base.getNumRegs() > 1))
3256      continue;
3257
3258    // Collect all operands except *J.
3259    SmallVector<const SCEV *, 8> InnerAddOps(
3260        ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3261    InnerAddOps.append(std::next(J),
3262                       ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3263
3264    // Don't leave just a constant behind in a register if the constant could
3265    // be folded into an immediate field.
3266    if (InnerAddOps.size() == 1 &&
3267        isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3268                         LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3269      continue;
3270
3271    const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3272    if (InnerSum->isZero())
3273      continue;
3274    Formula F = Base;
3275
3276    // Add the remaining pieces of the add back into the new formula.
3277    const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3278    if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3279        TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3280                                InnerSumSC->getValue()->getZExtValue())) {
3281      F.UnfoldedOffset =
3282          (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3283      if (IsScaledReg)
3284        F.ScaledReg = nullptr;
3285      else
3286        F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3287    } else if (IsScaledReg)
3288      F.ScaledReg = InnerSum;
3289    else
3290      F.BaseRegs[Idx] = InnerSum;
3291
3292    // Add J as its own register, or an unfolded immediate.
3293    const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3294    if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3295        TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3296                                SC->getValue()->getZExtValue()))
3297      F.UnfoldedOffset =
3298          (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3299    else
3300      F.BaseRegs.push_back(*J);
3301    // We may have changed the number of register in base regs, adjust the
3302    // formula accordingly.
3303    F.Canonicalize();
3304
3305    if (InsertFormula(LU, LUIdx, F))
3306      // If that formula hadn't been seen before, recurse to find more like
3307      // it.
3308      GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1);
3309  }
3310}
3311
3312/// GenerateReassociations - Split out subexpressions from adds and the bases of
3313/// addrecs.
3314void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3315                                         Formula Base, unsigned Depth) {
3316  assert(Base.isCanonical() && "Input must be in the canonical form");
3317  // Arbitrarily cap recursion to protect compile time.
3318  if (Depth >= 3)
3319    return;
3320
3321  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3322    GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3323
3324  if (Base.Scale == 1)
3325    GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3326                               /* Idx */ -1, /* IsScaledReg */ true);
3327}
3328
3329/// GenerateCombinations - Generate a formula consisting of all of the
3330/// loop-dominating registers added into a single register.
3331void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3332                                       Formula Base) {
3333  // This method is only interesting on a plurality of registers.
3334  if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1)
3335    return;
3336
3337  // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3338  // processing the formula.
3339  Base.Unscale();
3340  Formula F = Base;
3341  F.BaseRegs.clear();
3342  SmallVector<const SCEV *, 4> Ops;
3343  for (const SCEV *BaseReg : Base.BaseRegs) {
3344    if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3345        !SE.hasComputableLoopEvolution(BaseReg, L))
3346      Ops.push_back(BaseReg);
3347    else
3348      F.BaseRegs.push_back(BaseReg);
3349  }
3350  if (Ops.size() > 1) {
3351    const SCEV *Sum = SE.getAddExpr(Ops);
3352    // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3353    // opportunity to fold something. For now, just ignore such cases
3354    // rather than proceed with zero in a register.
3355    if (!Sum->isZero()) {
3356      F.BaseRegs.push_back(Sum);
3357      F.Canonicalize();
3358      (void)InsertFormula(LU, LUIdx, F);
3359    }
3360  }
3361}
3362
3363/// \brief Helper function for LSRInstance::GenerateSymbolicOffsets.
3364void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3365                                              const Formula &Base, size_t Idx,
3366                                              bool IsScaledReg) {
3367  const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3368  GlobalValue *GV = ExtractSymbol(G, SE);
3369  if (G->isZero() || !GV)
3370    return;
3371  Formula F = Base;
3372  F.BaseGV = GV;
3373  if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3374    return;
3375  if (IsScaledReg)
3376    F.ScaledReg = G;
3377  else
3378    F.BaseRegs[Idx] = G;
3379  (void)InsertFormula(LU, LUIdx, F);
3380}
3381
3382/// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
3383void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3384                                          Formula Base) {
3385  // We can't add a symbolic offset if the address already contains one.
3386  if (Base.BaseGV) return;
3387
3388  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3389    GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3390  if (Base.Scale == 1)
3391    GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3392                                /* IsScaledReg */ true);
3393}
3394
3395/// \brief Helper function for LSRInstance::GenerateConstantOffsets.
3396void LSRInstance::GenerateConstantOffsetsImpl(
3397    LSRUse &LU, unsigned LUIdx, const Formula &Base,
3398    const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3399  const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3400  for (int64_t Offset : Worklist) {
3401    Formula F = Base;
3402    F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3403    if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3404                   LU.AccessTy, F)) {
3405      // Add the offset to the base register.
3406      const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3407      // If it cancelled out, drop the base register, otherwise update it.
3408      if (NewG->isZero()) {
3409        if (IsScaledReg) {
3410          F.Scale = 0;
3411          F.ScaledReg = nullptr;
3412        } else
3413          F.DeleteBaseReg(F.BaseRegs[Idx]);
3414        F.Canonicalize();
3415      } else if (IsScaledReg)
3416        F.ScaledReg = NewG;
3417      else
3418        F.BaseRegs[Idx] = NewG;
3419
3420      (void)InsertFormula(LU, LUIdx, F);
3421    }
3422  }
3423
3424  int64_t Imm = ExtractImmediate(G, SE);
3425  if (G->isZero() || Imm == 0)
3426    return;
3427  Formula F = Base;
3428  F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3429  if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3430    return;
3431  if (IsScaledReg)
3432    F.ScaledReg = G;
3433  else
3434    F.BaseRegs[Idx] = G;
3435  (void)InsertFormula(LU, LUIdx, F);
3436}
3437
3438/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3439void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3440                                          Formula Base) {
3441  // TODO: For now, just add the min and max offset, because it usually isn't
3442  // worthwhile looking at everything inbetween.
3443  SmallVector<int64_t, 2> Worklist;
3444  Worklist.push_back(LU.MinOffset);
3445  if (LU.MaxOffset != LU.MinOffset)
3446    Worklist.push_back(LU.MaxOffset);
3447
3448  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3449    GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3450  if (Base.Scale == 1)
3451    GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3452                                /* IsScaledReg */ true);
3453}
3454
3455/// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
3456/// the comparison. For example, x == y -> x*c == y*c.
3457void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3458                                         Formula Base) {
3459  if (LU.Kind != LSRUse::ICmpZero) return;
3460
3461  // Determine the integer type for the base formula.
3462  Type *IntTy = Base.getType();
3463  if (!IntTy) return;
3464  if (SE.getTypeSizeInBits(IntTy) > 64) return;
3465
3466  // Don't do this if there is more than one offset.
3467  if (LU.MinOffset != LU.MaxOffset) return;
3468
3469  assert(!Base.BaseGV && "ICmpZero use is not legal!");
3470
3471  // Check each interesting stride.
3472  for (int64_t Factor : Factors) {
3473    // Check that the multiplication doesn't overflow.
3474    if (Base.BaseOffset == INT64_MIN && Factor == -1)
3475      continue;
3476    int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3477    if (NewBaseOffset / Factor != Base.BaseOffset)
3478      continue;
3479    // If the offset will be truncated at this use, check that it is in bounds.
3480    if (!IntTy->isPointerTy() &&
3481        !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3482      continue;
3483
3484    // Check that multiplying with the use offset doesn't overflow.
3485    int64_t Offset = LU.MinOffset;
3486    if (Offset == INT64_MIN && Factor == -1)
3487      continue;
3488    Offset = (uint64_t)Offset * Factor;
3489    if (Offset / Factor != LU.MinOffset)
3490      continue;
3491    // If the offset will be truncated at this use, check that it is in bounds.
3492    if (!IntTy->isPointerTy() &&
3493        !ConstantInt::isValueValidForType(IntTy, Offset))
3494      continue;
3495
3496    Formula F = Base;
3497    F.BaseOffset = NewBaseOffset;
3498
3499    // Check that this scale is legal.
3500    if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3501      continue;
3502
3503    // Compensate for the use having MinOffset built into it.
3504    F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3505
3506    const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3507
3508    // Check that multiplying with each base register doesn't overflow.
3509    for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3510      F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3511      if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3512        goto next;
3513    }
3514
3515    // Check that multiplying with the scaled register doesn't overflow.
3516    if (F.ScaledReg) {
3517      F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3518      if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3519        continue;
3520    }
3521
3522    // Check that multiplying with the unfolded offset doesn't overflow.
3523    if (F.UnfoldedOffset != 0) {
3524      if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
3525        continue;
3526      F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3527      if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3528        continue;
3529      // If the offset will be truncated, check that it is in bounds.
3530      if (!IntTy->isPointerTy() &&
3531          !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3532        continue;
3533    }
3534
3535    // If we make it here and it's legal, add it.
3536    (void)InsertFormula(LU, LUIdx, F);
3537  next:;
3538  }
3539}
3540
3541/// GenerateScales - Generate stride factor reuse formulae by making use of
3542/// scaled-offset address modes, for example.
3543void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3544  // Determine the integer type for the base formula.
3545  Type *IntTy = Base.getType();
3546  if (!IntTy) return;
3547
3548  // If this Formula already has a scaled register, we can't add another one.
3549  // Try to unscale the formula to generate a better scale.
3550  if (Base.Scale != 0 && !Base.Unscale())
3551    return;
3552
3553  assert(Base.Scale == 0 && "Unscale did not did its job!");
3554
3555  // Check each interesting stride.
3556  for (int64_t Factor : Factors) {
3557    Base.Scale = Factor;
3558    Base.HasBaseReg = Base.BaseRegs.size() > 1;
3559    // Check whether this scale is going to be legal.
3560    if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3561                    Base)) {
3562      // As a special-case, handle special out-of-loop Basic users specially.
3563      // TODO: Reconsider this special case.
3564      if (LU.Kind == LSRUse::Basic &&
3565          isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3566                     LU.AccessTy, Base) &&
3567          LU.AllFixupsOutsideLoop)
3568        LU.Kind = LSRUse::Special;
3569      else
3570        continue;
3571    }
3572    // For an ICmpZero, negating a solitary base register won't lead to
3573    // new solutions.
3574    if (LU.Kind == LSRUse::ICmpZero &&
3575        !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3576      continue;
3577    // For each addrec base reg, apply the scale, if possible.
3578    for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3579      if (const SCEVAddRecExpr *AR =
3580            dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
3581        const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3582        if (FactorS->isZero())
3583          continue;
3584        // Divide out the factor, ignoring high bits, since we'll be
3585        // scaling the value back up in the end.
3586        if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3587          // TODO: This could be optimized to avoid all the copying.
3588          Formula F = Base;
3589          F.ScaledReg = Quotient;
3590          F.DeleteBaseReg(F.BaseRegs[i]);
3591          // The canonical representation of 1*reg is reg, which is already in
3592          // Base. In that case, do not try to insert the formula, it will be
3593          // rejected anyway.
3594          if (F.Scale == 1 && F.BaseRegs.empty())
3595            continue;
3596          (void)InsertFormula(LU, LUIdx, F);
3597        }
3598      }
3599  }
3600}
3601
3602/// GenerateTruncates - Generate reuse formulae from different IV types.
3603void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
3604  // Don't bother truncating symbolic values.
3605  if (Base.BaseGV) return;
3606
3607  // Determine the integer type for the base formula.
3608  Type *DstTy = Base.getType();
3609  if (!DstTy) return;
3610  DstTy = SE.getEffectiveSCEVType(DstTy);
3611
3612  for (Type *SrcTy : Types) {
3613    if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
3614      Formula F = Base;
3615
3616      if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
3617      for (const SCEV *&BaseReg : F.BaseRegs)
3618        BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
3619
3620      // TODO: This assumes we've done basic processing on all uses and
3621      // have an idea what the register usage is.
3622      if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
3623        continue;
3624
3625      (void)InsertFormula(LU, LUIdx, F);
3626    }
3627  }
3628}
3629
3630namespace {
3631
3632/// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
3633/// defer modifications so that the search phase doesn't have to worry about
3634/// the data structures moving underneath it.
3635struct WorkItem {
3636  size_t LUIdx;
3637  int64_t Imm;
3638  const SCEV *OrigReg;
3639
3640  WorkItem(size_t LI, int64_t I, const SCEV *R)
3641    : LUIdx(LI), Imm(I), OrigReg(R) {}
3642
3643  void print(raw_ostream &OS) const;
3644  void dump() const;
3645};
3646
3647}
3648
3649void WorkItem::print(raw_ostream &OS) const {
3650  OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
3651     << " , add offset " << Imm;
3652}
3653
3654#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3655void WorkItem::dump() const {
3656  print(errs()); errs() << '\n';
3657}
3658#endif
3659
3660/// GenerateCrossUseConstantOffsets - Look for registers which are a constant
3661/// distance apart and try to form reuse opportunities between them.
3662void LSRInstance::GenerateCrossUseConstantOffsets() {
3663  // Group the registers by their value without any added constant offset.
3664  typedef std::map<int64_t, const SCEV *> ImmMapTy;
3665  DenseMap<const SCEV *, ImmMapTy> Map;
3666  DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
3667  SmallVector<const SCEV *, 8> Sequence;
3668  for (const SCEV *Use : RegUses) {
3669    const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
3670    int64_t Imm = ExtractImmediate(Reg, SE);
3671    auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
3672    if (Pair.second)
3673      Sequence.push_back(Reg);
3674    Pair.first->second.insert(std::make_pair(Imm, Use));
3675    UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
3676  }
3677
3678  // Now examine each set of registers with the same base value. Build up
3679  // a list of work to do and do the work in a separate step so that we're
3680  // not adding formulae and register counts while we're searching.
3681  SmallVector<WorkItem, 32> WorkItems;
3682  SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
3683  for (const SCEV *Reg : Sequence) {
3684    const ImmMapTy &Imms = Map.find(Reg)->second;
3685
3686    // It's not worthwhile looking for reuse if there's only one offset.
3687    if (Imms.size() == 1)
3688      continue;
3689
3690    DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
3691          for (const auto &Entry : Imms)
3692            dbgs() << ' ' << Entry.first;
3693          dbgs() << '\n');
3694
3695    // Examine each offset.
3696    for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3697         J != JE; ++J) {
3698      const SCEV *OrigReg = J->second;
3699
3700      int64_t JImm = J->first;
3701      const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
3702
3703      if (!isa<SCEVConstant>(OrigReg) &&
3704          UsedByIndicesMap[Reg].count() == 1) {
3705        DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
3706        continue;
3707      }
3708
3709      // Conservatively examine offsets between this orig reg a few selected
3710      // other orig regs.
3711      ImmMapTy::const_iterator OtherImms[] = {
3712        Imms.begin(), std::prev(Imms.end()),
3713        Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) /
3714                         2)
3715      };
3716      for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
3717        ImmMapTy::const_iterator M = OtherImms[i];
3718        if (M == J || M == JE) continue;
3719
3720        // Compute the difference between the two.
3721        int64_t Imm = (uint64_t)JImm - M->first;
3722        for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
3723             LUIdx = UsedByIndices.find_next(LUIdx))
3724          // Make a memo of this use, offset, and register tuple.
3725          if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
3726            WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
3727      }
3728    }
3729  }
3730
3731  Map.clear();
3732  Sequence.clear();
3733  UsedByIndicesMap.clear();
3734  UniqueItems.clear();
3735
3736  // Now iterate through the worklist and add new formulae.
3737  for (const WorkItem &WI : WorkItems) {
3738    size_t LUIdx = WI.LUIdx;
3739    LSRUse &LU = Uses[LUIdx];
3740    int64_t Imm = WI.Imm;
3741    const SCEV *OrigReg = WI.OrigReg;
3742
3743    Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
3744    const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
3745    unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
3746
3747    // TODO: Use a more targeted data structure.
3748    for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
3749      Formula F = LU.Formulae[L];
3750      // FIXME: The code for the scaled and unscaled registers looks
3751      // very similar but slightly different. Investigate if they
3752      // could be merged. That way, we would not have to unscale the
3753      // Formula.
3754      F.Unscale();
3755      // Use the immediate in the scaled register.
3756      if (F.ScaledReg == OrigReg) {
3757        int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
3758        // Don't create 50 + reg(-50).
3759        if (F.referencesReg(SE.getSCEV(
3760                   ConstantInt::get(IntTy, -(uint64_t)Offset))))
3761          continue;
3762        Formula NewF = F;
3763        NewF.BaseOffset = Offset;
3764        if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3765                        NewF))
3766          continue;
3767        NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
3768
3769        // If the new scale is a constant in a register, and adding the constant
3770        // value to the immediate would produce a value closer to zero than the
3771        // immediate itself, then the formula isn't worthwhile.
3772        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
3773          if (C->getValue()->isNegative() !=
3774                (NewF.BaseOffset < 0) &&
3775              (C->getValue()->getValue().abs() * APInt(BitWidth, F.Scale))
3776                .ule(std::abs(NewF.BaseOffset)))
3777            continue;
3778
3779        // OK, looks good.
3780        NewF.Canonicalize();
3781        (void)InsertFormula(LU, LUIdx, NewF);
3782      } else {
3783        // Use the immediate in a base register.
3784        for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
3785          const SCEV *BaseReg = F.BaseRegs[N];
3786          if (BaseReg != OrigReg)
3787            continue;
3788          Formula NewF = F;
3789          NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
3790          if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
3791                          LU.Kind, LU.AccessTy, NewF)) {
3792            if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
3793              continue;
3794            NewF = F;
3795            NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
3796          }
3797          NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
3798
3799          // If the new formula has a constant in a register, and adding the
3800          // constant value to the immediate would produce a value closer to
3801          // zero than the immediate itself, then the formula isn't worthwhile.
3802          for (const SCEV *NewReg : NewF.BaseRegs)
3803            if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
3804              if ((C->getValue()->getValue() + NewF.BaseOffset).abs().slt(
3805                   std::abs(NewF.BaseOffset)) &&
3806                  (C->getValue()->getValue() +
3807                   NewF.BaseOffset).countTrailingZeros() >=
3808                   countTrailingZeros<uint64_t>(NewF.BaseOffset))
3809                goto skip_formula;
3810
3811          // Ok, looks good.
3812          NewF.Canonicalize();
3813          (void)InsertFormula(LU, LUIdx, NewF);
3814          break;
3815        skip_formula:;
3816        }
3817      }
3818    }
3819  }
3820}
3821
3822/// GenerateAllReuseFormulae - Generate formulae for each use.
3823void
3824LSRInstance::GenerateAllReuseFormulae() {
3825  // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
3826  // queries are more precise.
3827  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3828    LSRUse &LU = Uses[LUIdx];
3829    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3830      GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
3831    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3832      GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
3833  }
3834  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3835    LSRUse &LU = Uses[LUIdx];
3836    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3837      GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
3838    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3839      GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
3840    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3841      GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
3842    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3843      GenerateScales(LU, LUIdx, LU.Formulae[i]);
3844  }
3845  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3846    LSRUse &LU = Uses[LUIdx];
3847    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3848      GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
3849  }
3850
3851  GenerateCrossUseConstantOffsets();
3852
3853  DEBUG(dbgs() << "\n"
3854                  "After generating reuse formulae:\n";
3855        print_uses(dbgs()));
3856}
3857
3858/// If there are multiple formulae with the same set of registers used
3859/// by other uses, pick the best one and delete the others.
3860void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
3861  DenseSet<const SCEV *> VisitedRegs;
3862  SmallPtrSet<const SCEV *, 16> Regs;
3863  SmallPtrSet<const SCEV *, 16> LoserRegs;
3864#ifndef NDEBUG
3865  bool ChangedFormulae = false;
3866#endif
3867
3868  // Collect the best formula for each unique set of shared registers. This
3869  // is reset for each use.
3870  typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>
3871    BestFormulaeTy;
3872  BestFormulaeTy BestFormulae;
3873
3874  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3875    LSRUse &LU = Uses[LUIdx];
3876    DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
3877
3878    bool Any = false;
3879    for (size_t FIdx = 0, NumForms = LU.Formulae.size();
3880         FIdx != NumForms; ++FIdx) {
3881      Formula &F = LU.Formulae[FIdx];
3882
3883      // Some formulas are instant losers. For example, they may depend on
3884      // nonexistent AddRecs from other loops. These need to be filtered
3885      // immediately, otherwise heuristics could choose them over others leading
3886      // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
3887      // avoids the need to recompute this information across formulae using the
3888      // same bad AddRec. Passing LoserRegs is also essential unless we remove
3889      // the corresponding bad register from the Regs set.
3890      Cost CostF;
3891      Regs.clear();
3892      CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, LU.Offsets, SE, DT, LU,
3893                        &LoserRegs);
3894      if (CostF.isLoser()) {
3895        // During initial formula generation, undesirable formulae are generated
3896        // by uses within other loops that have some non-trivial address mode or
3897        // use the postinc form of the IV. LSR needs to provide these formulae
3898        // as the basis of rediscovering the desired formula that uses an AddRec
3899        // corresponding to the existing phi. Once all formulae have been
3900        // generated, these initial losers may be pruned.
3901        DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
3902              dbgs() << "\n");
3903      }
3904      else {
3905        SmallVector<const SCEV *, 4> Key;
3906        for (const SCEV *Reg : F.BaseRegs) {
3907          if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
3908            Key.push_back(Reg);
3909        }
3910        if (F.ScaledReg &&
3911            RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
3912          Key.push_back(F.ScaledReg);
3913        // Unstable sort by host order ok, because this is only used for
3914        // uniquifying.
3915        std::sort(Key.begin(), Key.end());
3916
3917        std::pair<BestFormulaeTy::const_iterator, bool> P =
3918          BestFormulae.insert(std::make_pair(Key, FIdx));
3919        if (P.second)
3920          continue;
3921
3922        Formula &Best = LU.Formulae[P.first->second];
3923
3924        Cost CostBest;
3925        Regs.clear();
3926        CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, LU.Offsets, SE,
3927                             DT, LU);
3928        if (CostF < CostBest)
3929          std::swap(F, Best);
3930        DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
3931              dbgs() << "\n"
3932                        "    in favor of formula "; Best.print(dbgs());
3933              dbgs() << '\n');
3934      }
3935#ifndef NDEBUG
3936      ChangedFormulae = true;
3937#endif
3938      LU.DeleteFormula(F);
3939      --FIdx;
3940      --NumForms;
3941      Any = true;
3942    }
3943
3944    // Now that we've filtered out some formulae, recompute the Regs set.
3945    if (Any)
3946      LU.RecomputeRegs(LUIdx, RegUses);
3947
3948    // Reset this to prepare for the next use.
3949    BestFormulae.clear();
3950  }
3951
3952  DEBUG(if (ChangedFormulae) {
3953          dbgs() << "\n"
3954                    "After filtering out undesirable candidates:\n";
3955          print_uses(dbgs());
3956        });
3957}
3958
3959// This is a rough guess that seems to work fairly well.
3960static const size_t ComplexityLimit = UINT16_MAX;
3961
3962/// EstimateSearchSpaceComplexity - Estimate the worst-case number of
3963/// solutions the solver might have to consider. It almost never considers
3964/// this many solutions because it prune the search space, but the pruning
3965/// isn't always sufficient.
3966size_t LSRInstance::EstimateSearchSpaceComplexity() const {
3967  size_t Power = 1;
3968  for (const LSRUse &LU : Uses) {
3969    size_t FSize = LU.Formulae.size();
3970    if (FSize >= ComplexityLimit) {
3971      Power = ComplexityLimit;
3972      break;
3973    }
3974    Power *= FSize;
3975    if (Power >= ComplexityLimit)
3976      break;
3977  }
3978  return Power;
3979}
3980
3981/// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset
3982/// of the registers of another formula, it won't help reduce register
3983/// pressure (though it may not necessarily hurt register pressure); remove
3984/// it to simplify the system.
3985void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
3986  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3987    DEBUG(dbgs() << "The search space is too complex.\n");
3988
3989    DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
3990                    "which use a superset of registers used by other "
3991                    "formulae.\n");
3992
3993    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3994      LSRUse &LU = Uses[LUIdx];
3995      bool Any = false;
3996      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
3997        Formula &F = LU.Formulae[i];
3998        // Look for a formula with a constant or GV in a register. If the use
3999        // also has a formula with that same value in an immediate field,
4000        // delete the one that uses a register.
4001        for (SmallVectorImpl<const SCEV *>::const_iterator
4002             I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4003          if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4004            Formula NewF = F;
4005            NewF.BaseOffset += C->getValue()->getSExtValue();
4006            NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4007                                (I - F.BaseRegs.begin()));
4008            if (LU.HasFormulaWithSameRegs(NewF)) {
4009              DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4010              LU.DeleteFormula(F);
4011              --i;
4012              --e;
4013              Any = true;
4014              break;
4015            }
4016          } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4017            if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4018              if (!F.BaseGV) {
4019                Formula NewF = F;
4020                NewF.BaseGV = GV;
4021                NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4022                                    (I - F.BaseRegs.begin()));
4023                if (LU.HasFormulaWithSameRegs(NewF)) {
4024                  DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4025                        dbgs() << '\n');
4026                  LU.DeleteFormula(F);
4027                  --i;
4028                  --e;
4029                  Any = true;
4030                  break;
4031                }
4032              }
4033          }
4034        }
4035      }
4036      if (Any)
4037        LU.RecomputeRegs(LUIdx, RegUses);
4038    }
4039
4040    DEBUG(dbgs() << "After pre-selection:\n";
4041          print_uses(dbgs()));
4042  }
4043}
4044
4045/// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers
4046/// for expressions like A, A+1, A+2, etc., allocate a single register for
4047/// them.
4048void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4049  if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4050    return;
4051
4052  DEBUG(dbgs() << "The search space is too complex.\n"
4053                  "Narrowing the search space by assuming that uses separated "
4054                  "by a constant offset will use the same registers.\n");
4055
4056  // This is especially useful for unrolled loops.
4057
4058  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4059    LSRUse &LU = Uses[LUIdx];
4060    for (const Formula &F : LU.Formulae) {
4061      if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4062        continue;
4063
4064      LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4065      if (!LUThatHas)
4066        continue;
4067
4068      if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4069                              LU.Kind, LU.AccessTy))
4070        continue;
4071
4072      DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4073
4074      LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4075
4076      // Update the relocs to reference the new use.
4077      for (LSRFixup &Fixup : Fixups) {
4078        if (Fixup.LUIdx == LUIdx) {
4079          Fixup.LUIdx = LUThatHas - &Uses.front();
4080          Fixup.Offset += F.BaseOffset;
4081          // Add the new offset to LUThatHas' offset list.
4082          if (LUThatHas->Offsets.back() != Fixup.Offset) {
4083            LUThatHas->Offsets.push_back(Fixup.Offset);
4084            if (Fixup.Offset > LUThatHas->MaxOffset)
4085              LUThatHas->MaxOffset = Fixup.Offset;
4086            if (Fixup.Offset < LUThatHas->MinOffset)
4087              LUThatHas->MinOffset = Fixup.Offset;
4088          }
4089          DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4090        }
4091        if (Fixup.LUIdx == NumUses-1)
4092          Fixup.LUIdx = LUIdx;
4093      }
4094
4095      // Delete formulae from the new use which are no longer legal.
4096      bool Any = false;
4097      for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4098        Formula &F = LUThatHas->Formulae[i];
4099        if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4100                        LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4101          DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4102                dbgs() << '\n');
4103          LUThatHas->DeleteFormula(F);
4104          --i;
4105          --e;
4106          Any = true;
4107        }
4108      }
4109
4110      if (Any)
4111        LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4112
4113      // Delete the old use.
4114      DeleteUse(LU, LUIdx);
4115      --LUIdx;
4116      --NumUses;
4117      break;
4118    }
4119  }
4120
4121  DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4122}
4123
4124/// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call
4125/// FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4126/// we've done more filtering, as it may be able to find more formulae to
4127/// eliminate.
4128void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4129  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4130    DEBUG(dbgs() << "The search space is too complex.\n");
4131
4132    DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4133                    "undesirable dedicated registers.\n");
4134
4135    FilterOutUndesirableDedicatedRegisters();
4136
4137    DEBUG(dbgs() << "After pre-selection:\n";
4138          print_uses(dbgs()));
4139  }
4140}
4141
4142/// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely
4143/// to be profitable, and then in any use which has any reference to that
4144/// register, delete all formulae which do not reference that register.
4145void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4146  // With all other options exhausted, loop until the system is simple
4147  // enough to handle.
4148  SmallPtrSet<const SCEV *, 4> Taken;
4149  while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4150    // Ok, we have too many of formulae on our hands to conveniently handle.
4151    // Use a rough heuristic to thin out the list.
4152    DEBUG(dbgs() << "The search space is too complex.\n");
4153
4154    // Pick the register which is used by the most LSRUses, which is likely
4155    // to be a good reuse register candidate.
4156    const SCEV *Best = nullptr;
4157    unsigned BestNum = 0;
4158    for (const SCEV *Reg : RegUses) {
4159      if (Taken.count(Reg))
4160        continue;
4161      if (!Best)
4162        Best = Reg;
4163      else {
4164        unsigned Count = RegUses.getUsedByIndices(Reg).count();
4165        if (Count > BestNum) {
4166          Best = Reg;
4167          BestNum = Count;
4168        }
4169      }
4170    }
4171
4172    DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4173                 << " will yield profitable reuse.\n");
4174    Taken.insert(Best);
4175
4176    // In any use with formulae which references this register, delete formulae
4177    // which don't reference it.
4178    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4179      LSRUse &LU = Uses[LUIdx];
4180      if (!LU.Regs.count(Best)) continue;
4181
4182      bool Any = false;
4183      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4184        Formula &F = LU.Formulae[i];
4185        if (!F.referencesReg(Best)) {
4186          DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4187          LU.DeleteFormula(F);
4188          --e;
4189          --i;
4190          Any = true;
4191          assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4192          continue;
4193        }
4194      }
4195
4196      if (Any)
4197        LU.RecomputeRegs(LUIdx, RegUses);
4198    }
4199
4200    DEBUG(dbgs() << "After pre-selection:\n";
4201          print_uses(dbgs()));
4202  }
4203}
4204
4205/// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
4206/// formulae to choose from, use some rough heuristics to prune down the number
4207/// of formulae. This keeps the main solver from taking an extraordinary amount
4208/// of time in some worst-case scenarios.
4209void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4210  NarrowSearchSpaceByDetectingSupersets();
4211  NarrowSearchSpaceByCollapsingUnrolledCode();
4212  NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4213  NarrowSearchSpaceByPickingWinnerRegs();
4214}
4215
4216/// SolveRecurse - This is the recursive solver.
4217void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4218                               Cost &SolutionCost,
4219                               SmallVectorImpl<const Formula *> &Workspace,
4220                               const Cost &CurCost,
4221                               const SmallPtrSet<const SCEV *, 16> &CurRegs,
4222                               DenseSet<const SCEV *> &VisitedRegs) const {
4223  // Some ideas:
4224  //  - prune more:
4225  //    - use more aggressive filtering
4226  //    - sort the formula so that the most profitable solutions are found first
4227  //    - sort the uses too
4228  //  - search faster:
4229  //    - don't compute a cost, and then compare. compare while computing a cost
4230  //      and bail early.
4231  //    - track register sets with SmallBitVector
4232
4233  const LSRUse &LU = Uses[Workspace.size()];
4234
4235  // If this use references any register that's already a part of the
4236  // in-progress solution, consider it a requirement that a formula must
4237  // reference that register in order to be considered. This prunes out
4238  // unprofitable searching.
4239  SmallSetVector<const SCEV *, 4> ReqRegs;
4240  for (const SCEV *S : CurRegs)
4241    if (LU.Regs.count(S))
4242      ReqRegs.insert(S);
4243
4244  SmallPtrSet<const SCEV *, 16> NewRegs;
4245  Cost NewCost;
4246  for (const Formula &F : LU.Formulae) {
4247    // Ignore formulae which may not be ideal in terms of register reuse of
4248    // ReqRegs.  The formula should use all required registers before
4249    // introducing new ones.
4250    int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4251    for (const SCEV *Reg : ReqRegs) {
4252      if ((F.ScaledReg && F.ScaledReg == Reg) ||
4253          std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) !=
4254          F.BaseRegs.end()) {
4255        --NumReqRegsToFind;
4256        if (NumReqRegsToFind == 0)
4257          break;
4258      }
4259    }
4260    if (NumReqRegsToFind != 0) {
4261      // If none of the formulae satisfied the required registers, then we could
4262      // clear ReqRegs and try again. Currently, we simply give up in this case.
4263      continue;
4264    }
4265
4266    // Evaluate the cost of the current formula. If it's already worse than
4267    // the current best, prune the search at that point.
4268    NewCost = CurCost;
4269    NewRegs = CurRegs;
4270    NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT,
4271                        LU);
4272    if (NewCost < SolutionCost) {
4273      Workspace.push_back(&F);
4274      if (Workspace.size() != Uses.size()) {
4275        SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4276                     NewRegs, VisitedRegs);
4277        if (F.getNumRegs() == 1 && Workspace.size() == 1)
4278          VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4279      } else {
4280        DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4281              dbgs() << ".\n Regs:";
4282              for (const SCEV *S : NewRegs)
4283                dbgs() << ' ' << *S;
4284              dbgs() << '\n');
4285
4286        SolutionCost = NewCost;
4287        Solution = Workspace;
4288      }
4289      Workspace.pop_back();
4290    }
4291  }
4292}
4293
4294/// Solve - Choose one formula from each use. Return the results in the given
4295/// Solution vector.
4296void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4297  SmallVector<const Formula *, 8> Workspace;
4298  Cost SolutionCost;
4299  SolutionCost.Lose();
4300  Cost CurCost;
4301  SmallPtrSet<const SCEV *, 16> CurRegs;
4302  DenseSet<const SCEV *> VisitedRegs;
4303  Workspace.reserve(Uses.size());
4304
4305  // SolveRecurse does all the work.
4306  SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4307               CurRegs, VisitedRegs);
4308  if (Solution.empty()) {
4309    DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4310    return;
4311  }
4312
4313  // Ok, we've now made all our decisions.
4314  DEBUG(dbgs() << "\n"
4315                  "The chosen solution requires "; SolutionCost.print(dbgs());
4316        dbgs() << ":\n";
4317        for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4318          dbgs() << "  ";
4319          Uses[i].print(dbgs());
4320          dbgs() << "\n"
4321                    "    ";
4322          Solution[i]->print(dbgs());
4323          dbgs() << '\n';
4324        });
4325
4326  assert(Solution.size() == Uses.size() && "Malformed solution!");
4327}
4328
4329/// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
4330/// the dominator tree far as we can go while still being dominated by the
4331/// input positions. This helps canonicalize the insert position, which
4332/// encourages sharing.
4333BasicBlock::iterator
4334LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4335                                 const SmallVectorImpl<Instruction *> &Inputs)
4336                                                                         const {
4337  for (;;) {
4338    const Loop *IPLoop = LI.getLoopFor(IP->getParent());
4339    unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
4340
4341    BasicBlock *IDom;
4342    for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
4343      if (!Rung) return IP;
4344      Rung = Rung->getIDom();
4345      if (!Rung) return IP;
4346      IDom = Rung->getBlock();
4347
4348      // Don't climb into a loop though.
4349      const Loop *IDomLoop = LI.getLoopFor(IDom);
4350      unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
4351      if (IDomDepth <= IPLoopDepth &&
4352          (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
4353        break;
4354    }
4355
4356    bool AllDominate = true;
4357    Instruction *BetterPos = nullptr;
4358    Instruction *Tentative = IDom->getTerminator();
4359    for (Instruction *Inst : Inputs) {
4360      if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
4361        AllDominate = false;
4362        break;
4363      }
4364      // Attempt to find an insert position in the middle of the block,
4365      // instead of at the end, so that it can be used for other expansions.
4366      if (IDom == Inst->getParent() &&
4367          (!BetterPos || !DT.dominates(Inst, BetterPos)))
4368        BetterPos = std::next(BasicBlock::iterator(Inst));
4369    }
4370    if (!AllDominate)
4371      break;
4372    if (BetterPos)
4373      IP = BetterPos;
4374    else
4375      IP = Tentative;
4376  }
4377
4378  return IP;
4379}
4380
4381/// AdjustInsertPositionForExpand - Determine an input position which will be
4382/// dominated by the operands and which will dominate the result.
4383BasicBlock::iterator
4384LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
4385                                           const LSRFixup &LF,
4386                                           const LSRUse &LU,
4387                                           SCEVExpander &Rewriter) const {
4388  // Collect some instructions which must be dominated by the
4389  // expanding replacement. These must be dominated by any operands that
4390  // will be required in the expansion.
4391  SmallVector<Instruction *, 4> Inputs;
4392  if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
4393    Inputs.push_back(I);
4394  if (LU.Kind == LSRUse::ICmpZero)
4395    if (Instruction *I =
4396          dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
4397      Inputs.push_back(I);
4398  if (LF.PostIncLoops.count(L)) {
4399    if (LF.isUseFullyOutsideLoop(L))
4400      Inputs.push_back(L->getLoopLatch()->getTerminator());
4401    else
4402      Inputs.push_back(IVIncInsertPos);
4403  }
4404  // The expansion must also be dominated by the increment positions of any
4405  // loops it for which it is using post-inc mode.
4406  for (const Loop *PIL : LF.PostIncLoops) {
4407    if (PIL == L) continue;
4408
4409    // Be dominated by the loop exit.
4410    SmallVector<BasicBlock *, 4> ExitingBlocks;
4411    PIL->getExitingBlocks(ExitingBlocks);
4412    if (!ExitingBlocks.empty()) {
4413      BasicBlock *BB = ExitingBlocks[0];
4414      for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
4415        BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
4416      Inputs.push_back(BB->getTerminator());
4417    }
4418  }
4419
4420  assert(!isa<PHINode>(LowestIP) && !isa<LandingPadInst>(LowestIP)
4421         && !isa<DbgInfoIntrinsic>(LowestIP) &&
4422         "Insertion point must be a normal instruction");
4423
4424  // Then, climb up the immediate dominator tree as far as we can go while
4425  // still being dominated by the input positions.
4426  BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
4427
4428  // Don't insert instructions before PHI nodes.
4429  while (isa<PHINode>(IP)) ++IP;
4430
4431  // Ignore landingpad instructions.
4432  while (isa<LandingPadInst>(IP)) ++IP;
4433
4434  // Ignore debug intrinsics.
4435  while (isa<DbgInfoIntrinsic>(IP)) ++IP;
4436
4437  // Set IP below instructions recently inserted by SCEVExpander. This keeps the
4438  // IP consistent across expansions and allows the previously inserted
4439  // instructions to be reused by subsequent expansion.
4440  while (Rewriter.isInsertedInstruction(IP) && IP != LowestIP) ++IP;
4441
4442  return IP;
4443}
4444
4445/// Expand - Emit instructions for the leading candidate expression for this
4446/// LSRUse (this is called "expanding").
4447Value *LSRInstance::Expand(const LSRFixup &LF,
4448                           const Formula &F,
4449                           BasicBlock::iterator IP,
4450                           SCEVExpander &Rewriter,
4451                           SmallVectorImpl<WeakVH> &DeadInsts) const {
4452  const LSRUse &LU = Uses[LF.LUIdx];
4453  if (LU.RigidFormula)
4454    return LF.OperandValToReplace;
4455
4456  // Determine an input position which will be dominated by the operands and
4457  // which will dominate the result.
4458  IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
4459
4460  // Inform the Rewriter if we have a post-increment use, so that it can
4461  // perform an advantageous expansion.
4462  Rewriter.setPostInc(LF.PostIncLoops);
4463
4464  // This is the type that the user actually needs.
4465  Type *OpTy = LF.OperandValToReplace->getType();
4466  // This will be the type that we'll initially expand to.
4467  Type *Ty = F.getType();
4468  if (!Ty)
4469    // No type known; just expand directly to the ultimate type.
4470    Ty = OpTy;
4471  else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
4472    // Expand directly to the ultimate type if it's the right size.
4473    Ty = OpTy;
4474  // This is the type to do integer arithmetic in.
4475  Type *IntTy = SE.getEffectiveSCEVType(Ty);
4476
4477  // Build up a list of operands to add together to form the full base.
4478  SmallVector<const SCEV *, 8> Ops;
4479
4480  // Expand the BaseRegs portion.
4481  for (const SCEV *Reg : F.BaseRegs) {
4482    assert(!Reg->isZero() && "Zero allocated in a base register!");
4483
4484    // If we're expanding for a post-inc user, make the post-inc adjustment.
4485    PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4486    Reg = TransformForPostIncUse(Denormalize, Reg,
4487                                 LF.UserInst, LF.OperandValToReplace,
4488                                 Loops, SE, DT);
4489
4490    Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr, IP)));
4491  }
4492
4493  // Expand the ScaledReg portion.
4494  Value *ICmpScaledV = nullptr;
4495  if (F.Scale != 0) {
4496    const SCEV *ScaledS = F.ScaledReg;
4497
4498    // If we're expanding for a post-inc user, make the post-inc adjustment.
4499    PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4500    ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
4501                                     LF.UserInst, LF.OperandValToReplace,
4502                                     Loops, SE, DT);
4503
4504    if (LU.Kind == LSRUse::ICmpZero) {
4505      // Expand ScaleReg as if it was part of the base regs.
4506      if (F.Scale == 1)
4507        Ops.push_back(
4508            SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, IP)));
4509      else {
4510        // An interesting way of "folding" with an icmp is to use a negated
4511        // scale, which we'll implement by inserting it into the other operand
4512        // of the icmp.
4513        assert(F.Scale == -1 &&
4514               "The only scale supported by ICmpZero uses is -1!");
4515        ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr, IP);
4516      }
4517    } else {
4518      // Otherwise just expand the scaled register and an explicit scale,
4519      // which is expected to be matched as part of the address.
4520
4521      // Flush the operand list to suppress SCEVExpander hoisting address modes.
4522      // Unless the addressing mode will not be folded.
4523      if (!Ops.empty() && LU.Kind == LSRUse::Address &&
4524          isAMCompletelyFolded(TTI, LU, F)) {
4525        Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
4526        Ops.clear();
4527        Ops.push_back(SE.getUnknown(FullV));
4528      }
4529      ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, IP));
4530      if (F.Scale != 1)
4531        ScaledS =
4532            SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
4533      Ops.push_back(ScaledS);
4534    }
4535  }
4536
4537  // Expand the GV portion.
4538  if (F.BaseGV) {
4539    // Flush the operand list to suppress SCEVExpander hoisting.
4540    if (!Ops.empty()) {
4541      Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
4542      Ops.clear();
4543      Ops.push_back(SE.getUnknown(FullV));
4544    }
4545    Ops.push_back(SE.getUnknown(F.BaseGV));
4546  }
4547
4548  // Flush the operand list to suppress SCEVExpander hoisting of both folded and
4549  // unfolded offsets. LSR assumes they both live next to their uses.
4550  if (!Ops.empty()) {
4551    Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
4552    Ops.clear();
4553    Ops.push_back(SE.getUnknown(FullV));
4554  }
4555
4556  // Expand the immediate portion.
4557  int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
4558  if (Offset != 0) {
4559    if (LU.Kind == LSRUse::ICmpZero) {
4560      // The other interesting way of "folding" with an ICmpZero is to use a
4561      // negated immediate.
4562      if (!ICmpScaledV)
4563        ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
4564      else {
4565        Ops.push_back(SE.getUnknown(ICmpScaledV));
4566        ICmpScaledV = ConstantInt::get(IntTy, Offset);
4567      }
4568    } else {
4569      // Just add the immediate values. These again are expected to be matched
4570      // as part of the address.
4571      Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
4572    }
4573  }
4574
4575  // Expand the unfolded offset portion.
4576  int64_t UnfoldedOffset = F.UnfoldedOffset;
4577  if (UnfoldedOffset != 0) {
4578    // Just add the immediate values.
4579    Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
4580                                                       UnfoldedOffset)));
4581  }
4582
4583  // Emit instructions summing all the operands.
4584  const SCEV *FullS = Ops.empty() ?
4585                      SE.getConstant(IntTy, 0) :
4586                      SE.getAddExpr(Ops);
4587  Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
4588
4589  // We're done expanding now, so reset the rewriter.
4590  Rewriter.clearPostInc();
4591
4592  // An ICmpZero Formula represents an ICmp which we're handling as a
4593  // comparison against zero. Now that we've expanded an expression for that
4594  // form, update the ICmp's other operand.
4595  if (LU.Kind == LSRUse::ICmpZero) {
4596    ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
4597    DeadInsts.emplace_back(CI->getOperand(1));
4598    assert(!F.BaseGV && "ICmp does not support folding a global value and "
4599                           "a scale at the same time!");
4600    if (F.Scale == -1) {
4601      if (ICmpScaledV->getType() != OpTy) {
4602        Instruction *Cast =
4603          CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
4604                                                   OpTy, false),
4605                           ICmpScaledV, OpTy, "tmp", CI);
4606        ICmpScaledV = Cast;
4607      }
4608      CI->setOperand(1, ICmpScaledV);
4609    } else {
4610      // A scale of 1 means that the scale has been expanded as part of the
4611      // base regs.
4612      assert((F.Scale == 0 || F.Scale == 1) &&
4613             "ICmp does not support folding a global value and "
4614             "a scale at the same time!");
4615      Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
4616                                           -(uint64_t)Offset);
4617      if (C->getType() != OpTy)
4618        C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4619                                                          OpTy, false),
4620                                  C, OpTy);
4621
4622      CI->setOperand(1, C);
4623    }
4624  }
4625
4626  return FullV;
4627}
4628
4629/// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
4630/// of their operands effectively happens in their predecessor blocks, so the
4631/// expression may need to be expanded in multiple places.
4632void LSRInstance::RewriteForPHI(PHINode *PN,
4633                                const LSRFixup &LF,
4634                                const Formula &F,
4635                                SCEVExpander &Rewriter,
4636                                SmallVectorImpl<WeakVH> &DeadInsts,
4637                                Pass *P) const {
4638  DenseMap<BasicBlock *, Value *> Inserted;
4639  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4640    if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
4641      BasicBlock *BB = PN->getIncomingBlock(i);
4642
4643      // If this is a critical edge, split the edge so that we do not insert
4644      // the code on all predecessor/successor paths.  We do this unless this
4645      // is the canonical backedge for this loop, which complicates post-inc
4646      // users.
4647      if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
4648          !isa<IndirectBrInst>(BB->getTerminator())) {
4649        BasicBlock *Parent = PN->getParent();
4650        Loop *PNLoop = LI.getLoopFor(Parent);
4651        if (!PNLoop || Parent != PNLoop->getHeader()) {
4652          // Split the critical edge.
4653          BasicBlock *NewBB = nullptr;
4654          if (!Parent->isLandingPad()) {
4655            NewBB = SplitCriticalEdge(BB, Parent,
4656                                      CriticalEdgeSplittingOptions(&DT, &LI)
4657                                          .setMergeIdenticalEdges()
4658                                          .setDontDeleteUselessPHIs());
4659          } else {
4660            SmallVector<BasicBlock*, 2> NewBBs;
4661            SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs,
4662                                        /*AliasAnalysis*/ nullptr, &DT, &LI);
4663            NewBB = NewBBs[0];
4664          }
4665          // If NewBB==NULL, then SplitCriticalEdge refused to split because all
4666          // phi predecessors are identical. The simple thing to do is skip
4667          // splitting in this case rather than complicate the API.
4668          if (NewBB) {
4669            // If PN is outside of the loop and BB is in the loop, we want to
4670            // move the block to be immediately before the PHI block, not
4671            // immediately after BB.
4672            if (L->contains(BB) && !L->contains(PN))
4673              NewBB->moveBefore(PN->getParent());
4674
4675            // Splitting the edge can reduce the number of PHI entries we have.
4676            e = PN->getNumIncomingValues();
4677            BB = NewBB;
4678            i = PN->getBasicBlockIndex(BB);
4679          }
4680        }
4681      }
4682
4683      std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
4684        Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
4685      if (!Pair.second)
4686        PN->setIncomingValue(i, Pair.first->second);
4687      else {
4688        Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
4689
4690        // If this is reuse-by-noop-cast, insert the noop cast.
4691        Type *OpTy = LF.OperandValToReplace->getType();
4692        if (FullV->getType() != OpTy)
4693          FullV =
4694            CastInst::Create(CastInst::getCastOpcode(FullV, false,
4695                                                     OpTy, false),
4696                             FullV, LF.OperandValToReplace->getType(),
4697                             "tmp", BB->getTerminator());
4698
4699        PN->setIncomingValue(i, FullV);
4700        Pair.first->second = FullV;
4701      }
4702    }
4703}
4704
4705/// Rewrite - Emit instructions for the leading candidate expression for this
4706/// LSRUse (this is called "expanding"), and update the UserInst to reference
4707/// the newly expanded value.
4708void LSRInstance::Rewrite(const LSRFixup &LF,
4709                          const Formula &F,
4710                          SCEVExpander &Rewriter,
4711                          SmallVectorImpl<WeakVH> &DeadInsts,
4712                          Pass *P) const {
4713  // First, find an insertion point that dominates UserInst. For PHI nodes,
4714  // find the nearest block which dominates all the relevant uses.
4715  if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
4716    RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
4717  } else {
4718    Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
4719
4720    // If this is reuse-by-noop-cast, insert the noop cast.
4721    Type *OpTy = LF.OperandValToReplace->getType();
4722    if (FullV->getType() != OpTy) {
4723      Instruction *Cast =
4724        CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
4725                         FullV, OpTy, "tmp", LF.UserInst);
4726      FullV = Cast;
4727    }
4728
4729    // Update the user. ICmpZero is handled specially here (for now) because
4730    // Expand may have updated one of the operands of the icmp already, and
4731    // its new value may happen to be equal to LF.OperandValToReplace, in
4732    // which case doing replaceUsesOfWith leads to replacing both operands
4733    // with the same value. TODO: Reorganize this.
4734    if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
4735      LF.UserInst->setOperand(0, FullV);
4736    else
4737      LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
4738  }
4739
4740  DeadInsts.emplace_back(LF.OperandValToReplace);
4741}
4742
4743/// ImplementSolution - Rewrite all the fixup locations with new values,
4744/// following the chosen solution.
4745void
4746LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
4747                               Pass *P) {
4748  // Keep track of instructions we may have made dead, so that
4749  // we can remove them after we are done working.
4750  SmallVector<WeakVH, 16> DeadInsts;
4751
4752  SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
4753                        "lsr");
4754#ifndef NDEBUG
4755  Rewriter.setDebugType(DEBUG_TYPE);
4756#endif
4757  Rewriter.disableCanonicalMode();
4758  Rewriter.enableLSRMode();
4759  Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
4760
4761  // Mark phi nodes that terminate chains so the expander tries to reuse them.
4762  for (const IVChain &Chain : IVChainVec) {
4763    if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
4764      Rewriter.setChainedPhi(PN);
4765  }
4766
4767  // Expand the new value definitions and update the users.
4768  for (const LSRFixup &Fixup : Fixups) {
4769    Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
4770
4771    Changed = true;
4772  }
4773
4774  for (const IVChain &Chain : IVChainVec) {
4775    GenerateIVChain(Chain, Rewriter, DeadInsts);
4776    Changed = true;
4777  }
4778  // Clean up after ourselves. This must be done before deleting any
4779  // instructions.
4780  Rewriter.clear();
4781
4782  Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
4783}
4784
4785LSRInstance::LSRInstance(Loop *L, Pass *P)
4786    : IU(P->getAnalysis<IVUsers>()), SE(P->getAnalysis<ScalarEvolution>()),
4787      DT(P->getAnalysis<DominatorTreeWrapperPass>().getDomTree()),
4788      LI(P->getAnalysis<LoopInfoWrapperPass>().getLoopInfo()),
4789      TTI(P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
4790          *L->getHeader()->getParent())),
4791      L(L), Changed(false), IVIncInsertPos(nullptr) {
4792  // If LoopSimplify form is not available, stay out of trouble.
4793  if (!L->isLoopSimplifyForm())
4794    return;
4795
4796  // If there's no interesting work to be done, bail early.
4797  if (IU.empty()) return;
4798
4799  // If there's too much analysis to be done, bail early. We won't be able to
4800  // model the problem anyway.
4801  unsigned NumUsers = 0;
4802  for (const IVStrideUse &U : IU) {
4803    if (++NumUsers > MaxIVUsers) {
4804      (void)U;
4805      DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n");
4806      return;
4807    }
4808  }
4809
4810#ifndef NDEBUG
4811  // All dominating loops must have preheaders, or SCEVExpander may not be able
4812  // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
4813  //
4814  // IVUsers analysis should only create users that are dominated by simple loop
4815  // headers. Since this loop should dominate all of its users, its user list
4816  // should be empty if this loop itself is not within a simple loop nest.
4817  for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
4818       Rung; Rung = Rung->getIDom()) {
4819    BasicBlock *BB = Rung->getBlock();
4820    const Loop *DomLoop = LI.getLoopFor(BB);
4821    if (DomLoop && DomLoop->getHeader() == BB) {
4822      assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
4823    }
4824  }
4825#endif // DEBUG
4826
4827  DEBUG(dbgs() << "\nLSR on loop ";
4828        L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
4829        dbgs() << ":\n");
4830
4831  // First, perform some low-level loop optimizations.
4832  OptimizeShadowIV();
4833  OptimizeLoopTermCond();
4834
4835  // If loop preparation eliminates all interesting IV users, bail.
4836  if (IU.empty()) return;
4837
4838  // Skip nested loops until we can model them better with formulae.
4839  if (!L->empty()) {
4840    DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
4841    return;
4842  }
4843
4844  // Start collecting data and preparing for the solver.
4845  CollectChains();
4846  CollectInterestingTypesAndFactors();
4847  CollectFixupsAndInitialFormulae();
4848  CollectLoopInvariantFixupsAndFormulae();
4849
4850  assert(!Uses.empty() && "IVUsers reported at least one use");
4851  DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
4852        print_uses(dbgs()));
4853
4854  // Now use the reuse data to generate a bunch of interesting ways
4855  // to formulate the values needed for the uses.
4856  GenerateAllReuseFormulae();
4857
4858  FilterOutUndesirableDedicatedRegisters();
4859  NarrowSearchSpaceUsingHeuristics();
4860
4861  SmallVector<const Formula *, 8> Solution;
4862  Solve(Solution);
4863
4864  // Release memory that is no longer needed.
4865  Factors.clear();
4866  Types.clear();
4867  RegUses.clear();
4868
4869  if (Solution.empty())
4870    return;
4871
4872#ifndef NDEBUG
4873  // Formulae should be legal.
4874  for (const LSRUse &LU : Uses) {
4875    for (const Formula &F : LU.Formulae)
4876      assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4877                        F) && "Illegal formula generated!");
4878  };
4879#endif
4880
4881  // Now that we've decided what we want, make it so.
4882  ImplementSolution(Solution, P);
4883}
4884
4885void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
4886  if (Factors.empty() && Types.empty()) return;
4887
4888  OS << "LSR has identified the following interesting factors and types: ";
4889  bool First = true;
4890
4891  for (int64_t Factor : Factors) {
4892    if (!First) OS << ", ";
4893    First = false;
4894    OS << '*' << Factor;
4895  }
4896
4897  for (Type *Ty : Types) {
4898    if (!First) OS << ", ";
4899    First = false;
4900    OS << '(' << *Ty << ')';
4901  }
4902  OS << '\n';
4903}
4904
4905void LSRInstance::print_fixups(raw_ostream &OS) const {
4906  OS << "LSR is examining the following fixup sites:\n";
4907  for (const LSRFixup &LF : Fixups) {
4908    dbgs() << "  ";
4909    LF.print(OS);
4910    OS << '\n';
4911  }
4912}
4913
4914void LSRInstance::print_uses(raw_ostream &OS) const {
4915  OS << "LSR is examining the following uses:\n";
4916  for (const LSRUse &LU : Uses) {
4917    dbgs() << "  ";
4918    LU.print(OS);
4919    OS << '\n';
4920    for (const Formula &F : LU.Formulae) {
4921      OS << "    ";
4922      F.print(OS);
4923      OS << '\n';
4924    }
4925  }
4926}
4927
4928void LSRInstance::print(raw_ostream &OS) const {
4929  print_factors_and_types(OS);
4930  print_fixups(OS);
4931  print_uses(OS);
4932}
4933
4934#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4935void LSRInstance::dump() const {
4936  print(errs()); errs() << '\n';
4937}
4938#endif
4939
4940namespace {
4941
4942class LoopStrengthReduce : public LoopPass {
4943public:
4944  static char ID; // Pass ID, replacement for typeid
4945  LoopStrengthReduce();
4946
4947private:
4948  bool runOnLoop(Loop *L, LPPassManager &LPM) override;
4949  void getAnalysisUsage(AnalysisUsage &AU) const override;
4950};
4951
4952}
4953
4954char LoopStrengthReduce::ID = 0;
4955INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
4956                "Loop Strength Reduction", false, false)
4957INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
4958INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4959INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
4960INITIALIZE_PASS_DEPENDENCY(IVUsers)
4961INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
4962INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
4963INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
4964                "Loop Strength Reduction", false, false)
4965
4966
4967Pass *llvm::createLoopStrengthReducePass() {
4968  return new LoopStrengthReduce();
4969}
4970
4971LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
4972  initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
4973}
4974
4975void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
4976  // We split critical edges, so we change the CFG.  However, we do update
4977  // many analyses if they are around.
4978  AU.addPreservedID(LoopSimplifyID);
4979
4980  AU.addRequired<LoopInfoWrapperPass>();
4981  AU.addPreserved<LoopInfoWrapperPass>();
4982  AU.addRequiredID(LoopSimplifyID);
4983  AU.addRequired<DominatorTreeWrapperPass>();
4984  AU.addPreserved<DominatorTreeWrapperPass>();
4985  AU.addRequired<ScalarEvolution>();
4986  AU.addPreserved<ScalarEvolution>();
4987  // Requiring LoopSimplify a second time here prevents IVUsers from running
4988  // twice, since LoopSimplify was invalidated by running ScalarEvolution.
4989  AU.addRequiredID(LoopSimplifyID);
4990  AU.addRequired<IVUsers>();
4991  AU.addPreserved<IVUsers>();
4992  AU.addRequired<TargetTransformInfoWrapperPass>();
4993}
4994
4995bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
4996  if (skipOptnoneFunction(L))
4997    return false;
4998
4999  bool Changed = false;
5000
5001  // Run the main LSR transformation.
5002  Changed |= LSRInstance(L, this).getChanged();
5003
5004  // Remove any extra phis created by processing inner loops.
5005  Changed |= DeleteDeadPHIs(L->getHeader());
5006  if (EnablePhiElim && L->isLoopSimplifyForm()) {
5007    SmallVector<WeakVH, 16> DeadInsts;
5008    const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5009    SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), DL, "lsr");
5010#ifndef NDEBUG
5011    Rewriter.setDebugType(DEBUG_TYPE);
5012#endif
5013    unsigned numFolded = Rewriter.replaceCongruentIVs(
5014        L, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), DeadInsts,
5015        &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5016            *L->getHeader()->getParent()));
5017    if (numFolded) {
5018      Changed = true;
5019      DeleteTriviallyDeadInstructions(DeadInsts);
5020      DeleteDeadPHIs(L->getHeader());
5021    }
5022  }
5023  return Changed;
5024}
5025