LoopStrengthReduce.cpp revision 243830
1//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into forms suitable for efficient execution
12// on the target.
13//
14// This pass performs a strength reduction on array references inside loops that
15// have as one or more of their components the loop induction variable, it
16// rewrites expressions to take advantage of scaled-index addressing modes
17// available on the target, and it performs a variety of other optimizations
18// related to loop induction variables.
19//
20// Terminology note: this code has a lot of handling for "post-increment" or
21// "post-inc" users. This is not talking about post-increment addressing modes;
22// it is instead talking about code like this:
23//
24//   %i = phi [ 0, %entry ], [ %i.next, %latch ]
25//   ...
26//   %i.next = add %i, 1
27//   %c = icmp eq %i.next, %n
28//
29// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30// it's useful to think about these as the same register, with some uses using
31// the value of the register before the add and some using // it after. In this
32// example, the icmp is a post-increment user, since it uses %i.next, which is
33// the value of the induction variable after the increment. The other common
34// case of post-increment users is users outside the loop.
35//
36// TODO: More sophistication in the way Formulae are generated and filtered.
37//
38// TODO: Handle multiple loops at a time.
39//
40// TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
41//       instead of a GlobalValue?
42//
43// TODO: When truncation is free, truncate ICmp users' operands to make it a
44//       smaller encoding (on x86 at least).
45//
46// TODO: When a negated register is used by an add (such as in a list of
47//       multiple base registers, or as the increment expression in an addrec),
48//       we may not actually need both reg and (-1 * reg) in registers; the
49//       negation can be implemented by using a sub instead of an add. The
50//       lack of support for taking this into consideration when making
51//       register pressure decisions is partly worked around by the "Special"
52//       use kind.
53//
54//===----------------------------------------------------------------------===//
55
56#define DEBUG_TYPE "loop-reduce"
57#include "llvm/AddressingMode.h"
58#include "llvm/Constants.h"
59#include "llvm/Instructions.h"
60#include "llvm/IntrinsicInst.h"
61#include "llvm/DerivedTypes.h"
62#include "llvm/Analysis/IVUsers.h"
63#include "llvm/Analysis/Dominators.h"
64#include "llvm/Analysis/LoopPass.h"
65#include "llvm/Analysis/ScalarEvolutionExpander.h"
66#include "llvm/Assembly/Writer.h"
67#include "llvm/Transforms/Scalar.h"
68#include "llvm/Transforms/Utils/BasicBlockUtils.h"
69#include "llvm/Transforms/Utils/Local.h"
70#include "llvm/ADT/SmallBitVector.h"
71#include "llvm/ADT/SetVector.h"
72#include "llvm/ADT/DenseSet.h"
73#include "llvm/Support/Debug.h"
74#include "llvm/Support/CommandLine.h"
75#include "llvm/Support/ValueHandle.h"
76#include "llvm/Support/raw_ostream.h"
77#include "llvm/Target/TargetLowering.h"
78#include <algorithm>
79using namespace llvm;
80
81/// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for
82/// bail out. This threshold is far beyond the number of users that LSR can
83/// conceivably solve, so it should not affect generated code, but catches the
84/// worst cases before LSR burns too much compile time and stack space.
85static const unsigned MaxIVUsers = 200;
86
87// Temporary flag to cleanup congruent phis after LSR phi expansion.
88// It's currently disabled until we can determine whether it's truly useful or
89// not. The flag should be removed after the v3.0 release.
90// This is now needed for ivchains.
91static cl::opt<bool> EnablePhiElim(
92  "enable-lsr-phielim", cl::Hidden, cl::init(true),
93  cl::desc("Enable LSR phi elimination"));
94
95#ifndef NDEBUG
96// Stress test IV chain generation.
97static cl::opt<bool> StressIVChain(
98  "stress-ivchain", cl::Hidden, cl::init(false),
99  cl::desc("Stress test LSR IV chains"));
100#else
101static bool StressIVChain = false;
102#endif
103
104namespace {
105
106/// RegSortData - This class holds data which is used to order reuse candidates.
107class RegSortData {
108public:
109  /// UsedByIndices - This represents the set of LSRUse indices which reference
110  /// a particular register.
111  SmallBitVector UsedByIndices;
112
113  RegSortData() {}
114
115  void print(raw_ostream &OS) const;
116  void dump() const;
117};
118
119}
120
121void RegSortData::print(raw_ostream &OS) const {
122  OS << "[NumUses=" << UsedByIndices.count() << ']';
123}
124
125#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
126void RegSortData::dump() const {
127  print(errs()); errs() << '\n';
128}
129#endif
130
131namespace {
132
133/// RegUseTracker - Map register candidates to information about how they are
134/// used.
135class RegUseTracker {
136  typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
137
138  RegUsesTy RegUsesMap;
139  SmallVector<const SCEV *, 16> RegSequence;
140
141public:
142  void CountRegister(const SCEV *Reg, size_t LUIdx);
143  void DropRegister(const SCEV *Reg, size_t LUIdx);
144  void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx);
145
146  bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
147
148  const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
149
150  void clear();
151
152  typedef SmallVectorImpl<const SCEV *>::iterator iterator;
153  typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
154  iterator begin() { return RegSequence.begin(); }
155  iterator end()   { return RegSequence.end(); }
156  const_iterator begin() const { return RegSequence.begin(); }
157  const_iterator end() const   { return RegSequence.end(); }
158};
159
160}
161
162void
163RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
164  std::pair<RegUsesTy::iterator, bool> Pair =
165    RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
166  RegSortData &RSD = Pair.first->second;
167  if (Pair.second)
168    RegSequence.push_back(Reg);
169  RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
170  RSD.UsedByIndices.set(LUIdx);
171}
172
173void
174RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
175  RegUsesTy::iterator It = RegUsesMap.find(Reg);
176  assert(It != RegUsesMap.end());
177  RegSortData &RSD = It->second;
178  assert(RSD.UsedByIndices.size() > LUIdx);
179  RSD.UsedByIndices.reset(LUIdx);
180}
181
182void
183RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
184  assert(LUIdx <= LastLUIdx);
185
186  // Update RegUses. The data structure is not optimized for this purpose;
187  // we must iterate through it and update each of the bit vectors.
188  for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
189       I != E; ++I) {
190    SmallBitVector &UsedByIndices = I->second.UsedByIndices;
191    if (LUIdx < UsedByIndices.size())
192      UsedByIndices[LUIdx] =
193        LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0;
194    UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
195  }
196}
197
198bool
199RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
200  RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
201  if (I == RegUsesMap.end())
202    return false;
203  const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
204  int i = UsedByIndices.find_first();
205  if (i == -1) return false;
206  if ((size_t)i != LUIdx) return true;
207  return UsedByIndices.find_next(i) != -1;
208}
209
210const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
211  RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
212  assert(I != RegUsesMap.end() && "Unknown register!");
213  return I->second.UsedByIndices;
214}
215
216void RegUseTracker::clear() {
217  RegUsesMap.clear();
218  RegSequence.clear();
219}
220
221namespace {
222
223/// Formula - This class holds information that describes a formula for
224/// computing satisfying a use. It may include broken-out immediates and scaled
225/// registers.
226struct Formula {
227  /// AM - This is used to represent complex addressing, as well as other kinds
228  /// of interesting uses.
229  AddrMode AM;
230
231  /// BaseRegs - The list of "base" registers for this use. When this is
232  /// non-empty, AM.HasBaseReg should be set to true.
233  SmallVector<const SCEV *, 2> BaseRegs;
234
235  /// ScaledReg - The 'scaled' register for this use. This should be non-null
236  /// when AM.Scale is not zero.
237  const SCEV *ScaledReg;
238
239  /// UnfoldedOffset - An additional constant offset which added near the
240  /// use. This requires a temporary register, but the offset itself can
241  /// live in an add immediate field rather than a register.
242  int64_t UnfoldedOffset;
243
244  Formula() : ScaledReg(0), UnfoldedOffset(0) {}
245
246  void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
247
248  unsigned getNumRegs() const;
249  Type *getType() const;
250
251  void DeleteBaseReg(const SCEV *&S);
252
253  bool referencesReg(const SCEV *S) const;
254  bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
255                                  const RegUseTracker &RegUses) const;
256
257  void print(raw_ostream &OS) const;
258  void dump() const;
259};
260
261}
262
263/// DoInitialMatch - Recursion helper for InitialMatch.
264static void DoInitialMatch(const SCEV *S, Loop *L,
265                           SmallVectorImpl<const SCEV *> &Good,
266                           SmallVectorImpl<const SCEV *> &Bad,
267                           ScalarEvolution &SE) {
268  // Collect expressions which properly dominate the loop header.
269  if (SE.properlyDominates(S, L->getHeader())) {
270    Good.push_back(S);
271    return;
272  }
273
274  // Look at add operands.
275  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
276    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
277         I != E; ++I)
278      DoInitialMatch(*I, L, Good, Bad, SE);
279    return;
280  }
281
282  // Look at addrec operands.
283  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
284    if (!AR->getStart()->isZero()) {
285      DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
286      DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
287                                      AR->getStepRecurrence(SE),
288                                      // FIXME: AR->getNoWrapFlags()
289                                      AR->getLoop(), SCEV::FlagAnyWrap),
290                     L, Good, Bad, SE);
291      return;
292    }
293
294  // Handle a multiplication by -1 (negation) if it didn't fold.
295  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
296    if (Mul->getOperand(0)->isAllOnesValue()) {
297      SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
298      const SCEV *NewMul = SE.getMulExpr(Ops);
299
300      SmallVector<const SCEV *, 4> MyGood;
301      SmallVector<const SCEV *, 4> MyBad;
302      DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
303      const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
304        SE.getEffectiveSCEVType(NewMul->getType())));
305      for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
306           E = MyGood.end(); I != E; ++I)
307        Good.push_back(SE.getMulExpr(NegOne, *I));
308      for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
309           E = MyBad.end(); I != E; ++I)
310        Bad.push_back(SE.getMulExpr(NegOne, *I));
311      return;
312    }
313
314  // Ok, we can't do anything interesting. Just stuff the whole thing into a
315  // register and hope for the best.
316  Bad.push_back(S);
317}
318
319/// InitialMatch - Incorporate loop-variant parts of S into this Formula,
320/// attempting to keep all loop-invariant and loop-computable values in a
321/// single base register.
322void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
323  SmallVector<const SCEV *, 4> Good;
324  SmallVector<const SCEV *, 4> Bad;
325  DoInitialMatch(S, L, Good, Bad, SE);
326  if (!Good.empty()) {
327    const SCEV *Sum = SE.getAddExpr(Good);
328    if (!Sum->isZero())
329      BaseRegs.push_back(Sum);
330    AM.HasBaseReg = true;
331  }
332  if (!Bad.empty()) {
333    const SCEV *Sum = SE.getAddExpr(Bad);
334    if (!Sum->isZero())
335      BaseRegs.push_back(Sum);
336    AM.HasBaseReg = true;
337  }
338}
339
340/// getNumRegs - Return the total number of register operands used by this
341/// formula. This does not include register uses implied by non-constant
342/// addrec strides.
343unsigned Formula::getNumRegs() const {
344  return !!ScaledReg + BaseRegs.size();
345}
346
347/// getType - Return the type of this formula, if it has one, or null
348/// otherwise. This type is meaningless except for the bit size.
349Type *Formula::getType() const {
350  return !BaseRegs.empty() ? BaseRegs.front()->getType() :
351         ScaledReg ? ScaledReg->getType() :
352         AM.BaseGV ? AM.BaseGV->getType() :
353         0;
354}
355
356/// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
357void Formula::DeleteBaseReg(const SCEV *&S) {
358  if (&S != &BaseRegs.back())
359    std::swap(S, BaseRegs.back());
360  BaseRegs.pop_back();
361}
362
363/// referencesReg - Test if this formula references the given register.
364bool Formula::referencesReg(const SCEV *S) const {
365  return S == ScaledReg ||
366         std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
367}
368
369/// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
370/// which are used by uses other than the use with the given index.
371bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
372                                         const RegUseTracker &RegUses) const {
373  if (ScaledReg)
374    if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
375      return true;
376  for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
377       E = BaseRegs.end(); I != E; ++I)
378    if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
379      return true;
380  return false;
381}
382
383void Formula::print(raw_ostream &OS) const {
384  bool First = true;
385  if (AM.BaseGV) {
386    if (!First) OS << " + "; else First = false;
387    WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
388  }
389  if (AM.BaseOffs != 0) {
390    if (!First) OS << " + "; else First = false;
391    OS << AM.BaseOffs;
392  }
393  for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
394       E = BaseRegs.end(); I != E; ++I) {
395    if (!First) OS << " + "; else First = false;
396    OS << "reg(" << **I << ')';
397  }
398  if (AM.HasBaseReg && BaseRegs.empty()) {
399    if (!First) OS << " + "; else First = false;
400    OS << "**error: HasBaseReg**";
401  } else if (!AM.HasBaseReg && !BaseRegs.empty()) {
402    if (!First) OS << " + "; else First = false;
403    OS << "**error: !HasBaseReg**";
404  }
405  if (AM.Scale != 0) {
406    if (!First) OS << " + "; else First = false;
407    OS << AM.Scale << "*reg(";
408    if (ScaledReg)
409      OS << *ScaledReg;
410    else
411      OS << "<unknown>";
412    OS << ')';
413  }
414  if (UnfoldedOffset != 0) {
415    if (!First) OS << " + "; else First = false;
416    OS << "imm(" << UnfoldedOffset << ')';
417  }
418}
419
420#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
421void Formula::dump() const {
422  print(errs()); errs() << '\n';
423}
424#endif
425
426/// isAddRecSExtable - Return true if the given addrec can be sign-extended
427/// without changing its value.
428static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
429  Type *WideTy =
430    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
431  return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
432}
433
434/// isAddSExtable - Return true if the given add can be sign-extended
435/// without changing its value.
436static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
437  Type *WideTy =
438    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
439  return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
440}
441
442/// isMulSExtable - Return true if the given mul can be sign-extended
443/// without changing its value.
444static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
445  Type *WideTy =
446    IntegerType::get(SE.getContext(),
447                     SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
448  return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
449}
450
451/// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
452/// and if the remainder is known to be zero,  or null otherwise. If
453/// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
454/// to Y, ignoring that the multiplication may overflow, which is useful when
455/// the result will be used in a context where the most significant bits are
456/// ignored.
457static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
458                                ScalarEvolution &SE,
459                                bool IgnoreSignificantBits = false) {
460  // Handle the trivial case, which works for any SCEV type.
461  if (LHS == RHS)
462    return SE.getConstant(LHS->getType(), 1);
463
464  // Handle a few RHS special cases.
465  const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
466  if (RC) {
467    const APInt &RA = RC->getValue()->getValue();
468    // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
469    // some folding.
470    if (RA.isAllOnesValue())
471      return SE.getMulExpr(LHS, RC);
472    // Handle x /s 1 as x.
473    if (RA == 1)
474      return LHS;
475  }
476
477  // Check for a division of a constant by a constant.
478  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
479    if (!RC)
480      return 0;
481    const APInt &LA = C->getValue()->getValue();
482    const APInt &RA = RC->getValue()->getValue();
483    if (LA.srem(RA) != 0)
484      return 0;
485    return SE.getConstant(LA.sdiv(RA));
486  }
487
488  // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
489  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
490    if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
491      const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
492                                      IgnoreSignificantBits);
493      if (!Step) return 0;
494      const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
495                                       IgnoreSignificantBits);
496      if (!Start) return 0;
497      // FlagNW is independent of the start value, step direction, and is
498      // preserved with smaller magnitude steps.
499      // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
500      return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
501    }
502    return 0;
503  }
504
505  // Distribute the sdiv over add operands, if the add doesn't overflow.
506  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
507    if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
508      SmallVector<const SCEV *, 8> Ops;
509      for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
510           I != E; ++I) {
511        const SCEV *Op = getExactSDiv(*I, RHS, SE,
512                                      IgnoreSignificantBits);
513        if (!Op) return 0;
514        Ops.push_back(Op);
515      }
516      return SE.getAddExpr(Ops);
517    }
518    return 0;
519  }
520
521  // Check for a multiply operand that we can pull RHS out of.
522  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
523    if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
524      SmallVector<const SCEV *, 4> Ops;
525      bool Found = false;
526      for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
527           I != E; ++I) {
528        const SCEV *S = *I;
529        if (!Found)
530          if (const SCEV *Q = getExactSDiv(S, RHS, SE,
531                                           IgnoreSignificantBits)) {
532            S = Q;
533            Found = true;
534          }
535        Ops.push_back(S);
536      }
537      return Found ? SE.getMulExpr(Ops) : 0;
538    }
539    return 0;
540  }
541
542  // Otherwise we don't know.
543  return 0;
544}
545
546/// ExtractImmediate - If S involves the addition of a constant integer value,
547/// return that integer value, and mutate S to point to a new SCEV with that
548/// value excluded.
549static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
550  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
551    if (C->getValue()->getValue().getMinSignedBits() <= 64) {
552      S = SE.getConstant(C->getType(), 0);
553      return C->getValue()->getSExtValue();
554    }
555  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
556    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
557    int64_t Result = ExtractImmediate(NewOps.front(), SE);
558    if (Result != 0)
559      S = SE.getAddExpr(NewOps);
560    return Result;
561  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
562    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
563    int64_t Result = ExtractImmediate(NewOps.front(), SE);
564    if (Result != 0)
565      S = SE.getAddRecExpr(NewOps, AR->getLoop(),
566                           // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
567                           SCEV::FlagAnyWrap);
568    return Result;
569  }
570  return 0;
571}
572
573/// ExtractSymbol - If S involves the addition of a GlobalValue address,
574/// return that symbol, and mutate S to point to a new SCEV with that
575/// value excluded.
576static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
577  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
578    if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
579      S = SE.getConstant(GV->getType(), 0);
580      return GV;
581    }
582  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
583    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
584    GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
585    if (Result)
586      S = SE.getAddExpr(NewOps);
587    return Result;
588  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
589    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
590    GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
591    if (Result)
592      S = SE.getAddRecExpr(NewOps, AR->getLoop(),
593                           // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
594                           SCEV::FlagAnyWrap);
595    return Result;
596  }
597  return 0;
598}
599
600/// isAddressUse - Returns true if the specified instruction is using the
601/// specified value as an address.
602static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
603  bool isAddress = isa<LoadInst>(Inst);
604  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
605    if (SI->getOperand(1) == OperandVal)
606      isAddress = true;
607  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
608    // Addressing modes can also be folded into prefetches and a variety
609    // of intrinsics.
610    switch (II->getIntrinsicID()) {
611      default: break;
612      case Intrinsic::prefetch:
613      case Intrinsic::x86_sse_storeu_ps:
614      case Intrinsic::x86_sse2_storeu_pd:
615      case Intrinsic::x86_sse2_storeu_dq:
616      case Intrinsic::x86_sse2_storel_dq:
617        if (II->getArgOperand(0) == OperandVal)
618          isAddress = true;
619        break;
620    }
621  }
622  return isAddress;
623}
624
625/// getAccessType - Return the type of the memory being accessed.
626static Type *getAccessType(const Instruction *Inst) {
627  Type *AccessTy = Inst->getType();
628  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
629    AccessTy = SI->getOperand(0)->getType();
630  else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
631    // Addressing modes can also be folded into prefetches and a variety
632    // of intrinsics.
633    switch (II->getIntrinsicID()) {
634    default: break;
635    case Intrinsic::x86_sse_storeu_ps:
636    case Intrinsic::x86_sse2_storeu_pd:
637    case Intrinsic::x86_sse2_storeu_dq:
638    case Intrinsic::x86_sse2_storel_dq:
639      AccessTy = II->getArgOperand(0)->getType();
640      break;
641    }
642  }
643
644  // All pointers have the same requirements, so canonicalize them to an
645  // arbitrary pointer type to minimize variation.
646  if (PointerType *PTy = dyn_cast<PointerType>(AccessTy))
647    AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
648                                PTy->getAddressSpace());
649
650  return AccessTy;
651}
652
653/// isExistingPhi - Return true if this AddRec is already a phi in its loop.
654static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
655  for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
656       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
657    if (SE.isSCEVable(PN->getType()) &&
658        (SE.getEffectiveSCEVType(PN->getType()) ==
659         SE.getEffectiveSCEVType(AR->getType())) &&
660        SE.getSCEV(PN) == AR)
661      return true;
662  }
663  return false;
664}
665
666/// Check if expanding this expression is likely to incur significant cost. This
667/// is tricky because SCEV doesn't track which expressions are actually computed
668/// by the current IR.
669///
670/// We currently allow expansion of IV increments that involve adds,
671/// multiplication by constants, and AddRecs from existing phis.
672///
673/// TODO: Allow UDivExpr if we can find an existing IV increment that is an
674/// obvious multiple of the UDivExpr.
675static bool isHighCostExpansion(const SCEV *S,
676                                SmallPtrSet<const SCEV*, 8> &Processed,
677                                ScalarEvolution &SE) {
678  // Zero/One operand expressions
679  switch (S->getSCEVType()) {
680  case scUnknown:
681  case scConstant:
682    return false;
683  case scTruncate:
684    return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
685                               Processed, SE);
686  case scZeroExtend:
687    return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
688                               Processed, SE);
689  case scSignExtend:
690    return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
691                               Processed, SE);
692  }
693
694  if (!Processed.insert(S))
695    return false;
696
697  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
698    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
699         I != E; ++I) {
700      if (isHighCostExpansion(*I, Processed, SE))
701        return true;
702    }
703    return false;
704  }
705
706  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
707    if (Mul->getNumOperands() == 2) {
708      // Multiplication by a constant is ok
709      if (isa<SCEVConstant>(Mul->getOperand(0)))
710        return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
711
712      // If we have the value of one operand, check if an existing
713      // multiplication already generates this expression.
714      if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
715        Value *UVal = U->getValue();
716        for (Value::use_iterator UI = UVal->use_begin(), UE = UVal->use_end();
717             UI != UE; ++UI) {
718          // If U is a constant, it may be used by a ConstantExpr.
719          Instruction *User = dyn_cast<Instruction>(*UI);
720          if (User && User->getOpcode() == Instruction::Mul
721              && SE.isSCEVable(User->getType())) {
722            return SE.getSCEV(User) == Mul;
723          }
724        }
725      }
726    }
727  }
728
729  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
730    if (isExistingPhi(AR, SE))
731      return false;
732  }
733
734  // Fow now, consider any other type of expression (div/mul/min/max) high cost.
735  return true;
736}
737
738/// DeleteTriviallyDeadInstructions - If any of the instructions is the
739/// specified set are trivially dead, delete them and see if this makes any of
740/// their operands subsequently dead.
741static bool
742DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
743  bool Changed = false;
744
745  while (!DeadInsts.empty()) {
746    Value *V = DeadInsts.pop_back_val();
747    Instruction *I = dyn_cast_or_null<Instruction>(V);
748
749    if (I == 0 || !isInstructionTriviallyDead(I))
750      continue;
751
752    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
753      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
754        *OI = 0;
755        if (U->use_empty())
756          DeadInsts.push_back(U);
757      }
758
759    I->eraseFromParent();
760    Changed = true;
761  }
762
763  return Changed;
764}
765
766namespace {
767
768/// Cost - This class is used to measure and compare candidate formulae.
769class Cost {
770  /// TODO: Some of these could be merged. Also, a lexical ordering
771  /// isn't always optimal.
772  unsigned NumRegs;
773  unsigned AddRecCost;
774  unsigned NumIVMuls;
775  unsigned NumBaseAdds;
776  unsigned ImmCost;
777  unsigned SetupCost;
778
779public:
780  Cost()
781    : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
782      SetupCost(0) {}
783
784  bool operator<(const Cost &Other) const;
785
786  void Loose();
787
788#ifndef NDEBUG
789  // Once any of the metrics loses, they must all remain losers.
790  bool isValid() {
791    return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds
792             | ImmCost | SetupCost) != ~0u)
793      || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds
794           & ImmCost & SetupCost) == ~0u);
795  }
796#endif
797
798  bool isLoser() {
799    assert(isValid() && "invalid cost");
800    return NumRegs == ~0u;
801  }
802
803  void RateFormula(const Formula &F,
804                   SmallPtrSet<const SCEV *, 16> &Regs,
805                   const DenseSet<const SCEV *> &VisitedRegs,
806                   const Loop *L,
807                   const SmallVectorImpl<int64_t> &Offsets,
808                   ScalarEvolution &SE, DominatorTree &DT,
809                   SmallPtrSet<const SCEV *, 16> *LoserRegs = 0);
810
811  void print(raw_ostream &OS) const;
812  void dump() const;
813
814private:
815  void RateRegister(const SCEV *Reg,
816                    SmallPtrSet<const SCEV *, 16> &Regs,
817                    const Loop *L,
818                    ScalarEvolution &SE, DominatorTree &DT);
819  void RatePrimaryRegister(const SCEV *Reg,
820                           SmallPtrSet<const SCEV *, 16> &Regs,
821                           const Loop *L,
822                           ScalarEvolution &SE, DominatorTree &DT,
823                           SmallPtrSet<const SCEV *, 16> *LoserRegs);
824};
825
826}
827
828/// RateRegister - Tally up interesting quantities from the given register.
829void Cost::RateRegister(const SCEV *Reg,
830                        SmallPtrSet<const SCEV *, 16> &Regs,
831                        const Loop *L,
832                        ScalarEvolution &SE, DominatorTree &DT) {
833  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
834    // If this is an addrec for another loop, don't second-guess its addrec phi
835    // nodes. LSR isn't currently smart enough to reason about more than one
836    // loop at a time. LSR has already run on inner loops, will not run on outer
837    // loops, and cannot be expected to change sibling loops.
838    if (AR->getLoop() != L) {
839      // If the AddRec exists, consider it's register free and leave it alone.
840      if (isExistingPhi(AR, SE))
841        return;
842
843      // Otherwise, do not consider this formula at all.
844      Loose();
845      return;
846    }
847    AddRecCost += 1; /// TODO: This should be a function of the stride.
848
849    // Add the step value register, if it needs one.
850    // TODO: The non-affine case isn't precisely modeled here.
851    if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
852      if (!Regs.count(AR->getOperand(1))) {
853        RateRegister(AR->getOperand(1), Regs, L, SE, DT);
854        if (isLoser())
855          return;
856      }
857    }
858  }
859  ++NumRegs;
860
861  // Rough heuristic; favor registers which don't require extra setup
862  // instructions in the preheader.
863  if (!isa<SCEVUnknown>(Reg) &&
864      !isa<SCEVConstant>(Reg) &&
865      !(isa<SCEVAddRecExpr>(Reg) &&
866        (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
867         isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
868    ++SetupCost;
869
870    NumIVMuls += isa<SCEVMulExpr>(Reg) &&
871                 SE.hasComputableLoopEvolution(Reg, L);
872}
873
874/// RatePrimaryRegister - Record this register in the set. If we haven't seen it
875/// before, rate it. Optional LoserRegs provides a way to declare any formula
876/// that refers to one of those regs an instant loser.
877void Cost::RatePrimaryRegister(const SCEV *Reg,
878                               SmallPtrSet<const SCEV *, 16> &Regs,
879                               const Loop *L,
880                               ScalarEvolution &SE, DominatorTree &DT,
881                               SmallPtrSet<const SCEV *, 16> *LoserRegs) {
882  if (LoserRegs && LoserRegs->count(Reg)) {
883    Loose();
884    return;
885  }
886  if (Regs.insert(Reg)) {
887    RateRegister(Reg, Regs, L, SE, DT);
888    if (isLoser())
889      LoserRegs->insert(Reg);
890  }
891}
892
893void Cost::RateFormula(const Formula &F,
894                       SmallPtrSet<const SCEV *, 16> &Regs,
895                       const DenseSet<const SCEV *> &VisitedRegs,
896                       const Loop *L,
897                       const SmallVectorImpl<int64_t> &Offsets,
898                       ScalarEvolution &SE, DominatorTree &DT,
899                       SmallPtrSet<const SCEV *, 16> *LoserRegs) {
900  // Tally up the registers.
901  if (const SCEV *ScaledReg = F.ScaledReg) {
902    if (VisitedRegs.count(ScaledReg)) {
903      Loose();
904      return;
905    }
906    RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
907    if (isLoser())
908      return;
909  }
910  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
911       E = F.BaseRegs.end(); I != E; ++I) {
912    const SCEV *BaseReg = *I;
913    if (VisitedRegs.count(BaseReg)) {
914      Loose();
915      return;
916    }
917    RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
918    if (isLoser())
919      return;
920  }
921
922  // Determine how many (unfolded) adds we'll need inside the loop.
923  size_t NumBaseParts = F.BaseRegs.size() + (F.UnfoldedOffset != 0);
924  if (NumBaseParts > 1)
925    NumBaseAdds += NumBaseParts - 1;
926
927  // Tally up the non-zero immediates.
928  for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
929       E = Offsets.end(); I != E; ++I) {
930    int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
931    if (F.AM.BaseGV)
932      ImmCost += 64; // Handle symbolic values conservatively.
933                     // TODO: This should probably be the pointer size.
934    else if (Offset != 0)
935      ImmCost += APInt(64, Offset, true).getMinSignedBits();
936  }
937  assert(isValid() && "invalid cost");
938}
939
940/// Loose - Set this cost to a losing value.
941void Cost::Loose() {
942  NumRegs = ~0u;
943  AddRecCost = ~0u;
944  NumIVMuls = ~0u;
945  NumBaseAdds = ~0u;
946  ImmCost = ~0u;
947  SetupCost = ~0u;
948}
949
950/// operator< - Choose the lower cost.
951bool Cost::operator<(const Cost &Other) const {
952  if (NumRegs != Other.NumRegs)
953    return NumRegs < Other.NumRegs;
954  if (AddRecCost != Other.AddRecCost)
955    return AddRecCost < Other.AddRecCost;
956  if (NumIVMuls != Other.NumIVMuls)
957    return NumIVMuls < Other.NumIVMuls;
958  if (NumBaseAdds != Other.NumBaseAdds)
959    return NumBaseAdds < Other.NumBaseAdds;
960  if (ImmCost != Other.ImmCost)
961    return ImmCost < Other.ImmCost;
962  if (SetupCost != Other.SetupCost)
963    return SetupCost < Other.SetupCost;
964  return false;
965}
966
967void Cost::print(raw_ostream &OS) const {
968  OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
969  if (AddRecCost != 0)
970    OS << ", with addrec cost " << AddRecCost;
971  if (NumIVMuls != 0)
972    OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
973  if (NumBaseAdds != 0)
974    OS << ", plus " << NumBaseAdds << " base add"
975       << (NumBaseAdds == 1 ? "" : "s");
976  if (ImmCost != 0)
977    OS << ", plus " << ImmCost << " imm cost";
978  if (SetupCost != 0)
979    OS << ", plus " << SetupCost << " setup cost";
980}
981
982#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
983void Cost::dump() const {
984  print(errs()); errs() << '\n';
985}
986#endif
987
988namespace {
989
990/// LSRFixup - An operand value in an instruction which is to be replaced
991/// with some equivalent, possibly strength-reduced, replacement.
992struct LSRFixup {
993  /// UserInst - The instruction which will be updated.
994  Instruction *UserInst;
995
996  /// OperandValToReplace - The operand of the instruction which will
997  /// be replaced. The operand may be used more than once; every instance
998  /// will be replaced.
999  Value *OperandValToReplace;
1000
1001  /// PostIncLoops - If this user is to use the post-incremented value of an
1002  /// induction variable, this variable is non-null and holds the loop
1003  /// associated with the induction variable.
1004  PostIncLoopSet PostIncLoops;
1005
1006  /// LUIdx - The index of the LSRUse describing the expression which
1007  /// this fixup needs, minus an offset (below).
1008  size_t LUIdx;
1009
1010  /// Offset - A constant offset to be added to the LSRUse expression.
1011  /// This allows multiple fixups to share the same LSRUse with different
1012  /// offsets, for example in an unrolled loop.
1013  int64_t Offset;
1014
1015  bool isUseFullyOutsideLoop(const Loop *L) const;
1016
1017  LSRFixup();
1018
1019  void print(raw_ostream &OS) const;
1020  void dump() const;
1021};
1022
1023}
1024
1025LSRFixup::LSRFixup()
1026  : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {}
1027
1028/// isUseFullyOutsideLoop - Test whether this fixup always uses its
1029/// value outside of the given loop.
1030bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1031  // PHI nodes use their value in their incoming blocks.
1032  if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1033    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1034      if (PN->getIncomingValue(i) == OperandValToReplace &&
1035          L->contains(PN->getIncomingBlock(i)))
1036        return false;
1037    return true;
1038  }
1039
1040  return !L->contains(UserInst);
1041}
1042
1043void LSRFixup::print(raw_ostream &OS) const {
1044  OS << "UserInst=";
1045  // Store is common and interesting enough to be worth special-casing.
1046  if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1047    OS << "store ";
1048    WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
1049  } else if (UserInst->getType()->isVoidTy())
1050    OS << UserInst->getOpcodeName();
1051  else
1052    WriteAsOperand(OS, UserInst, /*PrintType=*/false);
1053
1054  OS << ", OperandValToReplace=";
1055  WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
1056
1057  for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
1058       E = PostIncLoops.end(); I != E; ++I) {
1059    OS << ", PostIncLoop=";
1060    WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false);
1061  }
1062
1063  if (LUIdx != ~size_t(0))
1064    OS << ", LUIdx=" << LUIdx;
1065
1066  if (Offset != 0)
1067    OS << ", Offset=" << Offset;
1068}
1069
1070#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1071void LSRFixup::dump() const {
1072  print(errs()); errs() << '\n';
1073}
1074#endif
1075
1076namespace {
1077
1078/// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
1079/// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
1080struct UniquifierDenseMapInfo {
1081  static SmallVector<const SCEV *, 2> getEmptyKey() {
1082    SmallVector<const SCEV *, 2> V;
1083    V.push_back(reinterpret_cast<const SCEV *>(-1));
1084    return V;
1085  }
1086
1087  static SmallVector<const SCEV *, 2> getTombstoneKey() {
1088    SmallVector<const SCEV *, 2> V;
1089    V.push_back(reinterpret_cast<const SCEV *>(-2));
1090    return V;
1091  }
1092
1093  static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) {
1094    unsigned Result = 0;
1095    for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
1096         E = V.end(); I != E; ++I)
1097      Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I);
1098    return Result;
1099  }
1100
1101  static bool isEqual(const SmallVector<const SCEV *, 2> &LHS,
1102                      const SmallVector<const SCEV *, 2> &RHS) {
1103    return LHS == RHS;
1104  }
1105};
1106
1107/// LSRUse - This class holds the state that LSR keeps for each use in
1108/// IVUsers, as well as uses invented by LSR itself. It includes information
1109/// about what kinds of things can be folded into the user, information about
1110/// the user itself, and information about how the use may be satisfied.
1111/// TODO: Represent multiple users of the same expression in common?
1112class LSRUse {
1113  DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier;
1114
1115public:
1116  /// KindType - An enum for a kind of use, indicating what types of
1117  /// scaled and immediate operands it might support.
1118  enum KindType {
1119    Basic,   ///< A normal use, with no folding.
1120    Special, ///< A special case of basic, allowing -1 scales.
1121    Address, ///< An address use; folding according to TargetLowering
1122    ICmpZero ///< An equality icmp with both operands folded into one.
1123    // TODO: Add a generic icmp too?
1124  };
1125
1126  KindType Kind;
1127  Type *AccessTy;
1128
1129  SmallVector<int64_t, 8> Offsets;
1130  int64_t MinOffset;
1131  int64_t MaxOffset;
1132
1133  /// AllFixupsOutsideLoop - This records whether all of the fixups using this
1134  /// LSRUse are outside of the loop, in which case some special-case heuristics
1135  /// may be used.
1136  bool AllFixupsOutsideLoop;
1137
1138  /// WidestFixupType - This records the widest use type for any fixup using
1139  /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different
1140  /// max fixup widths to be equivalent, because the narrower one may be relying
1141  /// on the implicit truncation to truncate away bogus bits.
1142  Type *WidestFixupType;
1143
1144  /// Formulae - A list of ways to build a value that can satisfy this user.
1145  /// After the list is populated, one of these is selected heuristically and
1146  /// used to formulate a replacement for OperandValToReplace in UserInst.
1147  SmallVector<Formula, 12> Formulae;
1148
1149  /// Regs - The set of register candidates used by all formulae in this LSRUse.
1150  SmallPtrSet<const SCEV *, 4> Regs;
1151
1152  LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T),
1153                                      MinOffset(INT64_MAX),
1154                                      MaxOffset(INT64_MIN),
1155                                      AllFixupsOutsideLoop(true),
1156                                      WidestFixupType(0) {}
1157
1158  bool HasFormulaWithSameRegs(const Formula &F) const;
1159  bool InsertFormula(const Formula &F);
1160  void DeleteFormula(Formula &F);
1161  void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1162
1163  void print(raw_ostream &OS) const;
1164  void dump() const;
1165};
1166
1167}
1168
1169/// HasFormula - Test whether this use as a formula which has the same
1170/// registers as the given formula.
1171bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1172  SmallVector<const SCEV *, 2> Key = F.BaseRegs;
1173  if (F.ScaledReg) Key.push_back(F.ScaledReg);
1174  // Unstable sort by host order ok, because this is only used for uniquifying.
1175  std::sort(Key.begin(), Key.end());
1176  return Uniquifier.count(Key);
1177}
1178
1179/// InsertFormula - If the given formula has not yet been inserted, add it to
1180/// the list, and return true. Return false otherwise.
1181bool LSRUse::InsertFormula(const Formula &F) {
1182  SmallVector<const SCEV *, 2> Key = F.BaseRegs;
1183  if (F.ScaledReg) Key.push_back(F.ScaledReg);
1184  // Unstable sort by host order ok, because this is only used for uniquifying.
1185  std::sort(Key.begin(), Key.end());
1186
1187  if (!Uniquifier.insert(Key).second)
1188    return false;
1189
1190  // Using a register to hold the value of 0 is not profitable.
1191  assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1192         "Zero allocated in a scaled register!");
1193#ifndef NDEBUG
1194  for (SmallVectorImpl<const SCEV *>::const_iterator I =
1195       F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
1196    assert(!(*I)->isZero() && "Zero allocated in a base register!");
1197#endif
1198
1199  // Add the formula to the list.
1200  Formulae.push_back(F);
1201
1202  // Record registers now being used by this use.
1203  Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1204
1205  return true;
1206}
1207
1208/// DeleteFormula - Remove the given formula from this use's list.
1209void LSRUse::DeleteFormula(Formula &F) {
1210  if (&F != &Formulae.back())
1211    std::swap(F, Formulae.back());
1212  Formulae.pop_back();
1213}
1214
1215/// RecomputeRegs - Recompute the Regs field, and update RegUses.
1216void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1217  // Now that we've filtered out some formulae, recompute the Regs set.
1218  SmallPtrSet<const SCEV *, 4> OldRegs = Regs;
1219  Regs.clear();
1220  for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(),
1221       E = Formulae.end(); I != E; ++I) {
1222    const Formula &F = *I;
1223    if (F.ScaledReg) Regs.insert(F.ScaledReg);
1224    Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1225  }
1226
1227  // Update the RegTracker.
1228  for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(),
1229       E = OldRegs.end(); I != E; ++I)
1230    if (!Regs.count(*I))
1231      RegUses.DropRegister(*I, LUIdx);
1232}
1233
1234void LSRUse::print(raw_ostream &OS) const {
1235  OS << "LSR Use: Kind=";
1236  switch (Kind) {
1237  case Basic:    OS << "Basic"; break;
1238  case Special:  OS << "Special"; break;
1239  case ICmpZero: OS << "ICmpZero"; break;
1240  case Address:
1241    OS << "Address of ";
1242    if (AccessTy->isPointerTy())
1243      OS << "pointer"; // the full pointer type could be really verbose
1244    else
1245      OS << *AccessTy;
1246  }
1247
1248  OS << ", Offsets={";
1249  for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
1250       E = Offsets.end(); I != E; ++I) {
1251    OS << *I;
1252    if (llvm::next(I) != E)
1253      OS << ',';
1254  }
1255  OS << '}';
1256
1257  if (AllFixupsOutsideLoop)
1258    OS << ", all-fixups-outside-loop";
1259
1260  if (WidestFixupType)
1261    OS << ", widest fixup type: " << *WidestFixupType;
1262}
1263
1264#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1265void LSRUse::dump() const {
1266  print(errs()); errs() << '\n';
1267}
1268#endif
1269
1270/// isLegalUse - Test whether the use described by AM is "legal", meaning it can
1271/// be completely folded into the user instruction at isel time. This includes
1272/// address-mode folding and special icmp tricks.
1273static bool isLegalUse(const AddrMode &AM,
1274                       LSRUse::KindType Kind, Type *AccessTy,
1275                       const TargetLowering *TLI) {
1276  switch (Kind) {
1277  case LSRUse::Address:
1278    // If we have low-level target information, ask the target if it can
1279    // completely fold this address.
1280    if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
1281
1282    // Otherwise, just guess that reg+reg addressing is legal.
1283    return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
1284
1285  case LSRUse::ICmpZero:
1286    // There's not even a target hook for querying whether it would be legal to
1287    // fold a GV into an ICmp.
1288    if (AM.BaseGV)
1289      return false;
1290
1291    // ICmp only has two operands; don't allow more than two non-trivial parts.
1292    if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
1293      return false;
1294
1295    // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1296    // putting the scaled register in the other operand of the icmp.
1297    if (AM.Scale != 0 && AM.Scale != -1)
1298      return false;
1299
1300    // If we have low-level target information, ask the target if it can fold an
1301    // integer immediate on an icmp.
1302    if (AM.BaseOffs != 0) {
1303      if (!TLI)
1304        return false;
1305      // We have one of:
1306      // ICmpZero     BaseReg + Offset => ICmp BaseReg, -Offset
1307      // ICmpZero -1*ScaleReg + Offset => ICmp ScaleReg, Offset
1308      // Offs is the ICmp immediate.
1309      int64_t Offs = AM.BaseOffs;
1310      if (AM.Scale == 0)
1311        Offs = -(uint64_t)Offs; // The cast does the right thing with INT64_MIN.
1312      return TLI->isLegalICmpImmediate(Offs);
1313    }
1314
1315    // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1316    return true;
1317
1318  case LSRUse::Basic:
1319    // Only handle single-register values.
1320    return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
1321
1322  case LSRUse::Special:
1323    // Special case Basic to handle -1 scales.
1324    return !AM.BaseGV && (AM.Scale == 0 || AM.Scale == -1) && AM.BaseOffs == 0;
1325  }
1326
1327  llvm_unreachable("Invalid LSRUse Kind!");
1328}
1329
1330static bool isLegalUse(AddrMode AM,
1331                       int64_t MinOffset, int64_t MaxOffset,
1332                       LSRUse::KindType Kind, Type *AccessTy,
1333                       const TargetLowering *TLI) {
1334  // Check for overflow.
1335  if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
1336      (MinOffset > 0))
1337    return false;
1338  AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
1339  if (isLegalUse(AM, Kind, AccessTy, TLI)) {
1340    AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
1341    // Check for overflow.
1342    if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
1343        (MaxOffset > 0))
1344      return false;
1345    AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
1346    return isLegalUse(AM, Kind, AccessTy, TLI);
1347  }
1348  return false;
1349}
1350
1351static bool isAlwaysFoldable(int64_t BaseOffs,
1352                             GlobalValue *BaseGV,
1353                             bool HasBaseReg,
1354                             LSRUse::KindType Kind, Type *AccessTy,
1355                             const TargetLowering *TLI) {
1356  // Fast-path: zero is always foldable.
1357  if (BaseOffs == 0 && !BaseGV) return true;
1358
1359  // Conservatively, create an address with an immediate and a
1360  // base and a scale.
1361  AddrMode AM;
1362  AM.BaseOffs = BaseOffs;
1363  AM.BaseGV = BaseGV;
1364  AM.HasBaseReg = HasBaseReg;
1365  AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1366
1367  // Canonicalize a scale of 1 to a base register if the formula doesn't
1368  // already have a base register.
1369  if (!AM.HasBaseReg && AM.Scale == 1) {
1370    AM.Scale = 0;
1371    AM.HasBaseReg = true;
1372  }
1373
1374  return isLegalUse(AM, Kind, AccessTy, TLI);
1375}
1376
1377static bool isAlwaysFoldable(const SCEV *S,
1378                             int64_t MinOffset, int64_t MaxOffset,
1379                             bool HasBaseReg,
1380                             LSRUse::KindType Kind, Type *AccessTy,
1381                             const TargetLowering *TLI,
1382                             ScalarEvolution &SE) {
1383  // Fast-path: zero is always foldable.
1384  if (S->isZero()) return true;
1385
1386  // Conservatively, create an address with an immediate and a
1387  // base and a scale.
1388  int64_t BaseOffs = ExtractImmediate(S, SE);
1389  GlobalValue *BaseGV = ExtractSymbol(S, SE);
1390
1391  // If there's anything else involved, it's not foldable.
1392  if (!S->isZero()) return false;
1393
1394  // Fast-path: zero is always foldable.
1395  if (BaseOffs == 0 && !BaseGV) return true;
1396
1397  // Conservatively, create an address with an immediate and a
1398  // base and a scale.
1399  AddrMode AM;
1400  AM.BaseOffs = BaseOffs;
1401  AM.BaseGV = BaseGV;
1402  AM.HasBaseReg = HasBaseReg;
1403  AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1404
1405  return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
1406}
1407
1408namespace {
1409
1410/// UseMapDenseMapInfo - A DenseMapInfo implementation for holding
1411/// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind.
1412struct UseMapDenseMapInfo {
1413  static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() {
1414    return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic);
1415  }
1416
1417  static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() {
1418    return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic);
1419  }
1420
1421  static unsigned
1422  getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) {
1423    unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first);
1424    Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second));
1425    return Result;
1426  }
1427
1428  static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS,
1429                      const std::pair<const SCEV *, LSRUse::KindType> &RHS) {
1430    return LHS == RHS;
1431  }
1432};
1433
1434/// IVInc - An individual increment in a Chain of IV increments.
1435/// Relate an IV user to an expression that computes the IV it uses from the IV
1436/// used by the previous link in the Chain.
1437///
1438/// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1439/// original IVOperand. The head of the chain's IVOperand is only valid during
1440/// chain collection, before LSR replaces IV users. During chain generation,
1441/// IncExpr can be used to find the new IVOperand that computes the same
1442/// expression.
1443struct IVInc {
1444  Instruction *UserInst;
1445  Value* IVOperand;
1446  const SCEV *IncExpr;
1447
1448  IVInc(Instruction *U, Value *O, const SCEV *E):
1449    UserInst(U), IVOperand(O), IncExpr(E) {}
1450};
1451
1452// IVChain - The list of IV increments in program order.
1453// We typically add the head of a chain without finding subsequent links.
1454struct IVChain {
1455  SmallVector<IVInc,1> Incs;
1456  const SCEV *ExprBase;
1457
1458  IVChain() : ExprBase(0) {}
1459
1460  IVChain(const IVInc &Head, const SCEV *Base)
1461    : Incs(1, Head), ExprBase(Base) {}
1462
1463  typedef SmallVectorImpl<IVInc>::const_iterator const_iterator;
1464
1465  // begin - return the first increment in the chain.
1466  const_iterator begin() const {
1467    assert(!Incs.empty());
1468    return llvm::next(Incs.begin());
1469  }
1470  const_iterator end() const {
1471    return Incs.end();
1472  }
1473
1474  // hasIncs - Returns true if this chain contains any increments.
1475  bool hasIncs() const { return Incs.size() >= 2; }
1476
1477  // add - Add an IVInc to the end of this chain.
1478  void add(const IVInc &X) { Incs.push_back(X); }
1479
1480  // tailUserInst - Returns the last UserInst in the chain.
1481  Instruction *tailUserInst() const { return Incs.back().UserInst; }
1482
1483  // isProfitableIncrement - Returns true if IncExpr can be profitably added to
1484  // this chain.
1485  bool isProfitableIncrement(const SCEV *OperExpr,
1486                             const SCEV *IncExpr,
1487                             ScalarEvolution&);
1488};
1489
1490/// ChainUsers - Helper for CollectChains to track multiple IV increment uses.
1491/// Distinguish between FarUsers that definitely cross IV increments and
1492/// NearUsers that may be used between IV increments.
1493struct ChainUsers {
1494  SmallPtrSet<Instruction*, 4> FarUsers;
1495  SmallPtrSet<Instruction*, 4> NearUsers;
1496};
1497
1498/// LSRInstance - This class holds state for the main loop strength reduction
1499/// logic.
1500class LSRInstance {
1501  IVUsers &IU;
1502  ScalarEvolution &SE;
1503  DominatorTree &DT;
1504  LoopInfo &LI;
1505  const TargetLowering *const TLI;
1506  Loop *const L;
1507  bool Changed;
1508
1509  /// IVIncInsertPos - This is the insert position that the current loop's
1510  /// induction variable increment should be placed. In simple loops, this is
1511  /// the latch block's terminator. But in more complicated cases, this is a
1512  /// position which will dominate all the in-loop post-increment users.
1513  Instruction *IVIncInsertPos;
1514
1515  /// Factors - Interesting factors between use strides.
1516  SmallSetVector<int64_t, 8> Factors;
1517
1518  /// Types - Interesting use types, to facilitate truncation reuse.
1519  SmallSetVector<Type *, 4> Types;
1520
1521  /// Fixups - The list of operands which are to be replaced.
1522  SmallVector<LSRFixup, 16> Fixups;
1523
1524  /// Uses - The list of interesting uses.
1525  SmallVector<LSRUse, 16> Uses;
1526
1527  /// RegUses - Track which uses use which register candidates.
1528  RegUseTracker RegUses;
1529
1530  // Limit the number of chains to avoid quadratic behavior. We don't expect to
1531  // have more than a few IV increment chains in a loop. Missing a Chain falls
1532  // back to normal LSR behavior for those uses.
1533  static const unsigned MaxChains = 8;
1534
1535  /// IVChainVec - IV users can form a chain of IV increments.
1536  SmallVector<IVChain, MaxChains> IVChainVec;
1537
1538  /// IVIncSet - IV users that belong to profitable IVChains.
1539  SmallPtrSet<Use*, MaxChains> IVIncSet;
1540
1541  void OptimizeShadowIV();
1542  bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1543  ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1544  void OptimizeLoopTermCond();
1545
1546  void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1547                        SmallVectorImpl<ChainUsers> &ChainUsersVec);
1548  void FinalizeChain(IVChain &Chain);
1549  void CollectChains();
1550  void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1551                       SmallVectorImpl<WeakVH> &DeadInsts);
1552
1553  void CollectInterestingTypesAndFactors();
1554  void CollectFixupsAndInitialFormulae();
1555
1556  LSRFixup &getNewFixup() {
1557    Fixups.push_back(LSRFixup());
1558    return Fixups.back();
1559  }
1560
1561  // Support for sharing of LSRUses between LSRFixups.
1562  typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>,
1563                   size_t,
1564                   UseMapDenseMapInfo> UseMapTy;
1565  UseMapTy UseMap;
1566
1567  bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1568                          LSRUse::KindType Kind, Type *AccessTy);
1569
1570  std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
1571                                    LSRUse::KindType Kind,
1572                                    Type *AccessTy);
1573
1574  void DeleteUse(LSRUse &LU, size_t LUIdx);
1575
1576  LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1577
1578  void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1579  void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1580  void CountRegisters(const Formula &F, size_t LUIdx);
1581  bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1582
1583  void CollectLoopInvariantFixupsAndFormulae();
1584
1585  void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1586                              unsigned Depth = 0);
1587  void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1588  void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1589  void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1590  void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1591  void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1592  void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1593  void GenerateCrossUseConstantOffsets();
1594  void GenerateAllReuseFormulae();
1595
1596  void FilterOutUndesirableDedicatedRegisters();
1597
1598  size_t EstimateSearchSpaceComplexity() const;
1599  void NarrowSearchSpaceByDetectingSupersets();
1600  void NarrowSearchSpaceByCollapsingUnrolledCode();
1601  void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1602  void NarrowSearchSpaceByPickingWinnerRegs();
1603  void NarrowSearchSpaceUsingHeuristics();
1604
1605  void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1606                    Cost &SolutionCost,
1607                    SmallVectorImpl<const Formula *> &Workspace,
1608                    const Cost &CurCost,
1609                    const SmallPtrSet<const SCEV *, 16> &CurRegs,
1610                    DenseSet<const SCEV *> &VisitedRegs) const;
1611  void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1612
1613  BasicBlock::iterator
1614    HoistInsertPosition(BasicBlock::iterator IP,
1615                        const SmallVectorImpl<Instruction *> &Inputs) const;
1616  BasicBlock::iterator
1617    AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1618                                  const LSRFixup &LF,
1619                                  const LSRUse &LU,
1620                                  SCEVExpander &Rewriter) const;
1621
1622  Value *Expand(const LSRFixup &LF,
1623                const Formula &F,
1624                BasicBlock::iterator IP,
1625                SCEVExpander &Rewriter,
1626                SmallVectorImpl<WeakVH> &DeadInsts) const;
1627  void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1628                     const Formula &F,
1629                     SCEVExpander &Rewriter,
1630                     SmallVectorImpl<WeakVH> &DeadInsts,
1631                     Pass *P) const;
1632  void Rewrite(const LSRFixup &LF,
1633               const Formula &F,
1634               SCEVExpander &Rewriter,
1635               SmallVectorImpl<WeakVH> &DeadInsts,
1636               Pass *P) const;
1637  void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
1638                         Pass *P);
1639
1640public:
1641  LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
1642
1643  bool getChanged() const { return Changed; }
1644
1645  void print_factors_and_types(raw_ostream &OS) const;
1646  void print_fixups(raw_ostream &OS) const;
1647  void print_uses(raw_ostream &OS) const;
1648  void print(raw_ostream &OS) const;
1649  void dump() const;
1650};
1651
1652}
1653
1654/// OptimizeShadowIV - If IV is used in a int-to-float cast
1655/// inside the loop then try to eliminate the cast operation.
1656void LSRInstance::OptimizeShadowIV() {
1657  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1658  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1659    return;
1660
1661  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1662       UI != E; /* empty */) {
1663    IVUsers::const_iterator CandidateUI = UI;
1664    ++UI;
1665    Instruction *ShadowUse = CandidateUI->getUser();
1666    Type *DestTy = NULL;
1667    bool IsSigned = false;
1668
1669    /* If shadow use is a int->float cast then insert a second IV
1670       to eliminate this cast.
1671
1672         for (unsigned i = 0; i < n; ++i)
1673           foo((double)i);
1674
1675       is transformed into
1676
1677         double d = 0.0;
1678         for (unsigned i = 0; i < n; ++i, ++d)
1679           foo(d);
1680    */
1681    if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
1682      IsSigned = false;
1683      DestTy = UCast->getDestTy();
1684    }
1685    else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
1686      IsSigned = true;
1687      DestTy = SCast->getDestTy();
1688    }
1689    if (!DestTy) continue;
1690
1691    if (TLI) {
1692      // If target does not support DestTy natively then do not apply
1693      // this transformation.
1694      EVT DVT = TLI->getValueType(DestTy);
1695      if (!TLI->isTypeLegal(DVT)) continue;
1696    }
1697
1698    PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1699    if (!PH) continue;
1700    if (PH->getNumIncomingValues() != 2) continue;
1701
1702    Type *SrcTy = PH->getType();
1703    int Mantissa = DestTy->getFPMantissaWidth();
1704    if (Mantissa == -1) continue;
1705    if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1706      continue;
1707
1708    unsigned Entry, Latch;
1709    if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1710      Entry = 0;
1711      Latch = 1;
1712    } else {
1713      Entry = 1;
1714      Latch = 0;
1715    }
1716
1717    ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1718    if (!Init) continue;
1719    Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
1720                                        (double)Init->getSExtValue() :
1721                                        (double)Init->getZExtValue());
1722
1723    BinaryOperator *Incr =
1724      dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1725    if (!Incr) continue;
1726    if (Incr->getOpcode() != Instruction::Add
1727        && Incr->getOpcode() != Instruction::Sub)
1728      continue;
1729
1730    /* Initialize new IV, double d = 0.0 in above example. */
1731    ConstantInt *C = NULL;
1732    if (Incr->getOperand(0) == PH)
1733      C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1734    else if (Incr->getOperand(1) == PH)
1735      C = dyn_cast<ConstantInt>(Incr->getOperand(0));
1736    else
1737      continue;
1738
1739    if (!C) continue;
1740
1741    // Ignore negative constants, as the code below doesn't handle them
1742    // correctly. TODO: Remove this restriction.
1743    if (!C->getValue().isStrictlyPositive()) continue;
1744
1745    /* Add new PHINode. */
1746    PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
1747
1748    /* create new increment. '++d' in above example. */
1749    Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1750    BinaryOperator *NewIncr =
1751      BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1752                               Instruction::FAdd : Instruction::FSub,
1753                             NewPH, CFP, "IV.S.next.", Incr);
1754
1755    NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1756    NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
1757
1758    /* Remove cast operation */
1759    ShadowUse->replaceAllUsesWith(NewPH);
1760    ShadowUse->eraseFromParent();
1761    Changed = true;
1762    break;
1763  }
1764}
1765
1766/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1767/// set the IV user and stride information and return true, otherwise return
1768/// false.
1769bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
1770  for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1771    if (UI->getUser() == Cond) {
1772      // NOTE: we could handle setcc instructions with multiple uses here, but
1773      // InstCombine does it as well for simple uses, it's not clear that it
1774      // occurs enough in real life to handle.
1775      CondUse = UI;
1776      return true;
1777    }
1778  return false;
1779}
1780
1781/// OptimizeMax - Rewrite the loop's terminating condition if it uses
1782/// a max computation.
1783///
1784/// This is a narrow solution to a specific, but acute, problem. For loops
1785/// like this:
1786///
1787///   i = 0;
1788///   do {
1789///     p[i] = 0.0;
1790///   } while (++i < n);
1791///
1792/// the trip count isn't just 'n', because 'n' might not be positive. And
1793/// unfortunately this can come up even for loops where the user didn't use
1794/// a C do-while loop. For example, seemingly well-behaved top-test loops
1795/// will commonly be lowered like this:
1796//
1797///   if (n > 0) {
1798///     i = 0;
1799///     do {
1800///       p[i] = 0.0;
1801///     } while (++i < n);
1802///   }
1803///
1804/// and then it's possible for subsequent optimization to obscure the if
1805/// test in such a way that indvars can't find it.
1806///
1807/// When indvars can't find the if test in loops like this, it creates a
1808/// max expression, which allows it to give the loop a canonical
1809/// induction variable:
1810///
1811///   i = 0;
1812///   max = n < 1 ? 1 : n;
1813///   do {
1814///     p[i] = 0.0;
1815///   } while (++i != max);
1816///
1817/// Canonical induction variables are necessary because the loop passes
1818/// are designed around them. The most obvious example of this is the
1819/// LoopInfo analysis, which doesn't remember trip count values. It
1820/// expects to be able to rediscover the trip count each time it is
1821/// needed, and it does this using a simple analysis that only succeeds if
1822/// the loop has a canonical induction variable.
1823///
1824/// However, when it comes time to generate code, the maximum operation
1825/// can be quite costly, especially if it's inside of an outer loop.
1826///
1827/// This function solves this problem by detecting this type of loop and
1828/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1829/// the instructions for the maximum computation.
1830///
1831ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
1832  // Check that the loop matches the pattern we're looking for.
1833  if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1834      Cond->getPredicate() != CmpInst::ICMP_NE)
1835    return Cond;
1836
1837  SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1838  if (!Sel || !Sel->hasOneUse()) return Cond;
1839
1840  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1841  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1842    return Cond;
1843  const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
1844
1845  // Add one to the backedge-taken count to get the trip count.
1846  const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
1847  if (IterationCount != SE.getSCEV(Sel)) return Cond;
1848
1849  // Check for a max calculation that matches the pattern. There's no check
1850  // for ICMP_ULE here because the comparison would be with zero, which
1851  // isn't interesting.
1852  CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1853  const SCEVNAryExpr *Max = 0;
1854  if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
1855    Pred = ICmpInst::ICMP_SLE;
1856    Max = S;
1857  } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
1858    Pred = ICmpInst::ICMP_SLT;
1859    Max = S;
1860  } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
1861    Pred = ICmpInst::ICMP_ULT;
1862    Max = U;
1863  } else {
1864    // No match; bail.
1865    return Cond;
1866  }
1867
1868  // To handle a max with more than two operands, this optimization would
1869  // require additional checking and setup.
1870  if (Max->getNumOperands() != 2)
1871    return Cond;
1872
1873  const SCEV *MaxLHS = Max->getOperand(0);
1874  const SCEV *MaxRHS = Max->getOperand(1);
1875
1876  // ScalarEvolution canonicalizes constants to the left. For < and >, look
1877  // for a comparison with 1. For <= and >=, a comparison with zero.
1878  if (!MaxLHS ||
1879      (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
1880    return Cond;
1881
1882  // Check the relevant induction variable for conformance to
1883  // the pattern.
1884  const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
1885  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
1886  if (!AR || !AR->isAffine() ||
1887      AR->getStart() != One ||
1888      AR->getStepRecurrence(SE) != One)
1889    return Cond;
1890
1891  assert(AR->getLoop() == L &&
1892         "Loop condition operand is an addrec in a different loop!");
1893
1894  // Check the right operand of the select, and remember it, as it will
1895  // be used in the new comparison instruction.
1896  Value *NewRHS = 0;
1897  if (ICmpInst::isTrueWhenEqual(Pred)) {
1898    // Look for n+1, and grab n.
1899    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
1900      if (isa<ConstantInt>(BO->getOperand(1)) &&
1901          cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1902          SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1903        NewRHS = BO->getOperand(0);
1904    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
1905      if (isa<ConstantInt>(BO->getOperand(1)) &&
1906          cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1907          SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1908        NewRHS = BO->getOperand(0);
1909    if (!NewRHS)
1910      return Cond;
1911  } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
1912    NewRHS = Sel->getOperand(1);
1913  else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
1914    NewRHS = Sel->getOperand(2);
1915  else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
1916    NewRHS = SU->getValue();
1917  else
1918    // Max doesn't match expected pattern.
1919    return Cond;
1920
1921  // Determine the new comparison opcode. It may be signed or unsigned,
1922  // and the original comparison may be either equality or inequality.
1923  if (Cond->getPredicate() == CmpInst::ICMP_EQ)
1924    Pred = CmpInst::getInversePredicate(Pred);
1925
1926  // Ok, everything looks ok to change the condition into an SLT or SGE and
1927  // delete the max calculation.
1928  ICmpInst *NewCond =
1929    new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
1930
1931  // Delete the max calculation instructions.
1932  Cond->replaceAllUsesWith(NewCond);
1933  CondUse->setUser(NewCond);
1934  Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
1935  Cond->eraseFromParent();
1936  Sel->eraseFromParent();
1937  if (Cmp->use_empty())
1938    Cmp->eraseFromParent();
1939  return NewCond;
1940}
1941
1942/// OptimizeLoopTermCond - Change loop terminating condition to use the
1943/// postinc iv when possible.
1944void
1945LSRInstance::OptimizeLoopTermCond() {
1946  SmallPtrSet<Instruction *, 4> PostIncs;
1947
1948  BasicBlock *LatchBlock = L->getLoopLatch();
1949  SmallVector<BasicBlock*, 8> ExitingBlocks;
1950  L->getExitingBlocks(ExitingBlocks);
1951
1952  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
1953    BasicBlock *ExitingBlock = ExitingBlocks[i];
1954
1955    // Get the terminating condition for the loop if possible.  If we
1956    // can, we want to change it to use a post-incremented version of its
1957    // induction variable, to allow coalescing the live ranges for the IV into
1958    // one register value.
1959
1960    BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1961    if (!TermBr)
1962      continue;
1963    // FIXME: Overly conservative, termination condition could be an 'or' etc..
1964    if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
1965      continue;
1966
1967    // Search IVUsesByStride to find Cond's IVUse if there is one.
1968    IVStrideUse *CondUse = 0;
1969    ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
1970    if (!FindIVUserForCond(Cond, CondUse))
1971      continue;
1972
1973    // If the trip count is computed in terms of a max (due to ScalarEvolution
1974    // being unable to find a sufficient guard, for example), change the loop
1975    // comparison to use SLT or ULT instead of NE.
1976    // One consequence of doing this now is that it disrupts the count-down
1977    // optimization. That's not always a bad thing though, because in such
1978    // cases it may still be worthwhile to avoid a max.
1979    Cond = OptimizeMax(Cond, CondUse);
1980
1981    // If this exiting block dominates the latch block, it may also use
1982    // the post-inc value if it won't be shared with other uses.
1983    // Check for dominance.
1984    if (!DT.dominates(ExitingBlock, LatchBlock))
1985      continue;
1986
1987    // Conservatively avoid trying to use the post-inc value in non-latch
1988    // exits if there may be pre-inc users in intervening blocks.
1989    if (LatchBlock != ExitingBlock)
1990      for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1991        // Test if the use is reachable from the exiting block. This dominator
1992        // query is a conservative approximation of reachability.
1993        if (&*UI != CondUse &&
1994            !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
1995          // Conservatively assume there may be reuse if the quotient of their
1996          // strides could be a legal scale.
1997          const SCEV *A = IU.getStride(*CondUse, L);
1998          const SCEV *B = IU.getStride(*UI, L);
1999          if (!A || !B) continue;
2000          if (SE.getTypeSizeInBits(A->getType()) !=
2001              SE.getTypeSizeInBits(B->getType())) {
2002            if (SE.getTypeSizeInBits(A->getType()) >
2003                SE.getTypeSizeInBits(B->getType()))
2004              B = SE.getSignExtendExpr(B, A->getType());
2005            else
2006              A = SE.getSignExtendExpr(A, B->getType());
2007          }
2008          if (const SCEVConstant *D =
2009                dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2010            const ConstantInt *C = D->getValue();
2011            // Stride of one or negative one can have reuse with non-addresses.
2012            if (C->isOne() || C->isAllOnesValue())
2013              goto decline_post_inc;
2014            // Avoid weird situations.
2015            if (C->getValue().getMinSignedBits() >= 64 ||
2016                C->getValue().isMinSignedValue())
2017              goto decline_post_inc;
2018            // Without TLI, assume that any stride might be valid, and so any
2019            // use might be shared.
2020            if (!TLI)
2021              goto decline_post_inc;
2022            // Check for possible scaled-address reuse.
2023            Type *AccessTy = getAccessType(UI->getUser());
2024            AddrMode AM;
2025            AM.Scale = C->getSExtValue();
2026            if (TLI->isLegalAddressingMode(AM, AccessTy))
2027              goto decline_post_inc;
2028            AM.Scale = -AM.Scale;
2029            if (TLI->isLegalAddressingMode(AM, AccessTy))
2030              goto decline_post_inc;
2031          }
2032        }
2033
2034    DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2035                 << *Cond << '\n');
2036
2037    // It's possible for the setcc instruction to be anywhere in the loop, and
2038    // possible for it to have multiple users.  If it is not immediately before
2039    // the exiting block branch, move it.
2040    if (&*++BasicBlock::iterator(Cond) != TermBr) {
2041      if (Cond->hasOneUse()) {
2042        Cond->moveBefore(TermBr);
2043      } else {
2044        // Clone the terminating condition and insert into the loopend.
2045        ICmpInst *OldCond = Cond;
2046        Cond = cast<ICmpInst>(Cond->clone());
2047        Cond->setName(L->getHeader()->getName() + ".termcond");
2048        ExitingBlock->getInstList().insert(TermBr, Cond);
2049
2050        // Clone the IVUse, as the old use still exists!
2051        CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2052        TermBr->replaceUsesOfWith(OldCond, Cond);
2053      }
2054    }
2055
2056    // If we get to here, we know that we can transform the setcc instruction to
2057    // use the post-incremented version of the IV, allowing us to coalesce the
2058    // live ranges for the IV correctly.
2059    CondUse->transformToPostInc(L);
2060    Changed = true;
2061
2062    PostIncs.insert(Cond);
2063  decline_post_inc:;
2064  }
2065
2066  // Determine an insertion point for the loop induction variable increment. It
2067  // must dominate all the post-inc comparisons we just set up, and it must
2068  // dominate the loop latch edge.
2069  IVIncInsertPos = L->getLoopLatch()->getTerminator();
2070  for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
2071       E = PostIncs.end(); I != E; ++I) {
2072    BasicBlock *BB =
2073      DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2074                                    (*I)->getParent());
2075    if (BB == (*I)->getParent())
2076      IVIncInsertPos = *I;
2077    else if (BB != IVIncInsertPos->getParent())
2078      IVIncInsertPos = BB->getTerminator();
2079  }
2080}
2081
2082/// reconcileNewOffset - Determine if the given use can accommodate a fixup
2083/// at the given offset and other details. If so, update the use and
2084/// return true.
2085bool
2086LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
2087                                LSRUse::KindType Kind, Type *AccessTy) {
2088  int64_t NewMinOffset = LU.MinOffset;
2089  int64_t NewMaxOffset = LU.MaxOffset;
2090  Type *NewAccessTy = AccessTy;
2091
2092  // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2093  // something conservative, however this can pessimize in the case that one of
2094  // the uses will have all its uses outside the loop, for example.
2095  if (LU.Kind != Kind)
2096    return false;
2097  // Conservatively assume HasBaseReg is true for now.
2098  if (NewOffset < LU.MinOffset) {
2099    if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg,
2100                          Kind, AccessTy, TLI))
2101      return false;
2102    NewMinOffset = NewOffset;
2103  } else if (NewOffset > LU.MaxOffset) {
2104    if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg,
2105                          Kind, AccessTy, TLI))
2106      return false;
2107    NewMaxOffset = NewOffset;
2108  }
2109  // Check for a mismatched access type, and fall back conservatively as needed.
2110  // TODO: Be less conservative when the type is similar and can use the same
2111  // addressing modes.
2112  if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
2113    NewAccessTy = Type::getVoidTy(AccessTy->getContext());
2114
2115  // Update the use.
2116  LU.MinOffset = NewMinOffset;
2117  LU.MaxOffset = NewMaxOffset;
2118  LU.AccessTy = NewAccessTy;
2119  if (NewOffset != LU.Offsets.back())
2120    LU.Offsets.push_back(NewOffset);
2121  return true;
2122}
2123
2124/// getUse - Return an LSRUse index and an offset value for a fixup which
2125/// needs the given expression, with the given kind and optional access type.
2126/// Either reuse an existing use or create a new one, as needed.
2127std::pair<size_t, int64_t>
2128LSRInstance::getUse(const SCEV *&Expr,
2129                    LSRUse::KindType Kind, Type *AccessTy) {
2130  const SCEV *Copy = Expr;
2131  int64_t Offset = ExtractImmediate(Expr, SE);
2132
2133  // Basic uses can't accept any offset, for example.
2134  if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) {
2135    Expr = Copy;
2136    Offset = 0;
2137  }
2138
2139  std::pair<UseMapTy::iterator, bool> P =
2140    UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0));
2141  if (!P.second) {
2142    // A use already existed with this base.
2143    size_t LUIdx = P.first->second;
2144    LSRUse &LU = Uses[LUIdx];
2145    if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2146      // Reuse this use.
2147      return std::make_pair(LUIdx, Offset);
2148  }
2149
2150  // Create a new use.
2151  size_t LUIdx = Uses.size();
2152  P.first->second = LUIdx;
2153  Uses.push_back(LSRUse(Kind, AccessTy));
2154  LSRUse &LU = Uses[LUIdx];
2155
2156  // We don't need to track redundant offsets, but we don't need to go out
2157  // of our way here to avoid them.
2158  if (LU.Offsets.empty() || Offset != LU.Offsets.back())
2159    LU.Offsets.push_back(Offset);
2160
2161  LU.MinOffset = Offset;
2162  LU.MaxOffset = Offset;
2163  return std::make_pair(LUIdx, Offset);
2164}
2165
2166/// DeleteUse - Delete the given use from the Uses list.
2167void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2168  if (&LU != &Uses.back())
2169    std::swap(LU, Uses.back());
2170  Uses.pop_back();
2171
2172  // Update RegUses.
2173  RegUses.SwapAndDropUse(LUIdx, Uses.size());
2174}
2175
2176/// FindUseWithFormula - Look for a use distinct from OrigLU which is has
2177/// a formula that has the same registers as the given formula.
2178LSRUse *
2179LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2180                                       const LSRUse &OrigLU) {
2181  // Search all uses for the formula. This could be more clever.
2182  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2183    LSRUse &LU = Uses[LUIdx];
2184    // Check whether this use is close enough to OrigLU, to see whether it's
2185    // worthwhile looking through its formulae.
2186    // Ignore ICmpZero uses because they may contain formulae generated by
2187    // GenerateICmpZeroScales, in which case adding fixup offsets may
2188    // be invalid.
2189    if (&LU != &OrigLU &&
2190        LU.Kind != LSRUse::ICmpZero &&
2191        LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2192        LU.WidestFixupType == OrigLU.WidestFixupType &&
2193        LU.HasFormulaWithSameRegs(OrigF)) {
2194      // Scan through this use's formulae.
2195      for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
2196           E = LU.Formulae.end(); I != E; ++I) {
2197        const Formula &F = *I;
2198        // Check to see if this formula has the same registers and symbols
2199        // as OrigF.
2200        if (F.BaseRegs == OrigF.BaseRegs &&
2201            F.ScaledReg == OrigF.ScaledReg &&
2202            F.AM.BaseGV == OrigF.AM.BaseGV &&
2203            F.AM.Scale == OrigF.AM.Scale &&
2204            F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2205          if (F.AM.BaseOffs == 0)
2206            return &LU;
2207          // This is the formula where all the registers and symbols matched;
2208          // there aren't going to be any others. Since we declined it, we
2209          // can skip the rest of the formulae and proceed to the next LSRUse.
2210          break;
2211        }
2212      }
2213    }
2214  }
2215
2216  // Nothing looked good.
2217  return 0;
2218}
2219
2220void LSRInstance::CollectInterestingTypesAndFactors() {
2221  SmallSetVector<const SCEV *, 4> Strides;
2222
2223  // Collect interesting types and strides.
2224  SmallVector<const SCEV *, 4> Worklist;
2225  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
2226    const SCEV *Expr = IU.getExpr(*UI);
2227
2228    // Collect interesting types.
2229    Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2230
2231    // Add strides for mentioned loops.
2232    Worklist.push_back(Expr);
2233    do {
2234      const SCEV *S = Worklist.pop_back_val();
2235      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2236        if (AR->getLoop() == L)
2237          Strides.insert(AR->getStepRecurrence(SE));
2238        Worklist.push_back(AR->getStart());
2239      } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2240        Worklist.append(Add->op_begin(), Add->op_end());
2241      }
2242    } while (!Worklist.empty());
2243  }
2244
2245  // Compute interesting factors from the set of interesting strides.
2246  for (SmallSetVector<const SCEV *, 4>::const_iterator
2247       I = Strides.begin(), E = Strides.end(); I != E; ++I)
2248    for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2249         llvm::next(I); NewStrideIter != E; ++NewStrideIter) {
2250      const SCEV *OldStride = *I;
2251      const SCEV *NewStride = *NewStrideIter;
2252
2253      if (SE.getTypeSizeInBits(OldStride->getType()) !=
2254          SE.getTypeSizeInBits(NewStride->getType())) {
2255        if (SE.getTypeSizeInBits(OldStride->getType()) >
2256            SE.getTypeSizeInBits(NewStride->getType()))
2257          NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2258        else
2259          OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2260      }
2261      if (const SCEVConstant *Factor =
2262            dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2263                                                        SE, true))) {
2264        if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2265          Factors.insert(Factor->getValue()->getValue().getSExtValue());
2266      } else if (const SCEVConstant *Factor =
2267                   dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2268                                                               NewStride,
2269                                                               SE, true))) {
2270        if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2271          Factors.insert(Factor->getValue()->getValue().getSExtValue());
2272      }
2273    }
2274
2275  // If all uses use the same type, don't bother looking for truncation-based
2276  // reuse.
2277  if (Types.size() == 1)
2278    Types.clear();
2279
2280  DEBUG(print_factors_and_types(dbgs()));
2281}
2282
2283/// findIVOperand - Helper for CollectChains that finds an IV operand (computed
2284/// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped
2285/// Instructions to IVStrideUses, we could partially skip this.
2286static User::op_iterator
2287findIVOperand(User::op_iterator OI, User::op_iterator OE,
2288              Loop *L, ScalarEvolution &SE) {
2289  for(; OI != OE; ++OI) {
2290    if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2291      if (!SE.isSCEVable(Oper->getType()))
2292        continue;
2293
2294      if (const SCEVAddRecExpr *AR =
2295          dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2296        if (AR->getLoop() == L)
2297          break;
2298      }
2299    }
2300  }
2301  return OI;
2302}
2303
2304/// getWideOperand - IVChain logic must consistenctly peek base TruncInst
2305/// operands, so wrap it in a convenient helper.
2306static Value *getWideOperand(Value *Oper) {
2307  if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2308    return Trunc->getOperand(0);
2309  return Oper;
2310}
2311
2312/// isCompatibleIVType - Return true if we allow an IV chain to include both
2313/// types.
2314static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2315  Type *LType = LVal->getType();
2316  Type *RType = RVal->getType();
2317  return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy());
2318}
2319
2320/// getExprBase - Return an approximation of this SCEV expression's "base", or
2321/// NULL for any constant. Returning the expression itself is
2322/// conservative. Returning a deeper subexpression is more precise and valid as
2323/// long as it isn't less complex than another subexpression. For expressions
2324/// involving multiple unscaled values, we need to return the pointer-type
2325/// SCEVUnknown. This avoids forming chains across objects, such as:
2326/// PrevOper==a[i], IVOper==b[i], IVInc==b-a.
2327///
2328/// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2329/// SCEVUnknown, we simply return the rightmost SCEV operand.
2330static const SCEV *getExprBase(const SCEV *S) {
2331  switch (S->getSCEVType()) {
2332  default: // uncluding scUnknown.
2333    return S;
2334  case scConstant:
2335    return 0;
2336  case scTruncate:
2337    return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2338  case scZeroExtend:
2339    return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2340  case scSignExtend:
2341    return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2342  case scAddExpr: {
2343    // Skip over scaled operands (scMulExpr) to follow add operands as long as
2344    // there's nothing more complex.
2345    // FIXME: not sure if we want to recognize negation.
2346    const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2347    for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2348           E(Add->op_begin()); I != E; ++I) {
2349      const SCEV *SubExpr = *I;
2350      if (SubExpr->getSCEVType() == scAddExpr)
2351        return getExprBase(SubExpr);
2352
2353      if (SubExpr->getSCEVType() != scMulExpr)
2354        return SubExpr;
2355    }
2356    return S; // all operands are scaled, be conservative.
2357  }
2358  case scAddRecExpr:
2359    return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2360  }
2361}
2362
2363/// Return true if the chain increment is profitable to expand into a loop
2364/// invariant value, which may require its own register. A profitable chain
2365/// increment will be an offset relative to the same base. We allow such offsets
2366/// to potentially be used as chain increment as long as it's not obviously
2367/// expensive to expand using real instructions.
2368bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2369                                    const SCEV *IncExpr,
2370                                    ScalarEvolution &SE) {
2371  // Aggressively form chains when -stress-ivchain.
2372  if (StressIVChain)
2373    return true;
2374
2375  // Do not replace a constant offset from IV head with a nonconstant IV
2376  // increment.
2377  if (!isa<SCEVConstant>(IncExpr)) {
2378    const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2379    if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2380      return 0;
2381  }
2382
2383  SmallPtrSet<const SCEV*, 8> Processed;
2384  return !isHighCostExpansion(IncExpr, Processed, SE);
2385}
2386
2387/// Return true if the number of registers needed for the chain is estimated to
2388/// be less than the number required for the individual IV users. First prohibit
2389/// any IV users that keep the IV live across increments (the Users set should
2390/// be empty). Next count the number and type of increments in the chain.
2391///
2392/// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2393/// effectively use postinc addressing modes. Only consider it profitable it the
2394/// increments can be computed in fewer registers when chained.
2395///
2396/// TODO: Consider IVInc free if it's already used in another chains.
2397static bool
2398isProfitableChain(IVChain &Chain, SmallPtrSet<Instruction*, 4> &Users,
2399                  ScalarEvolution &SE, const TargetLowering *TLI) {
2400  if (StressIVChain)
2401    return true;
2402
2403  if (!Chain.hasIncs())
2404    return false;
2405
2406  if (!Users.empty()) {
2407    DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2408          for (SmallPtrSet<Instruction*, 4>::const_iterator I = Users.begin(),
2409                 E = Users.end(); I != E; ++I) {
2410            dbgs() << "  " << **I << "\n";
2411          });
2412    return false;
2413  }
2414  assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2415
2416  // The chain itself may require a register, so intialize cost to 1.
2417  int cost = 1;
2418
2419  // A complete chain likely eliminates the need for keeping the original IV in
2420  // a register. LSR does not currently know how to form a complete chain unless
2421  // the header phi already exists.
2422  if (isa<PHINode>(Chain.tailUserInst())
2423      && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2424    --cost;
2425  }
2426  const SCEV *LastIncExpr = 0;
2427  unsigned NumConstIncrements = 0;
2428  unsigned NumVarIncrements = 0;
2429  unsigned NumReusedIncrements = 0;
2430  for (IVChain::const_iterator I = Chain.begin(), E = Chain.end();
2431       I != E; ++I) {
2432
2433    if (I->IncExpr->isZero())
2434      continue;
2435
2436    // Incrementing by zero or some constant is neutral. We assume constants can
2437    // be folded into an addressing mode or an add's immediate operand.
2438    if (isa<SCEVConstant>(I->IncExpr)) {
2439      ++NumConstIncrements;
2440      continue;
2441    }
2442
2443    if (I->IncExpr == LastIncExpr)
2444      ++NumReusedIncrements;
2445    else
2446      ++NumVarIncrements;
2447
2448    LastIncExpr = I->IncExpr;
2449  }
2450  // An IV chain with a single increment is handled by LSR's postinc
2451  // uses. However, a chain with multiple increments requires keeping the IV's
2452  // value live longer than it needs to be if chained.
2453  if (NumConstIncrements > 1)
2454    --cost;
2455
2456  // Materializing increment expressions in the preheader that didn't exist in
2457  // the original code may cost a register. For example, sign-extended array
2458  // indices can produce ridiculous increments like this:
2459  // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2460  cost += NumVarIncrements;
2461
2462  // Reusing variable increments likely saves a register to hold the multiple of
2463  // the stride.
2464  cost -= NumReusedIncrements;
2465
2466  DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2467               << "\n");
2468
2469  return cost < 0;
2470}
2471
2472/// ChainInstruction - Add this IV user to an existing chain or make it the head
2473/// of a new chain.
2474void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2475                                   SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2476  // When IVs are used as types of varying widths, they are generally converted
2477  // to a wider type with some uses remaining narrow under a (free) trunc.
2478  Value *const NextIV = getWideOperand(IVOper);
2479  const SCEV *const OperExpr = SE.getSCEV(NextIV);
2480  const SCEV *const OperExprBase = getExprBase(OperExpr);
2481
2482  // Visit all existing chains. Check if its IVOper can be computed as a
2483  // profitable loop invariant increment from the last link in the Chain.
2484  unsigned ChainIdx = 0, NChains = IVChainVec.size();
2485  const SCEV *LastIncExpr = 0;
2486  for (; ChainIdx < NChains; ++ChainIdx) {
2487    IVChain &Chain = IVChainVec[ChainIdx];
2488
2489    // Prune the solution space aggressively by checking that both IV operands
2490    // are expressions that operate on the same unscaled SCEVUnknown. This
2491    // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2492    // first avoids creating extra SCEV expressions.
2493    if (!StressIVChain && Chain.ExprBase != OperExprBase)
2494      continue;
2495
2496    Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2497    if (!isCompatibleIVType(PrevIV, NextIV))
2498      continue;
2499
2500    // A phi node terminates a chain.
2501    if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2502      continue;
2503
2504    // The increment must be loop-invariant so it can be kept in a register.
2505    const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2506    const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2507    if (!SE.isLoopInvariant(IncExpr, L))
2508      continue;
2509
2510    if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2511      LastIncExpr = IncExpr;
2512      break;
2513    }
2514  }
2515  // If we haven't found a chain, create a new one, unless we hit the max. Don't
2516  // bother for phi nodes, because they must be last in the chain.
2517  if (ChainIdx == NChains) {
2518    if (isa<PHINode>(UserInst))
2519      return;
2520    if (NChains >= MaxChains && !StressIVChain) {
2521      DEBUG(dbgs() << "IV Chain Limit\n");
2522      return;
2523    }
2524    LastIncExpr = OperExpr;
2525    // IVUsers may have skipped over sign/zero extensions. We don't currently
2526    // attempt to form chains involving extensions unless they can be hoisted
2527    // into this loop's AddRec.
2528    if (!isa<SCEVAddRecExpr>(LastIncExpr))
2529      return;
2530    ++NChains;
2531    IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2532                                 OperExprBase));
2533    ChainUsersVec.resize(NChains);
2534    DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2535                 << ") IV=" << *LastIncExpr << "\n");
2536  } else {
2537    DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2538                 << ") IV+" << *LastIncExpr << "\n");
2539    // Add this IV user to the end of the chain.
2540    IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2541  }
2542
2543  SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2544  // This chain's NearUsers become FarUsers.
2545  if (!LastIncExpr->isZero()) {
2546    ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2547                                            NearUsers.end());
2548    NearUsers.clear();
2549  }
2550
2551  // All other uses of IVOperand become near uses of the chain.
2552  // We currently ignore intermediate values within SCEV expressions, assuming
2553  // they will eventually be used be the current chain, or can be computed
2554  // from one of the chain increments. To be more precise we could
2555  // transitively follow its user and only add leaf IV users to the set.
2556  for (Value::use_iterator UseIter = IVOper->use_begin(),
2557         UseEnd = IVOper->use_end(); UseIter != UseEnd; ++UseIter) {
2558    Instruction *OtherUse = dyn_cast<Instruction>(*UseIter);
2559    if (!OtherUse || OtherUse == UserInst)
2560      continue;
2561    if (SE.isSCEVable(OtherUse->getType())
2562        && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
2563        && IU.isIVUserOrOperand(OtherUse)) {
2564      continue;
2565    }
2566    NearUsers.insert(OtherUse);
2567  }
2568
2569  // Since this user is part of the chain, it's no longer considered a use
2570  // of the chain.
2571  ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
2572}
2573
2574/// CollectChains - Populate the vector of Chains.
2575///
2576/// This decreases ILP at the architecture level. Targets with ample registers,
2577/// multiple memory ports, and no register renaming probably don't want
2578/// this. However, such targets should probably disable LSR altogether.
2579///
2580/// The job of LSR is to make a reasonable choice of induction variables across
2581/// the loop. Subsequent passes can easily "unchain" computation exposing more
2582/// ILP *within the loop* if the target wants it.
2583///
2584/// Finding the best IV chain is potentially a scheduling problem. Since LSR
2585/// will not reorder memory operations, it will recognize this as a chain, but
2586/// will generate redundant IV increments. Ideally this would be corrected later
2587/// by a smart scheduler:
2588///        = A[i]
2589///        = A[i+x]
2590/// A[i]   =
2591/// A[i+x] =
2592///
2593/// TODO: Walk the entire domtree within this loop, not just the path to the
2594/// loop latch. This will discover chains on side paths, but requires
2595/// maintaining multiple copies of the Chains state.
2596void LSRInstance::CollectChains() {
2597  DEBUG(dbgs() << "Collecting IV Chains.\n");
2598  SmallVector<ChainUsers, 8> ChainUsersVec;
2599
2600  SmallVector<BasicBlock *,8> LatchPath;
2601  BasicBlock *LoopHeader = L->getHeader();
2602  for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
2603       Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
2604    LatchPath.push_back(Rung->getBlock());
2605  }
2606  LatchPath.push_back(LoopHeader);
2607
2608  // Walk the instruction stream from the loop header to the loop latch.
2609  for (SmallVectorImpl<BasicBlock *>::reverse_iterator
2610         BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend();
2611       BBIter != BBEnd; ++BBIter) {
2612    for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end();
2613         I != E; ++I) {
2614      // Skip instructions that weren't seen by IVUsers analysis.
2615      if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I))
2616        continue;
2617
2618      // Ignore users that are part of a SCEV expression. This way we only
2619      // consider leaf IV Users. This effectively rediscovers a portion of
2620      // IVUsers analysis but in program order this time.
2621      if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I)))
2622        continue;
2623
2624      // Remove this instruction from any NearUsers set it may be in.
2625      for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
2626           ChainIdx < NChains; ++ChainIdx) {
2627        ChainUsersVec[ChainIdx].NearUsers.erase(I);
2628      }
2629      // Search for operands that can be chained.
2630      SmallPtrSet<Instruction*, 4> UniqueOperands;
2631      User::op_iterator IVOpEnd = I->op_end();
2632      User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE);
2633      while (IVOpIter != IVOpEnd) {
2634        Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
2635        if (UniqueOperands.insert(IVOpInst))
2636          ChainInstruction(I, IVOpInst, ChainUsersVec);
2637        IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE);
2638      }
2639    } // Continue walking down the instructions.
2640  } // Continue walking down the domtree.
2641  // Visit phi backedges to determine if the chain can generate the IV postinc.
2642  for (BasicBlock::iterator I = L->getHeader()->begin();
2643       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2644    if (!SE.isSCEVable(PN->getType()))
2645      continue;
2646
2647    Instruction *IncV =
2648      dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
2649    if (IncV)
2650      ChainInstruction(PN, IncV, ChainUsersVec);
2651  }
2652  // Remove any unprofitable chains.
2653  unsigned ChainIdx = 0;
2654  for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
2655       UsersIdx < NChains; ++UsersIdx) {
2656    if (!isProfitableChain(IVChainVec[UsersIdx],
2657                           ChainUsersVec[UsersIdx].FarUsers, SE, TLI))
2658      continue;
2659    // Preserve the chain at UsesIdx.
2660    if (ChainIdx != UsersIdx)
2661      IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
2662    FinalizeChain(IVChainVec[ChainIdx]);
2663    ++ChainIdx;
2664  }
2665  IVChainVec.resize(ChainIdx);
2666}
2667
2668void LSRInstance::FinalizeChain(IVChain &Chain) {
2669  assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2670  DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
2671
2672  for (IVChain::const_iterator I = Chain.begin(), E = Chain.end();
2673       I != E; ++I) {
2674    DEBUG(dbgs() << "        Inc: " << *I->UserInst << "\n");
2675    User::op_iterator UseI =
2676      std::find(I->UserInst->op_begin(), I->UserInst->op_end(), I->IVOperand);
2677    assert(UseI != I->UserInst->op_end() && "cannot find IV operand");
2678    IVIncSet.insert(UseI);
2679  }
2680}
2681
2682/// Return true if the IVInc can be folded into an addressing mode.
2683static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
2684                             Value *Operand, const TargetLowering *TLI) {
2685  const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
2686  if (!IncConst || !isAddressUse(UserInst, Operand))
2687    return false;
2688
2689  if (IncConst->getValue()->getValue().getMinSignedBits() > 64)
2690    return false;
2691
2692  int64_t IncOffset = IncConst->getValue()->getSExtValue();
2693  if (!isAlwaysFoldable(IncOffset, /*BaseGV=*/0, /*HaseBaseReg=*/false,
2694                       LSRUse::Address, getAccessType(UserInst), TLI))
2695    return false;
2696
2697  return true;
2698}
2699
2700/// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to
2701/// materialize the IV user's operand from the previous IV user's operand.
2702void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
2703                                  SmallVectorImpl<WeakVH> &DeadInsts) {
2704  // Find the new IVOperand for the head of the chain. It may have been replaced
2705  // by LSR.
2706  const IVInc &Head = Chain.Incs[0];
2707  User::op_iterator IVOpEnd = Head.UserInst->op_end();
2708  User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
2709                                             IVOpEnd, L, SE);
2710  Value *IVSrc = 0;
2711  while (IVOpIter != IVOpEnd) {
2712    IVSrc = getWideOperand(*IVOpIter);
2713
2714    // If this operand computes the expression that the chain needs, we may use
2715    // it. (Check this after setting IVSrc which is used below.)
2716    //
2717    // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
2718    // narrow for the chain, so we can no longer use it. We do allow using a
2719    // wider phi, assuming the LSR checked for free truncation. In that case we
2720    // should already have a truncate on this operand such that
2721    // getSCEV(IVSrc) == IncExpr.
2722    if (SE.getSCEV(*IVOpIter) == Head.IncExpr
2723        || SE.getSCEV(IVSrc) == Head.IncExpr) {
2724      break;
2725    }
2726    IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE);
2727  }
2728  if (IVOpIter == IVOpEnd) {
2729    // Gracefully give up on this chain.
2730    DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
2731    return;
2732  }
2733
2734  DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
2735  Type *IVTy = IVSrc->getType();
2736  Type *IntTy = SE.getEffectiveSCEVType(IVTy);
2737  const SCEV *LeftOverExpr = 0;
2738  for (IVChain::const_iterator IncI = Chain.begin(),
2739         IncE = Chain.end(); IncI != IncE; ++IncI) {
2740
2741    Instruction *InsertPt = IncI->UserInst;
2742    if (isa<PHINode>(InsertPt))
2743      InsertPt = L->getLoopLatch()->getTerminator();
2744
2745    // IVOper will replace the current IV User's operand. IVSrc is the IV
2746    // value currently held in a register.
2747    Value *IVOper = IVSrc;
2748    if (!IncI->IncExpr->isZero()) {
2749      // IncExpr was the result of subtraction of two narrow values, so must
2750      // be signed.
2751      const SCEV *IncExpr = SE.getNoopOrSignExtend(IncI->IncExpr, IntTy);
2752      LeftOverExpr = LeftOverExpr ?
2753        SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
2754    }
2755    if (LeftOverExpr && !LeftOverExpr->isZero()) {
2756      // Expand the IV increment.
2757      Rewriter.clearPostInc();
2758      Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
2759      const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
2760                                             SE.getUnknown(IncV));
2761      IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
2762
2763      // If an IV increment can't be folded, use it as the next IV value.
2764      if (!canFoldIVIncExpr(LeftOverExpr, IncI->UserInst, IncI->IVOperand,
2765                            TLI)) {
2766        assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
2767        IVSrc = IVOper;
2768        LeftOverExpr = 0;
2769      }
2770    }
2771    Type *OperTy = IncI->IVOperand->getType();
2772    if (IVTy != OperTy) {
2773      assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
2774             "cannot extend a chained IV");
2775      IRBuilder<> Builder(InsertPt);
2776      IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
2777    }
2778    IncI->UserInst->replaceUsesOfWith(IncI->IVOperand, IVOper);
2779    DeadInsts.push_back(IncI->IVOperand);
2780  }
2781  // If LSR created a new, wider phi, we may also replace its postinc. We only
2782  // do this if we also found a wide value for the head of the chain.
2783  if (isa<PHINode>(Chain.tailUserInst())) {
2784    for (BasicBlock::iterator I = L->getHeader()->begin();
2785         PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
2786      if (!isCompatibleIVType(Phi, IVSrc))
2787        continue;
2788      Instruction *PostIncV = dyn_cast<Instruction>(
2789        Phi->getIncomingValueForBlock(L->getLoopLatch()));
2790      if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
2791        continue;
2792      Value *IVOper = IVSrc;
2793      Type *PostIncTy = PostIncV->getType();
2794      if (IVTy != PostIncTy) {
2795        assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
2796        IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
2797        Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
2798        IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
2799      }
2800      Phi->replaceUsesOfWith(PostIncV, IVOper);
2801      DeadInsts.push_back(PostIncV);
2802    }
2803  }
2804}
2805
2806void LSRInstance::CollectFixupsAndInitialFormulae() {
2807  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
2808    Instruction *UserInst = UI->getUser();
2809    // Skip IV users that are part of profitable IV Chains.
2810    User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(),
2811                                       UI->getOperandValToReplace());
2812    assert(UseI != UserInst->op_end() && "cannot find IV operand");
2813    if (IVIncSet.count(UseI))
2814      continue;
2815
2816    // Record the uses.
2817    LSRFixup &LF = getNewFixup();
2818    LF.UserInst = UserInst;
2819    LF.OperandValToReplace = UI->getOperandValToReplace();
2820    LF.PostIncLoops = UI->getPostIncLoops();
2821
2822    LSRUse::KindType Kind = LSRUse::Basic;
2823    Type *AccessTy = 0;
2824    if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
2825      Kind = LSRUse::Address;
2826      AccessTy = getAccessType(LF.UserInst);
2827    }
2828
2829    const SCEV *S = IU.getExpr(*UI);
2830
2831    // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
2832    // (N - i == 0), and this allows (N - i) to be the expression that we work
2833    // with rather than just N or i, so we can consider the register
2834    // requirements for both N and i at the same time. Limiting this code to
2835    // equality icmps is not a problem because all interesting loops use
2836    // equality icmps, thanks to IndVarSimplify.
2837    if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
2838      if (CI->isEquality()) {
2839        // Swap the operands if needed to put the OperandValToReplace on the
2840        // left, for consistency.
2841        Value *NV = CI->getOperand(1);
2842        if (NV == LF.OperandValToReplace) {
2843          CI->setOperand(1, CI->getOperand(0));
2844          CI->setOperand(0, NV);
2845          NV = CI->getOperand(1);
2846          Changed = true;
2847        }
2848
2849        // x == y  -->  x - y == 0
2850        const SCEV *N = SE.getSCEV(NV);
2851        if (SE.isLoopInvariant(N, L) && isSafeToExpand(N)) {
2852          // S is normalized, so normalize N before folding it into S
2853          // to keep the result normalized.
2854          N = TransformForPostIncUse(Normalize, N, CI, 0,
2855                                     LF.PostIncLoops, SE, DT);
2856          Kind = LSRUse::ICmpZero;
2857          S = SE.getMinusSCEV(N, S);
2858        }
2859
2860        // -1 and the negations of all interesting strides (except the negation
2861        // of -1) are now also interesting.
2862        for (size_t i = 0, e = Factors.size(); i != e; ++i)
2863          if (Factors[i] != -1)
2864            Factors.insert(-(uint64_t)Factors[i]);
2865        Factors.insert(-1);
2866      }
2867
2868    // Set up the initial formula for this use.
2869    std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
2870    LF.LUIdx = P.first;
2871    LF.Offset = P.second;
2872    LSRUse &LU = Uses[LF.LUIdx];
2873    LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
2874    if (!LU.WidestFixupType ||
2875        SE.getTypeSizeInBits(LU.WidestFixupType) <
2876        SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
2877      LU.WidestFixupType = LF.OperandValToReplace->getType();
2878
2879    // If this is the first use of this LSRUse, give it a formula.
2880    if (LU.Formulae.empty()) {
2881      InsertInitialFormula(S, LU, LF.LUIdx);
2882      CountRegisters(LU.Formulae.back(), LF.LUIdx);
2883    }
2884  }
2885
2886  DEBUG(print_fixups(dbgs()));
2887}
2888
2889/// InsertInitialFormula - Insert a formula for the given expression into
2890/// the given use, separating out loop-variant portions from loop-invariant
2891/// and loop-computable portions.
2892void
2893LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
2894  Formula F;
2895  F.InitialMatch(S, L, SE);
2896  bool Inserted = InsertFormula(LU, LUIdx, F);
2897  assert(Inserted && "Initial formula already exists!"); (void)Inserted;
2898}
2899
2900/// InsertSupplementalFormula - Insert a simple single-register formula for
2901/// the given expression into the given use.
2902void
2903LSRInstance::InsertSupplementalFormula(const SCEV *S,
2904                                       LSRUse &LU, size_t LUIdx) {
2905  Formula F;
2906  F.BaseRegs.push_back(S);
2907  F.AM.HasBaseReg = true;
2908  bool Inserted = InsertFormula(LU, LUIdx, F);
2909  assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
2910}
2911
2912/// CountRegisters - Note which registers are used by the given formula,
2913/// updating RegUses.
2914void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
2915  if (F.ScaledReg)
2916    RegUses.CountRegister(F.ScaledReg, LUIdx);
2917  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
2918       E = F.BaseRegs.end(); I != E; ++I)
2919    RegUses.CountRegister(*I, LUIdx);
2920}
2921
2922/// InsertFormula - If the given formula has not yet been inserted, add it to
2923/// the list, and return true. Return false otherwise.
2924bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
2925  if (!LU.InsertFormula(F))
2926    return false;
2927
2928  CountRegisters(F, LUIdx);
2929  return true;
2930}
2931
2932/// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
2933/// loop-invariant values which we're tracking. These other uses will pin these
2934/// values in registers, making them less profitable for elimination.
2935/// TODO: This currently misses non-constant addrec step registers.
2936/// TODO: Should this give more weight to users inside the loop?
2937void
2938LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
2939  SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
2940  SmallPtrSet<const SCEV *, 8> Inserted;
2941
2942  while (!Worklist.empty()) {
2943    const SCEV *S = Worklist.pop_back_val();
2944
2945    if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
2946      Worklist.append(N->op_begin(), N->op_end());
2947    else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
2948      Worklist.push_back(C->getOperand());
2949    else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2950      Worklist.push_back(D->getLHS());
2951      Worklist.push_back(D->getRHS());
2952    } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2953      if (!Inserted.insert(U)) continue;
2954      const Value *V = U->getValue();
2955      if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
2956        // Look for instructions defined outside the loop.
2957        if (L->contains(Inst)) continue;
2958      } else if (isa<UndefValue>(V))
2959        // Undef doesn't have a live range, so it doesn't matter.
2960        continue;
2961      for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
2962           UI != UE; ++UI) {
2963        const Instruction *UserInst = dyn_cast<Instruction>(*UI);
2964        // Ignore non-instructions.
2965        if (!UserInst)
2966          continue;
2967        // Ignore instructions in other functions (as can happen with
2968        // Constants).
2969        if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
2970          continue;
2971        // Ignore instructions not dominated by the loop.
2972        const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
2973          UserInst->getParent() :
2974          cast<PHINode>(UserInst)->getIncomingBlock(
2975            PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
2976        if (!DT.dominates(L->getHeader(), UseBB))
2977          continue;
2978        // Ignore uses which are part of other SCEV expressions, to avoid
2979        // analyzing them multiple times.
2980        if (SE.isSCEVable(UserInst->getType())) {
2981          const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
2982          // If the user is a no-op, look through to its uses.
2983          if (!isa<SCEVUnknown>(UserS))
2984            continue;
2985          if (UserS == U) {
2986            Worklist.push_back(
2987              SE.getUnknown(const_cast<Instruction *>(UserInst)));
2988            continue;
2989          }
2990        }
2991        // Ignore icmp instructions which are already being analyzed.
2992        if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
2993          unsigned OtherIdx = !UI.getOperandNo();
2994          Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
2995          if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
2996            continue;
2997        }
2998
2999        LSRFixup &LF = getNewFixup();
3000        LF.UserInst = const_cast<Instruction *>(UserInst);
3001        LF.OperandValToReplace = UI.getUse();
3002        std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
3003        LF.LUIdx = P.first;
3004        LF.Offset = P.second;
3005        LSRUse &LU = Uses[LF.LUIdx];
3006        LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3007        if (!LU.WidestFixupType ||
3008            SE.getTypeSizeInBits(LU.WidestFixupType) <
3009            SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3010          LU.WidestFixupType = LF.OperandValToReplace->getType();
3011        InsertSupplementalFormula(U, LU, LF.LUIdx);
3012        CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3013        break;
3014      }
3015    }
3016  }
3017}
3018
3019/// CollectSubexprs - Split S into subexpressions which can be pulled out into
3020/// separate registers. If C is non-null, multiply each subexpression by C.
3021///
3022/// Return remainder expression after factoring the subexpressions captured by
3023/// Ops. If Ops is complete, return NULL.
3024static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3025                                   SmallVectorImpl<const SCEV *> &Ops,
3026                                   const Loop *L,
3027                                   ScalarEvolution &SE,
3028                                   unsigned Depth = 0) {
3029  // Arbitrarily cap recursion to protect compile time.
3030  if (Depth >= 3)
3031    return S;
3032
3033  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3034    // Break out add operands.
3035    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
3036         I != E; ++I) {
3037      const SCEV *Remainder = CollectSubexprs(*I, C, Ops, L, SE, Depth+1);
3038      if (Remainder)
3039        Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3040    }
3041    return NULL;
3042  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3043    // Split a non-zero base out of an addrec.
3044    if (AR->getStart()->isZero())
3045      return S;
3046
3047    const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3048                                            C, Ops, L, SE, Depth+1);
3049    // Split the non-zero AddRec unless it is part of a nested recurrence that
3050    // does not pertain to this loop.
3051    if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3052      Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3053      Remainder = NULL;
3054    }
3055    if (Remainder != AR->getStart()) {
3056      if (!Remainder)
3057        Remainder = SE.getConstant(AR->getType(), 0);
3058      return SE.getAddRecExpr(Remainder,
3059                              AR->getStepRecurrence(SE),
3060                              AR->getLoop(),
3061                              //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3062                              SCEV::FlagAnyWrap);
3063    }
3064  } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3065    // Break (C * (a + b + c)) into C*a + C*b + C*c.
3066    if (Mul->getNumOperands() != 2)
3067      return S;
3068    if (const SCEVConstant *Op0 =
3069        dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3070      C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3071      const SCEV *Remainder =
3072        CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3073      if (Remainder)
3074        Ops.push_back(SE.getMulExpr(C, Remainder));
3075      return NULL;
3076    }
3077  }
3078  return S;
3079}
3080
3081/// GenerateReassociations - Split out subexpressions from adds and the bases of
3082/// addrecs.
3083void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3084                                         Formula Base,
3085                                         unsigned Depth) {
3086  // Arbitrarily cap recursion to protect compile time.
3087  if (Depth >= 3) return;
3088
3089  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3090    const SCEV *BaseReg = Base.BaseRegs[i];
3091
3092    SmallVector<const SCEV *, 8> AddOps;
3093    const SCEV *Remainder = CollectSubexprs(BaseReg, 0, AddOps, L, SE);
3094    if (Remainder)
3095      AddOps.push_back(Remainder);
3096
3097    if (AddOps.size() == 1) continue;
3098
3099    for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3100         JE = AddOps.end(); J != JE; ++J) {
3101
3102      // Loop-variant "unknown" values are uninteresting; we won't be able to
3103      // do anything meaningful with them.
3104      if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3105        continue;
3106
3107      // Don't pull a constant into a register if the constant could be folded
3108      // into an immediate field.
3109      if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
3110                           Base.getNumRegs() > 1,
3111                           LU.Kind, LU.AccessTy, TLI, SE))
3112        continue;
3113
3114      // Collect all operands except *J.
3115      SmallVector<const SCEV *, 8> InnerAddOps
3116        (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3117      InnerAddOps.append
3118        (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3119
3120      // Don't leave just a constant behind in a register if the constant could
3121      // be folded into an immediate field.
3122      if (InnerAddOps.size() == 1 &&
3123          isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
3124                           Base.getNumRegs() > 1,
3125                           LU.Kind, LU.AccessTy, TLI, SE))
3126        continue;
3127
3128      const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3129      if (InnerSum->isZero())
3130        continue;
3131      Formula F = Base;
3132
3133      // Add the remaining pieces of the add back into the new formula.
3134      const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3135      if (TLI && InnerSumSC &&
3136          SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3137          TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3138                                   InnerSumSC->getValue()->getZExtValue())) {
3139        F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
3140                           InnerSumSC->getValue()->getZExtValue();
3141        F.BaseRegs.erase(F.BaseRegs.begin() + i);
3142      } else
3143        F.BaseRegs[i] = InnerSum;
3144
3145      // Add J as its own register, or an unfolded immediate.
3146      const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3147      if (TLI && SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3148          TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3149                                   SC->getValue()->getZExtValue()))
3150        F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
3151                           SC->getValue()->getZExtValue();
3152      else
3153        F.BaseRegs.push_back(*J);
3154
3155      if (InsertFormula(LU, LUIdx, F))
3156        // If that formula hadn't been seen before, recurse to find more like
3157        // it.
3158        GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
3159    }
3160  }
3161}
3162
3163/// GenerateCombinations - Generate a formula consisting of all of the
3164/// loop-dominating registers added into a single register.
3165void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3166                                       Formula Base) {
3167  // This method is only interesting on a plurality of registers.
3168  if (Base.BaseRegs.size() <= 1) return;
3169
3170  Formula F = Base;
3171  F.BaseRegs.clear();
3172  SmallVector<const SCEV *, 4> Ops;
3173  for (SmallVectorImpl<const SCEV *>::const_iterator
3174       I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
3175    const SCEV *BaseReg = *I;
3176    if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3177        !SE.hasComputableLoopEvolution(BaseReg, L))
3178      Ops.push_back(BaseReg);
3179    else
3180      F.BaseRegs.push_back(BaseReg);
3181  }
3182  if (Ops.size() > 1) {
3183    const SCEV *Sum = SE.getAddExpr(Ops);
3184    // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3185    // opportunity to fold something. For now, just ignore such cases
3186    // rather than proceed with zero in a register.
3187    if (!Sum->isZero()) {
3188      F.BaseRegs.push_back(Sum);
3189      (void)InsertFormula(LU, LUIdx, F);
3190    }
3191  }
3192}
3193
3194/// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
3195void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3196                                          Formula Base) {
3197  // We can't add a symbolic offset if the address already contains one.
3198  if (Base.AM.BaseGV) return;
3199
3200  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3201    const SCEV *G = Base.BaseRegs[i];
3202    GlobalValue *GV = ExtractSymbol(G, SE);
3203    if (G->isZero() || !GV)
3204      continue;
3205    Formula F = Base;
3206    F.AM.BaseGV = GV;
3207    if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
3208                    LU.Kind, LU.AccessTy, TLI))
3209      continue;
3210    F.BaseRegs[i] = G;
3211    (void)InsertFormula(LU, LUIdx, F);
3212  }
3213}
3214
3215/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3216void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3217                                          Formula Base) {
3218  // TODO: For now, just add the min and max offset, because it usually isn't
3219  // worthwhile looking at everything inbetween.
3220  SmallVector<int64_t, 2> Worklist;
3221  Worklist.push_back(LU.MinOffset);
3222  if (LU.MaxOffset != LU.MinOffset)
3223    Worklist.push_back(LU.MaxOffset);
3224
3225  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3226    const SCEV *G = Base.BaseRegs[i];
3227
3228    for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
3229         E = Worklist.end(); I != E; ++I) {
3230      Formula F = Base;
3231      F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
3232      if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
3233                     LU.Kind, LU.AccessTy, TLI)) {
3234        // Add the offset to the base register.
3235        const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G);
3236        // If it cancelled out, drop the base register, otherwise update it.
3237        if (NewG->isZero()) {
3238          std::swap(F.BaseRegs[i], F.BaseRegs.back());
3239          F.BaseRegs.pop_back();
3240        } else
3241          F.BaseRegs[i] = NewG;
3242
3243        (void)InsertFormula(LU, LUIdx, F);
3244      }
3245    }
3246
3247    int64_t Imm = ExtractImmediate(G, SE);
3248    if (G->isZero() || Imm == 0)
3249      continue;
3250    Formula F = Base;
3251    F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
3252    if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
3253                    LU.Kind, LU.AccessTy, TLI))
3254      continue;
3255    F.BaseRegs[i] = G;
3256    (void)InsertFormula(LU, LUIdx, F);
3257  }
3258}
3259
3260/// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
3261/// the comparison. For example, x == y -> x*c == y*c.
3262void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3263                                         Formula Base) {
3264  if (LU.Kind != LSRUse::ICmpZero) return;
3265
3266  // Determine the integer type for the base formula.
3267  Type *IntTy = Base.getType();
3268  if (!IntTy) return;
3269  if (SE.getTypeSizeInBits(IntTy) > 64) return;
3270
3271  // Don't do this if there is more than one offset.
3272  if (LU.MinOffset != LU.MaxOffset) return;
3273
3274  assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
3275
3276  // Check each interesting stride.
3277  for (SmallSetVector<int64_t, 8>::const_iterator
3278       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3279    int64_t Factor = *I;
3280
3281    // Check that the multiplication doesn't overflow.
3282    if (Base.AM.BaseOffs == INT64_MIN && Factor == -1)
3283      continue;
3284    int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
3285    if (NewBaseOffs / Factor != Base.AM.BaseOffs)
3286      continue;
3287
3288    // Check that multiplying with the use offset doesn't overflow.
3289    int64_t Offset = LU.MinOffset;
3290    if (Offset == INT64_MIN && Factor == -1)
3291      continue;
3292    Offset = (uint64_t)Offset * Factor;
3293    if (Offset / Factor != LU.MinOffset)
3294      continue;
3295
3296    Formula F = Base;
3297    F.AM.BaseOffs = NewBaseOffs;
3298
3299    // Check that this scale is legal.
3300    if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
3301      continue;
3302
3303    // Compensate for the use having MinOffset built into it.
3304    F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
3305
3306    const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3307
3308    // Check that multiplying with each base register doesn't overflow.
3309    for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3310      F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3311      if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3312        goto next;
3313    }
3314
3315    // Check that multiplying with the scaled register doesn't overflow.
3316    if (F.ScaledReg) {
3317      F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3318      if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3319        continue;
3320    }
3321
3322    // Check that multiplying with the unfolded offset doesn't overflow.
3323    if (F.UnfoldedOffset != 0) {
3324      if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
3325        continue;
3326      F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3327      if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3328        continue;
3329    }
3330
3331    // If we make it here and it's legal, add it.
3332    (void)InsertFormula(LU, LUIdx, F);
3333  next:;
3334  }
3335}
3336
3337/// GenerateScales - Generate stride factor reuse formulae by making use of
3338/// scaled-offset address modes, for example.
3339void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3340  // Determine the integer type for the base formula.
3341  Type *IntTy = Base.getType();
3342  if (!IntTy) return;
3343
3344  // If this Formula already has a scaled register, we can't add another one.
3345  if (Base.AM.Scale != 0) return;
3346
3347  // Check each interesting stride.
3348  for (SmallSetVector<int64_t, 8>::const_iterator
3349       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3350    int64_t Factor = *I;
3351
3352    Base.AM.Scale = Factor;
3353    Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
3354    // Check whether this scale is going to be legal.
3355    if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
3356                    LU.Kind, LU.AccessTy, TLI)) {
3357      // As a special-case, handle special out-of-loop Basic users specially.
3358      // TODO: Reconsider this special case.
3359      if (LU.Kind == LSRUse::Basic &&
3360          isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
3361                     LSRUse::Special, LU.AccessTy, TLI) &&
3362          LU.AllFixupsOutsideLoop)
3363        LU.Kind = LSRUse::Special;
3364      else
3365        continue;
3366    }
3367    // For an ICmpZero, negating a solitary base register won't lead to
3368    // new solutions.
3369    if (LU.Kind == LSRUse::ICmpZero &&
3370        !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
3371      continue;
3372    // For each addrec base reg, apply the scale, if possible.
3373    for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3374      if (const SCEVAddRecExpr *AR =
3375            dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
3376        const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3377        if (FactorS->isZero())
3378          continue;
3379        // Divide out the factor, ignoring high bits, since we'll be
3380        // scaling the value back up in the end.
3381        if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3382          // TODO: This could be optimized to avoid all the copying.
3383          Formula F = Base;
3384          F.ScaledReg = Quotient;
3385          F.DeleteBaseReg(F.BaseRegs[i]);
3386          (void)InsertFormula(LU, LUIdx, F);
3387        }
3388      }
3389  }
3390}
3391
3392/// GenerateTruncates - Generate reuse formulae from different IV types.
3393void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
3394  // This requires TargetLowering to tell us which truncates are free.
3395  if (!TLI) return;
3396
3397  // Don't bother truncating symbolic values.
3398  if (Base.AM.BaseGV) return;
3399
3400  // Determine the integer type for the base formula.
3401  Type *DstTy = Base.getType();
3402  if (!DstTy) return;
3403  DstTy = SE.getEffectiveSCEVType(DstTy);
3404
3405  for (SmallSetVector<Type *, 4>::const_iterator
3406       I = Types.begin(), E = Types.end(); I != E; ++I) {
3407    Type *SrcTy = *I;
3408    if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
3409      Formula F = Base;
3410
3411      if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
3412      for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
3413           JE = F.BaseRegs.end(); J != JE; ++J)
3414        *J = SE.getAnyExtendExpr(*J, SrcTy);
3415
3416      // TODO: This assumes we've done basic processing on all uses and
3417      // have an idea what the register usage is.
3418      if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
3419        continue;
3420
3421      (void)InsertFormula(LU, LUIdx, F);
3422    }
3423  }
3424}
3425
3426namespace {
3427
3428/// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
3429/// defer modifications so that the search phase doesn't have to worry about
3430/// the data structures moving underneath it.
3431struct WorkItem {
3432  size_t LUIdx;
3433  int64_t Imm;
3434  const SCEV *OrigReg;
3435
3436  WorkItem(size_t LI, int64_t I, const SCEV *R)
3437    : LUIdx(LI), Imm(I), OrigReg(R) {}
3438
3439  void print(raw_ostream &OS) const;
3440  void dump() const;
3441};
3442
3443}
3444
3445void WorkItem::print(raw_ostream &OS) const {
3446  OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
3447     << " , add offset " << Imm;
3448}
3449
3450#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3451void WorkItem::dump() const {
3452  print(errs()); errs() << '\n';
3453}
3454#endif
3455
3456/// GenerateCrossUseConstantOffsets - Look for registers which are a constant
3457/// distance apart and try to form reuse opportunities between them.
3458void LSRInstance::GenerateCrossUseConstantOffsets() {
3459  // Group the registers by their value without any added constant offset.
3460  typedef std::map<int64_t, const SCEV *> ImmMapTy;
3461  typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
3462  RegMapTy Map;
3463  DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
3464  SmallVector<const SCEV *, 8> Sequence;
3465  for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
3466       I != E; ++I) {
3467    const SCEV *Reg = *I;
3468    int64_t Imm = ExtractImmediate(Reg, SE);
3469    std::pair<RegMapTy::iterator, bool> Pair =
3470      Map.insert(std::make_pair(Reg, ImmMapTy()));
3471    if (Pair.second)
3472      Sequence.push_back(Reg);
3473    Pair.first->second.insert(std::make_pair(Imm, *I));
3474    UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
3475  }
3476
3477  // Now examine each set of registers with the same base value. Build up
3478  // a list of work to do and do the work in a separate step so that we're
3479  // not adding formulae and register counts while we're searching.
3480  SmallVector<WorkItem, 32> WorkItems;
3481  SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
3482  for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
3483       E = Sequence.end(); I != E; ++I) {
3484    const SCEV *Reg = *I;
3485    const ImmMapTy &Imms = Map.find(Reg)->second;
3486
3487    // It's not worthwhile looking for reuse if there's only one offset.
3488    if (Imms.size() == 1)
3489      continue;
3490
3491    DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
3492          for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3493               J != JE; ++J)
3494            dbgs() << ' ' << J->first;
3495          dbgs() << '\n');
3496
3497    // Examine each offset.
3498    for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3499         J != JE; ++J) {
3500      const SCEV *OrigReg = J->second;
3501
3502      int64_t JImm = J->first;
3503      const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
3504
3505      if (!isa<SCEVConstant>(OrigReg) &&
3506          UsedByIndicesMap[Reg].count() == 1) {
3507        DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
3508        continue;
3509      }
3510
3511      // Conservatively examine offsets between this orig reg a few selected
3512      // other orig regs.
3513      ImmMapTy::const_iterator OtherImms[] = {
3514        Imms.begin(), prior(Imms.end()),
3515        Imms.lower_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
3516      };
3517      for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
3518        ImmMapTy::const_iterator M = OtherImms[i];
3519        if (M == J || M == JE) continue;
3520
3521        // Compute the difference between the two.
3522        int64_t Imm = (uint64_t)JImm - M->first;
3523        for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
3524             LUIdx = UsedByIndices.find_next(LUIdx))
3525          // Make a memo of this use, offset, and register tuple.
3526          if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
3527            WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
3528      }
3529    }
3530  }
3531
3532  Map.clear();
3533  Sequence.clear();
3534  UsedByIndicesMap.clear();
3535  UniqueItems.clear();
3536
3537  // Now iterate through the worklist and add new formulae.
3538  for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
3539       E = WorkItems.end(); I != E; ++I) {
3540    const WorkItem &WI = *I;
3541    size_t LUIdx = WI.LUIdx;
3542    LSRUse &LU = Uses[LUIdx];
3543    int64_t Imm = WI.Imm;
3544    const SCEV *OrigReg = WI.OrigReg;
3545
3546    Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
3547    const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
3548    unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
3549
3550    // TODO: Use a more targeted data structure.
3551    for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
3552      const Formula &F = LU.Formulae[L];
3553      // Use the immediate in the scaled register.
3554      if (F.ScaledReg == OrigReg) {
3555        int64_t Offs = (uint64_t)F.AM.BaseOffs +
3556                       Imm * (uint64_t)F.AM.Scale;
3557        // Don't create 50 + reg(-50).
3558        if (F.referencesReg(SE.getSCEV(
3559                   ConstantInt::get(IntTy, -(uint64_t)Offs))))
3560          continue;
3561        Formula NewF = F;
3562        NewF.AM.BaseOffs = Offs;
3563        if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
3564                        LU.Kind, LU.AccessTy, TLI))
3565          continue;
3566        NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
3567
3568        // If the new scale is a constant in a register, and adding the constant
3569        // value to the immediate would produce a value closer to zero than the
3570        // immediate itself, then the formula isn't worthwhile.
3571        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
3572          if (C->getValue()->isNegative() !=
3573                (NewF.AM.BaseOffs < 0) &&
3574              (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
3575                .ule(abs64(NewF.AM.BaseOffs)))
3576            continue;
3577
3578        // OK, looks good.
3579        (void)InsertFormula(LU, LUIdx, NewF);
3580      } else {
3581        // Use the immediate in a base register.
3582        for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
3583          const SCEV *BaseReg = F.BaseRegs[N];
3584          if (BaseReg != OrigReg)
3585            continue;
3586          Formula NewF = F;
3587          NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
3588          if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
3589                          LU.Kind, LU.AccessTy, TLI)) {
3590            if (!TLI ||
3591                !TLI->isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
3592              continue;
3593            NewF = F;
3594            NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
3595          }
3596          NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
3597
3598          // If the new formula has a constant in a register, and adding the
3599          // constant value to the immediate would produce a value closer to
3600          // zero than the immediate itself, then the formula isn't worthwhile.
3601          for (SmallVectorImpl<const SCEV *>::const_iterator
3602               J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
3603               J != JE; ++J)
3604            if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
3605              if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt(
3606                   abs64(NewF.AM.BaseOffs)) &&
3607                  (C->getValue()->getValue() +
3608                   NewF.AM.BaseOffs).countTrailingZeros() >=
3609                   CountTrailingZeros_64(NewF.AM.BaseOffs))
3610                goto skip_formula;
3611
3612          // Ok, looks good.
3613          (void)InsertFormula(LU, LUIdx, NewF);
3614          break;
3615        skip_formula:;
3616        }
3617      }
3618    }
3619  }
3620}
3621
3622/// GenerateAllReuseFormulae - Generate formulae for each use.
3623void
3624LSRInstance::GenerateAllReuseFormulae() {
3625  // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
3626  // queries are more precise.
3627  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3628    LSRUse &LU = Uses[LUIdx];
3629    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3630      GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
3631    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3632      GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
3633  }
3634  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3635    LSRUse &LU = Uses[LUIdx];
3636    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3637      GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
3638    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3639      GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
3640    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3641      GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
3642    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3643      GenerateScales(LU, LUIdx, LU.Formulae[i]);
3644  }
3645  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3646    LSRUse &LU = Uses[LUIdx];
3647    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3648      GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
3649  }
3650
3651  GenerateCrossUseConstantOffsets();
3652
3653  DEBUG(dbgs() << "\n"
3654                  "After generating reuse formulae:\n";
3655        print_uses(dbgs()));
3656}
3657
3658/// If there are multiple formulae with the same set of registers used
3659/// by other uses, pick the best one and delete the others.
3660void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
3661  DenseSet<const SCEV *> VisitedRegs;
3662  SmallPtrSet<const SCEV *, 16> Regs;
3663  SmallPtrSet<const SCEV *, 16> LoserRegs;
3664#ifndef NDEBUG
3665  bool ChangedFormulae = false;
3666#endif
3667
3668  // Collect the best formula for each unique set of shared registers. This
3669  // is reset for each use.
3670  typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
3671    BestFormulaeTy;
3672  BestFormulaeTy BestFormulae;
3673
3674  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3675    LSRUse &LU = Uses[LUIdx];
3676    DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
3677
3678    bool Any = false;
3679    for (size_t FIdx = 0, NumForms = LU.Formulae.size();
3680         FIdx != NumForms; ++FIdx) {
3681      Formula &F = LU.Formulae[FIdx];
3682
3683      // Some formulas are instant losers. For example, they may depend on
3684      // nonexistent AddRecs from other loops. These need to be filtered
3685      // immediately, otherwise heuristics could choose them over others leading
3686      // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
3687      // avoids the need to recompute this information across formulae using the
3688      // same bad AddRec. Passing LoserRegs is also essential unless we remove
3689      // the corresponding bad register from the Regs set.
3690      Cost CostF;
3691      Regs.clear();
3692      CostF.RateFormula(F, Regs, VisitedRegs, L, LU.Offsets, SE, DT,
3693                        &LoserRegs);
3694      if (CostF.isLoser()) {
3695        // During initial formula generation, undesirable formulae are generated
3696        // by uses within other loops that have some non-trivial address mode or
3697        // use the postinc form of the IV. LSR needs to provide these formulae
3698        // as the basis of rediscovering the desired formula that uses an AddRec
3699        // corresponding to the existing phi. Once all formulae have been
3700        // generated, these initial losers may be pruned.
3701        DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
3702              dbgs() << "\n");
3703      }
3704      else {
3705        SmallVector<const SCEV *, 2> Key;
3706        for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
3707               JE = F.BaseRegs.end(); J != JE; ++J) {
3708          const SCEV *Reg = *J;
3709          if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
3710            Key.push_back(Reg);
3711        }
3712        if (F.ScaledReg &&
3713            RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
3714          Key.push_back(F.ScaledReg);
3715        // Unstable sort by host order ok, because this is only used for
3716        // uniquifying.
3717        std::sort(Key.begin(), Key.end());
3718
3719        std::pair<BestFormulaeTy::const_iterator, bool> P =
3720          BestFormulae.insert(std::make_pair(Key, FIdx));
3721        if (P.second)
3722          continue;
3723
3724        Formula &Best = LU.Formulae[P.first->second];
3725
3726        Cost CostBest;
3727        Regs.clear();
3728        CostBest.RateFormula(Best, Regs, VisitedRegs, L, LU.Offsets, SE, DT);
3729        if (CostF < CostBest)
3730          std::swap(F, Best);
3731        DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
3732              dbgs() << "\n"
3733                        "    in favor of formula "; Best.print(dbgs());
3734              dbgs() << '\n');
3735      }
3736#ifndef NDEBUG
3737      ChangedFormulae = true;
3738#endif
3739      LU.DeleteFormula(F);
3740      --FIdx;
3741      --NumForms;
3742      Any = true;
3743    }
3744
3745    // Now that we've filtered out some formulae, recompute the Regs set.
3746    if (Any)
3747      LU.RecomputeRegs(LUIdx, RegUses);
3748
3749    // Reset this to prepare for the next use.
3750    BestFormulae.clear();
3751  }
3752
3753  DEBUG(if (ChangedFormulae) {
3754          dbgs() << "\n"
3755                    "After filtering out undesirable candidates:\n";
3756          print_uses(dbgs());
3757        });
3758}
3759
3760// This is a rough guess that seems to work fairly well.
3761static const size_t ComplexityLimit = UINT16_MAX;
3762
3763/// EstimateSearchSpaceComplexity - Estimate the worst-case number of
3764/// solutions the solver might have to consider. It almost never considers
3765/// this many solutions because it prune the search space, but the pruning
3766/// isn't always sufficient.
3767size_t LSRInstance::EstimateSearchSpaceComplexity() const {
3768  size_t Power = 1;
3769  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3770       E = Uses.end(); I != E; ++I) {
3771    size_t FSize = I->Formulae.size();
3772    if (FSize >= ComplexityLimit) {
3773      Power = ComplexityLimit;
3774      break;
3775    }
3776    Power *= FSize;
3777    if (Power >= ComplexityLimit)
3778      break;
3779  }
3780  return Power;
3781}
3782
3783/// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset
3784/// of the registers of another formula, it won't help reduce register
3785/// pressure (though it may not necessarily hurt register pressure); remove
3786/// it to simplify the system.
3787void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
3788  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3789    DEBUG(dbgs() << "The search space is too complex.\n");
3790
3791    DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
3792                    "which use a superset of registers used by other "
3793                    "formulae.\n");
3794
3795    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3796      LSRUse &LU = Uses[LUIdx];
3797      bool Any = false;
3798      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
3799        Formula &F = LU.Formulae[i];
3800        // Look for a formula with a constant or GV in a register. If the use
3801        // also has a formula with that same value in an immediate field,
3802        // delete the one that uses a register.
3803        for (SmallVectorImpl<const SCEV *>::const_iterator
3804             I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
3805          if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
3806            Formula NewF = F;
3807            NewF.AM.BaseOffs += C->getValue()->getSExtValue();
3808            NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
3809                                (I - F.BaseRegs.begin()));
3810            if (LU.HasFormulaWithSameRegs(NewF)) {
3811              DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
3812              LU.DeleteFormula(F);
3813              --i;
3814              --e;
3815              Any = true;
3816              break;
3817            }
3818          } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
3819            if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
3820              if (!F.AM.BaseGV) {
3821                Formula NewF = F;
3822                NewF.AM.BaseGV = GV;
3823                NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
3824                                    (I - F.BaseRegs.begin()));
3825                if (LU.HasFormulaWithSameRegs(NewF)) {
3826                  DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
3827                        dbgs() << '\n');
3828                  LU.DeleteFormula(F);
3829                  --i;
3830                  --e;
3831                  Any = true;
3832                  break;
3833                }
3834              }
3835          }
3836        }
3837      }
3838      if (Any)
3839        LU.RecomputeRegs(LUIdx, RegUses);
3840    }
3841
3842    DEBUG(dbgs() << "After pre-selection:\n";
3843          print_uses(dbgs()));
3844  }
3845}
3846
3847/// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers
3848/// for expressions like A, A+1, A+2, etc., allocate a single register for
3849/// them.
3850void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
3851  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3852    DEBUG(dbgs() << "The search space is too complex.\n");
3853
3854    DEBUG(dbgs() << "Narrowing the search space by assuming that uses "
3855                    "separated by a constant offset will use the same "
3856                    "registers.\n");
3857
3858    // This is especially useful for unrolled loops.
3859
3860    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3861      LSRUse &LU = Uses[LUIdx];
3862      for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
3863           E = LU.Formulae.end(); I != E; ++I) {
3864        const Formula &F = *I;
3865        if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) {
3866          if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) {
3867            if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs,
3868                                   /*HasBaseReg=*/false,
3869                                   LU.Kind, LU.AccessTy)) {
3870              DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs());
3871                    dbgs() << '\n');
3872
3873              LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
3874
3875              // Update the relocs to reference the new use.
3876              for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
3877                   E = Fixups.end(); I != E; ++I) {
3878                LSRFixup &Fixup = *I;
3879                if (Fixup.LUIdx == LUIdx) {
3880                  Fixup.LUIdx = LUThatHas - &Uses.front();
3881                  Fixup.Offset += F.AM.BaseOffs;
3882                  // Add the new offset to LUThatHas' offset list.
3883                  if (LUThatHas->Offsets.back() != Fixup.Offset) {
3884                    LUThatHas->Offsets.push_back(Fixup.Offset);
3885                    if (Fixup.Offset > LUThatHas->MaxOffset)
3886                      LUThatHas->MaxOffset = Fixup.Offset;
3887                    if (Fixup.Offset < LUThatHas->MinOffset)
3888                      LUThatHas->MinOffset = Fixup.Offset;
3889                  }
3890                  DEBUG(dbgs() << "New fixup has offset "
3891                               << Fixup.Offset << '\n');
3892                }
3893                if (Fixup.LUIdx == NumUses-1)
3894                  Fixup.LUIdx = LUIdx;
3895              }
3896
3897              // Delete formulae from the new use which are no longer legal.
3898              bool Any = false;
3899              for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
3900                Formula &F = LUThatHas->Formulae[i];
3901                if (!isLegalUse(F.AM,
3902                                LUThatHas->MinOffset, LUThatHas->MaxOffset,
3903                                LUThatHas->Kind, LUThatHas->AccessTy, TLI)) {
3904                  DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
3905                        dbgs() << '\n');
3906                  LUThatHas->DeleteFormula(F);
3907                  --i;
3908                  --e;
3909                  Any = true;
3910                }
3911              }
3912              if (Any)
3913                LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
3914
3915              // Delete the old use.
3916              DeleteUse(LU, LUIdx);
3917              --LUIdx;
3918              --NumUses;
3919              break;
3920            }
3921          }
3922        }
3923      }
3924    }
3925
3926    DEBUG(dbgs() << "After pre-selection:\n";
3927          print_uses(dbgs()));
3928  }
3929}
3930
3931/// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call
3932/// FilterOutUndesirableDedicatedRegisters again, if necessary, now that
3933/// we've done more filtering, as it may be able to find more formulae to
3934/// eliminate.
3935void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
3936  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3937    DEBUG(dbgs() << "The search space is too complex.\n");
3938
3939    DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
3940                    "undesirable dedicated registers.\n");
3941
3942    FilterOutUndesirableDedicatedRegisters();
3943
3944    DEBUG(dbgs() << "After pre-selection:\n";
3945          print_uses(dbgs()));
3946  }
3947}
3948
3949/// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely
3950/// to be profitable, and then in any use which has any reference to that
3951/// register, delete all formulae which do not reference that register.
3952void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
3953  // With all other options exhausted, loop until the system is simple
3954  // enough to handle.
3955  SmallPtrSet<const SCEV *, 4> Taken;
3956  while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3957    // Ok, we have too many of formulae on our hands to conveniently handle.
3958    // Use a rough heuristic to thin out the list.
3959    DEBUG(dbgs() << "The search space is too complex.\n");
3960
3961    // Pick the register which is used by the most LSRUses, which is likely
3962    // to be a good reuse register candidate.
3963    const SCEV *Best = 0;
3964    unsigned BestNum = 0;
3965    for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
3966         I != E; ++I) {
3967      const SCEV *Reg = *I;
3968      if (Taken.count(Reg))
3969        continue;
3970      if (!Best)
3971        Best = Reg;
3972      else {
3973        unsigned Count = RegUses.getUsedByIndices(Reg).count();
3974        if (Count > BestNum) {
3975          Best = Reg;
3976          BestNum = Count;
3977        }
3978      }
3979    }
3980
3981    DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
3982                 << " will yield profitable reuse.\n");
3983    Taken.insert(Best);
3984
3985    // In any use with formulae which references this register, delete formulae
3986    // which don't reference it.
3987    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3988      LSRUse &LU = Uses[LUIdx];
3989      if (!LU.Regs.count(Best)) continue;
3990
3991      bool Any = false;
3992      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
3993        Formula &F = LU.Formulae[i];
3994        if (!F.referencesReg(Best)) {
3995          DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
3996          LU.DeleteFormula(F);
3997          --e;
3998          --i;
3999          Any = true;
4000          assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4001          continue;
4002        }
4003      }
4004
4005      if (Any)
4006        LU.RecomputeRegs(LUIdx, RegUses);
4007    }
4008
4009    DEBUG(dbgs() << "After pre-selection:\n";
4010          print_uses(dbgs()));
4011  }
4012}
4013
4014/// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
4015/// formulae to choose from, use some rough heuristics to prune down the number
4016/// of formulae. This keeps the main solver from taking an extraordinary amount
4017/// of time in some worst-case scenarios.
4018void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4019  NarrowSearchSpaceByDetectingSupersets();
4020  NarrowSearchSpaceByCollapsingUnrolledCode();
4021  NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4022  NarrowSearchSpaceByPickingWinnerRegs();
4023}
4024
4025/// SolveRecurse - This is the recursive solver.
4026void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4027                               Cost &SolutionCost,
4028                               SmallVectorImpl<const Formula *> &Workspace,
4029                               const Cost &CurCost,
4030                               const SmallPtrSet<const SCEV *, 16> &CurRegs,
4031                               DenseSet<const SCEV *> &VisitedRegs) const {
4032  // Some ideas:
4033  //  - prune more:
4034  //    - use more aggressive filtering
4035  //    - sort the formula so that the most profitable solutions are found first
4036  //    - sort the uses too
4037  //  - search faster:
4038  //    - don't compute a cost, and then compare. compare while computing a cost
4039  //      and bail early.
4040  //    - track register sets with SmallBitVector
4041
4042  const LSRUse &LU = Uses[Workspace.size()];
4043
4044  // If this use references any register that's already a part of the
4045  // in-progress solution, consider it a requirement that a formula must
4046  // reference that register in order to be considered. This prunes out
4047  // unprofitable searching.
4048  SmallSetVector<const SCEV *, 4> ReqRegs;
4049  for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
4050       E = CurRegs.end(); I != E; ++I)
4051    if (LU.Regs.count(*I))
4052      ReqRegs.insert(*I);
4053
4054  SmallPtrSet<const SCEV *, 16> NewRegs;
4055  Cost NewCost;
4056  for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
4057       E = LU.Formulae.end(); I != E; ++I) {
4058    const Formula &F = *I;
4059
4060    // Ignore formulae which do not use any of the required registers.
4061    bool SatisfiedReqReg = true;
4062    for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
4063         JE = ReqRegs.end(); J != JE; ++J) {
4064      const SCEV *Reg = *J;
4065      if ((!F.ScaledReg || F.ScaledReg != Reg) &&
4066          std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
4067          F.BaseRegs.end()) {
4068        SatisfiedReqReg = false;
4069        break;
4070      }
4071    }
4072    if (!SatisfiedReqReg) {
4073      // If none of the formulae satisfied the required registers, then we could
4074      // clear ReqRegs and try again. Currently, we simply give up in this case.
4075      continue;
4076    }
4077
4078    // Evaluate the cost of the current formula. If it's already worse than
4079    // the current best, prune the search at that point.
4080    NewCost = CurCost;
4081    NewRegs = CurRegs;
4082    NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT);
4083    if (NewCost < SolutionCost) {
4084      Workspace.push_back(&F);
4085      if (Workspace.size() != Uses.size()) {
4086        SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4087                     NewRegs, VisitedRegs);
4088        if (F.getNumRegs() == 1 && Workspace.size() == 1)
4089          VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4090      } else {
4091        DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4092              dbgs() << ".\n Regs:";
4093              for (SmallPtrSet<const SCEV *, 16>::const_iterator
4094                   I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
4095                dbgs() << ' ' << **I;
4096              dbgs() << '\n');
4097
4098        SolutionCost = NewCost;
4099        Solution = Workspace;
4100      }
4101      Workspace.pop_back();
4102    }
4103  }
4104}
4105
4106/// Solve - Choose one formula from each use. Return the results in the given
4107/// Solution vector.
4108void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4109  SmallVector<const Formula *, 8> Workspace;
4110  Cost SolutionCost;
4111  SolutionCost.Loose();
4112  Cost CurCost;
4113  SmallPtrSet<const SCEV *, 16> CurRegs;
4114  DenseSet<const SCEV *> VisitedRegs;
4115  Workspace.reserve(Uses.size());
4116
4117  // SolveRecurse does all the work.
4118  SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4119               CurRegs, VisitedRegs);
4120  if (Solution.empty()) {
4121    DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4122    return;
4123  }
4124
4125  // Ok, we've now made all our decisions.
4126  DEBUG(dbgs() << "\n"
4127                  "The chosen solution requires "; SolutionCost.print(dbgs());
4128        dbgs() << ":\n";
4129        for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4130          dbgs() << "  ";
4131          Uses[i].print(dbgs());
4132          dbgs() << "\n"
4133                    "    ";
4134          Solution[i]->print(dbgs());
4135          dbgs() << '\n';
4136        });
4137
4138  assert(Solution.size() == Uses.size() && "Malformed solution!");
4139}
4140
4141/// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
4142/// the dominator tree far as we can go while still being dominated by the
4143/// input positions. This helps canonicalize the insert position, which
4144/// encourages sharing.
4145BasicBlock::iterator
4146LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4147                                 const SmallVectorImpl<Instruction *> &Inputs)
4148                                                                         const {
4149  for (;;) {
4150    const Loop *IPLoop = LI.getLoopFor(IP->getParent());
4151    unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
4152
4153    BasicBlock *IDom;
4154    for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
4155      if (!Rung) return IP;
4156      Rung = Rung->getIDom();
4157      if (!Rung) return IP;
4158      IDom = Rung->getBlock();
4159
4160      // Don't climb into a loop though.
4161      const Loop *IDomLoop = LI.getLoopFor(IDom);
4162      unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
4163      if (IDomDepth <= IPLoopDepth &&
4164          (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
4165        break;
4166    }
4167
4168    bool AllDominate = true;
4169    Instruction *BetterPos = 0;
4170    Instruction *Tentative = IDom->getTerminator();
4171    for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
4172         E = Inputs.end(); I != E; ++I) {
4173      Instruction *Inst = *I;
4174      if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
4175        AllDominate = false;
4176        break;
4177      }
4178      // Attempt to find an insert position in the middle of the block,
4179      // instead of at the end, so that it can be used for other expansions.
4180      if (IDom == Inst->getParent() &&
4181          (!BetterPos || !DT.dominates(Inst, BetterPos)))
4182        BetterPos = llvm::next(BasicBlock::iterator(Inst));
4183    }
4184    if (!AllDominate)
4185      break;
4186    if (BetterPos)
4187      IP = BetterPos;
4188    else
4189      IP = Tentative;
4190  }
4191
4192  return IP;
4193}
4194
4195/// AdjustInsertPositionForExpand - Determine an input position which will be
4196/// dominated by the operands and which will dominate the result.
4197BasicBlock::iterator
4198LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
4199                                           const LSRFixup &LF,
4200                                           const LSRUse &LU,
4201                                           SCEVExpander &Rewriter) const {
4202  // Collect some instructions which must be dominated by the
4203  // expanding replacement. These must be dominated by any operands that
4204  // will be required in the expansion.
4205  SmallVector<Instruction *, 4> Inputs;
4206  if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
4207    Inputs.push_back(I);
4208  if (LU.Kind == LSRUse::ICmpZero)
4209    if (Instruction *I =
4210          dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
4211      Inputs.push_back(I);
4212  if (LF.PostIncLoops.count(L)) {
4213    if (LF.isUseFullyOutsideLoop(L))
4214      Inputs.push_back(L->getLoopLatch()->getTerminator());
4215    else
4216      Inputs.push_back(IVIncInsertPos);
4217  }
4218  // The expansion must also be dominated by the increment positions of any
4219  // loops it for which it is using post-inc mode.
4220  for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
4221       E = LF.PostIncLoops.end(); I != E; ++I) {
4222    const Loop *PIL = *I;
4223    if (PIL == L) continue;
4224
4225    // Be dominated by the loop exit.
4226    SmallVector<BasicBlock *, 4> ExitingBlocks;
4227    PIL->getExitingBlocks(ExitingBlocks);
4228    if (!ExitingBlocks.empty()) {
4229      BasicBlock *BB = ExitingBlocks[0];
4230      for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
4231        BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
4232      Inputs.push_back(BB->getTerminator());
4233    }
4234  }
4235
4236  assert(!isa<PHINode>(LowestIP) && !isa<LandingPadInst>(LowestIP)
4237         && !isa<DbgInfoIntrinsic>(LowestIP) &&
4238         "Insertion point must be a normal instruction");
4239
4240  // Then, climb up the immediate dominator tree as far as we can go while
4241  // still being dominated by the input positions.
4242  BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
4243
4244  // Don't insert instructions before PHI nodes.
4245  while (isa<PHINode>(IP)) ++IP;
4246
4247  // Ignore landingpad instructions.
4248  while (isa<LandingPadInst>(IP)) ++IP;
4249
4250  // Ignore debug intrinsics.
4251  while (isa<DbgInfoIntrinsic>(IP)) ++IP;
4252
4253  // Set IP below instructions recently inserted by SCEVExpander. This keeps the
4254  // IP consistent across expansions and allows the previously inserted
4255  // instructions to be reused by subsequent expansion.
4256  while (Rewriter.isInsertedInstruction(IP) && IP != LowestIP) ++IP;
4257
4258  return IP;
4259}
4260
4261/// Expand - Emit instructions for the leading candidate expression for this
4262/// LSRUse (this is called "expanding").
4263Value *LSRInstance::Expand(const LSRFixup &LF,
4264                           const Formula &F,
4265                           BasicBlock::iterator IP,
4266                           SCEVExpander &Rewriter,
4267                           SmallVectorImpl<WeakVH> &DeadInsts) const {
4268  const LSRUse &LU = Uses[LF.LUIdx];
4269
4270  // Determine an input position which will be dominated by the operands and
4271  // which will dominate the result.
4272  IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
4273
4274  // Inform the Rewriter if we have a post-increment use, so that it can
4275  // perform an advantageous expansion.
4276  Rewriter.setPostInc(LF.PostIncLoops);
4277
4278  // This is the type that the user actually needs.
4279  Type *OpTy = LF.OperandValToReplace->getType();
4280  // This will be the type that we'll initially expand to.
4281  Type *Ty = F.getType();
4282  if (!Ty)
4283    // No type known; just expand directly to the ultimate type.
4284    Ty = OpTy;
4285  else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
4286    // Expand directly to the ultimate type if it's the right size.
4287    Ty = OpTy;
4288  // This is the type to do integer arithmetic in.
4289  Type *IntTy = SE.getEffectiveSCEVType(Ty);
4290
4291  // Build up a list of operands to add together to form the full base.
4292  SmallVector<const SCEV *, 8> Ops;
4293
4294  // Expand the BaseRegs portion.
4295  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
4296       E = F.BaseRegs.end(); I != E; ++I) {
4297    const SCEV *Reg = *I;
4298    assert(!Reg->isZero() && "Zero allocated in a base register!");
4299
4300    // If we're expanding for a post-inc user, make the post-inc adjustment.
4301    PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4302    Reg = TransformForPostIncUse(Denormalize, Reg,
4303                                 LF.UserInst, LF.OperandValToReplace,
4304                                 Loops, SE, DT);
4305
4306    Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
4307  }
4308
4309  // Expand the ScaledReg portion.
4310  Value *ICmpScaledV = 0;
4311  if (F.AM.Scale != 0) {
4312    const SCEV *ScaledS = F.ScaledReg;
4313
4314    // If we're expanding for a post-inc user, make the post-inc adjustment.
4315    PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4316    ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
4317                                     LF.UserInst, LF.OperandValToReplace,
4318                                     Loops, SE, DT);
4319
4320    if (LU.Kind == LSRUse::ICmpZero) {
4321      // An interesting way of "folding" with an icmp is to use a negated
4322      // scale, which we'll implement by inserting it into the other operand
4323      // of the icmp.
4324      assert(F.AM.Scale == -1 &&
4325             "The only scale supported by ICmpZero uses is -1!");
4326      ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
4327    } else {
4328      // Otherwise just expand the scaled register and an explicit scale,
4329      // which is expected to be matched as part of the address.
4330
4331      // Flush the operand list to suppress SCEVExpander hoisting address modes.
4332      if (!Ops.empty() && LU.Kind == LSRUse::Address) {
4333        Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
4334        Ops.clear();
4335        Ops.push_back(SE.getUnknown(FullV));
4336      }
4337      ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
4338      ScaledS = SE.getMulExpr(ScaledS,
4339                              SE.getConstant(ScaledS->getType(), F.AM.Scale));
4340      Ops.push_back(ScaledS);
4341    }
4342  }
4343
4344  // Expand the GV portion.
4345  if (F.AM.BaseGV) {
4346    // Flush the operand list to suppress SCEVExpander hoisting.
4347    if (!Ops.empty()) {
4348      Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
4349      Ops.clear();
4350      Ops.push_back(SE.getUnknown(FullV));
4351    }
4352    Ops.push_back(SE.getUnknown(F.AM.BaseGV));
4353  }
4354
4355  // Flush the operand list to suppress SCEVExpander hoisting of both folded and
4356  // unfolded offsets. LSR assumes they both live next to their uses.
4357  if (!Ops.empty()) {
4358    Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
4359    Ops.clear();
4360    Ops.push_back(SE.getUnknown(FullV));
4361  }
4362
4363  // Expand the immediate portion.
4364  int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
4365  if (Offset != 0) {
4366    if (LU.Kind == LSRUse::ICmpZero) {
4367      // The other interesting way of "folding" with an ICmpZero is to use a
4368      // negated immediate.
4369      if (!ICmpScaledV)
4370        ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
4371      else {
4372        Ops.push_back(SE.getUnknown(ICmpScaledV));
4373        ICmpScaledV = ConstantInt::get(IntTy, Offset);
4374      }
4375    } else {
4376      // Just add the immediate values. These again are expected to be matched
4377      // as part of the address.
4378      Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
4379    }
4380  }
4381
4382  // Expand the unfolded offset portion.
4383  int64_t UnfoldedOffset = F.UnfoldedOffset;
4384  if (UnfoldedOffset != 0) {
4385    // Just add the immediate values.
4386    Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
4387                                                       UnfoldedOffset)));
4388  }
4389
4390  // Emit instructions summing all the operands.
4391  const SCEV *FullS = Ops.empty() ?
4392                      SE.getConstant(IntTy, 0) :
4393                      SE.getAddExpr(Ops);
4394  Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
4395
4396  // We're done expanding now, so reset the rewriter.
4397  Rewriter.clearPostInc();
4398
4399  // An ICmpZero Formula represents an ICmp which we're handling as a
4400  // comparison against zero. Now that we've expanded an expression for that
4401  // form, update the ICmp's other operand.
4402  if (LU.Kind == LSRUse::ICmpZero) {
4403    ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
4404    DeadInsts.push_back(CI->getOperand(1));
4405    assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
4406                           "a scale at the same time!");
4407    if (F.AM.Scale == -1) {
4408      if (ICmpScaledV->getType() != OpTy) {
4409        Instruction *Cast =
4410          CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
4411                                                   OpTy, false),
4412                           ICmpScaledV, OpTy, "tmp", CI);
4413        ICmpScaledV = Cast;
4414      }
4415      CI->setOperand(1, ICmpScaledV);
4416    } else {
4417      assert(F.AM.Scale == 0 &&
4418             "ICmp does not support folding a global value and "
4419             "a scale at the same time!");
4420      Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
4421                                           -(uint64_t)Offset);
4422      if (C->getType() != OpTy)
4423        C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4424                                                          OpTy, false),
4425                                  C, OpTy);
4426
4427      CI->setOperand(1, C);
4428    }
4429  }
4430
4431  return FullV;
4432}
4433
4434/// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
4435/// of their operands effectively happens in their predecessor blocks, so the
4436/// expression may need to be expanded in multiple places.
4437void LSRInstance::RewriteForPHI(PHINode *PN,
4438                                const LSRFixup &LF,
4439                                const Formula &F,
4440                                SCEVExpander &Rewriter,
4441                                SmallVectorImpl<WeakVH> &DeadInsts,
4442                                Pass *P) const {
4443  DenseMap<BasicBlock *, Value *> Inserted;
4444  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4445    if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
4446      BasicBlock *BB = PN->getIncomingBlock(i);
4447
4448      // If this is a critical edge, split the edge so that we do not insert
4449      // the code on all predecessor/successor paths.  We do this unless this
4450      // is the canonical backedge for this loop, which complicates post-inc
4451      // users.
4452      if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
4453          !isa<IndirectBrInst>(BB->getTerminator())) {
4454        BasicBlock *Parent = PN->getParent();
4455        Loop *PNLoop = LI.getLoopFor(Parent);
4456        if (!PNLoop || Parent != PNLoop->getHeader()) {
4457          // Split the critical edge.
4458          BasicBlock *NewBB = 0;
4459          if (!Parent->isLandingPad()) {
4460            NewBB = SplitCriticalEdge(BB, Parent, P,
4461                                      /*MergeIdenticalEdges=*/true,
4462                                      /*DontDeleteUselessPhis=*/true);
4463          } else {
4464            SmallVector<BasicBlock*, 2> NewBBs;
4465            SplitLandingPadPredecessors(Parent, BB, "", "", P, NewBBs);
4466            NewBB = NewBBs[0];
4467          }
4468          // If NewBB==NULL, then SplitCriticalEdge refused to split because all
4469          // phi predecessors are identical. The simple thing to do is skip
4470          // splitting in this case rather than complicate the API.
4471          if (NewBB) {
4472            // If PN is outside of the loop and BB is in the loop, we want to
4473            // move the block to be immediately before the PHI block, not
4474            // immediately after BB.
4475            if (L->contains(BB) && !L->contains(PN))
4476              NewBB->moveBefore(PN->getParent());
4477
4478            // Splitting the edge can reduce the number of PHI entries we have.
4479            e = PN->getNumIncomingValues();
4480            BB = NewBB;
4481            i = PN->getBasicBlockIndex(BB);
4482          }
4483        }
4484      }
4485
4486      std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
4487        Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
4488      if (!Pair.second)
4489        PN->setIncomingValue(i, Pair.first->second);
4490      else {
4491        Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
4492
4493        // If this is reuse-by-noop-cast, insert the noop cast.
4494        Type *OpTy = LF.OperandValToReplace->getType();
4495        if (FullV->getType() != OpTy)
4496          FullV =
4497            CastInst::Create(CastInst::getCastOpcode(FullV, false,
4498                                                     OpTy, false),
4499                             FullV, LF.OperandValToReplace->getType(),
4500                             "tmp", BB->getTerminator());
4501
4502        PN->setIncomingValue(i, FullV);
4503        Pair.first->second = FullV;
4504      }
4505    }
4506}
4507
4508/// Rewrite - Emit instructions for the leading candidate expression for this
4509/// LSRUse (this is called "expanding"), and update the UserInst to reference
4510/// the newly expanded value.
4511void LSRInstance::Rewrite(const LSRFixup &LF,
4512                          const Formula &F,
4513                          SCEVExpander &Rewriter,
4514                          SmallVectorImpl<WeakVH> &DeadInsts,
4515                          Pass *P) const {
4516  // First, find an insertion point that dominates UserInst. For PHI nodes,
4517  // find the nearest block which dominates all the relevant uses.
4518  if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
4519    RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
4520  } else {
4521    Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
4522
4523    // If this is reuse-by-noop-cast, insert the noop cast.
4524    Type *OpTy = LF.OperandValToReplace->getType();
4525    if (FullV->getType() != OpTy) {
4526      Instruction *Cast =
4527        CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
4528                         FullV, OpTy, "tmp", LF.UserInst);
4529      FullV = Cast;
4530    }
4531
4532    // Update the user. ICmpZero is handled specially here (for now) because
4533    // Expand may have updated one of the operands of the icmp already, and
4534    // its new value may happen to be equal to LF.OperandValToReplace, in
4535    // which case doing replaceUsesOfWith leads to replacing both operands
4536    // with the same value. TODO: Reorganize this.
4537    if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
4538      LF.UserInst->setOperand(0, FullV);
4539    else
4540      LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
4541  }
4542
4543  DeadInsts.push_back(LF.OperandValToReplace);
4544}
4545
4546/// ImplementSolution - Rewrite all the fixup locations with new values,
4547/// following the chosen solution.
4548void
4549LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
4550                               Pass *P) {
4551  // Keep track of instructions we may have made dead, so that
4552  // we can remove them after we are done working.
4553  SmallVector<WeakVH, 16> DeadInsts;
4554
4555  SCEVExpander Rewriter(SE, "lsr");
4556#ifndef NDEBUG
4557  Rewriter.setDebugType(DEBUG_TYPE);
4558#endif
4559  Rewriter.disableCanonicalMode();
4560  Rewriter.enableLSRMode();
4561  Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
4562
4563  // Mark phi nodes that terminate chains so the expander tries to reuse them.
4564  for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
4565         ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
4566    if (PHINode *PN = dyn_cast<PHINode>(ChainI->tailUserInst()))
4567      Rewriter.setChainedPhi(PN);
4568  }
4569
4570  // Expand the new value definitions and update the users.
4571  for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
4572       E = Fixups.end(); I != E; ++I) {
4573    const LSRFixup &Fixup = *I;
4574
4575    Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
4576
4577    Changed = true;
4578  }
4579
4580  for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
4581         ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
4582    GenerateIVChain(*ChainI, Rewriter, DeadInsts);
4583    Changed = true;
4584  }
4585  // Clean up after ourselves. This must be done before deleting any
4586  // instructions.
4587  Rewriter.clear();
4588
4589  Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
4590}
4591
4592LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
4593  : IU(P->getAnalysis<IVUsers>()),
4594    SE(P->getAnalysis<ScalarEvolution>()),
4595    DT(P->getAnalysis<DominatorTree>()),
4596    LI(P->getAnalysis<LoopInfo>()),
4597    TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
4598
4599  // If LoopSimplify form is not available, stay out of trouble.
4600  if (!L->isLoopSimplifyForm())
4601    return;
4602
4603  // If there's no interesting work to be done, bail early.
4604  if (IU.empty()) return;
4605
4606  // If there's too much analysis to be done, bail early. We won't be able to
4607  // model the problem anyway.
4608  unsigned NumUsers = 0;
4609  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
4610    if (++NumUsers > MaxIVUsers) {
4611      DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << *L
4612            << "\n");
4613      return;
4614    }
4615  }
4616
4617#ifndef NDEBUG
4618  // All dominating loops must have preheaders, or SCEVExpander may not be able
4619  // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
4620  //
4621  // IVUsers analysis should only create users that are dominated by simple loop
4622  // headers. Since this loop should dominate all of its users, its user list
4623  // should be empty if this loop itself is not within a simple loop nest.
4624  for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
4625       Rung; Rung = Rung->getIDom()) {
4626    BasicBlock *BB = Rung->getBlock();
4627    const Loop *DomLoop = LI.getLoopFor(BB);
4628    if (DomLoop && DomLoop->getHeader() == BB) {
4629      assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
4630    }
4631  }
4632#endif // DEBUG
4633
4634  DEBUG(dbgs() << "\nLSR on loop ";
4635        WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
4636        dbgs() << ":\n");
4637
4638  // First, perform some low-level loop optimizations.
4639  OptimizeShadowIV();
4640  OptimizeLoopTermCond();
4641
4642  // If loop preparation eliminates all interesting IV users, bail.
4643  if (IU.empty()) return;
4644
4645  // Skip nested loops until we can model them better with formulae.
4646  if (!L->empty()) {
4647    DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
4648    return;
4649  }
4650
4651  // Start collecting data and preparing for the solver.
4652  CollectChains();
4653  CollectInterestingTypesAndFactors();
4654  CollectFixupsAndInitialFormulae();
4655  CollectLoopInvariantFixupsAndFormulae();
4656
4657  assert(!Uses.empty() && "IVUsers reported at least one use");
4658  DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
4659        print_uses(dbgs()));
4660
4661  // Now use the reuse data to generate a bunch of interesting ways
4662  // to formulate the values needed for the uses.
4663  GenerateAllReuseFormulae();
4664
4665  FilterOutUndesirableDedicatedRegisters();
4666  NarrowSearchSpaceUsingHeuristics();
4667
4668  SmallVector<const Formula *, 8> Solution;
4669  Solve(Solution);
4670
4671  // Release memory that is no longer needed.
4672  Factors.clear();
4673  Types.clear();
4674  RegUses.clear();
4675
4676  if (Solution.empty())
4677    return;
4678
4679#ifndef NDEBUG
4680  // Formulae should be legal.
4681  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
4682       E = Uses.end(); I != E; ++I) {
4683     const LSRUse &LU = *I;
4684     for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
4685          JE = LU.Formulae.end(); J != JE; ++J)
4686        assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
4687                          LU.Kind, LU.AccessTy, TLI) &&
4688               "Illegal formula generated!");
4689  };
4690#endif
4691
4692  // Now that we've decided what we want, make it so.
4693  ImplementSolution(Solution, P);
4694}
4695
4696void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
4697  if (Factors.empty() && Types.empty()) return;
4698
4699  OS << "LSR has identified the following interesting factors and types: ";
4700  bool First = true;
4701
4702  for (SmallSetVector<int64_t, 8>::const_iterator
4703       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
4704    if (!First) OS << ", ";
4705    First = false;
4706    OS << '*' << *I;
4707  }
4708
4709  for (SmallSetVector<Type *, 4>::const_iterator
4710       I = Types.begin(), E = Types.end(); I != E; ++I) {
4711    if (!First) OS << ", ";
4712    First = false;
4713    OS << '(' << **I << ')';
4714  }
4715  OS << '\n';
4716}
4717
4718void LSRInstance::print_fixups(raw_ostream &OS) const {
4719  OS << "LSR is examining the following fixup sites:\n";
4720  for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
4721       E = Fixups.end(); I != E; ++I) {
4722    dbgs() << "  ";
4723    I->print(OS);
4724    OS << '\n';
4725  }
4726}
4727
4728void LSRInstance::print_uses(raw_ostream &OS) const {
4729  OS << "LSR is examining the following uses:\n";
4730  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
4731       E = Uses.end(); I != E; ++I) {
4732    const LSRUse &LU = *I;
4733    dbgs() << "  ";
4734    LU.print(OS);
4735    OS << '\n';
4736    for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
4737         JE = LU.Formulae.end(); J != JE; ++J) {
4738      OS << "    ";
4739      J->print(OS);
4740      OS << '\n';
4741    }
4742  }
4743}
4744
4745void LSRInstance::print(raw_ostream &OS) const {
4746  print_factors_and_types(OS);
4747  print_fixups(OS);
4748  print_uses(OS);
4749}
4750
4751#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4752void LSRInstance::dump() const {
4753  print(errs()); errs() << '\n';
4754}
4755#endif
4756
4757namespace {
4758
4759class LoopStrengthReduce : public LoopPass {
4760  /// TLI - Keep a pointer of a TargetLowering to consult for determining
4761  /// transformation profitability.
4762  const TargetLowering *const TLI;
4763
4764public:
4765  static char ID; // Pass ID, replacement for typeid
4766  explicit LoopStrengthReduce(const TargetLowering *tli = 0);
4767
4768private:
4769  bool runOnLoop(Loop *L, LPPassManager &LPM);
4770  void getAnalysisUsage(AnalysisUsage &AU) const;
4771};
4772
4773}
4774
4775char LoopStrengthReduce::ID = 0;
4776INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
4777                "Loop Strength Reduction", false, false)
4778INITIALIZE_PASS_DEPENDENCY(DominatorTree)
4779INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
4780INITIALIZE_PASS_DEPENDENCY(IVUsers)
4781INITIALIZE_PASS_DEPENDENCY(LoopInfo)
4782INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
4783INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
4784                "Loop Strength Reduction", false, false)
4785
4786
4787Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
4788  return new LoopStrengthReduce(TLI);
4789}
4790
4791LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
4792  : LoopPass(ID), TLI(tli) {
4793    initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
4794  }
4795
4796void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
4797  // We split critical edges, so we change the CFG.  However, we do update
4798  // many analyses if they are around.
4799  AU.addPreservedID(LoopSimplifyID);
4800
4801  AU.addRequired<LoopInfo>();
4802  AU.addPreserved<LoopInfo>();
4803  AU.addRequiredID(LoopSimplifyID);
4804  AU.addRequired<DominatorTree>();
4805  AU.addPreserved<DominatorTree>();
4806  AU.addRequired<ScalarEvolution>();
4807  AU.addPreserved<ScalarEvolution>();
4808  // Requiring LoopSimplify a second time here prevents IVUsers from running
4809  // twice, since LoopSimplify was invalidated by running ScalarEvolution.
4810  AU.addRequiredID(LoopSimplifyID);
4811  AU.addRequired<IVUsers>();
4812  AU.addPreserved<IVUsers>();
4813}
4814
4815bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
4816  bool Changed = false;
4817
4818  // Run the main LSR transformation.
4819  Changed |= LSRInstance(TLI, L, this).getChanged();
4820
4821  // Remove any extra phis created by processing inner loops.
4822  Changed |= DeleteDeadPHIs(L->getHeader());
4823  if (EnablePhiElim) {
4824    SmallVector<WeakVH, 16> DeadInsts;
4825    SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), "lsr");
4826#ifndef NDEBUG
4827    Rewriter.setDebugType(DEBUG_TYPE);
4828#endif
4829    unsigned numFolded = Rewriter.
4830      replaceCongruentIVs(L, &getAnalysis<DominatorTree>(), DeadInsts, TLI);
4831    if (numFolded) {
4832      Changed = true;
4833      DeleteTriviallyDeadInstructions(DeadInsts);
4834      DeleteDeadPHIs(L->getHeader());
4835    }
4836  }
4837  return Changed;
4838}
4839