LoopStrengthReduce.cpp revision 234982
1//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into forms suitable for efficient execution
12// on the target.
13//
14// This pass performs a strength reduction on array references inside loops that
15// have as one or more of their components the loop induction variable, it
16// rewrites expressions to take advantage of scaled-index addressing modes
17// available on the target, and it performs a variety of other optimizations
18// related to loop induction variables.
19//
20// Terminology note: this code has a lot of handling for "post-increment" or
21// "post-inc" users. This is not talking about post-increment addressing modes;
22// it is instead talking about code like this:
23//
24//   %i = phi [ 0, %entry ], [ %i.next, %latch ]
25//   ...
26//   %i.next = add %i, 1
27//   %c = icmp eq %i.next, %n
28//
29// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30// it's useful to think about these as the same register, with some uses using
31// the value of the register before the add and some using // it after. In this
32// example, the icmp is a post-increment user, since it uses %i.next, which is
33// the value of the induction variable after the increment. The other common
34// case of post-increment users is users outside the loop.
35//
36// TODO: More sophistication in the way Formulae are generated and filtered.
37//
38// TODO: Handle multiple loops at a time.
39//
40// TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
41//       instead of a GlobalValue?
42//
43// TODO: When truncation is free, truncate ICmp users' operands to make it a
44//       smaller encoding (on x86 at least).
45//
46// TODO: When a negated register is used by an add (such as in a list of
47//       multiple base registers, or as the increment expression in an addrec),
48//       we may not actually need both reg and (-1 * reg) in registers; the
49//       negation can be implemented by using a sub instead of an add. The
50//       lack of support for taking this into consideration when making
51//       register pressure decisions is partly worked around by the "Special"
52//       use kind.
53//
54//===----------------------------------------------------------------------===//
55
56#define DEBUG_TYPE "loop-reduce"
57#include "llvm/Transforms/Scalar.h"
58#include "llvm/Constants.h"
59#include "llvm/Instructions.h"
60#include "llvm/IntrinsicInst.h"
61#include "llvm/DerivedTypes.h"
62#include "llvm/Analysis/IVUsers.h"
63#include "llvm/Analysis/Dominators.h"
64#include "llvm/Analysis/LoopPass.h"
65#include "llvm/Analysis/ScalarEvolutionExpander.h"
66#include "llvm/Assembly/Writer.h"
67#include "llvm/Transforms/Utils/BasicBlockUtils.h"
68#include "llvm/Transforms/Utils/Local.h"
69#include "llvm/ADT/SmallBitVector.h"
70#include "llvm/ADT/SetVector.h"
71#include "llvm/ADT/DenseSet.h"
72#include "llvm/Support/Debug.h"
73#include "llvm/Support/CommandLine.h"
74#include "llvm/Support/ValueHandle.h"
75#include "llvm/Support/raw_ostream.h"
76#include "llvm/Target/TargetLowering.h"
77#include <algorithm>
78using namespace llvm;
79
80/// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for
81/// bail out. This threshold is far beyond the number of users that LSR can
82/// conceivably solve, so it should not affect generated code, but catches the
83/// worst cases before LSR burns too much compile time and stack space.
84static const unsigned MaxIVUsers = 200;
85
86// Temporary flag to cleanup congruent phis after LSR phi expansion.
87// It's currently disabled until we can determine whether it's truly useful or
88// not. The flag should be removed after the v3.0 release.
89// This is now needed for ivchains.
90static cl::opt<bool> EnablePhiElim(
91  "enable-lsr-phielim", cl::Hidden, cl::init(true),
92  cl::desc("Enable LSR phi elimination"));
93
94#ifndef NDEBUG
95// Stress test IV chain generation.
96static cl::opt<bool> StressIVChain(
97  "stress-ivchain", cl::Hidden, cl::init(false),
98  cl::desc("Stress test LSR IV chains"));
99#else
100static bool StressIVChain = false;
101#endif
102
103namespace {
104
105/// RegSortData - This class holds data which is used to order reuse candidates.
106class RegSortData {
107public:
108  /// UsedByIndices - This represents the set of LSRUse indices which reference
109  /// a particular register.
110  SmallBitVector UsedByIndices;
111
112  RegSortData() {}
113
114  void print(raw_ostream &OS) const;
115  void dump() const;
116};
117
118}
119
120void RegSortData::print(raw_ostream &OS) const {
121  OS << "[NumUses=" << UsedByIndices.count() << ']';
122}
123
124void RegSortData::dump() const {
125  print(errs()); errs() << '\n';
126}
127
128namespace {
129
130/// RegUseTracker - Map register candidates to information about how they are
131/// used.
132class RegUseTracker {
133  typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
134
135  RegUsesTy RegUsesMap;
136  SmallVector<const SCEV *, 16> RegSequence;
137
138public:
139  void CountRegister(const SCEV *Reg, size_t LUIdx);
140  void DropRegister(const SCEV *Reg, size_t LUIdx);
141  void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx);
142
143  bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
144
145  const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
146
147  void clear();
148
149  typedef SmallVectorImpl<const SCEV *>::iterator iterator;
150  typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
151  iterator begin() { return RegSequence.begin(); }
152  iterator end()   { return RegSequence.end(); }
153  const_iterator begin() const { return RegSequence.begin(); }
154  const_iterator end() const   { return RegSequence.end(); }
155};
156
157}
158
159void
160RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
161  std::pair<RegUsesTy::iterator, bool> Pair =
162    RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
163  RegSortData &RSD = Pair.first->second;
164  if (Pair.second)
165    RegSequence.push_back(Reg);
166  RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
167  RSD.UsedByIndices.set(LUIdx);
168}
169
170void
171RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
172  RegUsesTy::iterator It = RegUsesMap.find(Reg);
173  assert(It != RegUsesMap.end());
174  RegSortData &RSD = It->second;
175  assert(RSD.UsedByIndices.size() > LUIdx);
176  RSD.UsedByIndices.reset(LUIdx);
177}
178
179void
180RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
181  assert(LUIdx <= LastLUIdx);
182
183  // Update RegUses. The data structure is not optimized for this purpose;
184  // we must iterate through it and update each of the bit vectors.
185  for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
186       I != E; ++I) {
187    SmallBitVector &UsedByIndices = I->second.UsedByIndices;
188    if (LUIdx < UsedByIndices.size())
189      UsedByIndices[LUIdx] =
190        LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0;
191    UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
192  }
193}
194
195bool
196RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
197  RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
198  if (I == RegUsesMap.end())
199    return false;
200  const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
201  int i = UsedByIndices.find_first();
202  if (i == -1) return false;
203  if ((size_t)i != LUIdx) return true;
204  return UsedByIndices.find_next(i) != -1;
205}
206
207const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
208  RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
209  assert(I != RegUsesMap.end() && "Unknown register!");
210  return I->second.UsedByIndices;
211}
212
213void RegUseTracker::clear() {
214  RegUsesMap.clear();
215  RegSequence.clear();
216}
217
218namespace {
219
220/// Formula - This class holds information that describes a formula for
221/// computing satisfying a use. It may include broken-out immediates and scaled
222/// registers.
223struct Formula {
224  /// AM - This is used to represent complex addressing, as well as other kinds
225  /// of interesting uses.
226  TargetLowering::AddrMode AM;
227
228  /// BaseRegs - The list of "base" registers for this use. When this is
229  /// non-empty, AM.HasBaseReg should be set to true.
230  SmallVector<const SCEV *, 2> BaseRegs;
231
232  /// ScaledReg - The 'scaled' register for this use. This should be non-null
233  /// when AM.Scale is not zero.
234  const SCEV *ScaledReg;
235
236  /// UnfoldedOffset - An additional constant offset which added near the
237  /// use. This requires a temporary register, but the offset itself can
238  /// live in an add immediate field rather than a register.
239  int64_t UnfoldedOffset;
240
241  Formula() : ScaledReg(0), UnfoldedOffset(0) {}
242
243  void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
244
245  unsigned getNumRegs() const;
246  Type *getType() const;
247
248  void DeleteBaseReg(const SCEV *&S);
249
250  bool referencesReg(const SCEV *S) const;
251  bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
252                                  const RegUseTracker &RegUses) const;
253
254  void print(raw_ostream &OS) const;
255  void dump() const;
256};
257
258}
259
260/// DoInitialMatch - Recursion helper for InitialMatch.
261static void DoInitialMatch(const SCEV *S, Loop *L,
262                           SmallVectorImpl<const SCEV *> &Good,
263                           SmallVectorImpl<const SCEV *> &Bad,
264                           ScalarEvolution &SE) {
265  // Collect expressions which properly dominate the loop header.
266  if (SE.properlyDominates(S, L->getHeader())) {
267    Good.push_back(S);
268    return;
269  }
270
271  // Look at add operands.
272  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
273    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
274         I != E; ++I)
275      DoInitialMatch(*I, L, Good, Bad, SE);
276    return;
277  }
278
279  // Look at addrec operands.
280  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
281    if (!AR->getStart()->isZero()) {
282      DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
283      DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
284                                      AR->getStepRecurrence(SE),
285                                      // FIXME: AR->getNoWrapFlags()
286                                      AR->getLoop(), SCEV::FlagAnyWrap),
287                     L, Good, Bad, SE);
288      return;
289    }
290
291  // Handle a multiplication by -1 (negation) if it didn't fold.
292  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
293    if (Mul->getOperand(0)->isAllOnesValue()) {
294      SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
295      const SCEV *NewMul = SE.getMulExpr(Ops);
296
297      SmallVector<const SCEV *, 4> MyGood;
298      SmallVector<const SCEV *, 4> MyBad;
299      DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
300      const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
301        SE.getEffectiveSCEVType(NewMul->getType())));
302      for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
303           E = MyGood.end(); I != E; ++I)
304        Good.push_back(SE.getMulExpr(NegOne, *I));
305      for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
306           E = MyBad.end(); I != E; ++I)
307        Bad.push_back(SE.getMulExpr(NegOne, *I));
308      return;
309    }
310
311  // Ok, we can't do anything interesting. Just stuff the whole thing into a
312  // register and hope for the best.
313  Bad.push_back(S);
314}
315
316/// InitialMatch - Incorporate loop-variant parts of S into this Formula,
317/// attempting to keep all loop-invariant and loop-computable values in a
318/// single base register.
319void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
320  SmallVector<const SCEV *, 4> Good;
321  SmallVector<const SCEV *, 4> Bad;
322  DoInitialMatch(S, L, Good, Bad, SE);
323  if (!Good.empty()) {
324    const SCEV *Sum = SE.getAddExpr(Good);
325    if (!Sum->isZero())
326      BaseRegs.push_back(Sum);
327    AM.HasBaseReg = true;
328  }
329  if (!Bad.empty()) {
330    const SCEV *Sum = SE.getAddExpr(Bad);
331    if (!Sum->isZero())
332      BaseRegs.push_back(Sum);
333    AM.HasBaseReg = true;
334  }
335}
336
337/// getNumRegs - Return the total number of register operands used by this
338/// formula. This does not include register uses implied by non-constant
339/// addrec strides.
340unsigned Formula::getNumRegs() const {
341  return !!ScaledReg + BaseRegs.size();
342}
343
344/// getType - Return the type of this formula, if it has one, or null
345/// otherwise. This type is meaningless except for the bit size.
346Type *Formula::getType() const {
347  return !BaseRegs.empty() ? BaseRegs.front()->getType() :
348         ScaledReg ? ScaledReg->getType() :
349         AM.BaseGV ? AM.BaseGV->getType() :
350         0;
351}
352
353/// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
354void Formula::DeleteBaseReg(const SCEV *&S) {
355  if (&S != &BaseRegs.back())
356    std::swap(S, BaseRegs.back());
357  BaseRegs.pop_back();
358}
359
360/// referencesReg - Test if this formula references the given register.
361bool Formula::referencesReg(const SCEV *S) const {
362  return S == ScaledReg ||
363         std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
364}
365
366/// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
367/// which are used by uses other than the use with the given index.
368bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
369                                         const RegUseTracker &RegUses) const {
370  if (ScaledReg)
371    if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
372      return true;
373  for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
374       E = BaseRegs.end(); I != E; ++I)
375    if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
376      return true;
377  return false;
378}
379
380void Formula::print(raw_ostream &OS) const {
381  bool First = true;
382  if (AM.BaseGV) {
383    if (!First) OS << " + "; else First = false;
384    WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
385  }
386  if (AM.BaseOffs != 0) {
387    if (!First) OS << " + "; else First = false;
388    OS << AM.BaseOffs;
389  }
390  for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
391       E = BaseRegs.end(); I != E; ++I) {
392    if (!First) OS << " + "; else First = false;
393    OS << "reg(" << **I << ')';
394  }
395  if (AM.HasBaseReg && BaseRegs.empty()) {
396    if (!First) OS << " + "; else First = false;
397    OS << "**error: HasBaseReg**";
398  } else if (!AM.HasBaseReg && !BaseRegs.empty()) {
399    if (!First) OS << " + "; else First = false;
400    OS << "**error: !HasBaseReg**";
401  }
402  if (AM.Scale != 0) {
403    if (!First) OS << " + "; else First = false;
404    OS << AM.Scale << "*reg(";
405    if (ScaledReg)
406      OS << *ScaledReg;
407    else
408      OS << "<unknown>";
409    OS << ')';
410  }
411  if (UnfoldedOffset != 0) {
412    if (!First) OS << " + "; else First = false;
413    OS << "imm(" << UnfoldedOffset << ')';
414  }
415}
416
417void Formula::dump() const {
418  print(errs()); errs() << '\n';
419}
420
421/// isAddRecSExtable - Return true if the given addrec can be sign-extended
422/// without changing its value.
423static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
424  Type *WideTy =
425    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
426  return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
427}
428
429/// isAddSExtable - Return true if the given add can be sign-extended
430/// without changing its value.
431static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
432  Type *WideTy =
433    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
434  return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
435}
436
437/// isMulSExtable - Return true if the given mul can be sign-extended
438/// without changing its value.
439static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
440  Type *WideTy =
441    IntegerType::get(SE.getContext(),
442                     SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
443  return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
444}
445
446/// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
447/// and if the remainder is known to be zero,  or null otherwise. If
448/// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
449/// to Y, ignoring that the multiplication may overflow, which is useful when
450/// the result will be used in a context where the most significant bits are
451/// ignored.
452static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
453                                ScalarEvolution &SE,
454                                bool IgnoreSignificantBits = false) {
455  // Handle the trivial case, which works for any SCEV type.
456  if (LHS == RHS)
457    return SE.getConstant(LHS->getType(), 1);
458
459  // Handle a few RHS special cases.
460  const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
461  if (RC) {
462    const APInt &RA = RC->getValue()->getValue();
463    // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
464    // some folding.
465    if (RA.isAllOnesValue())
466      return SE.getMulExpr(LHS, RC);
467    // Handle x /s 1 as x.
468    if (RA == 1)
469      return LHS;
470  }
471
472  // Check for a division of a constant by a constant.
473  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
474    if (!RC)
475      return 0;
476    const APInt &LA = C->getValue()->getValue();
477    const APInt &RA = RC->getValue()->getValue();
478    if (LA.srem(RA) != 0)
479      return 0;
480    return SE.getConstant(LA.sdiv(RA));
481  }
482
483  // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
484  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
485    if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
486      const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
487                                      IgnoreSignificantBits);
488      if (!Step) return 0;
489      const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
490                                       IgnoreSignificantBits);
491      if (!Start) return 0;
492      // FlagNW is independent of the start value, step direction, and is
493      // preserved with smaller magnitude steps.
494      // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
495      return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
496    }
497    return 0;
498  }
499
500  // Distribute the sdiv over add operands, if the add doesn't overflow.
501  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
502    if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
503      SmallVector<const SCEV *, 8> Ops;
504      for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
505           I != E; ++I) {
506        const SCEV *Op = getExactSDiv(*I, RHS, SE,
507                                      IgnoreSignificantBits);
508        if (!Op) return 0;
509        Ops.push_back(Op);
510      }
511      return SE.getAddExpr(Ops);
512    }
513    return 0;
514  }
515
516  // Check for a multiply operand that we can pull RHS out of.
517  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
518    if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
519      SmallVector<const SCEV *, 4> Ops;
520      bool Found = false;
521      for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
522           I != E; ++I) {
523        const SCEV *S = *I;
524        if (!Found)
525          if (const SCEV *Q = getExactSDiv(S, RHS, SE,
526                                           IgnoreSignificantBits)) {
527            S = Q;
528            Found = true;
529          }
530        Ops.push_back(S);
531      }
532      return Found ? SE.getMulExpr(Ops) : 0;
533    }
534    return 0;
535  }
536
537  // Otherwise we don't know.
538  return 0;
539}
540
541/// ExtractImmediate - If S involves the addition of a constant integer value,
542/// return that integer value, and mutate S to point to a new SCEV with that
543/// value excluded.
544static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
545  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
546    if (C->getValue()->getValue().getMinSignedBits() <= 64) {
547      S = SE.getConstant(C->getType(), 0);
548      return C->getValue()->getSExtValue();
549    }
550  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
551    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
552    int64_t Result = ExtractImmediate(NewOps.front(), SE);
553    if (Result != 0)
554      S = SE.getAddExpr(NewOps);
555    return Result;
556  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
557    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
558    int64_t Result = ExtractImmediate(NewOps.front(), SE);
559    if (Result != 0)
560      S = SE.getAddRecExpr(NewOps, AR->getLoop(),
561                           // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
562                           SCEV::FlagAnyWrap);
563    return Result;
564  }
565  return 0;
566}
567
568/// ExtractSymbol - If S involves the addition of a GlobalValue address,
569/// return that symbol, and mutate S to point to a new SCEV with that
570/// value excluded.
571static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
572  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
573    if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
574      S = SE.getConstant(GV->getType(), 0);
575      return GV;
576    }
577  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
578    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
579    GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
580    if (Result)
581      S = SE.getAddExpr(NewOps);
582    return Result;
583  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
584    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
585    GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
586    if (Result)
587      S = SE.getAddRecExpr(NewOps, AR->getLoop(),
588                           // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
589                           SCEV::FlagAnyWrap);
590    return Result;
591  }
592  return 0;
593}
594
595/// isAddressUse - Returns true if the specified instruction is using the
596/// specified value as an address.
597static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
598  bool isAddress = isa<LoadInst>(Inst);
599  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
600    if (SI->getOperand(1) == OperandVal)
601      isAddress = true;
602  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
603    // Addressing modes can also be folded into prefetches and a variety
604    // of intrinsics.
605    switch (II->getIntrinsicID()) {
606      default: break;
607      case Intrinsic::prefetch:
608      case Intrinsic::x86_sse_storeu_ps:
609      case Intrinsic::x86_sse2_storeu_pd:
610      case Intrinsic::x86_sse2_storeu_dq:
611      case Intrinsic::x86_sse2_storel_dq:
612        if (II->getArgOperand(0) == OperandVal)
613          isAddress = true;
614        break;
615    }
616  }
617  return isAddress;
618}
619
620/// getAccessType - Return the type of the memory being accessed.
621static Type *getAccessType(const Instruction *Inst) {
622  Type *AccessTy = Inst->getType();
623  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
624    AccessTy = SI->getOperand(0)->getType();
625  else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
626    // Addressing modes can also be folded into prefetches and a variety
627    // of intrinsics.
628    switch (II->getIntrinsicID()) {
629    default: break;
630    case Intrinsic::x86_sse_storeu_ps:
631    case Intrinsic::x86_sse2_storeu_pd:
632    case Intrinsic::x86_sse2_storeu_dq:
633    case Intrinsic::x86_sse2_storel_dq:
634      AccessTy = II->getArgOperand(0)->getType();
635      break;
636    }
637  }
638
639  // All pointers have the same requirements, so canonicalize them to an
640  // arbitrary pointer type to minimize variation.
641  if (PointerType *PTy = dyn_cast<PointerType>(AccessTy))
642    AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
643                                PTy->getAddressSpace());
644
645  return AccessTy;
646}
647
648/// isExistingPhi - Return true if this AddRec is already a phi in its loop.
649static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
650  for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
651       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
652    if (SE.isSCEVable(PN->getType()) &&
653        (SE.getEffectiveSCEVType(PN->getType()) ==
654         SE.getEffectiveSCEVType(AR->getType())) &&
655        SE.getSCEV(PN) == AR)
656      return true;
657  }
658  return false;
659}
660
661/// Check if expanding this expression is likely to incur significant cost. This
662/// is tricky because SCEV doesn't track which expressions are actually computed
663/// by the current IR.
664///
665/// We currently allow expansion of IV increments that involve adds,
666/// multiplication by constants, and AddRecs from existing phis.
667///
668/// TODO: Allow UDivExpr if we can find an existing IV increment that is an
669/// obvious multiple of the UDivExpr.
670static bool isHighCostExpansion(const SCEV *S,
671                                SmallPtrSet<const SCEV*, 8> &Processed,
672                                ScalarEvolution &SE) {
673  // Zero/One operand expressions
674  switch (S->getSCEVType()) {
675  case scUnknown:
676  case scConstant:
677    return false;
678  case scTruncate:
679    return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
680                               Processed, SE);
681  case scZeroExtend:
682    return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
683                               Processed, SE);
684  case scSignExtend:
685    return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
686                               Processed, SE);
687  }
688
689  if (!Processed.insert(S))
690    return false;
691
692  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
693    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
694         I != E; ++I) {
695      if (isHighCostExpansion(*I, Processed, SE))
696        return true;
697    }
698    return false;
699  }
700
701  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
702    if (Mul->getNumOperands() == 2) {
703      // Multiplication by a constant is ok
704      if (isa<SCEVConstant>(Mul->getOperand(0)))
705        return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
706
707      // If we have the value of one operand, check if an existing
708      // multiplication already generates this expression.
709      if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
710        Value *UVal = U->getValue();
711        for (Value::use_iterator UI = UVal->use_begin(), UE = UVal->use_end();
712             UI != UE; ++UI) {
713          // If U is a constant, it may be used by a ConstantExpr.
714          Instruction *User = dyn_cast<Instruction>(*UI);
715          if (User && User->getOpcode() == Instruction::Mul
716              && SE.isSCEVable(User->getType())) {
717            return SE.getSCEV(User) == Mul;
718          }
719        }
720      }
721    }
722  }
723
724  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
725    if (isExistingPhi(AR, SE))
726      return false;
727  }
728
729  // Fow now, consider any other type of expression (div/mul/min/max) high cost.
730  return true;
731}
732
733/// DeleteTriviallyDeadInstructions - If any of the instructions is the
734/// specified set are trivially dead, delete them and see if this makes any of
735/// their operands subsequently dead.
736static bool
737DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
738  bool Changed = false;
739
740  while (!DeadInsts.empty()) {
741    Instruction *I = dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val());
742
743    if (I == 0 || !isInstructionTriviallyDead(I))
744      continue;
745
746    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
747      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
748        *OI = 0;
749        if (U->use_empty())
750          DeadInsts.push_back(U);
751      }
752
753    I->eraseFromParent();
754    Changed = true;
755  }
756
757  return Changed;
758}
759
760namespace {
761
762/// Cost - This class is used to measure and compare candidate formulae.
763class Cost {
764  /// TODO: Some of these could be merged. Also, a lexical ordering
765  /// isn't always optimal.
766  unsigned NumRegs;
767  unsigned AddRecCost;
768  unsigned NumIVMuls;
769  unsigned NumBaseAdds;
770  unsigned ImmCost;
771  unsigned SetupCost;
772
773public:
774  Cost()
775    : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
776      SetupCost(0) {}
777
778  bool operator<(const Cost &Other) const;
779
780  void Loose();
781
782#ifndef NDEBUG
783  // Once any of the metrics loses, they must all remain losers.
784  bool isValid() {
785    return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds
786             | ImmCost | SetupCost) != ~0u)
787      || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds
788           & ImmCost & SetupCost) == ~0u);
789  }
790#endif
791
792  bool isLoser() {
793    assert(isValid() && "invalid cost");
794    return NumRegs == ~0u;
795  }
796
797  void RateFormula(const Formula &F,
798                   SmallPtrSet<const SCEV *, 16> &Regs,
799                   const DenseSet<const SCEV *> &VisitedRegs,
800                   const Loop *L,
801                   const SmallVectorImpl<int64_t> &Offsets,
802                   ScalarEvolution &SE, DominatorTree &DT,
803                   SmallPtrSet<const SCEV *, 16> *LoserRegs = 0);
804
805  void print(raw_ostream &OS) const;
806  void dump() const;
807
808private:
809  void RateRegister(const SCEV *Reg,
810                    SmallPtrSet<const SCEV *, 16> &Regs,
811                    const Loop *L,
812                    ScalarEvolution &SE, DominatorTree &DT);
813  void RatePrimaryRegister(const SCEV *Reg,
814                           SmallPtrSet<const SCEV *, 16> &Regs,
815                           const Loop *L,
816                           ScalarEvolution &SE, DominatorTree &DT,
817                           SmallPtrSet<const SCEV *, 16> *LoserRegs);
818};
819
820}
821
822/// RateRegister - Tally up interesting quantities from the given register.
823void Cost::RateRegister(const SCEV *Reg,
824                        SmallPtrSet<const SCEV *, 16> &Regs,
825                        const Loop *L,
826                        ScalarEvolution &SE, DominatorTree &DT) {
827  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
828    // If this is an addrec for another loop, don't second-guess its addrec phi
829    // nodes. LSR isn't currently smart enough to reason about more than one
830    // loop at a time. LSR has already run on inner loops, will not run on outer
831    // loops, and cannot be expected to change sibling loops.
832    if (AR->getLoop() != L) {
833      // If the AddRec exists, consider it's register free and leave it alone.
834      if (isExistingPhi(AR, SE))
835        return;
836
837      // Otherwise, do not consider this formula at all.
838      Loose();
839      return;
840    }
841    AddRecCost += 1; /// TODO: This should be a function of the stride.
842
843    // Add the step value register, if it needs one.
844    // TODO: The non-affine case isn't precisely modeled here.
845    if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
846      if (!Regs.count(AR->getOperand(1))) {
847        RateRegister(AR->getOperand(1), Regs, L, SE, DT);
848        if (isLoser())
849          return;
850      }
851    }
852  }
853  ++NumRegs;
854
855  // Rough heuristic; favor registers which don't require extra setup
856  // instructions in the preheader.
857  if (!isa<SCEVUnknown>(Reg) &&
858      !isa<SCEVConstant>(Reg) &&
859      !(isa<SCEVAddRecExpr>(Reg) &&
860        (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
861         isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
862    ++SetupCost;
863
864    NumIVMuls += isa<SCEVMulExpr>(Reg) &&
865                 SE.hasComputableLoopEvolution(Reg, L);
866}
867
868/// RatePrimaryRegister - Record this register in the set. If we haven't seen it
869/// before, rate it. Optional LoserRegs provides a way to declare any formula
870/// that refers to one of those regs an instant loser.
871void Cost::RatePrimaryRegister(const SCEV *Reg,
872                               SmallPtrSet<const SCEV *, 16> &Regs,
873                               const Loop *L,
874                               ScalarEvolution &SE, DominatorTree &DT,
875                               SmallPtrSet<const SCEV *, 16> *LoserRegs) {
876  if (LoserRegs && LoserRegs->count(Reg)) {
877    Loose();
878    return;
879  }
880  if (Regs.insert(Reg)) {
881    RateRegister(Reg, Regs, L, SE, DT);
882    if (isLoser())
883      LoserRegs->insert(Reg);
884  }
885}
886
887void Cost::RateFormula(const Formula &F,
888                       SmallPtrSet<const SCEV *, 16> &Regs,
889                       const DenseSet<const SCEV *> &VisitedRegs,
890                       const Loop *L,
891                       const SmallVectorImpl<int64_t> &Offsets,
892                       ScalarEvolution &SE, DominatorTree &DT,
893                       SmallPtrSet<const SCEV *, 16> *LoserRegs) {
894  // Tally up the registers.
895  if (const SCEV *ScaledReg = F.ScaledReg) {
896    if (VisitedRegs.count(ScaledReg)) {
897      Loose();
898      return;
899    }
900    RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
901    if (isLoser())
902      return;
903  }
904  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
905       E = F.BaseRegs.end(); I != E; ++I) {
906    const SCEV *BaseReg = *I;
907    if (VisitedRegs.count(BaseReg)) {
908      Loose();
909      return;
910    }
911    RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
912    if (isLoser())
913      return;
914  }
915
916  // Determine how many (unfolded) adds we'll need inside the loop.
917  size_t NumBaseParts = F.BaseRegs.size() + (F.UnfoldedOffset != 0);
918  if (NumBaseParts > 1)
919    NumBaseAdds += NumBaseParts - 1;
920
921  // Tally up the non-zero immediates.
922  for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
923       E = Offsets.end(); I != E; ++I) {
924    int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
925    if (F.AM.BaseGV)
926      ImmCost += 64; // Handle symbolic values conservatively.
927                     // TODO: This should probably be the pointer size.
928    else if (Offset != 0)
929      ImmCost += APInt(64, Offset, true).getMinSignedBits();
930  }
931  assert(isValid() && "invalid cost");
932}
933
934/// Loose - Set this cost to a losing value.
935void Cost::Loose() {
936  NumRegs = ~0u;
937  AddRecCost = ~0u;
938  NumIVMuls = ~0u;
939  NumBaseAdds = ~0u;
940  ImmCost = ~0u;
941  SetupCost = ~0u;
942}
943
944/// operator< - Choose the lower cost.
945bool Cost::operator<(const Cost &Other) const {
946  if (NumRegs != Other.NumRegs)
947    return NumRegs < Other.NumRegs;
948  if (AddRecCost != Other.AddRecCost)
949    return AddRecCost < Other.AddRecCost;
950  if (NumIVMuls != Other.NumIVMuls)
951    return NumIVMuls < Other.NumIVMuls;
952  if (NumBaseAdds != Other.NumBaseAdds)
953    return NumBaseAdds < Other.NumBaseAdds;
954  if (ImmCost != Other.ImmCost)
955    return ImmCost < Other.ImmCost;
956  if (SetupCost != Other.SetupCost)
957    return SetupCost < Other.SetupCost;
958  return false;
959}
960
961void Cost::print(raw_ostream &OS) const {
962  OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
963  if (AddRecCost != 0)
964    OS << ", with addrec cost " << AddRecCost;
965  if (NumIVMuls != 0)
966    OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
967  if (NumBaseAdds != 0)
968    OS << ", plus " << NumBaseAdds << " base add"
969       << (NumBaseAdds == 1 ? "" : "s");
970  if (ImmCost != 0)
971    OS << ", plus " << ImmCost << " imm cost";
972  if (SetupCost != 0)
973    OS << ", plus " << SetupCost << " setup cost";
974}
975
976void Cost::dump() const {
977  print(errs()); errs() << '\n';
978}
979
980namespace {
981
982/// LSRFixup - An operand value in an instruction which is to be replaced
983/// with some equivalent, possibly strength-reduced, replacement.
984struct LSRFixup {
985  /// UserInst - The instruction which will be updated.
986  Instruction *UserInst;
987
988  /// OperandValToReplace - The operand of the instruction which will
989  /// be replaced. The operand may be used more than once; every instance
990  /// will be replaced.
991  Value *OperandValToReplace;
992
993  /// PostIncLoops - If this user is to use the post-incremented value of an
994  /// induction variable, this variable is non-null and holds the loop
995  /// associated with the induction variable.
996  PostIncLoopSet PostIncLoops;
997
998  /// LUIdx - The index of the LSRUse describing the expression which
999  /// this fixup needs, minus an offset (below).
1000  size_t LUIdx;
1001
1002  /// Offset - A constant offset to be added to the LSRUse expression.
1003  /// This allows multiple fixups to share the same LSRUse with different
1004  /// offsets, for example in an unrolled loop.
1005  int64_t Offset;
1006
1007  bool isUseFullyOutsideLoop(const Loop *L) const;
1008
1009  LSRFixup();
1010
1011  void print(raw_ostream &OS) const;
1012  void dump() const;
1013};
1014
1015}
1016
1017LSRFixup::LSRFixup()
1018  : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {}
1019
1020/// isUseFullyOutsideLoop - Test whether this fixup always uses its
1021/// value outside of the given loop.
1022bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1023  // PHI nodes use their value in their incoming blocks.
1024  if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1025    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1026      if (PN->getIncomingValue(i) == OperandValToReplace &&
1027          L->contains(PN->getIncomingBlock(i)))
1028        return false;
1029    return true;
1030  }
1031
1032  return !L->contains(UserInst);
1033}
1034
1035void LSRFixup::print(raw_ostream &OS) const {
1036  OS << "UserInst=";
1037  // Store is common and interesting enough to be worth special-casing.
1038  if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1039    OS << "store ";
1040    WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
1041  } else if (UserInst->getType()->isVoidTy())
1042    OS << UserInst->getOpcodeName();
1043  else
1044    WriteAsOperand(OS, UserInst, /*PrintType=*/false);
1045
1046  OS << ", OperandValToReplace=";
1047  WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
1048
1049  for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
1050       E = PostIncLoops.end(); I != E; ++I) {
1051    OS << ", PostIncLoop=";
1052    WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false);
1053  }
1054
1055  if (LUIdx != ~size_t(0))
1056    OS << ", LUIdx=" << LUIdx;
1057
1058  if (Offset != 0)
1059    OS << ", Offset=" << Offset;
1060}
1061
1062void LSRFixup::dump() const {
1063  print(errs()); errs() << '\n';
1064}
1065
1066namespace {
1067
1068/// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
1069/// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
1070struct UniquifierDenseMapInfo {
1071  static SmallVector<const SCEV *, 2> getEmptyKey() {
1072    SmallVector<const SCEV *, 2> V;
1073    V.push_back(reinterpret_cast<const SCEV *>(-1));
1074    return V;
1075  }
1076
1077  static SmallVector<const SCEV *, 2> getTombstoneKey() {
1078    SmallVector<const SCEV *, 2> V;
1079    V.push_back(reinterpret_cast<const SCEV *>(-2));
1080    return V;
1081  }
1082
1083  static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) {
1084    unsigned Result = 0;
1085    for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
1086         E = V.end(); I != E; ++I)
1087      Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I);
1088    return Result;
1089  }
1090
1091  static bool isEqual(const SmallVector<const SCEV *, 2> &LHS,
1092                      const SmallVector<const SCEV *, 2> &RHS) {
1093    return LHS == RHS;
1094  }
1095};
1096
1097/// LSRUse - This class holds the state that LSR keeps for each use in
1098/// IVUsers, as well as uses invented by LSR itself. It includes information
1099/// about what kinds of things can be folded into the user, information about
1100/// the user itself, and information about how the use may be satisfied.
1101/// TODO: Represent multiple users of the same expression in common?
1102class LSRUse {
1103  DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier;
1104
1105public:
1106  /// KindType - An enum for a kind of use, indicating what types of
1107  /// scaled and immediate operands it might support.
1108  enum KindType {
1109    Basic,   ///< A normal use, with no folding.
1110    Special, ///< A special case of basic, allowing -1 scales.
1111    Address, ///< An address use; folding according to TargetLowering
1112    ICmpZero ///< An equality icmp with both operands folded into one.
1113    // TODO: Add a generic icmp too?
1114  };
1115
1116  KindType Kind;
1117  Type *AccessTy;
1118
1119  SmallVector<int64_t, 8> Offsets;
1120  int64_t MinOffset;
1121  int64_t MaxOffset;
1122
1123  /// AllFixupsOutsideLoop - This records whether all of the fixups using this
1124  /// LSRUse are outside of the loop, in which case some special-case heuristics
1125  /// may be used.
1126  bool AllFixupsOutsideLoop;
1127
1128  /// WidestFixupType - This records the widest use type for any fixup using
1129  /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different
1130  /// max fixup widths to be equivalent, because the narrower one may be relying
1131  /// on the implicit truncation to truncate away bogus bits.
1132  Type *WidestFixupType;
1133
1134  /// Formulae - A list of ways to build a value that can satisfy this user.
1135  /// After the list is populated, one of these is selected heuristically and
1136  /// used to formulate a replacement for OperandValToReplace in UserInst.
1137  SmallVector<Formula, 12> Formulae;
1138
1139  /// Regs - The set of register candidates used by all formulae in this LSRUse.
1140  SmallPtrSet<const SCEV *, 4> Regs;
1141
1142  LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T),
1143                                      MinOffset(INT64_MAX),
1144                                      MaxOffset(INT64_MIN),
1145                                      AllFixupsOutsideLoop(true),
1146                                      WidestFixupType(0) {}
1147
1148  bool HasFormulaWithSameRegs(const Formula &F) const;
1149  bool InsertFormula(const Formula &F);
1150  void DeleteFormula(Formula &F);
1151  void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1152
1153  void print(raw_ostream &OS) const;
1154  void dump() const;
1155};
1156
1157}
1158
1159/// HasFormula - Test whether this use as a formula which has the same
1160/// registers as the given formula.
1161bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1162  SmallVector<const SCEV *, 2> Key = F.BaseRegs;
1163  if (F.ScaledReg) Key.push_back(F.ScaledReg);
1164  // Unstable sort by host order ok, because this is only used for uniquifying.
1165  std::sort(Key.begin(), Key.end());
1166  return Uniquifier.count(Key);
1167}
1168
1169/// InsertFormula - If the given formula has not yet been inserted, add it to
1170/// the list, and return true. Return false otherwise.
1171bool LSRUse::InsertFormula(const Formula &F) {
1172  SmallVector<const SCEV *, 2> Key = F.BaseRegs;
1173  if (F.ScaledReg) Key.push_back(F.ScaledReg);
1174  // Unstable sort by host order ok, because this is only used for uniquifying.
1175  std::sort(Key.begin(), Key.end());
1176
1177  if (!Uniquifier.insert(Key).second)
1178    return false;
1179
1180  // Using a register to hold the value of 0 is not profitable.
1181  assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1182         "Zero allocated in a scaled register!");
1183#ifndef NDEBUG
1184  for (SmallVectorImpl<const SCEV *>::const_iterator I =
1185       F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
1186    assert(!(*I)->isZero() && "Zero allocated in a base register!");
1187#endif
1188
1189  // Add the formula to the list.
1190  Formulae.push_back(F);
1191
1192  // Record registers now being used by this use.
1193  Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1194
1195  return true;
1196}
1197
1198/// DeleteFormula - Remove the given formula from this use's list.
1199void LSRUse::DeleteFormula(Formula &F) {
1200  if (&F != &Formulae.back())
1201    std::swap(F, Formulae.back());
1202  Formulae.pop_back();
1203}
1204
1205/// RecomputeRegs - Recompute the Regs field, and update RegUses.
1206void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1207  // Now that we've filtered out some formulae, recompute the Regs set.
1208  SmallPtrSet<const SCEV *, 4> OldRegs = Regs;
1209  Regs.clear();
1210  for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(),
1211       E = Formulae.end(); I != E; ++I) {
1212    const Formula &F = *I;
1213    if (F.ScaledReg) Regs.insert(F.ScaledReg);
1214    Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1215  }
1216
1217  // Update the RegTracker.
1218  for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(),
1219       E = OldRegs.end(); I != E; ++I)
1220    if (!Regs.count(*I))
1221      RegUses.DropRegister(*I, LUIdx);
1222}
1223
1224void LSRUse::print(raw_ostream &OS) const {
1225  OS << "LSR Use: Kind=";
1226  switch (Kind) {
1227  case Basic:    OS << "Basic"; break;
1228  case Special:  OS << "Special"; break;
1229  case ICmpZero: OS << "ICmpZero"; break;
1230  case Address:
1231    OS << "Address of ";
1232    if (AccessTy->isPointerTy())
1233      OS << "pointer"; // the full pointer type could be really verbose
1234    else
1235      OS << *AccessTy;
1236  }
1237
1238  OS << ", Offsets={";
1239  for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
1240       E = Offsets.end(); I != E; ++I) {
1241    OS << *I;
1242    if (llvm::next(I) != E)
1243      OS << ',';
1244  }
1245  OS << '}';
1246
1247  if (AllFixupsOutsideLoop)
1248    OS << ", all-fixups-outside-loop";
1249
1250  if (WidestFixupType)
1251    OS << ", widest fixup type: " << *WidestFixupType;
1252}
1253
1254void LSRUse::dump() const {
1255  print(errs()); errs() << '\n';
1256}
1257
1258/// isLegalUse - Test whether the use described by AM is "legal", meaning it can
1259/// be completely folded into the user instruction at isel time. This includes
1260/// address-mode folding and special icmp tricks.
1261static bool isLegalUse(const TargetLowering::AddrMode &AM,
1262                       LSRUse::KindType Kind, Type *AccessTy,
1263                       const TargetLowering *TLI) {
1264  switch (Kind) {
1265  case LSRUse::Address:
1266    // If we have low-level target information, ask the target if it can
1267    // completely fold this address.
1268    if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
1269
1270    // Otherwise, just guess that reg+reg addressing is legal.
1271    return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
1272
1273  case LSRUse::ICmpZero:
1274    // There's not even a target hook for querying whether it would be legal to
1275    // fold a GV into an ICmp.
1276    if (AM.BaseGV)
1277      return false;
1278
1279    // ICmp only has two operands; don't allow more than two non-trivial parts.
1280    if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
1281      return false;
1282
1283    // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1284    // putting the scaled register in the other operand of the icmp.
1285    if (AM.Scale != 0 && AM.Scale != -1)
1286      return false;
1287
1288    // If we have low-level target information, ask the target if it can fold an
1289    // integer immediate on an icmp.
1290    if (AM.BaseOffs != 0) {
1291      if (!TLI)
1292        return false;
1293      // We have one of:
1294      // ICmpZero     BaseReg + Offset => ICmp BaseReg, -Offset
1295      // ICmpZero -1*ScaleReg + Offset => ICmp ScaleReg, Offset
1296      // Offs is the ICmp immediate.
1297      int64_t Offs = AM.BaseOffs;
1298      if (AM.Scale == 0)
1299        Offs = -(uint64_t)Offs; // The cast does the right thing with INT64_MIN.
1300      return TLI->isLegalICmpImmediate(Offs);
1301    }
1302
1303    // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1304    return true;
1305
1306  case LSRUse::Basic:
1307    // Only handle single-register values.
1308    return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
1309
1310  case LSRUse::Special:
1311    // Only handle -1 scales, or no scale.
1312    return AM.Scale == 0 || AM.Scale == -1;
1313  }
1314
1315  llvm_unreachable("Invalid LSRUse Kind!");
1316}
1317
1318static bool isLegalUse(TargetLowering::AddrMode AM,
1319                       int64_t MinOffset, int64_t MaxOffset,
1320                       LSRUse::KindType Kind, Type *AccessTy,
1321                       const TargetLowering *TLI) {
1322  // Check for overflow.
1323  if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
1324      (MinOffset > 0))
1325    return false;
1326  AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
1327  if (isLegalUse(AM, Kind, AccessTy, TLI)) {
1328    AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
1329    // Check for overflow.
1330    if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
1331        (MaxOffset > 0))
1332      return false;
1333    AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
1334    return isLegalUse(AM, Kind, AccessTy, TLI);
1335  }
1336  return false;
1337}
1338
1339static bool isAlwaysFoldable(int64_t BaseOffs,
1340                             GlobalValue *BaseGV,
1341                             bool HasBaseReg,
1342                             LSRUse::KindType Kind, Type *AccessTy,
1343                             const TargetLowering *TLI) {
1344  // Fast-path: zero is always foldable.
1345  if (BaseOffs == 0 && !BaseGV) return true;
1346
1347  // Conservatively, create an address with an immediate and a
1348  // base and a scale.
1349  TargetLowering::AddrMode AM;
1350  AM.BaseOffs = BaseOffs;
1351  AM.BaseGV = BaseGV;
1352  AM.HasBaseReg = HasBaseReg;
1353  AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1354
1355  // Canonicalize a scale of 1 to a base register if the formula doesn't
1356  // already have a base register.
1357  if (!AM.HasBaseReg && AM.Scale == 1) {
1358    AM.Scale = 0;
1359    AM.HasBaseReg = true;
1360  }
1361
1362  return isLegalUse(AM, Kind, AccessTy, TLI);
1363}
1364
1365static bool isAlwaysFoldable(const SCEV *S,
1366                             int64_t MinOffset, int64_t MaxOffset,
1367                             bool HasBaseReg,
1368                             LSRUse::KindType Kind, Type *AccessTy,
1369                             const TargetLowering *TLI,
1370                             ScalarEvolution &SE) {
1371  // Fast-path: zero is always foldable.
1372  if (S->isZero()) return true;
1373
1374  // Conservatively, create an address with an immediate and a
1375  // base and a scale.
1376  int64_t BaseOffs = ExtractImmediate(S, SE);
1377  GlobalValue *BaseGV = ExtractSymbol(S, SE);
1378
1379  // If there's anything else involved, it's not foldable.
1380  if (!S->isZero()) return false;
1381
1382  // Fast-path: zero is always foldable.
1383  if (BaseOffs == 0 && !BaseGV) return true;
1384
1385  // Conservatively, create an address with an immediate and a
1386  // base and a scale.
1387  TargetLowering::AddrMode AM;
1388  AM.BaseOffs = BaseOffs;
1389  AM.BaseGV = BaseGV;
1390  AM.HasBaseReg = HasBaseReg;
1391  AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1392
1393  return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
1394}
1395
1396namespace {
1397
1398/// UseMapDenseMapInfo - A DenseMapInfo implementation for holding
1399/// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind.
1400struct UseMapDenseMapInfo {
1401  static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() {
1402    return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic);
1403  }
1404
1405  static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() {
1406    return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic);
1407  }
1408
1409  static unsigned
1410  getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) {
1411    unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first);
1412    Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second));
1413    return Result;
1414  }
1415
1416  static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS,
1417                      const std::pair<const SCEV *, LSRUse::KindType> &RHS) {
1418    return LHS == RHS;
1419  }
1420};
1421
1422/// IVInc - An individual increment in a Chain of IV increments.
1423/// Relate an IV user to an expression that computes the IV it uses from the IV
1424/// used by the previous link in the Chain.
1425///
1426/// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1427/// original IVOperand. The head of the chain's IVOperand is only valid during
1428/// chain collection, before LSR replaces IV users. During chain generation,
1429/// IncExpr can be used to find the new IVOperand that computes the same
1430/// expression.
1431struct IVInc {
1432  Instruction *UserInst;
1433  Value* IVOperand;
1434  const SCEV *IncExpr;
1435
1436  IVInc(Instruction *U, Value *O, const SCEV *E):
1437    UserInst(U), IVOperand(O), IncExpr(E) {}
1438};
1439
1440// IVChain - The list of IV increments in program order.
1441// We typically add the head of a chain without finding subsequent links.
1442typedef SmallVector<IVInc,1> IVChain;
1443
1444/// ChainUsers - Helper for CollectChains to track multiple IV increment uses.
1445/// Distinguish between FarUsers that definitely cross IV increments and
1446/// NearUsers that may be used between IV increments.
1447struct ChainUsers {
1448  SmallPtrSet<Instruction*, 4> FarUsers;
1449  SmallPtrSet<Instruction*, 4> NearUsers;
1450};
1451
1452/// LSRInstance - This class holds state for the main loop strength reduction
1453/// logic.
1454class LSRInstance {
1455  IVUsers &IU;
1456  ScalarEvolution &SE;
1457  DominatorTree &DT;
1458  LoopInfo &LI;
1459  const TargetLowering *const TLI;
1460  Loop *const L;
1461  bool Changed;
1462
1463  /// IVIncInsertPos - This is the insert position that the current loop's
1464  /// induction variable increment should be placed. In simple loops, this is
1465  /// the latch block's terminator. But in more complicated cases, this is a
1466  /// position which will dominate all the in-loop post-increment users.
1467  Instruction *IVIncInsertPos;
1468
1469  /// Factors - Interesting factors between use strides.
1470  SmallSetVector<int64_t, 8> Factors;
1471
1472  /// Types - Interesting use types, to facilitate truncation reuse.
1473  SmallSetVector<Type *, 4> Types;
1474
1475  /// Fixups - The list of operands which are to be replaced.
1476  SmallVector<LSRFixup, 16> Fixups;
1477
1478  /// Uses - The list of interesting uses.
1479  SmallVector<LSRUse, 16> Uses;
1480
1481  /// RegUses - Track which uses use which register candidates.
1482  RegUseTracker RegUses;
1483
1484  // Limit the number of chains to avoid quadratic behavior. We don't expect to
1485  // have more than a few IV increment chains in a loop. Missing a Chain falls
1486  // back to normal LSR behavior for those uses.
1487  static const unsigned MaxChains = 8;
1488
1489  /// IVChainVec - IV users can form a chain of IV increments.
1490  SmallVector<IVChain, MaxChains> IVChainVec;
1491
1492  /// IVIncSet - IV users that belong to profitable IVChains.
1493  SmallPtrSet<Use*, MaxChains> IVIncSet;
1494
1495  void OptimizeShadowIV();
1496  bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1497  ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1498  void OptimizeLoopTermCond();
1499
1500  void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1501                        SmallVectorImpl<ChainUsers> &ChainUsersVec);
1502  void FinalizeChain(IVChain &Chain);
1503  void CollectChains();
1504  void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1505                       SmallVectorImpl<WeakVH> &DeadInsts);
1506
1507  void CollectInterestingTypesAndFactors();
1508  void CollectFixupsAndInitialFormulae();
1509
1510  LSRFixup &getNewFixup() {
1511    Fixups.push_back(LSRFixup());
1512    return Fixups.back();
1513  }
1514
1515  // Support for sharing of LSRUses between LSRFixups.
1516  typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>,
1517                   size_t,
1518                   UseMapDenseMapInfo> UseMapTy;
1519  UseMapTy UseMap;
1520
1521  bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1522                          LSRUse::KindType Kind, Type *AccessTy);
1523
1524  std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
1525                                    LSRUse::KindType Kind,
1526                                    Type *AccessTy);
1527
1528  void DeleteUse(LSRUse &LU, size_t LUIdx);
1529
1530  LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1531
1532  void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1533  void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1534  void CountRegisters(const Formula &F, size_t LUIdx);
1535  bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1536
1537  void CollectLoopInvariantFixupsAndFormulae();
1538
1539  void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1540                              unsigned Depth = 0);
1541  void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1542  void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1543  void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1544  void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1545  void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1546  void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1547  void GenerateCrossUseConstantOffsets();
1548  void GenerateAllReuseFormulae();
1549
1550  void FilterOutUndesirableDedicatedRegisters();
1551
1552  size_t EstimateSearchSpaceComplexity() const;
1553  void NarrowSearchSpaceByDetectingSupersets();
1554  void NarrowSearchSpaceByCollapsingUnrolledCode();
1555  void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1556  void NarrowSearchSpaceByPickingWinnerRegs();
1557  void NarrowSearchSpaceUsingHeuristics();
1558
1559  void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1560                    Cost &SolutionCost,
1561                    SmallVectorImpl<const Formula *> &Workspace,
1562                    const Cost &CurCost,
1563                    const SmallPtrSet<const SCEV *, 16> &CurRegs,
1564                    DenseSet<const SCEV *> &VisitedRegs) const;
1565  void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1566
1567  BasicBlock::iterator
1568    HoistInsertPosition(BasicBlock::iterator IP,
1569                        const SmallVectorImpl<Instruction *> &Inputs) const;
1570  BasicBlock::iterator
1571    AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1572                                  const LSRFixup &LF,
1573                                  const LSRUse &LU,
1574                                  SCEVExpander &Rewriter) const;
1575
1576  Value *Expand(const LSRFixup &LF,
1577                const Formula &F,
1578                BasicBlock::iterator IP,
1579                SCEVExpander &Rewriter,
1580                SmallVectorImpl<WeakVH> &DeadInsts) const;
1581  void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1582                     const Formula &F,
1583                     SCEVExpander &Rewriter,
1584                     SmallVectorImpl<WeakVH> &DeadInsts,
1585                     Pass *P) const;
1586  void Rewrite(const LSRFixup &LF,
1587               const Formula &F,
1588               SCEVExpander &Rewriter,
1589               SmallVectorImpl<WeakVH> &DeadInsts,
1590               Pass *P) const;
1591  void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
1592                         Pass *P);
1593
1594public:
1595  LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
1596
1597  bool getChanged() const { return Changed; }
1598
1599  void print_factors_and_types(raw_ostream &OS) const;
1600  void print_fixups(raw_ostream &OS) const;
1601  void print_uses(raw_ostream &OS) const;
1602  void print(raw_ostream &OS) const;
1603  void dump() const;
1604};
1605
1606}
1607
1608/// OptimizeShadowIV - If IV is used in a int-to-float cast
1609/// inside the loop then try to eliminate the cast operation.
1610void LSRInstance::OptimizeShadowIV() {
1611  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1612  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1613    return;
1614
1615  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1616       UI != E; /* empty */) {
1617    IVUsers::const_iterator CandidateUI = UI;
1618    ++UI;
1619    Instruction *ShadowUse = CandidateUI->getUser();
1620    Type *DestTy = NULL;
1621    bool IsSigned = false;
1622
1623    /* If shadow use is a int->float cast then insert a second IV
1624       to eliminate this cast.
1625
1626         for (unsigned i = 0; i < n; ++i)
1627           foo((double)i);
1628
1629       is transformed into
1630
1631         double d = 0.0;
1632         for (unsigned i = 0; i < n; ++i, ++d)
1633           foo(d);
1634    */
1635    if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
1636      IsSigned = false;
1637      DestTy = UCast->getDestTy();
1638    }
1639    else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
1640      IsSigned = true;
1641      DestTy = SCast->getDestTy();
1642    }
1643    if (!DestTy) continue;
1644
1645    if (TLI) {
1646      // If target does not support DestTy natively then do not apply
1647      // this transformation.
1648      EVT DVT = TLI->getValueType(DestTy);
1649      if (!TLI->isTypeLegal(DVT)) continue;
1650    }
1651
1652    PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1653    if (!PH) continue;
1654    if (PH->getNumIncomingValues() != 2) continue;
1655
1656    Type *SrcTy = PH->getType();
1657    int Mantissa = DestTy->getFPMantissaWidth();
1658    if (Mantissa == -1) continue;
1659    if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1660      continue;
1661
1662    unsigned Entry, Latch;
1663    if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1664      Entry = 0;
1665      Latch = 1;
1666    } else {
1667      Entry = 1;
1668      Latch = 0;
1669    }
1670
1671    ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1672    if (!Init) continue;
1673    Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
1674                                        (double)Init->getSExtValue() :
1675                                        (double)Init->getZExtValue());
1676
1677    BinaryOperator *Incr =
1678      dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1679    if (!Incr) continue;
1680    if (Incr->getOpcode() != Instruction::Add
1681        && Incr->getOpcode() != Instruction::Sub)
1682      continue;
1683
1684    /* Initialize new IV, double d = 0.0 in above example. */
1685    ConstantInt *C = NULL;
1686    if (Incr->getOperand(0) == PH)
1687      C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1688    else if (Incr->getOperand(1) == PH)
1689      C = dyn_cast<ConstantInt>(Incr->getOperand(0));
1690    else
1691      continue;
1692
1693    if (!C) continue;
1694
1695    // Ignore negative constants, as the code below doesn't handle them
1696    // correctly. TODO: Remove this restriction.
1697    if (!C->getValue().isStrictlyPositive()) continue;
1698
1699    /* Add new PHINode. */
1700    PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
1701
1702    /* create new increment. '++d' in above example. */
1703    Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1704    BinaryOperator *NewIncr =
1705      BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1706                               Instruction::FAdd : Instruction::FSub,
1707                             NewPH, CFP, "IV.S.next.", Incr);
1708
1709    NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1710    NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
1711
1712    /* Remove cast operation */
1713    ShadowUse->replaceAllUsesWith(NewPH);
1714    ShadowUse->eraseFromParent();
1715    Changed = true;
1716    break;
1717  }
1718}
1719
1720/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1721/// set the IV user and stride information and return true, otherwise return
1722/// false.
1723bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
1724  for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1725    if (UI->getUser() == Cond) {
1726      // NOTE: we could handle setcc instructions with multiple uses here, but
1727      // InstCombine does it as well for simple uses, it's not clear that it
1728      // occurs enough in real life to handle.
1729      CondUse = UI;
1730      return true;
1731    }
1732  return false;
1733}
1734
1735/// OptimizeMax - Rewrite the loop's terminating condition if it uses
1736/// a max computation.
1737///
1738/// This is a narrow solution to a specific, but acute, problem. For loops
1739/// like this:
1740///
1741///   i = 0;
1742///   do {
1743///     p[i] = 0.0;
1744///   } while (++i < n);
1745///
1746/// the trip count isn't just 'n', because 'n' might not be positive. And
1747/// unfortunately this can come up even for loops where the user didn't use
1748/// a C do-while loop. For example, seemingly well-behaved top-test loops
1749/// will commonly be lowered like this:
1750//
1751///   if (n > 0) {
1752///     i = 0;
1753///     do {
1754///       p[i] = 0.0;
1755///     } while (++i < n);
1756///   }
1757///
1758/// and then it's possible for subsequent optimization to obscure the if
1759/// test in such a way that indvars can't find it.
1760///
1761/// When indvars can't find the if test in loops like this, it creates a
1762/// max expression, which allows it to give the loop a canonical
1763/// induction variable:
1764///
1765///   i = 0;
1766///   max = n < 1 ? 1 : n;
1767///   do {
1768///     p[i] = 0.0;
1769///   } while (++i != max);
1770///
1771/// Canonical induction variables are necessary because the loop passes
1772/// are designed around them. The most obvious example of this is the
1773/// LoopInfo analysis, which doesn't remember trip count values. It
1774/// expects to be able to rediscover the trip count each time it is
1775/// needed, and it does this using a simple analysis that only succeeds if
1776/// the loop has a canonical induction variable.
1777///
1778/// However, when it comes time to generate code, the maximum operation
1779/// can be quite costly, especially if it's inside of an outer loop.
1780///
1781/// This function solves this problem by detecting this type of loop and
1782/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1783/// the instructions for the maximum computation.
1784///
1785ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
1786  // Check that the loop matches the pattern we're looking for.
1787  if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1788      Cond->getPredicate() != CmpInst::ICMP_NE)
1789    return Cond;
1790
1791  SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1792  if (!Sel || !Sel->hasOneUse()) return Cond;
1793
1794  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1795  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1796    return Cond;
1797  const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
1798
1799  // Add one to the backedge-taken count to get the trip count.
1800  const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
1801  if (IterationCount != SE.getSCEV(Sel)) return Cond;
1802
1803  // Check for a max calculation that matches the pattern. There's no check
1804  // for ICMP_ULE here because the comparison would be with zero, which
1805  // isn't interesting.
1806  CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1807  const SCEVNAryExpr *Max = 0;
1808  if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
1809    Pred = ICmpInst::ICMP_SLE;
1810    Max = S;
1811  } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
1812    Pred = ICmpInst::ICMP_SLT;
1813    Max = S;
1814  } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
1815    Pred = ICmpInst::ICMP_ULT;
1816    Max = U;
1817  } else {
1818    // No match; bail.
1819    return Cond;
1820  }
1821
1822  // To handle a max with more than two operands, this optimization would
1823  // require additional checking and setup.
1824  if (Max->getNumOperands() != 2)
1825    return Cond;
1826
1827  const SCEV *MaxLHS = Max->getOperand(0);
1828  const SCEV *MaxRHS = Max->getOperand(1);
1829
1830  // ScalarEvolution canonicalizes constants to the left. For < and >, look
1831  // for a comparison with 1. For <= and >=, a comparison with zero.
1832  if (!MaxLHS ||
1833      (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
1834    return Cond;
1835
1836  // Check the relevant induction variable for conformance to
1837  // the pattern.
1838  const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
1839  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
1840  if (!AR || !AR->isAffine() ||
1841      AR->getStart() != One ||
1842      AR->getStepRecurrence(SE) != One)
1843    return Cond;
1844
1845  assert(AR->getLoop() == L &&
1846         "Loop condition operand is an addrec in a different loop!");
1847
1848  // Check the right operand of the select, and remember it, as it will
1849  // be used in the new comparison instruction.
1850  Value *NewRHS = 0;
1851  if (ICmpInst::isTrueWhenEqual(Pred)) {
1852    // Look for n+1, and grab n.
1853    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
1854      if (isa<ConstantInt>(BO->getOperand(1)) &&
1855          cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1856          SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1857        NewRHS = BO->getOperand(0);
1858    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
1859      if (isa<ConstantInt>(BO->getOperand(1)) &&
1860          cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1861          SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1862        NewRHS = BO->getOperand(0);
1863    if (!NewRHS)
1864      return Cond;
1865  } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
1866    NewRHS = Sel->getOperand(1);
1867  else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
1868    NewRHS = Sel->getOperand(2);
1869  else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
1870    NewRHS = SU->getValue();
1871  else
1872    // Max doesn't match expected pattern.
1873    return Cond;
1874
1875  // Determine the new comparison opcode. It may be signed or unsigned,
1876  // and the original comparison may be either equality or inequality.
1877  if (Cond->getPredicate() == CmpInst::ICMP_EQ)
1878    Pred = CmpInst::getInversePredicate(Pred);
1879
1880  // Ok, everything looks ok to change the condition into an SLT or SGE and
1881  // delete the max calculation.
1882  ICmpInst *NewCond =
1883    new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
1884
1885  // Delete the max calculation instructions.
1886  Cond->replaceAllUsesWith(NewCond);
1887  CondUse->setUser(NewCond);
1888  Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
1889  Cond->eraseFromParent();
1890  Sel->eraseFromParent();
1891  if (Cmp->use_empty())
1892    Cmp->eraseFromParent();
1893  return NewCond;
1894}
1895
1896/// OptimizeLoopTermCond - Change loop terminating condition to use the
1897/// postinc iv when possible.
1898void
1899LSRInstance::OptimizeLoopTermCond() {
1900  SmallPtrSet<Instruction *, 4> PostIncs;
1901
1902  BasicBlock *LatchBlock = L->getLoopLatch();
1903  SmallVector<BasicBlock*, 8> ExitingBlocks;
1904  L->getExitingBlocks(ExitingBlocks);
1905
1906  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
1907    BasicBlock *ExitingBlock = ExitingBlocks[i];
1908
1909    // Get the terminating condition for the loop if possible.  If we
1910    // can, we want to change it to use a post-incremented version of its
1911    // induction variable, to allow coalescing the live ranges for the IV into
1912    // one register value.
1913
1914    BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1915    if (!TermBr)
1916      continue;
1917    // FIXME: Overly conservative, termination condition could be an 'or' etc..
1918    if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
1919      continue;
1920
1921    // Search IVUsesByStride to find Cond's IVUse if there is one.
1922    IVStrideUse *CondUse = 0;
1923    ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
1924    if (!FindIVUserForCond(Cond, CondUse))
1925      continue;
1926
1927    // If the trip count is computed in terms of a max (due to ScalarEvolution
1928    // being unable to find a sufficient guard, for example), change the loop
1929    // comparison to use SLT or ULT instead of NE.
1930    // One consequence of doing this now is that it disrupts the count-down
1931    // optimization. That's not always a bad thing though, because in such
1932    // cases it may still be worthwhile to avoid a max.
1933    Cond = OptimizeMax(Cond, CondUse);
1934
1935    // If this exiting block dominates the latch block, it may also use
1936    // the post-inc value if it won't be shared with other uses.
1937    // Check for dominance.
1938    if (!DT.dominates(ExitingBlock, LatchBlock))
1939      continue;
1940
1941    // Conservatively avoid trying to use the post-inc value in non-latch
1942    // exits if there may be pre-inc users in intervening blocks.
1943    if (LatchBlock != ExitingBlock)
1944      for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1945        // Test if the use is reachable from the exiting block. This dominator
1946        // query is a conservative approximation of reachability.
1947        if (&*UI != CondUse &&
1948            !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
1949          // Conservatively assume there may be reuse if the quotient of their
1950          // strides could be a legal scale.
1951          const SCEV *A = IU.getStride(*CondUse, L);
1952          const SCEV *B = IU.getStride(*UI, L);
1953          if (!A || !B) continue;
1954          if (SE.getTypeSizeInBits(A->getType()) !=
1955              SE.getTypeSizeInBits(B->getType())) {
1956            if (SE.getTypeSizeInBits(A->getType()) >
1957                SE.getTypeSizeInBits(B->getType()))
1958              B = SE.getSignExtendExpr(B, A->getType());
1959            else
1960              A = SE.getSignExtendExpr(A, B->getType());
1961          }
1962          if (const SCEVConstant *D =
1963                dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
1964            const ConstantInt *C = D->getValue();
1965            // Stride of one or negative one can have reuse with non-addresses.
1966            if (C->isOne() || C->isAllOnesValue())
1967              goto decline_post_inc;
1968            // Avoid weird situations.
1969            if (C->getValue().getMinSignedBits() >= 64 ||
1970                C->getValue().isMinSignedValue())
1971              goto decline_post_inc;
1972            // Without TLI, assume that any stride might be valid, and so any
1973            // use might be shared.
1974            if (!TLI)
1975              goto decline_post_inc;
1976            // Check for possible scaled-address reuse.
1977            Type *AccessTy = getAccessType(UI->getUser());
1978            TargetLowering::AddrMode AM;
1979            AM.Scale = C->getSExtValue();
1980            if (TLI->isLegalAddressingMode(AM, AccessTy))
1981              goto decline_post_inc;
1982            AM.Scale = -AM.Scale;
1983            if (TLI->isLegalAddressingMode(AM, AccessTy))
1984              goto decline_post_inc;
1985          }
1986        }
1987
1988    DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
1989                 << *Cond << '\n');
1990
1991    // It's possible for the setcc instruction to be anywhere in the loop, and
1992    // possible for it to have multiple users.  If it is not immediately before
1993    // the exiting block branch, move it.
1994    if (&*++BasicBlock::iterator(Cond) != TermBr) {
1995      if (Cond->hasOneUse()) {
1996        Cond->moveBefore(TermBr);
1997      } else {
1998        // Clone the terminating condition and insert into the loopend.
1999        ICmpInst *OldCond = Cond;
2000        Cond = cast<ICmpInst>(Cond->clone());
2001        Cond->setName(L->getHeader()->getName() + ".termcond");
2002        ExitingBlock->getInstList().insert(TermBr, Cond);
2003
2004        // Clone the IVUse, as the old use still exists!
2005        CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2006        TermBr->replaceUsesOfWith(OldCond, Cond);
2007      }
2008    }
2009
2010    // If we get to here, we know that we can transform the setcc instruction to
2011    // use the post-incremented version of the IV, allowing us to coalesce the
2012    // live ranges for the IV correctly.
2013    CondUse->transformToPostInc(L);
2014    Changed = true;
2015
2016    PostIncs.insert(Cond);
2017  decline_post_inc:;
2018  }
2019
2020  // Determine an insertion point for the loop induction variable increment. It
2021  // must dominate all the post-inc comparisons we just set up, and it must
2022  // dominate the loop latch edge.
2023  IVIncInsertPos = L->getLoopLatch()->getTerminator();
2024  for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
2025       E = PostIncs.end(); I != E; ++I) {
2026    BasicBlock *BB =
2027      DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2028                                    (*I)->getParent());
2029    if (BB == (*I)->getParent())
2030      IVIncInsertPos = *I;
2031    else if (BB != IVIncInsertPos->getParent())
2032      IVIncInsertPos = BB->getTerminator();
2033  }
2034}
2035
2036/// reconcileNewOffset - Determine if the given use can accommodate a fixup
2037/// at the given offset and other details. If so, update the use and
2038/// return true.
2039bool
2040LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
2041                                LSRUse::KindType Kind, Type *AccessTy) {
2042  int64_t NewMinOffset = LU.MinOffset;
2043  int64_t NewMaxOffset = LU.MaxOffset;
2044  Type *NewAccessTy = AccessTy;
2045
2046  // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2047  // something conservative, however this can pessimize in the case that one of
2048  // the uses will have all its uses outside the loop, for example.
2049  if (LU.Kind != Kind)
2050    return false;
2051  // Conservatively assume HasBaseReg is true for now.
2052  if (NewOffset < LU.MinOffset) {
2053    if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg,
2054                          Kind, AccessTy, TLI))
2055      return false;
2056    NewMinOffset = NewOffset;
2057  } else if (NewOffset > LU.MaxOffset) {
2058    if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg,
2059                          Kind, AccessTy, TLI))
2060      return false;
2061    NewMaxOffset = NewOffset;
2062  }
2063  // Check for a mismatched access type, and fall back conservatively as needed.
2064  // TODO: Be less conservative when the type is similar and can use the same
2065  // addressing modes.
2066  if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
2067    NewAccessTy = Type::getVoidTy(AccessTy->getContext());
2068
2069  // Update the use.
2070  LU.MinOffset = NewMinOffset;
2071  LU.MaxOffset = NewMaxOffset;
2072  LU.AccessTy = NewAccessTy;
2073  if (NewOffset != LU.Offsets.back())
2074    LU.Offsets.push_back(NewOffset);
2075  return true;
2076}
2077
2078/// getUse - Return an LSRUse index and an offset value for a fixup which
2079/// needs the given expression, with the given kind and optional access type.
2080/// Either reuse an existing use or create a new one, as needed.
2081std::pair<size_t, int64_t>
2082LSRInstance::getUse(const SCEV *&Expr,
2083                    LSRUse::KindType Kind, Type *AccessTy) {
2084  const SCEV *Copy = Expr;
2085  int64_t Offset = ExtractImmediate(Expr, SE);
2086
2087  // Basic uses can't accept any offset, for example.
2088  if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) {
2089    Expr = Copy;
2090    Offset = 0;
2091  }
2092
2093  std::pair<UseMapTy::iterator, bool> P =
2094    UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0));
2095  if (!P.second) {
2096    // A use already existed with this base.
2097    size_t LUIdx = P.first->second;
2098    LSRUse &LU = Uses[LUIdx];
2099    if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2100      // Reuse this use.
2101      return std::make_pair(LUIdx, Offset);
2102  }
2103
2104  // Create a new use.
2105  size_t LUIdx = Uses.size();
2106  P.first->second = LUIdx;
2107  Uses.push_back(LSRUse(Kind, AccessTy));
2108  LSRUse &LU = Uses[LUIdx];
2109
2110  // We don't need to track redundant offsets, but we don't need to go out
2111  // of our way here to avoid them.
2112  if (LU.Offsets.empty() || Offset != LU.Offsets.back())
2113    LU.Offsets.push_back(Offset);
2114
2115  LU.MinOffset = Offset;
2116  LU.MaxOffset = Offset;
2117  return std::make_pair(LUIdx, Offset);
2118}
2119
2120/// DeleteUse - Delete the given use from the Uses list.
2121void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2122  if (&LU != &Uses.back())
2123    std::swap(LU, Uses.back());
2124  Uses.pop_back();
2125
2126  // Update RegUses.
2127  RegUses.SwapAndDropUse(LUIdx, Uses.size());
2128}
2129
2130/// FindUseWithFormula - Look for a use distinct from OrigLU which is has
2131/// a formula that has the same registers as the given formula.
2132LSRUse *
2133LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2134                                       const LSRUse &OrigLU) {
2135  // Search all uses for the formula. This could be more clever.
2136  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2137    LSRUse &LU = Uses[LUIdx];
2138    // Check whether this use is close enough to OrigLU, to see whether it's
2139    // worthwhile looking through its formulae.
2140    // Ignore ICmpZero uses because they may contain formulae generated by
2141    // GenerateICmpZeroScales, in which case adding fixup offsets may
2142    // be invalid.
2143    if (&LU != &OrigLU &&
2144        LU.Kind != LSRUse::ICmpZero &&
2145        LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2146        LU.WidestFixupType == OrigLU.WidestFixupType &&
2147        LU.HasFormulaWithSameRegs(OrigF)) {
2148      // Scan through this use's formulae.
2149      for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
2150           E = LU.Formulae.end(); I != E; ++I) {
2151        const Formula &F = *I;
2152        // Check to see if this formula has the same registers and symbols
2153        // as OrigF.
2154        if (F.BaseRegs == OrigF.BaseRegs &&
2155            F.ScaledReg == OrigF.ScaledReg &&
2156            F.AM.BaseGV == OrigF.AM.BaseGV &&
2157            F.AM.Scale == OrigF.AM.Scale &&
2158            F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2159          if (F.AM.BaseOffs == 0)
2160            return &LU;
2161          // This is the formula where all the registers and symbols matched;
2162          // there aren't going to be any others. Since we declined it, we
2163          // can skip the rest of the formulae and procede to the next LSRUse.
2164          break;
2165        }
2166      }
2167    }
2168  }
2169
2170  // Nothing looked good.
2171  return 0;
2172}
2173
2174void LSRInstance::CollectInterestingTypesAndFactors() {
2175  SmallSetVector<const SCEV *, 4> Strides;
2176
2177  // Collect interesting types and strides.
2178  SmallVector<const SCEV *, 4> Worklist;
2179  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
2180    const SCEV *Expr = IU.getExpr(*UI);
2181
2182    // Collect interesting types.
2183    Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2184
2185    // Add strides for mentioned loops.
2186    Worklist.push_back(Expr);
2187    do {
2188      const SCEV *S = Worklist.pop_back_val();
2189      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2190        if (AR->getLoop() == L)
2191          Strides.insert(AR->getStepRecurrence(SE));
2192        Worklist.push_back(AR->getStart());
2193      } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2194        Worklist.append(Add->op_begin(), Add->op_end());
2195      }
2196    } while (!Worklist.empty());
2197  }
2198
2199  // Compute interesting factors from the set of interesting strides.
2200  for (SmallSetVector<const SCEV *, 4>::const_iterator
2201       I = Strides.begin(), E = Strides.end(); I != E; ++I)
2202    for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2203         llvm::next(I); NewStrideIter != E; ++NewStrideIter) {
2204      const SCEV *OldStride = *I;
2205      const SCEV *NewStride = *NewStrideIter;
2206
2207      if (SE.getTypeSizeInBits(OldStride->getType()) !=
2208          SE.getTypeSizeInBits(NewStride->getType())) {
2209        if (SE.getTypeSizeInBits(OldStride->getType()) >
2210            SE.getTypeSizeInBits(NewStride->getType()))
2211          NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2212        else
2213          OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2214      }
2215      if (const SCEVConstant *Factor =
2216            dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2217                                                        SE, true))) {
2218        if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2219          Factors.insert(Factor->getValue()->getValue().getSExtValue());
2220      } else if (const SCEVConstant *Factor =
2221                   dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2222                                                               NewStride,
2223                                                               SE, true))) {
2224        if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2225          Factors.insert(Factor->getValue()->getValue().getSExtValue());
2226      }
2227    }
2228
2229  // If all uses use the same type, don't bother looking for truncation-based
2230  // reuse.
2231  if (Types.size() == 1)
2232    Types.clear();
2233
2234  DEBUG(print_factors_and_types(dbgs()));
2235}
2236
2237/// findIVOperand - Helper for CollectChains that finds an IV operand (computed
2238/// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped
2239/// Instructions to IVStrideUses, we could partially skip this.
2240static User::op_iterator
2241findIVOperand(User::op_iterator OI, User::op_iterator OE,
2242              Loop *L, ScalarEvolution &SE) {
2243  for(; OI != OE; ++OI) {
2244    if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2245      if (!SE.isSCEVable(Oper->getType()))
2246        continue;
2247
2248      if (const SCEVAddRecExpr *AR =
2249          dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2250        if (AR->getLoop() == L)
2251          break;
2252      }
2253    }
2254  }
2255  return OI;
2256}
2257
2258/// getWideOperand - IVChain logic must consistenctly peek base TruncInst
2259/// operands, so wrap it in a convenient helper.
2260static Value *getWideOperand(Value *Oper) {
2261  if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2262    return Trunc->getOperand(0);
2263  return Oper;
2264}
2265
2266/// isCompatibleIVType - Return true if we allow an IV chain to include both
2267/// types.
2268static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2269  Type *LType = LVal->getType();
2270  Type *RType = RVal->getType();
2271  return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy());
2272}
2273
2274/// getExprBase - Return an approximation of this SCEV expression's "base", or
2275/// NULL for any constant. Returning the expression itself is
2276/// conservative. Returning a deeper subexpression is more precise and valid as
2277/// long as it isn't less complex than another subexpression. For expressions
2278/// involving multiple unscaled values, we need to return the pointer-type
2279/// SCEVUnknown. This avoids forming chains across objects, such as:
2280/// PrevOper==a[i], IVOper==b[i], IVInc==b-a.
2281///
2282/// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2283/// SCEVUnknown, we simply return the rightmost SCEV operand.
2284static const SCEV *getExprBase(const SCEV *S) {
2285  switch (S->getSCEVType()) {
2286  default: // uncluding scUnknown.
2287    return S;
2288  case scConstant:
2289    return 0;
2290  case scTruncate:
2291    return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2292  case scZeroExtend:
2293    return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2294  case scSignExtend:
2295    return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2296  case scAddExpr: {
2297    // Skip over scaled operands (scMulExpr) to follow add operands as long as
2298    // there's nothing more complex.
2299    // FIXME: not sure if we want to recognize negation.
2300    const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2301    for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2302           E(Add->op_begin()); I != E; ++I) {
2303      const SCEV *SubExpr = *I;
2304      if (SubExpr->getSCEVType() == scAddExpr)
2305        return getExprBase(SubExpr);
2306
2307      if (SubExpr->getSCEVType() != scMulExpr)
2308        return SubExpr;
2309    }
2310    return S; // all operands are scaled, be conservative.
2311  }
2312  case scAddRecExpr:
2313    return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2314  }
2315}
2316
2317/// Return true if the chain increment is profitable to expand into a loop
2318/// invariant value, which may require its own register. A profitable chain
2319/// increment will be an offset relative to the same base. We allow such offsets
2320/// to potentially be used as chain increment as long as it's not obviously
2321/// expensive to expand using real instructions.
2322static const SCEV *
2323getProfitableChainIncrement(Value *NextIV, Value *PrevIV,
2324                            const IVChain &Chain, Loop *L,
2325                            ScalarEvolution &SE, const TargetLowering *TLI) {
2326  // Prune the solution space aggressively by checking that both IV operands
2327  // are expressions that operate on the same unscaled SCEVUnknown. This
2328  // "base" will be canceled by the subsequent getMinusSCEV call. Checking first
2329  // avoids creating extra SCEV expressions.
2330  const SCEV *OperExpr = SE.getSCEV(NextIV);
2331  const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2332  if (getExprBase(OperExpr) != getExprBase(PrevExpr) && !StressIVChain)
2333    return 0;
2334
2335  const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2336  if (!SE.isLoopInvariant(IncExpr, L))
2337    return 0;
2338
2339  // We are not able to expand an increment unless it is loop invariant,
2340  // however, the following checks are purely for profitability.
2341  if (StressIVChain)
2342    return IncExpr;
2343
2344  // Do not replace a constant offset from IV head with a nonconstant IV
2345  // increment.
2346  if (!isa<SCEVConstant>(IncExpr)) {
2347    const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Chain[0].IVOperand));
2348    if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2349      return 0;
2350  }
2351
2352  SmallPtrSet<const SCEV*, 8> Processed;
2353  if (isHighCostExpansion(IncExpr, Processed, SE))
2354    return 0;
2355
2356  return IncExpr;
2357}
2358
2359/// Return true if the number of registers needed for the chain is estimated to
2360/// be less than the number required for the individual IV users. First prohibit
2361/// any IV users that keep the IV live across increments (the Users set should
2362/// be empty). Next count the number and type of increments in the chain.
2363///
2364/// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2365/// effectively use postinc addressing modes. Only consider it profitable it the
2366/// increments can be computed in fewer registers when chained.
2367///
2368/// TODO: Consider IVInc free if it's already used in another chains.
2369static bool
2370isProfitableChain(IVChain &Chain, SmallPtrSet<Instruction*, 4> &Users,
2371                  ScalarEvolution &SE, const TargetLowering *TLI) {
2372  if (StressIVChain)
2373    return true;
2374
2375  if (Chain.size() <= 2)
2376    return false;
2377
2378  if (!Users.empty()) {
2379    DEBUG(dbgs() << "Chain: " << *Chain[0].UserInst << " users:\n";
2380          for (SmallPtrSet<Instruction*, 4>::const_iterator I = Users.begin(),
2381                 E = Users.end(); I != E; ++I) {
2382            dbgs() << "  " << **I << "\n";
2383          });
2384    return false;
2385  }
2386  assert(!Chain.empty() && "empty IV chains are not allowed");
2387
2388  // The chain itself may require a register, so intialize cost to 1.
2389  int cost = 1;
2390
2391  // A complete chain likely eliminates the need for keeping the original IV in
2392  // a register. LSR does not currently know how to form a complete chain unless
2393  // the header phi already exists.
2394  if (isa<PHINode>(Chain.back().UserInst)
2395      && SE.getSCEV(Chain.back().UserInst) == Chain[0].IncExpr) {
2396    --cost;
2397  }
2398  const SCEV *LastIncExpr = 0;
2399  unsigned NumConstIncrements = 0;
2400  unsigned NumVarIncrements = 0;
2401  unsigned NumReusedIncrements = 0;
2402  for (IVChain::const_iterator I = llvm::next(Chain.begin()), E = Chain.end();
2403       I != E; ++I) {
2404
2405    if (I->IncExpr->isZero())
2406      continue;
2407
2408    // Incrementing by zero or some constant is neutral. We assume constants can
2409    // be folded into an addressing mode or an add's immediate operand.
2410    if (isa<SCEVConstant>(I->IncExpr)) {
2411      ++NumConstIncrements;
2412      continue;
2413    }
2414
2415    if (I->IncExpr == LastIncExpr)
2416      ++NumReusedIncrements;
2417    else
2418      ++NumVarIncrements;
2419
2420    LastIncExpr = I->IncExpr;
2421  }
2422  // An IV chain with a single increment is handled by LSR's postinc
2423  // uses. However, a chain with multiple increments requires keeping the IV's
2424  // value live longer than it needs to be if chained.
2425  if (NumConstIncrements > 1)
2426    --cost;
2427
2428  // Materializing increment expressions in the preheader that didn't exist in
2429  // the original code may cost a register. For example, sign-extended array
2430  // indices can produce ridiculous increments like this:
2431  // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2432  cost += NumVarIncrements;
2433
2434  // Reusing variable increments likely saves a register to hold the multiple of
2435  // the stride.
2436  cost -= NumReusedIncrements;
2437
2438  DEBUG(dbgs() << "Chain: " << *Chain[0].UserInst << " Cost: " << cost << "\n");
2439
2440  return cost < 0;
2441}
2442
2443/// ChainInstruction - Add this IV user to an existing chain or make it the head
2444/// of a new chain.
2445void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2446                                   SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2447  // When IVs are used as types of varying widths, they are generally converted
2448  // to a wider type with some uses remaining narrow under a (free) trunc.
2449  Value *NextIV = getWideOperand(IVOper);
2450
2451  // Visit all existing chains. Check if its IVOper can be computed as a
2452  // profitable loop invariant increment from the last link in the Chain.
2453  unsigned ChainIdx = 0, NChains = IVChainVec.size();
2454  const SCEV *LastIncExpr = 0;
2455  for (; ChainIdx < NChains; ++ChainIdx) {
2456    Value *PrevIV = getWideOperand(IVChainVec[ChainIdx].back().IVOperand);
2457    if (!isCompatibleIVType(PrevIV, NextIV))
2458      continue;
2459
2460    // A phi node terminates a chain.
2461    if (isa<PHINode>(UserInst)
2462        && isa<PHINode>(IVChainVec[ChainIdx].back().UserInst))
2463      continue;
2464
2465    if (const SCEV *IncExpr =
2466        getProfitableChainIncrement(NextIV, PrevIV, IVChainVec[ChainIdx],
2467                                    L, SE, TLI)) {
2468      LastIncExpr = IncExpr;
2469      break;
2470    }
2471  }
2472  // If we haven't found a chain, create a new one, unless we hit the max. Don't
2473  // bother for phi nodes, because they must be last in the chain.
2474  if (ChainIdx == NChains) {
2475    if (isa<PHINode>(UserInst))
2476      return;
2477    if (NChains >= MaxChains && !StressIVChain) {
2478      DEBUG(dbgs() << "IV Chain Limit\n");
2479      return;
2480    }
2481    LastIncExpr = SE.getSCEV(NextIV);
2482    // IVUsers may have skipped over sign/zero extensions. We don't currently
2483    // attempt to form chains involving extensions unless they can be hoisted
2484    // into this loop's AddRec.
2485    if (!isa<SCEVAddRecExpr>(LastIncExpr))
2486      return;
2487    ++NChains;
2488    IVChainVec.resize(NChains);
2489    ChainUsersVec.resize(NChains);
2490    DEBUG(dbgs() << "IV Head: (" << *UserInst << ") IV=" << *LastIncExpr
2491          << "\n");
2492  }
2493  else
2494    DEBUG(dbgs() << "IV  Inc: (" << *UserInst << ") IV+" << *LastIncExpr
2495          << "\n");
2496
2497  // Add this IV user to the end of the chain.
2498  IVChainVec[ChainIdx].push_back(IVInc(UserInst, IVOper, LastIncExpr));
2499
2500  SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2501  // This chain's NearUsers become FarUsers.
2502  if (!LastIncExpr->isZero()) {
2503    ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2504                                            NearUsers.end());
2505    NearUsers.clear();
2506  }
2507
2508  // All other uses of IVOperand become near uses of the chain.
2509  // We currently ignore intermediate values within SCEV expressions, assuming
2510  // they will eventually be used be the current chain, or can be computed
2511  // from one of the chain increments. To be more precise we could
2512  // transitively follow its user and only add leaf IV users to the set.
2513  for (Value::use_iterator UseIter = IVOper->use_begin(),
2514         UseEnd = IVOper->use_end(); UseIter != UseEnd; ++UseIter) {
2515    Instruction *OtherUse = dyn_cast<Instruction>(*UseIter);
2516    if (!OtherUse || OtherUse == UserInst)
2517      continue;
2518    if (SE.isSCEVable(OtherUse->getType())
2519        && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
2520        && IU.isIVUserOrOperand(OtherUse)) {
2521      continue;
2522    }
2523    NearUsers.insert(OtherUse);
2524  }
2525
2526  // Since this user is part of the chain, it's no longer considered a use
2527  // of the chain.
2528  ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
2529}
2530
2531/// CollectChains - Populate the vector of Chains.
2532///
2533/// This decreases ILP at the architecture level. Targets with ample registers,
2534/// multiple memory ports, and no register renaming probably don't want
2535/// this. However, such targets should probably disable LSR altogether.
2536///
2537/// The job of LSR is to make a reasonable choice of induction variables across
2538/// the loop. Subsequent passes can easily "unchain" computation exposing more
2539/// ILP *within the loop* if the target wants it.
2540///
2541/// Finding the best IV chain is potentially a scheduling problem. Since LSR
2542/// will not reorder memory operations, it will recognize this as a chain, but
2543/// will generate redundant IV increments. Ideally this would be corrected later
2544/// by a smart scheduler:
2545///        = A[i]
2546///        = A[i+x]
2547/// A[i]   =
2548/// A[i+x] =
2549///
2550/// TODO: Walk the entire domtree within this loop, not just the path to the
2551/// loop latch. This will discover chains on side paths, but requires
2552/// maintaining multiple copies of the Chains state.
2553void LSRInstance::CollectChains() {
2554  SmallVector<ChainUsers, 8> ChainUsersVec;
2555
2556  SmallVector<BasicBlock *,8> LatchPath;
2557  BasicBlock *LoopHeader = L->getHeader();
2558  for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
2559       Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
2560    LatchPath.push_back(Rung->getBlock());
2561  }
2562  LatchPath.push_back(LoopHeader);
2563
2564  // Walk the instruction stream from the loop header to the loop latch.
2565  for (SmallVectorImpl<BasicBlock *>::reverse_iterator
2566         BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend();
2567       BBIter != BBEnd; ++BBIter) {
2568    for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end();
2569         I != E; ++I) {
2570      // Skip instructions that weren't seen by IVUsers analysis.
2571      if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I))
2572        continue;
2573
2574      // Ignore users that are part of a SCEV expression. This way we only
2575      // consider leaf IV Users. This effectively rediscovers a portion of
2576      // IVUsers analysis but in program order this time.
2577      if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I)))
2578        continue;
2579
2580      // Remove this instruction from any NearUsers set it may be in.
2581      for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
2582           ChainIdx < NChains; ++ChainIdx) {
2583        ChainUsersVec[ChainIdx].NearUsers.erase(I);
2584      }
2585      // Search for operands that can be chained.
2586      SmallPtrSet<Instruction*, 4> UniqueOperands;
2587      User::op_iterator IVOpEnd = I->op_end();
2588      User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE);
2589      while (IVOpIter != IVOpEnd) {
2590        Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
2591        if (UniqueOperands.insert(IVOpInst))
2592          ChainInstruction(I, IVOpInst, ChainUsersVec);
2593        IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE);
2594      }
2595    } // Continue walking down the instructions.
2596  } // Continue walking down the domtree.
2597  // Visit phi backedges to determine if the chain can generate the IV postinc.
2598  for (BasicBlock::iterator I = L->getHeader()->begin();
2599       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2600    if (!SE.isSCEVable(PN->getType()))
2601      continue;
2602
2603    Instruction *IncV =
2604      dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
2605    if (IncV)
2606      ChainInstruction(PN, IncV, ChainUsersVec);
2607  }
2608  // Remove any unprofitable chains.
2609  unsigned ChainIdx = 0;
2610  for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
2611       UsersIdx < NChains; ++UsersIdx) {
2612    if (!isProfitableChain(IVChainVec[UsersIdx],
2613                           ChainUsersVec[UsersIdx].FarUsers, SE, TLI))
2614      continue;
2615    // Preserve the chain at UsesIdx.
2616    if (ChainIdx != UsersIdx)
2617      IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
2618    FinalizeChain(IVChainVec[ChainIdx]);
2619    ++ChainIdx;
2620  }
2621  IVChainVec.resize(ChainIdx);
2622}
2623
2624void LSRInstance::FinalizeChain(IVChain &Chain) {
2625  assert(!Chain.empty() && "empty IV chains are not allowed");
2626  DEBUG(dbgs() << "Final Chain: " << *Chain[0].UserInst << "\n");
2627
2628  for (IVChain::const_iterator I = llvm::next(Chain.begin()), E = Chain.end();
2629       I != E; ++I) {
2630    DEBUG(dbgs() << "        Inc: " << *I->UserInst << "\n");
2631    User::op_iterator UseI =
2632      std::find(I->UserInst->op_begin(), I->UserInst->op_end(), I->IVOperand);
2633    assert(UseI != I->UserInst->op_end() && "cannot find IV operand");
2634    IVIncSet.insert(UseI);
2635  }
2636}
2637
2638/// Return true if the IVInc can be folded into an addressing mode.
2639static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
2640                             Value *Operand, const TargetLowering *TLI) {
2641  const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
2642  if (!IncConst || !isAddressUse(UserInst, Operand))
2643    return false;
2644
2645  if (IncConst->getValue()->getValue().getMinSignedBits() > 64)
2646    return false;
2647
2648  int64_t IncOffset = IncConst->getValue()->getSExtValue();
2649  if (!isAlwaysFoldable(IncOffset, /*BaseGV=*/0, /*HaseBaseReg=*/false,
2650                       LSRUse::Address, getAccessType(UserInst), TLI))
2651    return false;
2652
2653  return true;
2654}
2655
2656/// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to
2657/// materialize the IV user's operand from the previous IV user's operand.
2658void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
2659                                  SmallVectorImpl<WeakVH> &DeadInsts) {
2660  // Find the new IVOperand for the head of the chain. It may have been replaced
2661  // by LSR.
2662  const IVInc &Head = Chain[0];
2663  User::op_iterator IVOpEnd = Head.UserInst->op_end();
2664  User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
2665                                             IVOpEnd, L, SE);
2666  Value *IVSrc = 0;
2667  while (IVOpIter != IVOpEnd) {
2668    IVSrc = getWideOperand(*IVOpIter);
2669
2670    // If this operand computes the expression that the chain needs, we may use
2671    // it. (Check this after setting IVSrc which is used below.)
2672    //
2673    // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
2674    // narrow for the chain, so we can no longer use it. We do allow using a
2675    // wider phi, assuming the LSR checked for free truncation. In that case we
2676    // should already have a truncate on this operand such that
2677    // getSCEV(IVSrc) == IncExpr.
2678    if (SE.getSCEV(*IVOpIter) == Head.IncExpr
2679        || SE.getSCEV(IVSrc) == Head.IncExpr) {
2680      break;
2681    }
2682    IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE);
2683  }
2684  if (IVOpIter == IVOpEnd) {
2685    // Gracefully give up on this chain.
2686    DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
2687    return;
2688  }
2689
2690  DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
2691  Type *IVTy = IVSrc->getType();
2692  Type *IntTy = SE.getEffectiveSCEVType(IVTy);
2693  const SCEV *LeftOverExpr = 0;
2694  for (IVChain::const_iterator IncI = llvm::next(Chain.begin()),
2695         IncE = Chain.end(); IncI != IncE; ++IncI) {
2696
2697    Instruction *InsertPt = IncI->UserInst;
2698    if (isa<PHINode>(InsertPt))
2699      InsertPt = L->getLoopLatch()->getTerminator();
2700
2701    // IVOper will replace the current IV User's operand. IVSrc is the IV
2702    // value currently held in a register.
2703    Value *IVOper = IVSrc;
2704    if (!IncI->IncExpr->isZero()) {
2705      // IncExpr was the result of subtraction of two narrow values, so must
2706      // be signed.
2707      const SCEV *IncExpr = SE.getNoopOrSignExtend(IncI->IncExpr, IntTy);
2708      LeftOverExpr = LeftOverExpr ?
2709        SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
2710    }
2711    if (LeftOverExpr && !LeftOverExpr->isZero()) {
2712      // Expand the IV increment.
2713      Rewriter.clearPostInc();
2714      Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
2715      const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
2716                                             SE.getUnknown(IncV));
2717      IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
2718
2719      // If an IV increment can't be folded, use it as the next IV value.
2720      if (!canFoldIVIncExpr(LeftOverExpr, IncI->UserInst, IncI->IVOperand,
2721                            TLI)) {
2722        assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
2723        IVSrc = IVOper;
2724        LeftOverExpr = 0;
2725      }
2726    }
2727    Type *OperTy = IncI->IVOperand->getType();
2728    if (IVTy != OperTy) {
2729      assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
2730             "cannot extend a chained IV");
2731      IRBuilder<> Builder(InsertPt);
2732      IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
2733    }
2734    IncI->UserInst->replaceUsesOfWith(IncI->IVOperand, IVOper);
2735    DeadInsts.push_back(IncI->IVOperand);
2736  }
2737  // If LSR created a new, wider phi, we may also replace its postinc. We only
2738  // do this if we also found a wide value for the head of the chain.
2739  if (isa<PHINode>(Chain.back().UserInst)) {
2740    for (BasicBlock::iterator I = L->getHeader()->begin();
2741         PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
2742      if (!isCompatibleIVType(Phi, IVSrc))
2743        continue;
2744      Instruction *PostIncV = dyn_cast<Instruction>(
2745        Phi->getIncomingValueForBlock(L->getLoopLatch()));
2746      if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
2747        continue;
2748      Value *IVOper = IVSrc;
2749      Type *PostIncTy = PostIncV->getType();
2750      if (IVTy != PostIncTy) {
2751        assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
2752        IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
2753        Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
2754        IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
2755      }
2756      Phi->replaceUsesOfWith(PostIncV, IVOper);
2757      DeadInsts.push_back(PostIncV);
2758    }
2759  }
2760}
2761
2762void LSRInstance::CollectFixupsAndInitialFormulae() {
2763  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
2764    Instruction *UserInst = UI->getUser();
2765    // Skip IV users that are part of profitable IV Chains.
2766    User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(),
2767                                       UI->getOperandValToReplace());
2768    assert(UseI != UserInst->op_end() && "cannot find IV operand");
2769    if (IVIncSet.count(UseI))
2770      continue;
2771
2772    // Record the uses.
2773    LSRFixup &LF = getNewFixup();
2774    LF.UserInst = UserInst;
2775    LF.OperandValToReplace = UI->getOperandValToReplace();
2776    LF.PostIncLoops = UI->getPostIncLoops();
2777
2778    LSRUse::KindType Kind = LSRUse::Basic;
2779    Type *AccessTy = 0;
2780    if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
2781      Kind = LSRUse::Address;
2782      AccessTy = getAccessType(LF.UserInst);
2783    }
2784
2785    const SCEV *S = IU.getExpr(*UI);
2786
2787    // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
2788    // (N - i == 0), and this allows (N - i) to be the expression that we work
2789    // with rather than just N or i, so we can consider the register
2790    // requirements for both N and i at the same time. Limiting this code to
2791    // equality icmps is not a problem because all interesting loops use
2792    // equality icmps, thanks to IndVarSimplify.
2793    if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
2794      if (CI->isEquality()) {
2795        // Swap the operands if needed to put the OperandValToReplace on the
2796        // left, for consistency.
2797        Value *NV = CI->getOperand(1);
2798        if (NV == LF.OperandValToReplace) {
2799          CI->setOperand(1, CI->getOperand(0));
2800          CI->setOperand(0, NV);
2801          NV = CI->getOperand(1);
2802          Changed = true;
2803        }
2804
2805        // x == y  -->  x - y == 0
2806        const SCEV *N = SE.getSCEV(NV);
2807        if (SE.isLoopInvariant(N, L)) {
2808          // S is normalized, so normalize N before folding it into S
2809          // to keep the result normalized.
2810          N = TransformForPostIncUse(Normalize, N, CI, 0,
2811                                     LF.PostIncLoops, SE, DT);
2812          Kind = LSRUse::ICmpZero;
2813          S = SE.getMinusSCEV(N, S);
2814        }
2815
2816        // -1 and the negations of all interesting strides (except the negation
2817        // of -1) are now also interesting.
2818        for (size_t i = 0, e = Factors.size(); i != e; ++i)
2819          if (Factors[i] != -1)
2820            Factors.insert(-(uint64_t)Factors[i]);
2821        Factors.insert(-1);
2822      }
2823
2824    // Set up the initial formula for this use.
2825    std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
2826    LF.LUIdx = P.first;
2827    LF.Offset = P.second;
2828    LSRUse &LU = Uses[LF.LUIdx];
2829    LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
2830    if (!LU.WidestFixupType ||
2831        SE.getTypeSizeInBits(LU.WidestFixupType) <
2832        SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
2833      LU.WidestFixupType = LF.OperandValToReplace->getType();
2834
2835    // If this is the first use of this LSRUse, give it a formula.
2836    if (LU.Formulae.empty()) {
2837      InsertInitialFormula(S, LU, LF.LUIdx);
2838      CountRegisters(LU.Formulae.back(), LF.LUIdx);
2839    }
2840  }
2841
2842  DEBUG(print_fixups(dbgs()));
2843}
2844
2845/// InsertInitialFormula - Insert a formula for the given expression into
2846/// the given use, separating out loop-variant portions from loop-invariant
2847/// and loop-computable portions.
2848void
2849LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
2850  Formula F;
2851  F.InitialMatch(S, L, SE);
2852  bool Inserted = InsertFormula(LU, LUIdx, F);
2853  assert(Inserted && "Initial formula already exists!"); (void)Inserted;
2854}
2855
2856/// InsertSupplementalFormula - Insert a simple single-register formula for
2857/// the given expression into the given use.
2858void
2859LSRInstance::InsertSupplementalFormula(const SCEV *S,
2860                                       LSRUse &LU, size_t LUIdx) {
2861  Formula F;
2862  F.BaseRegs.push_back(S);
2863  F.AM.HasBaseReg = true;
2864  bool Inserted = InsertFormula(LU, LUIdx, F);
2865  assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
2866}
2867
2868/// CountRegisters - Note which registers are used by the given formula,
2869/// updating RegUses.
2870void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
2871  if (F.ScaledReg)
2872    RegUses.CountRegister(F.ScaledReg, LUIdx);
2873  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
2874       E = F.BaseRegs.end(); I != E; ++I)
2875    RegUses.CountRegister(*I, LUIdx);
2876}
2877
2878/// InsertFormula - If the given formula has not yet been inserted, add it to
2879/// the list, and return true. Return false otherwise.
2880bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
2881  if (!LU.InsertFormula(F))
2882    return false;
2883
2884  CountRegisters(F, LUIdx);
2885  return true;
2886}
2887
2888/// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
2889/// loop-invariant values which we're tracking. These other uses will pin these
2890/// values in registers, making them less profitable for elimination.
2891/// TODO: This currently misses non-constant addrec step registers.
2892/// TODO: Should this give more weight to users inside the loop?
2893void
2894LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
2895  SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
2896  SmallPtrSet<const SCEV *, 8> Inserted;
2897
2898  while (!Worklist.empty()) {
2899    const SCEV *S = Worklist.pop_back_val();
2900
2901    if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
2902      Worklist.append(N->op_begin(), N->op_end());
2903    else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
2904      Worklist.push_back(C->getOperand());
2905    else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2906      Worklist.push_back(D->getLHS());
2907      Worklist.push_back(D->getRHS());
2908    } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2909      if (!Inserted.insert(U)) continue;
2910      const Value *V = U->getValue();
2911      if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
2912        // Look for instructions defined outside the loop.
2913        if (L->contains(Inst)) continue;
2914      } else if (isa<UndefValue>(V))
2915        // Undef doesn't have a live range, so it doesn't matter.
2916        continue;
2917      for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
2918           UI != UE; ++UI) {
2919        const Instruction *UserInst = dyn_cast<Instruction>(*UI);
2920        // Ignore non-instructions.
2921        if (!UserInst)
2922          continue;
2923        // Ignore instructions in other functions (as can happen with
2924        // Constants).
2925        if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
2926          continue;
2927        // Ignore instructions not dominated by the loop.
2928        const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
2929          UserInst->getParent() :
2930          cast<PHINode>(UserInst)->getIncomingBlock(
2931            PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
2932        if (!DT.dominates(L->getHeader(), UseBB))
2933          continue;
2934        // Ignore uses which are part of other SCEV expressions, to avoid
2935        // analyzing them multiple times.
2936        if (SE.isSCEVable(UserInst->getType())) {
2937          const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
2938          // If the user is a no-op, look through to its uses.
2939          if (!isa<SCEVUnknown>(UserS))
2940            continue;
2941          if (UserS == U) {
2942            Worklist.push_back(
2943              SE.getUnknown(const_cast<Instruction *>(UserInst)));
2944            continue;
2945          }
2946        }
2947        // Ignore icmp instructions which are already being analyzed.
2948        if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
2949          unsigned OtherIdx = !UI.getOperandNo();
2950          Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
2951          if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
2952            continue;
2953        }
2954
2955        LSRFixup &LF = getNewFixup();
2956        LF.UserInst = const_cast<Instruction *>(UserInst);
2957        LF.OperandValToReplace = UI.getUse();
2958        std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
2959        LF.LUIdx = P.first;
2960        LF.Offset = P.second;
2961        LSRUse &LU = Uses[LF.LUIdx];
2962        LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
2963        if (!LU.WidestFixupType ||
2964            SE.getTypeSizeInBits(LU.WidestFixupType) <
2965            SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
2966          LU.WidestFixupType = LF.OperandValToReplace->getType();
2967        InsertSupplementalFormula(U, LU, LF.LUIdx);
2968        CountRegisters(LU.Formulae.back(), Uses.size() - 1);
2969        break;
2970      }
2971    }
2972  }
2973}
2974
2975/// CollectSubexprs - Split S into subexpressions which can be pulled out into
2976/// separate registers. If C is non-null, multiply each subexpression by C.
2977static void CollectSubexprs(const SCEV *S, const SCEVConstant *C,
2978                            SmallVectorImpl<const SCEV *> &Ops,
2979                            const Loop *L,
2980                            ScalarEvolution &SE) {
2981  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2982    // Break out add operands.
2983    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
2984         I != E; ++I)
2985      CollectSubexprs(*I, C, Ops, L, SE);
2986    return;
2987  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2988    // Split a non-zero base out of an addrec.
2989    if (!AR->getStart()->isZero()) {
2990      CollectSubexprs(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
2991                                       AR->getStepRecurrence(SE),
2992                                       AR->getLoop(),
2993                                       //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
2994                                       SCEV::FlagAnyWrap),
2995                      C, Ops, L, SE);
2996      CollectSubexprs(AR->getStart(), C, Ops, L, SE);
2997      return;
2998    }
2999  } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3000    // Break (C * (a + b + c)) into C*a + C*b + C*c.
3001    if (Mul->getNumOperands() == 2)
3002      if (const SCEVConstant *Op0 =
3003            dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3004        CollectSubexprs(Mul->getOperand(1),
3005                        C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0,
3006                        Ops, L, SE);
3007        return;
3008      }
3009  }
3010
3011  // Otherwise use the value itself, optionally with a scale applied.
3012  Ops.push_back(C ? SE.getMulExpr(C, S) : S);
3013}
3014
3015/// GenerateReassociations - Split out subexpressions from adds and the bases of
3016/// addrecs.
3017void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3018                                         Formula Base,
3019                                         unsigned Depth) {
3020  // Arbitrarily cap recursion to protect compile time.
3021  if (Depth >= 3) return;
3022
3023  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3024    const SCEV *BaseReg = Base.BaseRegs[i];
3025
3026    SmallVector<const SCEV *, 8> AddOps;
3027    CollectSubexprs(BaseReg, 0, AddOps, L, SE);
3028
3029    if (AddOps.size() == 1) continue;
3030
3031    for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3032         JE = AddOps.end(); J != JE; ++J) {
3033
3034      // Loop-variant "unknown" values are uninteresting; we won't be able to
3035      // do anything meaningful with them.
3036      if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3037        continue;
3038
3039      // Don't pull a constant into a register if the constant could be folded
3040      // into an immediate field.
3041      if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
3042                           Base.getNumRegs() > 1,
3043                           LU.Kind, LU.AccessTy, TLI, SE))
3044        continue;
3045
3046      // Collect all operands except *J.
3047      SmallVector<const SCEV *, 8> InnerAddOps
3048        (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3049      InnerAddOps.append
3050        (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3051
3052      // Don't leave just a constant behind in a register if the constant could
3053      // be folded into an immediate field.
3054      if (InnerAddOps.size() == 1 &&
3055          isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
3056                           Base.getNumRegs() > 1,
3057                           LU.Kind, LU.AccessTy, TLI, SE))
3058        continue;
3059
3060      const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3061      if (InnerSum->isZero())
3062        continue;
3063      Formula F = Base;
3064
3065      // Add the remaining pieces of the add back into the new formula.
3066      const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3067      if (TLI && InnerSumSC &&
3068          SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3069          TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3070                                   InnerSumSC->getValue()->getZExtValue())) {
3071        F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
3072                           InnerSumSC->getValue()->getZExtValue();
3073        F.BaseRegs.erase(F.BaseRegs.begin() + i);
3074      } else
3075        F.BaseRegs[i] = InnerSum;
3076
3077      // Add J as its own register, or an unfolded immediate.
3078      const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3079      if (TLI && SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3080          TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3081                                   SC->getValue()->getZExtValue()))
3082        F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
3083                           SC->getValue()->getZExtValue();
3084      else
3085        F.BaseRegs.push_back(*J);
3086
3087      if (InsertFormula(LU, LUIdx, F))
3088        // If that formula hadn't been seen before, recurse to find more like
3089        // it.
3090        GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
3091    }
3092  }
3093}
3094
3095/// GenerateCombinations - Generate a formula consisting of all of the
3096/// loop-dominating registers added into a single register.
3097void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3098                                       Formula Base) {
3099  // This method is only interesting on a plurality of registers.
3100  if (Base.BaseRegs.size() <= 1) return;
3101
3102  Formula F = Base;
3103  F.BaseRegs.clear();
3104  SmallVector<const SCEV *, 4> Ops;
3105  for (SmallVectorImpl<const SCEV *>::const_iterator
3106       I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
3107    const SCEV *BaseReg = *I;
3108    if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3109        !SE.hasComputableLoopEvolution(BaseReg, L))
3110      Ops.push_back(BaseReg);
3111    else
3112      F.BaseRegs.push_back(BaseReg);
3113  }
3114  if (Ops.size() > 1) {
3115    const SCEV *Sum = SE.getAddExpr(Ops);
3116    // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3117    // opportunity to fold something. For now, just ignore such cases
3118    // rather than proceed with zero in a register.
3119    if (!Sum->isZero()) {
3120      F.BaseRegs.push_back(Sum);
3121      (void)InsertFormula(LU, LUIdx, F);
3122    }
3123  }
3124}
3125
3126/// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
3127void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3128                                          Formula Base) {
3129  // We can't add a symbolic offset if the address already contains one.
3130  if (Base.AM.BaseGV) return;
3131
3132  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3133    const SCEV *G = Base.BaseRegs[i];
3134    GlobalValue *GV = ExtractSymbol(G, SE);
3135    if (G->isZero() || !GV)
3136      continue;
3137    Formula F = Base;
3138    F.AM.BaseGV = GV;
3139    if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
3140                    LU.Kind, LU.AccessTy, TLI))
3141      continue;
3142    F.BaseRegs[i] = G;
3143    (void)InsertFormula(LU, LUIdx, F);
3144  }
3145}
3146
3147/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3148void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3149                                          Formula Base) {
3150  // TODO: For now, just add the min and max offset, because it usually isn't
3151  // worthwhile looking at everything inbetween.
3152  SmallVector<int64_t, 2> Worklist;
3153  Worklist.push_back(LU.MinOffset);
3154  if (LU.MaxOffset != LU.MinOffset)
3155    Worklist.push_back(LU.MaxOffset);
3156
3157  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3158    const SCEV *G = Base.BaseRegs[i];
3159
3160    for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
3161         E = Worklist.end(); I != E; ++I) {
3162      Formula F = Base;
3163      F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
3164      if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
3165                     LU.Kind, LU.AccessTy, TLI)) {
3166        // Add the offset to the base register.
3167        const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G);
3168        // If it cancelled out, drop the base register, otherwise update it.
3169        if (NewG->isZero()) {
3170          std::swap(F.BaseRegs[i], F.BaseRegs.back());
3171          F.BaseRegs.pop_back();
3172        } else
3173          F.BaseRegs[i] = NewG;
3174
3175        (void)InsertFormula(LU, LUIdx, F);
3176      }
3177    }
3178
3179    int64_t Imm = ExtractImmediate(G, SE);
3180    if (G->isZero() || Imm == 0)
3181      continue;
3182    Formula F = Base;
3183    F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
3184    if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
3185                    LU.Kind, LU.AccessTy, TLI))
3186      continue;
3187    F.BaseRegs[i] = G;
3188    (void)InsertFormula(LU, LUIdx, F);
3189  }
3190}
3191
3192/// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
3193/// the comparison. For example, x == y -> x*c == y*c.
3194void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3195                                         Formula Base) {
3196  if (LU.Kind != LSRUse::ICmpZero) return;
3197
3198  // Determine the integer type for the base formula.
3199  Type *IntTy = Base.getType();
3200  if (!IntTy) return;
3201  if (SE.getTypeSizeInBits(IntTy) > 64) return;
3202
3203  // Don't do this if there is more than one offset.
3204  if (LU.MinOffset != LU.MaxOffset) return;
3205
3206  assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
3207
3208  // Check each interesting stride.
3209  for (SmallSetVector<int64_t, 8>::const_iterator
3210       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3211    int64_t Factor = *I;
3212
3213    // Check that the multiplication doesn't overflow.
3214    if (Base.AM.BaseOffs == INT64_MIN && Factor == -1)
3215      continue;
3216    int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
3217    if (NewBaseOffs / Factor != Base.AM.BaseOffs)
3218      continue;
3219
3220    // Check that multiplying with the use offset doesn't overflow.
3221    int64_t Offset = LU.MinOffset;
3222    if (Offset == INT64_MIN && Factor == -1)
3223      continue;
3224    Offset = (uint64_t)Offset * Factor;
3225    if (Offset / Factor != LU.MinOffset)
3226      continue;
3227
3228    Formula F = Base;
3229    F.AM.BaseOffs = NewBaseOffs;
3230
3231    // Check that this scale is legal.
3232    if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
3233      continue;
3234
3235    // Compensate for the use having MinOffset built into it.
3236    F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
3237
3238    const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3239
3240    // Check that multiplying with each base register doesn't overflow.
3241    for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3242      F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3243      if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3244        goto next;
3245    }
3246
3247    // Check that multiplying with the scaled register doesn't overflow.
3248    if (F.ScaledReg) {
3249      F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3250      if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3251        continue;
3252    }
3253
3254    // Check that multiplying with the unfolded offset doesn't overflow.
3255    if (F.UnfoldedOffset != 0) {
3256      if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
3257        continue;
3258      F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3259      if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3260        continue;
3261    }
3262
3263    // If we make it here and it's legal, add it.
3264    (void)InsertFormula(LU, LUIdx, F);
3265  next:;
3266  }
3267}
3268
3269/// GenerateScales - Generate stride factor reuse formulae by making use of
3270/// scaled-offset address modes, for example.
3271void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3272  // Determine the integer type for the base formula.
3273  Type *IntTy = Base.getType();
3274  if (!IntTy) return;
3275
3276  // If this Formula already has a scaled register, we can't add another one.
3277  if (Base.AM.Scale != 0) return;
3278
3279  // Check each interesting stride.
3280  for (SmallSetVector<int64_t, 8>::const_iterator
3281       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3282    int64_t Factor = *I;
3283
3284    Base.AM.Scale = Factor;
3285    Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
3286    // Check whether this scale is going to be legal.
3287    if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
3288                    LU.Kind, LU.AccessTy, TLI)) {
3289      // As a special-case, handle special out-of-loop Basic users specially.
3290      // TODO: Reconsider this special case.
3291      if (LU.Kind == LSRUse::Basic &&
3292          isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
3293                     LSRUse::Special, LU.AccessTy, TLI) &&
3294          LU.AllFixupsOutsideLoop)
3295        LU.Kind = LSRUse::Special;
3296      else
3297        continue;
3298    }
3299    // For an ICmpZero, negating a solitary base register won't lead to
3300    // new solutions.
3301    if (LU.Kind == LSRUse::ICmpZero &&
3302        !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
3303      continue;
3304    // For each addrec base reg, apply the scale, if possible.
3305    for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3306      if (const SCEVAddRecExpr *AR =
3307            dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
3308        const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3309        if (FactorS->isZero())
3310          continue;
3311        // Divide out the factor, ignoring high bits, since we'll be
3312        // scaling the value back up in the end.
3313        if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3314          // TODO: This could be optimized to avoid all the copying.
3315          Formula F = Base;
3316          F.ScaledReg = Quotient;
3317          F.DeleteBaseReg(F.BaseRegs[i]);
3318          (void)InsertFormula(LU, LUIdx, F);
3319        }
3320      }
3321  }
3322}
3323
3324/// GenerateTruncates - Generate reuse formulae from different IV types.
3325void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
3326  // This requires TargetLowering to tell us which truncates are free.
3327  if (!TLI) return;
3328
3329  // Don't bother truncating symbolic values.
3330  if (Base.AM.BaseGV) return;
3331
3332  // Determine the integer type for the base formula.
3333  Type *DstTy = Base.getType();
3334  if (!DstTy) return;
3335  DstTy = SE.getEffectiveSCEVType(DstTy);
3336
3337  for (SmallSetVector<Type *, 4>::const_iterator
3338       I = Types.begin(), E = Types.end(); I != E; ++I) {
3339    Type *SrcTy = *I;
3340    if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
3341      Formula F = Base;
3342
3343      if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
3344      for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
3345           JE = F.BaseRegs.end(); J != JE; ++J)
3346        *J = SE.getAnyExtendExpr(*J, SrcTy);
3347
3348      // TODO: This assumes we've done basic processing on all uses and
3349      // have an idea what the register usage is.
3350      if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
3351        continue;
3352
3353      (void)InsertFormula(LU, LUIdx, F);
3354    }
3355  }
3356}
3357
3358namespace {
3359
3360/// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
3361/// defer modifications so that the search phase doesn't have to worry about
3362/// the data structures moving underneath it.
3363struct WorkItem {
3364  size_t LUIdx;
3365  int64_t Imm;
3366  const SCEV *OrigReg;
3367
3368  WorkItem(size_t LI, int64_t I, const SCEV *R)
3369    : LUIdx(LI), Imm(I), OrigReg(R) {}
3370
3371  void print(raw_ostream &OS) const;
3372  void dump() const;
3373};
3374
3375}
3376
3377void WorkItem::print(raw_ostream &OS) const {
3378  OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
3379     << " , add offset " << Imm;
3380}
3381
3382void WorkItem::dump() const {
3383  print(errs()); errs() << '\n';
3384}
3385
3386/// GenerateCrossUseConstantOffsets - Look for registers which are a constant
3387/// distance apart and try to form reuse opportunities between them.
3388void LSRInstance::GenerateCrossUseConstantOffsets() {
3389  // Group the registers by their value without any added constant offset.
3390  typedef std::map<int64_t, const SCEV *> ImmMapTy;
3391  typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
3392  RegMapTy Map;
3393  DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
3394  SmallVector<const SCEV *, 8> Sequence;
3395  for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
3396       I != E; ++I) {
3397    const SCEV *Reg = *I;
3398    int64_t Imm = ExtractImmediate(Reg, SE);
3399    std::pair<RegMapTy::iterator, bool> Pair =
3400      Map.insert(std::make_pair(Reg, ImmMapTy()));
3401    if (Pair.second)
3402      Sequence.push_back(Reg);
3403    Pair.first->second.insert(std::make_pair(Imm, *I));
3404    UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
3405  }
3406
3407  // Now examine each set of registers with the same base value. Build up
3408  // a list of work to do and do the work in a separate step so that we're
3409  // not adding formulae and register counts while we're searching.
3410  SmallVector<WorkItem, 32> WorkItems;
3411  SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
3412  for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
3413       E = Sequence.end(); I != E; ++I) {
3414    const SCEV *Reg = *I;
3415    const ImmMapTy &Imms = Map.find(Reg)->second;
3416
3417    // It's not worthwhile looking for reuse if there's only one offset.
3418    if (Imms.size() == 1)
3419      continue;
3420
3421    DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
3422          for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3423               J != JE; ++J)
3424            dbgs() << ' ' << J->first;
3425          dbgs() << '\n');
3426
3427    // Examine each offset.
3428    for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3429         J != JE; ++J) {
3430      const SCEV *OrigReg = J->second;
3431
3432      int64_t JImm = J->first;
3433      const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
3434
3435      if (!isa<SCEVConstant>(OrigReg) &&
3436          UsedByIndicesMap[Reg].count() == 1) {
3437        DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
3438        continue;
3439      }
3440
3441      // Conservatively examine offsets between this orig reg a few selected
3442      // other orig regs.
3443      ImmMapTy::const_iterator OtherImms[] = {
3444        Imms.begin(), prior(Imms.end()),
3445        Imms.lower_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
3446      };
3447      for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
3448        ImmMapTy::const_iterator M = OtherImms[i];
3449        if (M == J || M == JE) continue;
3450
3451        // Compute the difference between the two.
3452        int64_t Imm = (uint64_t)JImm - M->first;
3453        for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
3454             LUIdx = UsedByIndices.find_next(LUIdx))
3455          // Make a memo of this use, offset, and register tuple.
3456          if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
3457            WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
3458      }
3459    }
3460  }
3461
3462  Map.clear();
3463  Sequence.clear();
3464  UsedByIndicesMap.clear();
3465  UniqueItems.clear();
3466
3467  // Now iterate through the worklist and add new formulae.
3468  for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
3469       E = WorkItems.end(); I != E; ++I) {
3470    const WorkItem &WI = *I;
3471    size_t LUIdx = WI.LUIdx;
3472    LSRUse &LU = Uses[LUIdx];
3473    int64_t Imm = WI.Imm;
3474    const SCEV *OrigReg = WI.OrigReg;
3475
3476    Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
3477    const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
3478    unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
3479
3480    // TODO: Use a more targeted data structure.
3481    for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
3482      const Formula &F = LU.Formulae[L];
3483      // Use the immediate in the scaled register.
3484      if (F.ScaledReg == OrigReg) {
3485        int64_t Offs = (uint64_t)F.AM.BaseOffs +
3486                       Imm * (uint64_t)F.AM.Scale;
3487        // Don't create 50 + reg(-50).
3488        if (F.referencesReg(SE.getSCEV(
3489                   ConstantInt::get(IntTy, -(uint64_t)Offs))))
3490          continue;
3491        Formula NewF = F;
3492        NewF.AM.BaseOffs = Offs;
3493        if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
3494                        LU.Kind, LU.AccessTy, TLI))
3495          continue;
3496        NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
3497
3498        // If the new scale is a constant in a register, and adding the constant
3499        // value to the immediate would produce a value closer to zero than the
3500        // immediate itself, then the formula isn't worthwhile.
3501        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
3502          if (C->getValue()->isNegative() !=
3503                (NewF.AM.BaseOffs < 0) &&
3504              (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
3505                .ule(abs64(NewF.AM.BaseOffs)))
3506            continue;
3507
3508        // OK, looks good.
3509        (void)InsertFormula(LU, LUIdx, NewF);
3510      } else {
3511        // Use the immediate in a base register.
3512        for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
3513          const SCEV *BaseReg = F.BaseRegs[N];
3514          if (BaseReg != OrigReg)
3515            continue;
3516          Formula NewF = F;
3517          NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
3518          if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
3519                          LU.Kind, LU.AccessTy, TLI)) {
3520            if (!TLI ||
3521                !TLI->isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
3522              continue;
3523            NewF = F;
3524            NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
3525          }
3526          NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
3527
3528          // If the new formula has a constant in a register, and adding the
3529          // constant value to the immediate would produce a value closer to
3530          // zero than the immediate itself, then the formula isn't worthwhile.
3531          for (SmallVectorImpl<const SCEV *>::const_iterator
3532               J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
3533               J != JE; ++J)
3534            if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
3535              if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt(
3536                   abs64(NewF.AM.BaseOffs)) &&
3537                  (C->getValue()->getValue() +
3538                   NewF.AM.BaseOffs).countTrailingZeros() >=
3539                   CountTrailingZeros_64(NewF.AM.BaseOffs))
3540                goto skip_formula;
3541
3542          // Ok, looks good.
3543          (void)InsertFormula(LU, LUIdx, NewF);
3544          break;
3545        skip_formula:;
3546        }
3547      }
3548    }
3549  }
3550}
3551
3552/// GenerateAllReuseFormulae - Generate formulae for each use.
3553void
3554LSRInstance::GenerateAllReuseFormulae() {
3555  // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
3556  // queries are more precise.
3557  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3558    LSRUse &LU = Uses[LUIdx];
3559    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3560      GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
3561    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3562      GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
3563  }
3564  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3565    LSRUse &LU = Uses[LUIdx];
3566    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3567      GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
3568    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3569      GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
3570    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3571      GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
3572    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3573      GenerateScales(LU, LUIdx, LU.Formulae[i]);
3574  }
3575  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3576    LSRUse &LU = Uses[LUIdx];
3577    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3578      GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
3579  }
3580
3581  GenerateCrossUseConstantOffsets();
3582
3583  DEBUG(dbgs() << "\n"
3584                  "After generating reuse formulae:\n";
3585        print_uses(dbgs()));
3586}
3587
3588/// If there are multiple formulae with the same set of registers used
3589/// by other uses, pick the best one and delete the others.
3590void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
3591  DenseSet<const SCEV *> VisitedRegs;
3592  SmallPtrSet<const SCEV *, 16> Regs;
3593  SmallPtrSet<const SCEV *, 16> LoserRegs;
3594#ifndef NDEBUG
3595  bool ChangedFormulae = false;
3596#endif
3597
3598  // Collect the best formula for each unique set of shared registers. This
3599  // is reset for each use.
3600  typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
3601    BestFormulaeTy;
3602  BestFormulaeTy BestFormulae;
3603
3604  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3605    LSRUse &LU = Uses[LUIdx];
3606    DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
3607
3608    bool Any = false;
3609    for (size_t FIdx = 0, NumForms = LU.Formulae.size();
3610         FIdx != NumForms; ++FIdx) {
3611      Formula &F = LU.Formulae[FIdx];
3612
3613      // Some formulas are instant losers. For example, they may depend on
3614      // nonexistent AddRecs from other loops. These need to be filtered
3615      // immediately, otherwise heuristics could choose them over others leading
3616      // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
3617      // avoids the need to recompute this information across formulae using the
3618      // same bad AddRec. Passing LoserRegs is also essential unless we remove
3619      // the corresponding bad register from the Regs set.
3620      Cost CostF;
3621      Regs.clear();
3622      CostF.RateFormula(F, Regs, VisitedRegs, L, LU.Offsets, SE, DT,
3623                        &LoserRegs);
3624      if (CostF.isLoser()) {
3625        // During initial formula generation, undesirable formulae are generated
3626        // by uses within other loops that have some non-trivial address mode or
3627        // use the postinc form of the IV. LSR needs to provide these formulae
3628        // as the basis of rediscovering the desired formula that uses an AddRec
3629        // corresponding to the existing phi. Once all formulae have been
3630        // generated, these initial losers may be pruned.
3631        DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
3632              dbgs() << "\n");
3633      }
3634      else {
3635        SmallVector<const SCEV *, 2> Key;
3636        for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
3637               JE = F.BaseRegs.end(); J != JE; ++J) {
3638          const SCEV *Reg = *J;
3639          if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
3640            Key.push_back(Reg);
3641        }
3642        if (F.ScaledReg &&
3643            RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
3644          Key.push_back(F.ScaledReg);
3645        // Unstable sort by host order ok, because this is only used for
3646        // uniquifying.
3647        std::sort(Key.begin(), Key.end());
3648
3649        std::pair<BestFormulaeTy::const_iterator, bool> P =
3650          BestFormulae.insert(std::make_pair(Key, FIdx));
3651        if (P.second)
3652          continue;
3653
3654        Formula &Best = LU.Formulae[P.first->second];
3655
3656        Cost CostBest;
3657        Regs.clear();
3658        CostBest.RateFormula(Best, Regs, VisitedRegs, L, LU.Offsets, SE, DT);
3659        if (CostF < CostBest)
3660          std::swap(F, Best);
3661        DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
3662              dbgs() << "\n"
3663                        "    in favor of formula "; Best.print(dbgs());
3664              dbgs() << '\n');
3665      }
3666#ifndef NDEBUG
3667      ChangedFormulae = true;
3668#endif
3669      LU.DeleteFormula(F);
3670      --FIdx;
3671      --NumForms;
3672      Any = true;
3673    }
3674
3675    // Now that we've filtered out some formulae, recompute the Regs set.
3676    if (Any)
3677      LU.RecomputeRegs(LUIdx, RegUses);
3678
3679    // Reset this to prepare for the next use.
3680    BestFormulae.clear();
3681  }
3682
3683  DEBUG(if (ChangedFormulae) {
3684          dbgs() << "\n"
3685                    "After filtering out undesirable candidates:\n";
3686          print_uses(dbgs());
3687        });
3688}
3689
3690// This is a rough guess that seems to work fairly well.
3691static const size_t ComplexityLimit = UINT16_MAX;
3692
3693/// EstimateSearchSpaceComplexity - Estimate the worst-case number of
3694/// solutions the solver might have to consider. It almost never considers
3695/// this many solutions because it prune the search space, but the pruning
3696/// isn't always sufficient.
3697size_t LSRInstance::EstimateSearchSpaceComplexity() const {
3698  size_t Power = 1;
3699  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3700       E = Uses.end(); I != E; ++I) {
3701    size_t FSize = I->Formulae.size();
3702    if (FSize >= ComplexityLimit) {
3703      Power = ComplexityLimit;
3704      break;
3705    }
3706    Power *= FSize;
3707    if (Power >= ComplexityLimit)
3708      break;
3709  }
3710  return Power;
3711}
3712
3713/// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset
3714/// of the registers of another formula, it won't help reduce register
3715/// pressure (though it may not necessarily hurt register pressure); remove
3716/// it to simplify the system.
3717void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
3718  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3719    DEBUG(dbgs() << "The search space is too complex.\n");
3720
3721    DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
3722                    "which use a superset of registers used by other "
3723                    "formulae.\n");
3724
3725    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3726      LSRUse &LU = Uses[LUIdx];
3727      bool Any = false;
3728      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
3729        Formula &F = LU.Formulae[i];
3730        // Look for a formula with a constant or GV in a register. If the use
3731        // also has a formula with that same value in an immediate field,
3732        // delete the one that uses a register.
3733        for (SmallVectorImpl<const SCEV *>::const_iterator
3734             I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
3735          if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
3736            Formula NewF = F;
3737            NewF.AM.BaseOffs += C->getValue()->getSExtValue();
3738            NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
3739                                (I - F.BaseRegs.begin()));
3740            if (LU.HasFormulaWithSameRegs(NewF)) {
3741              DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
3742              LU.DeleteFormula(F);
3743              --i;
3744              --e;
3745              Any = true;
3746              break;
3747            }
3748          } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
3749            if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
3750              if (!F.AM.BaseGV) {
3751                Formula NewF = F;
3752                NewF.AM.BaseGV = GV;
3753                NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
3754                                    (I - F.BaseRegs.begin()));
3755                if (LU.HasFormulaWithSameRegs(NewF)) {
3756                  DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
3757                        dbgs() << '\n');
3758                  LU.DeleteFormula(F);
3759                  --i;
3760                  --e;
3761                  Any = true;
3762                  break;
3763                }
3764              }
3765          }
3766        }
3767      }
3768      if (Any)
3769        LU.RecomputeRegs(LUIdx, RegUses);
3770    }
3771
3772    DEBUG(dbgs() << "After pre-selection:\n";
3773          print_uses(dbgs()));
3774  }
3775}
3776
3777/// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers
3778/// for expressions like A, A+1, A+2, etc., allocate a single register for
3779/// them.
3780void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
3781  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3782    DEBUG(dbgs() << "The search space is too complex.\n");
3783
3784    DEBUG(dbgs() << "Narrowing the search space by assuming that uses "
3785                    "separated by a constant offset will use the same "
3786                    "registers.\n");
3787
3788    // This is especially useful for unrolled loops.
3789
3790    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3791      LSRUse &LU = Uses[LUIdx];
3792      for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
3793           E = LU.Formulae.end(); I != E; ++I) {
3794        const Formula &F = *I;
3795        if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) {
3796          if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) {
3797            if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs,
3798                                   /*HasBaseReg=*/false,
3799                                   LU.Kind, LU.AccessTy)) {
3800              DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs());
3801                    dbgs() << '\n');
3802
3803              LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
3804
3805              // Update the relocs to reference the new use.
3806              for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
3807                   E = Fixups.end(); I != E; ++I) {
3808                LSRFixup &Fixup = *I;
3809                if (Fixup.LUIdx == LUIdx) {
3810                  Fixup.LUIdx = LUThatHas - &Uses.front();
3811                  Fixup.Offset += F.AM.BaseOffs;
3812                  // Add the new offset to LUThatHas' offset list.
3813                  if (LUThatHas->Offsets.back() != Fixup.Offset) {
3814                    LUThatHas->Offsets.push_back(Fixup.Offset);
3815                    if (Fixup.Offset > LUThatHas->MaxOffset)
3816                      LUThatHas->MaxOffset = Fixup.Offset;
3817                    if (Fixup.Offset < LUThatHas->MinOffset)
3818                      LUThatHas->MinOffset = Fixup.Offset;
3819                  }
3820                  DEBUG(dbgs() << "New fixup has offset "
3821                               << Fixup.Offset << '\n');
3822                }
3823                if (Fixup.LUIdx == NumUses-1)
3824                  Fixup.LUIdx = LUIdx;
3825              }
3826
3827              // Delete formulae from the new use which are no longer legal.
3828              bool Any = false;
3829              for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
3830                Formula &F = LUThatHas->Formulae[i];
3831                if (!isLegalUse(F.AM,
3832                                LUThatHas->MinOffset, LUThatHas->MaxOffset,
3833                                LUThatHas->Kind, LUThatHas->AccessTy, TLI)) {
3834                  DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
3835                        dbgs() << '\n');
3836                  LUThatHas->DeleteFormula(F);
3837                  --i;
3838                  --e;
3839                  Any = true;
3840                }
3841              }
3842              if (Any)
3843                LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
3844
3845              // Delete the old use.
3846              DeleteUse(LU, LUIdx);
3847              --LUIdx;
3848              --NumUses;
3849              break;
3850            }
3851          }
3852        }
3853      }
3854    }
3855
3856    DEBUG(dbgs() << "After pre-selection:\n";
3857          print_uses(dbgs()));
3858  }
3859}
3860
3861/// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call
3862/// FilterOutUndesirableDedicatedRegisters again, if necessary, now that
3863/// we've done more filtering, as it may be able to find more formulae to
3864/// eliminate.
3865void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
3866  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3867    DEBUG(dbgs() << "The search space is too complex.\n");
3868
3869    DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
3870                    "undesirable dedicated registers.\n");
3871
3872    FilterOutUndesirableDedicatedRegisters();
3873
3874    DEBUG(dbgs() << "After pre-selection:\n";
3875          print_uses(dbgs()));
3876  }
3877}
3878
3879/// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely
3880/// to be profitable, and then in any use which has any reference to that
3881/// register, delete all formulae which do not reference that register.
3882void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
3883  // With all other options exhausted, loop until the system is simple
3884  // enough to handle.
3885  SmallPtrSet<const SCEV *, 4> Taken;
3886  while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3887    // Ok, we have too many of formulae on our hands to conveniently handle.
3888    // Use a rough heuristic to thin out the list.
3889    DEBUG(dbgs() << "The search space is too complex.\n");
3890
3891    // Pick the register which is used by the most LSRUses, which is likely
3892    // to be a good reuse register candidate.
3893    const SCEV *Best = 0;
3894    unsigned BestNum = 0;
3895    for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
3896         I != E; ++I) {
3897      const SCEV *Reg = *I;
3898      if (Taken.count(Reg))
3899        continue;
3900      if (!Best)
3901        Best = Reg;
3902      else {
3903        unsigned Count = RegUses.getUsedByIndices(Reg).count();
3904        if (Count > BestNum) {
3905          Best = Reg;
3906          BestNum = Count;
3907        }
3908      }
3909    }
3910
3911    DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
3912                 << " will yield profitable reuse.\n");
3913    Taken.insert(Best);
3914
3915    // In any use with formulae which references this register, delete formulae
3916    // which don't reference it.
3917    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3918      LSRUse &LU = Uses[LUIdx];
3919      if (!LU.Regs.count(Best)) continue;
3920
3921      bool Any = false;
3922      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
3923        Formula &F = LU.Formulae[i];
3924        if (!F.referencesReg(Best)) {
3925          DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
3926          LU.DeleteFormula(F);
3927          --e;
3928          --i;
3929          Any = true;
3930          assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
3931          continue;
3932        }
3933      }
3934
3935      if (Any)
3936        LU.RecomputeRegs(LUIdx, RegUses);
3937    }
3938
3939    DEBUG(dbgs() << "After pre-selection:\n";
3940          print_uses(dbgs()));
3941  }
3942}
3943
3944/// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
3945/// formulae to choose from, use some rough heuristics to prune down the number
3946/// of formulae. This keeps the main solver from taking an extraordinary amount
3947/// of time in some worst-case scenarios.
3948void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
3949  NarrowSearchSpaceByDetectingSupersets();
3950  NarrowSearchSpaceByCollapsingUnrolledCode();
3951  NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
3952  NarrowSearchSpaceByPickingWinnerRegs();
3953}
3954
3955/// SolveRecurse - This is the recursive solver.
3956void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
3957                               Cost &SolutionCost,
3958                               SmallVectorImpl<const Formula *> &Workspace,
3959                               const Cost &CurCost,
3960                               const SmallPtrSet<const SCEV *, 16> &CurRegs,
3961                               DenseSet<const SCEV *> &VisitedRegs) const {
3962  // Some ideas:
3963  //  - prune more:
3964  //    - use more aggressive filtering
3965  //    - sort the formula so that the most profitable solutions are found first
3966  //    - sort the uses too
3967  //  - search faster:
3968  //    - don't compute a cost, and then compare. compare while computing a cost
3969  //      and bail early.
3970  //    - track register sets with SmallBitVector
3971
3972  const LSRUse &LU = Uses[Workspace.size()];
3973
3974  // If this use references any register that's already a part of the
3975  // in-progress solution, consider it a requirement that a formula must
3976  // reference that register in order to be considered. This prunes out
3977  // unprofitable searching.
3978  SmallSetVector<const SCEV *, 4> ReqRegs;
3979  for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
3980       E = CurRegs.end(); I != E; ++I)
3981    if (LU.Regs.count(*I))
3982      ReqRegs.insert(*I);
3983
3984  SmallPtrSet<const SCEV *, 16> NewRegs;
3985  Cost NewCost;
3986  for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
3987       E = LU.Formulae.end(); I != E; ++I) {
3988    const Formula &F = *I;
3989
3990    // Ignore formulae which do not use any of the required registers.
3991    bool SatisfiedReqReg = true;
3992    for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
3993         JE = ReqRegs.end(); J != JE; ++J) {
3994      const SCEV *Reg = *J;
3995      if ((!F.ScaledReg || F.ScaledReg != Reg) &&
3996          std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
3997          F.BaseRegs.end()) {
3998        SatisfiedReqReg = false;
3999        break;
4000      }
4001    }
4002    if (!SatisfiedReqReg) {
4003      // If none of the formulae satisfied the required registers, then we could
4004      // clear ReqRegs and try again. Currently, we simply give up in this case.
4005      continue;
4006    }
4007
4008    // Evaluate the cost of the current formula. If it's already worse than
4009    // the current best, prune the search at that point.
4010    NewCost = CurCost;
4011    NewRegs = CurRegs;
4012    NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT);
4013    if (NewCost < SolutionCost) {
4014      Workspace.push_back(&F);
4015      if (Workspace.size() != Uses.size()) {
4016        SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4017                     NewRegs, VisitedRegs);
4018        if (F.getNumRegs() == 1 && Workspace.size() == 1)
4019          VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4020      } else {
4021        DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4022              dbgs() << ".\n Regs:";
4023              for (SmallPtrSet<const SCEV *, 16>::const_iterator
4024                   I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
4025                dbgs() << ' ' << **I;
4026              dbgs() << '\n');
4027
4028        SolutionCost = NewCost;
4029        Solution = Workspace;
4030      }
4031      Workspace.pop_back();
4032    }
4033  }
4034}
4035
4036/// Solve - Choose one formula from each use. Return the results in the given
4037/// Solution vector.
4038void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4039  SmallVector<const Formula *, 8> Workspace;
4040  Cost SolutionCost;
4041  SolutionCost.Loose();
4042  Cost CurCost;
4043  SmallPtrSet<const SCEV *, 16> CurRegs;
4044  DenseSet<const SCEV *> VisitedRegs;
4045  Workspace.reserve(Uses.size());
4046
4047  // SolveRecurse does all the work.
4048  SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4049               CurRegs, VisitedRegs);
4050  if (Solution.empty()) {
4051    DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4052    return;
4053  }
4054
4055  // Ok, we've now made all our decisions.
4056  DEBUG(dbgs() << "\n"
4057                  "The chosen solution requires "; SolutionCost.print(dbgs());
4058        dbgs() << ":\n";
4059        for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4060          dbgs() << "  ";
4061          Uses[i].print(dbgs());
4062          dbgs() << "\n"
4063                    "    ";
4064          Solution[i]->print(dbgs());
4065          dbgs() << '\n';
4066        });
4067
4068  assert(Solution.size() == Uses.size() && "Malformed solution!");
4069}
4070
4071/// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
4072/// the dominator tree far as we can go while still being dominated by the
4073/// input positions. This helps canonicalize the insert position, which
4074/// encourages sharing.
4075BasicBlock::iterator
4076LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4077                                 const SmallVectorImpl<Instruction *> &Inputs)
4078                                                                         const {
4079  for (;;) {
4080    const Loop *IPLoop = LI.getLoopFor(IP->getParent());
4081    unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
4082
4083    BasicBlock *IDom;
4084    for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
4085      if (!Rung) return IP;
4086      Rung = Rung->getIDom();
4087      if (!Rung) return IP;
4088      IDom = Rung->getBlock();
4089
4090      // Don't climb into a loop though.
4091      const Loop *IDomLoop = LI.getLoopFor(IDom);
4092      unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
4093      if (IDomDepth <= IPLoopDepth &&
4094          (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
4095        break;
4096    }
4097
4098    bool AllDominate = true;
4099    Instruction *BetterPos = 0;
4100    Instruction *Tentative = IDom->getTerminator();
4101    for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
4102         E = Inputs.end(); I != E; ++I) {
4103      Instruction *Inst = *I;
4104      if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
4105        AllDominate = false;
4106        break;
4107      }
4108      // Attempt to find an insert position in the middle of the block,
4109      // instead of at the end, so that it can be used for other expansions.
4110      if (IDom == Inst->getParent() &&
4111          (!BetterPos || !DT.dominates(Inst, BetterPos)))
4112        BetterPos = llvm::next(BasicBlock::iterator(Inst));
4113    }
4114    if (!AllDominate)
4115      break;
4116    if (BetterPos)
4117      IP = BetterPos;
4118    else
4119      IP = Tentative;
4120  }
4121
4122  return IP;
4123}
4124
4125/// AdjustInsertPositionForExpand - Determine an input position which will be
4126/// dominated by the operands and which will dominate the result.
4127BasicBlock::iterator
4128LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
4129                                           const LSRFixup &LF,
4130                                           const LSRUse &LU,
4131                                           SCEVExpander &Rewriter) const {
4132  // Collect some instructions which must be dominated by the
4133  // expanding replacement. These must be dominated by any operands that
4134  // will be required in the expansion.
4135  SmallVector<Instruction *, 4> Inputs;
4136  if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
4137    Inputs.push_back(I);
4138  if (LU.Kind == LSRUse::ICmpZero)
4139    if (Instruction *I =
4140          dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
4141      Inputs.push_back(I);
4142  if (LF.PostIncLoops.count(L)) {
4143    if (LF.isUseFullyOutsideLoop(L))
4144      Inputs.push_back(L->getLoopLatch()->getTerminator());
4145    else
4146      Inputs.push_back(IVIncInsertPos);
4147  }
4148  // The expansion must also be dominated by the increment positions of any
4149  // loops it for which it is using post-inc mode.
4150  for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
4151       E = LF.PostIncLoops.end(); I != E; ++I) {
4152    const Loop *PIL = *I;
4153    if (PIL == L) continue;
4154
4155    // Be dominated by the loop exit.
4156    SmallVector<BasicBlock *, 4> ExitingBlocks;
4157    PIL->getExitingBlocks(ExitingBlocks);
4158    if (!ExitingBlocks.empty()) {
4159      BasicBlock *BB = ExitingBlocks[0];
4160      for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
4161        BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
4162      Inputs.push_back(BB->getTerminator());
4163    }
4164  }
4165
4166  assert(!isa<PHINode>(LowestIP) && !isa<LandingPadInst>(LowestIP)
4167         && !isa<DbgInfoIntrinsic>(LowestIP) &&
4168         "Insertion point must be a normal instruction");
4169
4170  // Then, climb up the immediate dominator tree as far as we can go while
4171  // still being dominated by the input positions.
4172  BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
4173
4174  // Don't insert instructions before PHI nodes.
4175  while (isa<PHINode>(IP)) ++IP;
4176
4177  // Ignore landingpad instructions.
4178  while (isa<LandingPadInst>(IP)) ++IP;
4179
4180  // Ignore debug intrinsics.
4181  while (isa<DbgInfoIntrinsic>(IP)) ++IP;
4182
4183  // Set IP below instructions recently inserted by SCEVExpander. This keeps the
4184  // IP consistent across expansions and allows the previously inserted
4185  // instructions to be reused by subsequent expansion.
4186  while (Rewriter.isInsertedInstruction(IP) && IP != LowestIP) ++IP;
4187
4188  return IP;
4189}
4190
4191/// Expand - Emit instructions for the leading candidate expression for this
4192/// LSRUse (this is called "expanding").
4193Value *LSRInstance::Expand(const LSRFixup &LF,
4194                           const Formula &F,
4195                           BasicBlock::iterator IP,
4196                           SCEVExpander &Rewriter,
4197                           SmallVectorImpl<WeakVH> &DeadInsts) const {
4198  const LSRUse &LU = Uses[LF.LUIdx];
4199
4200  // Determine an input position which will be dominated by the operands and
4201  // which will dominate the result.
4202  IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
4203
4204  // Inform the Rewriter if we have a post-increment use, so that it can
4205  // perform an advantageous expansion.
4206  Rewriter.setPostInc(LF.PostIncLoops);
4207
4208  // This is the type that the user actually needs.
4209  Type *OpTy = LF.OperandValToReplace->getType();
4210  // This will be the type that we'll initially expand to.
4211  Type *Ty = F.getType();
4212  if (!Ty)
4213    // No type known; just expand directly to the ultimate type.
4214    Ty = OpTy;
4215  else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
4216    // Expand directly to the ultimate type if it's the right size.
4217    Ty = OpTy;
4218  // This is the type to do integer arithmetic in.
4219  Type *IntTy = SE.getEffectiveSCEVType(Ty);
4220
4221  // Build up a list of operands to add together to form the full base.
4222  SmallVector<const SCEV *, 8> Ops;
4223
4224  // Expand the BaseRegs portion.
4225  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
4226       E = F.BaseRegs.end(); I != E; ++I) {
4227    const SCEV *Reg = *I;
4228    assert(!Reg->isZero() && "Zero allocated in a base register!");
4229
4230    // If we're expanding for a post-inc user, make the post-inc adjustment.
4231    PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4232    Reg = TransformForPostIncUse(Denormalize, Reg,
4233                                 LF.UserInst, LF.OperandValToReplace,
4234                                 Loops, SE, DT);
4235
4236    Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
4237  }
4238
4239  // Flush the operand list to suppress SCEVExpander hoisting.
4240  if (!Ops.empty()) {
4241    Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
4242    Ops.clear();
4243    Ops.push_back(SE.getUnknown(FullV));
4244  }
4245
4246  // Expand the ScaledReg portion.
4247  Value *ICmpScaledV = 0;
4248  if (F.AM.Scale != 0) {
4249    const SCEV *ScaledS = F.ScaledReg;
4250
4251    // If we're expanding for a post-inc user, make the post-inc adjustment.
4252    PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4253    ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
4254                                     LF.UserInst, LF.OperandValToReplace,
4255                                     Loops, SE, DT);
4256
4257    if (LU.Kind == LSRUse::ICmpZero) {
4258      // An interesting way of "folding" with an icmp is to use a negated
4259      // scale, which we'll implement by inserting it into the other operand
4260      // of the icmp.
4261      assert(F.AM.Scale == -1 &&
4262             "The only scale supported by ICmpZero uses is -1!");
4263      ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
4264    } else {
4265      // Otherwise just expand the scaled register and an explicit scale,
4266      // which is expected to be matched as part of the address.
4267      ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
4268      ScaledS = SE.getMulExpr(ScaledS,
4269                              SE.getConstant(ScaledS->getType(), F.AM.Scale));
4270      Ops.push_back(ScaledS);
4271
4272      // Flush the operand list to suppress SCEVExpander hoisting.
4273      Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
4274      Ops.clear();
4275      Ops.push_back(SE.getUnknown(FullV));
4276    }
4277  }
4278
4279  // Expand the GV portion.
4280  if (F.AM.BaseGV) {
4281    Ops.push_back(SE.getUnknown(F.AM.BaseGV));
4282
4283    // Flush the operand list to suppress SCEVExpander hoisting.
4284    Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
4285    Ops.clear();
4286    Ops.push_back(SE.getUnknown(FullV));
4287  }
4288
4289  // Expand the immediate portion.
4290  int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
4291  if (Offset != 0) {
4292    if (LU.Kind == LSRUse::ICmpZero) {
4293      // The other interesting way of "folding" with an ICmpZero is to use a
4294      // negated immediate.
4295      if (!ICmpScaledV)
4296        ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
4297      else {
4298        Ops.push_back(SE.getUnknown(ICmpScaledV));
4299        ICmpScaledV = ConstantInt::get(IntTy, Offset);
4300      }
4301    } else {
4302      // Just add the immediate values. These again are expected to be matched
4303      // as part of the address.
4304      Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
4305    }
4306  }
4307
4308  // Expand the unfolded offset portion.
4309  int64_t UnfoldedOffset = F.UnfoldedOffset;
4310  if (UnfoldedOffset != 0) {
4311    // Just add the immediate values.
4312    Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
4313                                                       UnfoldedOffset)));
4314  }
4315
4316  // Emit instructions summing all the operands.
4317  const SCEV *FullS = Ops.empty() ?
4318                      SE.getConstant(IntTy, 0) :
4319                      SE.getAddExpr(Ops);
4320  Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
4321
4322  // We're done expanding now, so reset the rewriter.
4323  Rewriter.clearPostInc();
4324
4325  // An ICmpZero Formula represents an ICmp which we're handling as a
4326  // comparison against zero. Now that we've expanded an expression for that
4327  // form, update the ICmp's other operand.
4328  if (LU.Kind == LSRUse::ICmpZero) {
4329    ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
4330    DeadInsts.push_back(CI->getOperand(1));
4331    assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
4332                           "a scale at the same time!");
4333    if (F.AM.Scale == -1) {
4334      if (ICmpScaledV->getType() != OpTy) {
4335        Instruction *Cast =
4336          CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
4337                                                   OpTy, false),
4338                           ICmpScaledV, OpTy, "tmp", CI);
4339        ICmpScaledV = Cast;
4340      }
4341      CI->setOperand(1, ICmpScaledV);
4342    } else {
4343      assert(F.AM.Scale == 0 &&
4344             "ICmp does not support folding a global value and "
4345             "a scale at the same time!");
4346      Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
4347                                           -(uint64_t)Offset);
4348      if (C->getType() != OpTy)
4349        C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4350                                                          OpTy, false),
4351                                  C, OpTy);
4352
4353      CI->setOperand(1, C);
4354    }
4355  }
4356
4357  return FullV;
4358}
4359
4360/// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
4361/// of their operands effectively happens in their predecessor blocks, so the
4362/// expression may need to be expanded in multiple places.
4363void LSRInstance::RewriteForPHI(PHINode *PN,
4364                                const LSRFixup &LF,
4365                                const Formula &F,
4366                                SCEVExpander &Rewriter,
4367                                SmallVectorImpl<WeakVH> &DeadInsts,
4368                                Pass *P) const {
4369  DenseMap<BasicBlock *, Value *> Inserted;
4370  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4371    if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
4372      BasicBlock *BB = PN->getIncomingBlock(i);
4373
4374      // If this is a critical edge, split the edge so that we do not insert
4375      // the code on all predecessor/successor paths.  We do this unless this
4376      // is the canonical backedge for this loop, which complicates post-inc
4377      // users.
4378      if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
4379          !isa<IndirectBrInst>(BB->getTerminator())) {
4380        BasicBlock *Parent = PN->getParent();
4381        Loop *PNLoop = LI.getLoopFor(Parent);
4382        if (!PNLoop || Parent != PNLoop->getHeader()) {
4383          // Split the critical edge.
4384          BasicBlock *NewBB = 0;
4385          if (!Parent->isLandingPad()) {
4386            NewBB = SplitCriticalEdge(BB, Parent, P,
4387                                      /*MergeIdenticalEdges=*/true,
4388                                      /*DontDeleteUselessPhis=*/true);
4389          } else {
4390            SmallVector<BasicBlock*, 2> NewBBs;
4391            SplitLandingPadPredecessors(Parent, BB, "", "", P, NewBBs);
4392            NewBB = NewBBs[0];
4393          }
4394
4395          // If PN is outside of the loop and BB is in the loop, we want to
4396          // move the block to be immediately before the PHI block, not
4397          // immediately after BB.
4398          if (L->contains(BB) && !L->contains(PN))
4399            NewBB->moveBefore(PN->getParent());
4400
4401          // Splitting the edge can reduce the number of PHI entries we have.
4402          e = PN->getNumIncomingValues();
4403          BB = NewBB;
4404          i = PN->getBasicBlockIndex(BB);
4405        }
4406      }
4407
4408      std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
4409        Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
4410      if (!Pair.second)
4411        PN->setIncomingValue(i, Pair.first->second);
4412      else {
4413        Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
4414
4415        // If this is reuse-by-noop-cast, insert the noop cast.
4416        Type *OpTy = LF.OperandValToReplace->getType();
4417        if (FullV->getType() != OpTy)
4418          FullV =
4419            CastInst::Create(CastInst::getCastOpcode(FullV, false,
4420                                                     OpTy, false),
4421                             FullV, LF.OperandValToReplace->getType(),
4422                             "tmp", BB->getTerminator());
4423
4424        PN->setIncomingValue(i, FullV);
4425        Pair.first->second = FullV;
4426      }
4427    }
4428}
4429
4430/// Rewrite - Emit instructions for the leading candidate expression for this
4431/// LSRUse (this is called "expanding"), and update the UserInst to reference
4432/// the newly expanded value.
4433void LSRInstance::Rewrite(const LSRFixup &LF,
4434                          const Formula &F,
4435                          SCEVExpander &Rewriter,
4436                          SmallVectorImpl<WeakVH> &DeadInsts,
4437                          Pass *P) const {
4438  // First, find an insertion point that dominates UserInst. For PHI nodes,
4439  // find the nearest block which dominates all the relevant uses.
4440  if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
4441    RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
4442  } else {
4443    Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
4444
4445    // If this is reuse-by-noop-cast, insert the noop cast.
4446    Type *OpTy = LF.OperandValToReplace->getType();
4447    if (FullV->getType() != OpTy) {
4448      Instruction *Cast =
4449        CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
4450                         FullV, OpTy, "tmp", LF.UserInst);
4451      FullV = Cast;
4452    }
4453
4454    // Update the user. ICmpZero is handled specially here (for now) because
4455    // Expand may have updated one of the operands of the icmp already, and
4456    // its new value may happen to be equal to LF.OperandValToReplace, in
4457    // which case doing replaceUsesOfWith leads to replacing both operands
4458    // with the same value. TODO: Reorganize this.
4459    if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
4460      LF.UserInst->setOperand(0, FullV);
4461    else
4462      LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
4463  }
4464
4465  DeadInsts.push_back(LF.OperandValToReplace);
4466}
4467
4468/// ImplementSolution - Rewrite all the fixup locations with new values,
4469/// following the chosen solution.
4470void
4471LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
4472                               Pass *P) {
4473  // Keep track of instructions we may have made dead, so that
4474  // we can remove them after we are done working.
4475  SmallVector<WeakVH, 16> DeadInsts;
4476
4477  SCEVExpander Rewriter(SE, "lsr");
4478#ifndef NDEBUG
4479  Rewriter.setDebugType(DEBUG_TYPE);
4480#endif
4481  Rewriter.disableCanonicalMode();
4482  Rewriter.enableLSRMode();
4483  Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
4484
4485  // Mark phi nodes that terminate chains so the expander tries to reuse them.
4486  for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
4487         ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
4488    if (PHINode *PN = dyn_cast<PHINode>(ChainI->back().UserInst))
4489      Rewriter.setChainedPhi(PN);
4490  }
4491
4492  // Expand the new value definitions and update the users.
4493  for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
4494       E = Fixups.end(); I != E; ++I) {
4495    const LSRFixup &Fixup = *I;
4496
4497    Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
4498
4499    Changed = true;
4500  }
4501
4502  for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
4503         ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
4504    GenerateIVChain(*ChainI, Rewriter, DeadInsts);
4505    Changed = true;
4506  }
4507  // Clean up after ourselves. This must be done before deleting any
4508  // instructions.
4509  Rewriter.clear();
4510
4511  Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
4512}
4513
4514LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
4515  : IU(P->getAnalysis<IVUsers>()),
4516    SE(P->getAnalysis<ScalarEvolution>()),
4517    DT(P->getAnalysis<DominatorTree>()),
4518    LI(P->getAnalysis<LoopInfo>()),
4519    TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
4520
4521  // If LoopSimplify form is not available, stay out of trouble.
4522  if (!L->isLoopSimplifyForm())
4523    return;
4524
4525  // If there's no interesting work to be done, bail early.
4526  if (IU.empty()) return;
4527
4528  // If there's too much analysis to be done, bail early. We won't be able to
4529  // model the problem anyway.
4530  unsigned NumUsers = 0;
4531  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
4532    if (++NumUsers > MaxIVUsers) {
4533      DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << *L
4534            << "\n");
4535      return;
4536    }
4537  }
4538
4539#ifndef NDEBUG
4540  // All dominating loops must have preheaders, or SCEVExpander may not be able
4541  // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
4542  //
4543  // IVUsers analysis should only create users that are dominated by simple loop
4544  // headers. Since this loop should dominate all of its users, its user list
4545  // should be empty if this loop itself is not within a simple loop nest.
4546  for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
4547       Rung; Rung = Rung->getIDom()) {
4548    BasicBlock *BB = Rung->getBlock();
4549    const Loop *DomLoop = LI.getLoopFor(BB);
4550    if (DomLoop && DomLoop->getHeader() == BB) {
4551      assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
4552    }
4553  }
4554#endif // DEBUG
4555
4556  DEBUG(dbgs() << "\nLSR on loop ";
4557        WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
4558        dbgs() << ":\n");
4559
4560  // First, perform some low-level loop optimizations.
4561  OptimizeShadowIV();
4562  OptimizeLoopTermCond();
4563
4564  // If loop preparation eliminates all interesting IV users, bail.
4565  if (IU.empty()) return;
4566
4567  // Skip nested loops until we can model them better with formulae.
4568  if (!L->empty()) {
4569    DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
4570    return;
4571  }
4572
4573  // Start collecting data and preparing for the solver.
4574  CollectChains();
4575  CollectInterestingTypesAndFactors();
4576  CollectFixupsAndInitialFormulae();
4577  CollectLoopInvariantFixupsAndFormulae();
4578
4579  assert(!Uses.empty() && "IVUsers reported at least one use");
4580  DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
4581        print_uses(dbgs()));
4582
4583  // Now use the reuse data to generate a bunch of interesting ways
4584  // to formulate the values needed for the uses.
4585  GenerateAllReuseFormulae();
4586
4587  FilterOutUndesirableDedicatedRegisters();
4588  NarrowSearchSpaceUsingHeuristics();
4589
4590  SmallVector<const Formula *, 8> Solution;
4591  Solve(Solution);
4592
4593  // Release memory that is no longer needed.
4594  Factors.clear();
4595  Types.clear();
4596  RegUses.clear();
4597
4598  if (Solution.empty())
4599    return;
4600
4601#ifndef NDEBUG
4602  // Formulae should be legal.
4603  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
4604       E = Uses.end(); I != E; ++I) {
4605     const LSRUse &LU = *I;
4606     for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
4607          JE = LU.Formulae.end(); J != JE; ++J)
4608        assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
4609                          LU.Kind, LU.AccessTy, TLI) &&
4610               "Illegal formula generated!");
4611  };
4612#endif
4613
4614  // Now that we've decided what we want, make it so.
4615  ImplementSolution(Solution, P);
4616}
4617
4618void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
4619  if (Factors.empty() && Types.empty()) return;
4620
4621  OS << "LSR has identified the following interesting factors and types: ";
4622  bool First = true;
4623
4624  for (SmallSetVector<int64_t, 8>::const_iterator
4625       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
4626    if (!First) OS << ", ";
4627    First = false;
4628    OS << '*' << *I;
4629  }
4630
4631  for (SmallSetVector<Type *, 4>::const_iterator
4632       I = Types.begin(), E = Types.end(); I != E; ++I) {
4633    if (!First) OS << ", ";
4634    First = false;
4635    OS << '(' << **I << ')';
4636  }
4637  OS << '\n';
4638}
4639
4640void LSRInstance::print_fixups(raw_ostream &OS) const {
4641  OS << "LSR is examining the following fixup sites:\n";
4642  for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
4643       E = Fixups.end(); I != E; ++I) {
4644    dbgs() << "  ";
4645    I->print(OS);
4646    OS << '\n';
4647  }
4648}
4649
4650void LSRInstance::print_uses(raw_ostream &OS) const {
4651  OS << "LSR is examining the following uses:\n";
4652  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
4653       E = Uses.end(); I != E; ++I) {
4654    const LSRUse &LU = *I;
4655    dbgs() << "  ";
4656    LU.print(OS);
4657    OS << '\n';
4658    for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
4659         JE = LU.Formulae.end(); J != JE; ++J) {
4660      OS << "    ";
4661      J->print(OS);
4662      OS << '\n';
4663    }
4664  }
4665}
4666
4667void LSRInstance::print(raw_ostream &OS) const {
4668  print_factors_and_types(OS);
4669  print_fixups(OS);
4670  print_uses(OS);
4671}
4672
4673void LSRInstance::dump() const {
4674  print(errs()); errs() << '\n';
4675}
4676
4677namespace {
4678
4679class LoopStrengthReduce : public LoopPass {
4680  /// TLI - Keep a pointer of a TargetLowering to consult for determining
4681  /// transformation profitability.
4682  const TargetLowering *const TLI;
4683
4684public:
4685  static char ID; // Pass ID, replacement for typeid
4686  explicit LoopStrengthReduce(const TargetLowering *tli = 0);
4687
4688private:
4689  bool runOnLoop(Loop *L, LPPassManager &LPM);
4690  void getAnalysisUsage(AnalysisUsage &AU) const;
4691};
4692
4693}
4694
4695char LoopStrengthReduce::ID = 0;
4696INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
4697                "Loop Strength Reduction", false, false)
4698INITIALIZE_PASS_DEPENDENCY(DominatorTree)
4699INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
4700INITIALIZE_PASS_DEPENDENCY(IVUsers)
4701INITIALIZE_PASS_DEPENDENCY(LoopInfo)
4702INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
4703INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
4704                "Loop Strength Reduction", false, false)
4705
4706
4707Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
4708  return new LoopStrengthReduce(TLI);
4709}
4710
4711LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
4712  : LoopPass(ID), TLI(tli) {
4713    initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
4714  }
4715
4716void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
4717  // We split critical edges, so we change the CFG.  However, we do update
4718  // many analyses if they are around.
4719  AU.addPreservedID(LoopSimplifyID);
4720
4721  AU.addRequired<LoopInfo>();
4722  AU.addPreserved<LoopInfo>();
4723  AU.addRequiredID(LoopSimplifyID);
4724  AU.addRequired<DominatorTree>();
4725  AU.addPreserved<DominatorTree>();
4726  AU.addRequired<ScalarEvolution>();
4727  AU.addPreserved<ScalarEvolution>();
4728  // Requiring LoopSimplify a second time here prevents IVUsers from running
4729  // twice, since LoopSimplify was invalidated by running ScalarEvolution.
4730  AU.addRequiredID(LoopSimplifyID);
4731  AU.addRequired<IVUsers>();
4732  AU.addPreserved<IVUsers>();
4733}
4734
4735bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
4736  bool Changed = false;
4737
4738  // Run the main LSR transformation.
4739  Changed |= LSRInstance(TLI, L, this).getChanged();
4740
4741  // Remove any extra phis created by processing inner loops.
4742  Changed |= DeleteDeadPHIs(L->getHeader());
4743  if (EnablePhiElim) {
4744    SmallVector<WeakVH, 16> DeadInsts;
4745    SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), "lsr");
4746#ifndef NDEBUG
4747    Rewriter.setDebugType(DEBUG_TYPE);
4748#endif
4749    unsigned numFolded = Rewriter.
4750      replaceCongruentIVs(L, &getAnalysis<DominatorTree>(), DeadInsts, TLI);
4751    if (numFolded) {
4752      Changed = true;
4753      DeleteTriviallyDeadInstructions(DeadInsts);
4754      DeleteDeadPHIs(L->getHeader());
4755    }
4756  }
4757  return Changed;
4758}
4759