LoopStrengthReduce.cpp revision 224145
1//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into forms suitable for efficient execution
12// on the target.
13//
14// This pass performs a strength reduction on array references inside loops that
15// have as one or more of their components the loop induction variable, it
16// rewrites expressions to take advantage of scaled-index addressing modes
17// available on the target, and it performs a variety of other optimizations
18// related to loop induction variables.
19//
20// Terminology note: this code has a lot of handling for "post-increment" or
21// "post-inc" users. This is not talking about post-increment addressing modes;
22// it is instead talking about code like this:
23//
24//   %i = phi [ 0, %entry ], [ %i.next, %latch ]
25//   ...
26//   %i.next = add %i, 1
27//   %c = icmp eq %i.next, %n
28//
29// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30// it's useful to think about these as the same register, with some uses using
31// the value of the register before the add and some using // it after. In this
32// example, the icmp is a post-increment user, since it uses %i.next, which is
33// the value of the induction variable after the increment. The other common
34// case of post-increment users is users outside the loop.
35//
36// TODO: More sophistication in the way Formulae are generated and filtered.
37//
38// TODO: Handle multiple loops at a time.
39//
40// TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
41//       instead of a GlobalValue?
42//
43// TODO: When truncation is free, truncate ICmp users' operands to make it a
44//       smaller encoding (on x86 at least).
45//
46// TODO: When a negated register is used by an add (such as in a list of
47//       multiple base registers, or as the increment expression in an addrec),
48//       we may not actually need both reg and (-1 * reg) in registers; the
49//       negation can be implemented by using a sub instead of an add. The
50//       lack of support for taking this into consideration when making
51//       register pressure decisions is partly worked around by the "Special"
52//       use kind.
53//
54//===----------------------------------------------------------------------===//
55
56#define DEBUG_TYPE "loop-reduce"
57#include "llvm/Transforms/Scalar.h"
58#include "llvm/Constants.h"
59#include "llvm/Instructions.h"
60#include "llvm/IntrinsicInst.h"
61#include "llvm/DerivedTypes.h"
62#include "llvm/Analysis/IVUsers.h"
63#include "llvm/Analysis/Dominators.h"
64#include "llvm/Analysis/LoopPass.h"
65#include "llvm/Analysis/ScalarEvolutionExpander.h"
66#include "llvm/Assembly/Writer.h"
67#include "llvm/Transforms/Utils/BasicBlockUtils.h"
68#include "llvm/Transforms/Utils/Local.h"
69#include "llvm/ADT/SmallBitVector.h"
70#include "llvm/ADT/SetVector.h"
71#include "llvm/ADT/DenseSet.h"
72#include "llvm/Support/Debug.h"
73#include "llvm/Support/ValueHandle.h"
74#include "llvm/Support/raw_ostream.h"
75#include "llvm/Target/TargetLowering.h"
76#include <algorithm>
77using namespace llvm;
78
79namespace {
80
81/// RegSortData - This class holds data which is used to order reuse candidates.
82class RegSortData {
83public:
84  /// UsedByIndices - This represents the set of LSRUse indices which reference
85  /// a particular register.
86  SmallBitVector UsedByIndices;
87
88  RegSortData() {}
89
90  void print(raw_ostream &OS) const;
91  void dump() const;
92};
93
94}
95
96void RegSortData::print(raw_ostream &OS) const {
97  OS << "[NumUses=" << UsedByIndices.count() << ']';
98}
99
100void RegSortData::dump() const {
101  print(errs()); errs() << '\n';
102}
103
104namespace {
105
106/// RegUseTracker - Map register candidates to information about how they are
107/// used.
108class RegUseTracker {
109  typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
110
111  RegUsesTy RegUsesMap;
112  SmallVector<const SCEV *, 16> RegSequence;
113
114public:
115  void CountRegister(const SCEV *Reg, size_t LUIdx);
116  void DropRegister(const SCEV *Reg, size_t LUIdx);
117  void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx);
118
119  bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
120
121  const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
122
123  void clear();
124
125  typedef SmallVectorImpl<const SCEV *>::iterator iterator;
126  typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
127  iterator begin() { return RegSequence.begin(); }
128  iterator end()   { return RegSequence.end(); }
129  const_iterator begin() const { return RegSequence.begin(); }
130  const_iterator end() const   { return RegSequence.end(); }
131};
132
133}
134
135void
136RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
137  std::pair<RegUsesTy::iterator, bool> Pair =
138    RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
139  RegSortData &RSD = Pair.first->second;
140  if (Pair.second)
141    RegSequence.push_back(Reg);
142  RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
143  RSD.UsedByIndices.set(LUIdx);
144}
145
146void
147RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
148  RegUsesTy::iterator It = RegUsesMap.find(Reg);
149  assert(It != RegUsesMap.end());
150  RegSortData &RSD = It->second;
151  assert(RSD.UsedByIndices.size() > LUIdx);
152  RSD.UsedByIndices.reset(LUIdx);
153}
154
155void
156RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
157  assert(LUIdx <= LastLUIdx);
158
159  // Update RegUses. The data structure is not optimized for this purpose;
160  // we must iterate through it and update each of the bit vectors.
161  for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
162       I != E; ++I) {
163    SmallBitVector &UsedByIndices = I->second.UsedByIndices;
164    if (LUIdx < UsedByIndices.size())
165      UsedByIndices[LUIdx] =
166        LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0;
167    UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
168  }
169}
170
171bool
172RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
173  RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
174  if (I == RegUsesMap.end())
175    return false;
176  const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
177  int i = UsedByIndices.find_first();
178  if (i == -1) return false;
179  if ((size_t)i != LUIdx) return true;
180  return UsedByIndices.find_next(i) != -1;
181}
182
183const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
184  RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
185  assert(I != RegUsesMap.end() && "Unknown register!");
186  return I->second.UsedByIndices;
187}
188
189void RegUseTracker::clear() {
190  RegUsesMap.clear();
191  RegSequence.clear();
192}
193
194namespace {
195
196/// Formula - This class holds information that describes a formula for
197/// computing satisfying a use. It may include broken-out immediates and scaled
198/// registers.
199struct Formula {
200  /// AM - This is used to represent complex addressing, as well as other kinds
201  /// of interesting uses.
202  TargetLowering::AddrMode AM;
203
204  /// BaseRegs - The list of "base" registers for this use. When this is
205  /// non-empty, AM.HasBaseReg should be set to true.
206  SmallVector<const SCEV *, 2> BaseRegs;
207
208  /// ScaledReg - The 'scaled' register for this use. This should be non-null
209  /// when AM.Scale is not zero.
210  const SCEV *ScaledReg;
211
212  /// UnfoldedOffset - An additional constant offset which added near the
213  /// use. This requires a temporary register, but the offset itself can
214  /// live in an add immediate field rather than a register.
215  int64_t UnfoldedOffset;
216
217  Formula() : ScaledReg(0), UnfoldedOffset(0) {}
218
219  void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
220
221  unsigned getNumRegs() const;
222  const Type *getType() const;
223
224  void DeleteBaseReg(const SCEV *&S);
225
226  bool referencesReg(const SCEV *S) const;
227  bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
228                                  const RegUseTracker &RegUses) const;
229
230  void print(raw_ostream &OS) const;
231  void dump() const;
232};
233
234}
235
236/// DoInitialMatch - Recursion helper for InitialMatch.
237static void DoInitialMatch(const SCEV *S, Loop *L,
238                           SmallVectorImpl<const SCEV *> &Good,
239                           SmallVectorImpl<const SCEV *> &Bad,
240                           ScalarEvolution &SE) {
241  // Collect expressions which properly dominate the loop header.
242  if (SE.properlyDominates(S, L->getHeader())) {
243    Good.push_back(S);
244    return;
245  }
246
247  // Look at add operands.
248  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
249    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
250         I != E; ++I)
251      DoInitialMatch(*I, L, Good, Bad, SE);
252    return;
253  }
254
255  // Look at addrec operands.
256  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
257    if (!AR->getStart()->isZero()) {
258      DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
259      DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
260                                      AR->getStepRecurrence(SE),
261                                      // FIXME: AR->getNoWrapFlags()
262                                      AR->getLoop(), SCEV::FlagAnyWrap),
263                     L, Good, Bad, SE);
264      return;
265    }
266
267  // Handle a multiplication by -1 (negation) if it didn't fold.
268  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
269    if (Mul->getOperand(0)->isAllOnesValue()) {
270      SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
271      const SCEV *NewMul = SE.getMulExpr(Ops);
272
273      SmallVector<const SCEV *, 4> MyGood;
274      SmallVector<const SCEV *, 4> MyBad;
275      DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
276      const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
277        SE.getEffectiveSCEVType(NewMul->getType())));
278      for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
279           E = MyGood.end(); I != E; ++I)
280        Good.push_back(SE.getMulExpr(NegOne, *I));
281      for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
282           E = MyBad.end(); I != E; ++I)
283        Bad.push_back(SE.getMulExpr(NegOne, *I));
284      return;
285    }
286
287  // Ok, we can't do anything interesting. Just stuff the whole thing into a
288  // register and hope for the best.
289  Bad.push_back(S);
290}
291
292/// InitialMatch - Incorporate loop-variant parts of S into this Formula,
293/// attempting to keep all loop-invariant and loop-computable values in a
294/// single base register.
295void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
296  SmallVector<const SCEV *, 4> Good;
297  SmallVector<const SCEV *, 4> Bad;
298  DoInitialMatch(S, L, Good, Bad, SE);
299  if (!Good.empty()) {
300    const SCEV *Sum = SE.getAddExpr(Good);
301    if (!Sum->isZero())
302      BaseRegs.push_back(Sum);
303    AM.HasBaseReg = true;
304  }
305  if (!Bad.empty()) {
306    const SCEV *Sum = SE.getAddExpr(Bad);
307    if (!Sum->isZero())
308      BaseRegs.push_back(Sum);
309    AM.HasBaseReg = true;
310  }
311}
312
313/// getNumRegs - Return the total number of register operands used by this
314/// formula. This does not include register uses implied by non-constant
315/// addrec strides.
316unsigned Formula::getNumRegs() const {
317  return !!ScaledReg + BaseRegs.size();
318}
319
320/// getType - Return the type of this formula, if it has one, or null
321/// otherwise. This type is meaningless except for the bit size.
322const Type *Formula::getType() const {
323  return !BaseRegs.empty() ? BaseRegs.front()->getType() :
324         ScaledReg ? ScaledReg->getType() :
325         AM.BaseGV ? AM.BaseGV->getType() :
326         0;
327}
328
329/// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
330void Formula::DeleteBaseReg(const SCEV *&S) {
331  if (&S != &BaseRegs.back())
332    std::swap(S, BaseRegs.back());
333  BaseRegs.pop_back();
334}
335
336/// referencesReg - Test if this formula references the given register.
337bool Formula::referencesReg(const SCEV *S) const {
338  return S == ScaledReg ||
339         std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
340}
341
342/// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
343/// which are used by uses other than the use with the given index.
344bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
345                                         const RegUseTracker &RegUses) const {
346  if (ScaledReg)
347    if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
348      return true;
349  for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
350       E = BaseRegs.end(); I != E; ++I)
351    if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
352      return true;
353  return false;
354}
355
356void Formula::print(raw_ostream &OS) const {
357  bool First = true;
358  if (AM.BaseGV) {
359    if (!First) OS << " + "; else First = false;
360    WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
361  }
362  if (AM.BaseOffs != 0) {
363    if (!First) OS << " + "; else First = false;
364    OS << AM.BaseOffs;
365  }
366  for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
367       E = BaseRegs.end(); I != E; ++I) {
368    if (!First) OS << " + "; else First = false;
369    OS << "reg(" << **I << ')';
370  }
371  if (AM.HasBaseReg && BaseRegs.empty()) {
372    if (!First) OS << " + "; else First = false;
373    OS << "**error: HasBaseReg**";
374  } else if (!AM.HasBaseReg && !BaseRegs.empty()) {
375    if (!First) OS << " + "; else First = false;
376    OS << "**error: !HasBaseReg**";
377  }
378  if (AM.Scale != 0) {
379    if (!First) OS << " + "; else First = false;
380    OS << AM.Scale << "*reg(";
381    if (ScaledReg)
382      OS << *ScaledReg;
383    else
384      OS << "<unknown>";
385    OS << ')';
386  }
387  if (UnfoldedOffset != 0) {
388    if (!First) OS << " + "; else First = false;
389    OS << "imm(" << UnfoldedOffset << ')';
390  }
391}
392
393void Formula::dump() const {
394  print(errs()); errs() << '\n';
395}
396
397/// isAddRecSExtable - Return true if the given addrec can be sign-extended
398/// without changing its value.
399static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
400  const Type *WideTy =
401    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
402  return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
403}
404
405/// isAddSExtable - Return true if the given add can be sign-extended
406/// without changing its value.
407static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
408  const Type *WideTy =
409    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
410  return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
411}
412
413/// isMulSExtable - Return true if the given mul can be sign-extended
414/// without changing its value.
415static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
416  const Type *WideTy =
417    IntegerType::get(SE.getContext(),
418                     SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
419  return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
420}
421
422/// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
423/// and if the remainder is known to be zero,  or null otherwise. If
424/// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
425/// to Y, ignoring that the multiplication may overflow, which is useful when
426/// the result will be used in a context where the most significant bits are
427/// ignored.
428static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
429                                ScalarEvolution &SE,
430                                bool IgnoreSignificantBits = false) {
431  // Handle the trivial case, which works for any SCEV type.
432  if (LHS == RHS)
433    return SE.getConstant(LHS->getType(), 1);
434
435  // Handle a few RHS special cases.
436  const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
437  if (RC) {
438    const APInt &RA = RC->getValue()->getValue();
439    // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
440    // some folding.
441    if (RA.isAllOnesValue())
442      return SE.getMulExpr(LHS, RC);
443    // Handle x /s 1 as x.
444    if (RA == 1)
445      return LHS;
446  }
447
448  // Check for a division of a constant by a constant.
449  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
450    if (!RC)
451      return 0;
452    const APInt &LA = C->getValue()->getValue();
453    const APInt &RA = RC->getValue()->getValue();
454    if (LA.srem(RA) != 0)
455      return 0;
456    return SE.getConstant(LA.sdiv(RA));
457  }
458
459  // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
460  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
461    if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
462      const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
463                                      IgnoreSignificantBits);
464      if (!Step) return 0;
465      const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
466                                       IgnoreSignificantBits);
467      if (!Start) return 0;
468      // FlagNW is independent of the start value, step direction, and is
469      // preserved with smaller magnitude steps.
470      // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
471      return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
472    }
473    return 0;
474  }
475
476  // Distribute the sdiv over add operands, if the add doesn't overflow.
477  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
478    if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
479      SmallVector<const SCEV *, 8> Ops;
480      for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
481           I != E; ++I) {
482        const SCEV *Op = getExactSDiv(*I, RHS, SE,
483                                      IgnoreSignificantBits);
484        if (!Op) return 0;
485        Ops.push_back(Op);
486      }
487      return SE.getAddExpr(Ops);
488    }
489    return 0;
490  }
491
492  // Check for a multiply operand that we can pull RHS out of.
493  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
494    if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
495      SmallVector<const SCEV *, 4> Ops;
496      bool Found = false;
497      for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
498           I != E; ++I) {
499        const SCEV *S = *I;
500        if (!Found)
501          if (const SCEV *Q = getExactSDiv(S, RHS, SE,
502                                           IgnoreSignificantBits)) {
503            S = Q;
504            Found = true;
505          }
506        Ops.push_back(S);
507      }
508      return Found ? SE.getMulExpr(Ops) : 0;
509    }
510    return 0;
511  }
512
513  // Otherwise we don't know.
514  return 0;
515}
516
517/// ExtractImmediate - If S involves the addition of a constant integer value,
518/// return that integer value, and mutate S to point to a new SCEV with that
519/// value excluded.
520static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
521  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
522    if (C->getValue()->getValue().getMinSignedBits() <= 64) {
523      S = SE.getConstant(C->getType(), 0);
524      return C->getValue()->getSExtValue();
525    }
526  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
527    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
528    int64_t Result = ExtractImmediate(NewOps.front(), SE);
529    if (Result != 0)
530      S = SE.getAddExpr(NewOps);
531    return Result;
532  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
533    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
534    int64_t Result = ExtractImmediate(NewOps.front(), SE);
535    if (Result != 0)
536      S = SE.getAddRecExpr(NewOps, AR->getLoop(),
537                           // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
538                           SCEV::FlagAnyWrap);
539    return Result;
540  }
541  return 0;
542}
543
544/// ExtractSymbol - If S involves the addition of a GlobalValue address,
545/// return that symbol, and mutate S to point to a new SCEV with that
546/// value excluded.
547static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
548  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
549    if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
550      S = SE.getConstant(GV->getType(), 0);
551      return GV;
552    }
553  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
554    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
555    GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
556    if (Result)
557      S = SE.getAddExpr(NewOps);
558    return Result;
559  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
560    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
561    GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
562    if (Result)
563      S = SE.getAddRecExpr(NewOps, AR->getLoop(),
564                           // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
565                           SCEV::FlagAnyWrap);
566    return Result;
567  }
568  return 0;
569}
570
571/// isAddressUse - Returns true if the specified instruction is using the
572/// specified value as an address.
573static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
574  bool isAddress = isa<LoadInst>(Inst);
575  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
576    if (SI->getOperand(1) == OperandVal)
577      isAddress = true;
578  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
579    // Addressing modes can also be folded into prefetches and a variety
580    // of intrinsics.
581    switch (II->getIntrinsicID()) {
582      default: break;
583      case Intrinsic::prefetch:
584      case Intrinsic::x86_sse_storeu_ps:
585      case Intrinsic::x86_sse2_storeu_pd:
586      case Intrinsic::x86_sse2_storeu_dq:
587      case Intrinsic::x86_sse2_storel_dq:
588        if (II->getArgOperand(0) == OperandVal)
589          isAddress = true;
590        break;
591    }
592  }
593  return isAddress;
594}
595
596/// getAccessType - Return the type of the memory being accessed.
597static const Type *getAccessType(const Instruction *Inst) {
598  const Type *AccessTy = Inst->getType();
599  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
600    AccessTy = SI->getOperand(0)->getType();
601  else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
602    // Addressing modes can also be folded into prefetches and a variety
603    // of intrinsics.
604    switch (II->getIntrinsicID()) {
605    default: break;
606    case Intrinsic::x86_sse_storeu_ps:
607    case Intrinsic::x86_sse2_storeu_pd:
608    case Intrinsic::x86_sse2_storeu_dq:
609    case Intrinsic::x86_sse2_storel_dq:
610      AccessTy = II->getArgOperand(0)->getType();
611      break;
612    }
613  }
614
615  // All pointers have the same requirements, so canonicalize them to an
616  // arbitrary pointer type to minimize variation.
617  if (const PointerType *PTy = dyn_cast<PointerType>(AccessTy))
618    AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
619                                PTy->getAddressSpace());
620
621  return AccessTy;
622}
623
624/// DeleteTriviallyDeadInstructions - If any of the instructions is the
625/// specified set are trivially dead, delete them and see if this makes any of
626/// their operands subsequently dead.
627static bool
628DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
629  bool Changed = false;
630
631  while (!DeadInsts.empty()) {
632    Instruction *I = dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val());
633
634    if (I == 0 || !isInstructionTriviallyDead(I))
635      continue;
636
637    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
638      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
639        *OI = 0;
640        if (U->use_empty())
641          DeadInsts.push_back(U);
642      }
643
644    I->eraseFromParent();
645    Changed = true;
646  }
647
648  return Changed;
649}
650
651namespace {
652
653/// Cost - This class is used to measure and compare candidate formulae.
654class Cost {
655  /// TODO: Some of these could be merged. Also, a lexical ordering
656  /// isn't always optimal.
657  unsigned NumRegs;
658  unsigned AddRecCost;
659  unsigned NumIVMuls;
660  unsigned NumBaseAdds;
661  unsigned ImmCost;
662  unsigned SetupCost;
663
664public:
665  Cost()
666    : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
667      SetupCost(0) {}
668
669  bool operator<(const Cost &Other) const;
670
671  void Loose();
672
673  void RateFormula(const Formula &F,
674                   SmallPtrSet<const SCEV *, 16> &Regs,
675                   const DenseSet<const SCEV *> &VisitedRegs,
676                   const Loop *L,
677                   const SmallVectorImpl<int64_t> &Offsets,
678                   ScalarEvolution &SE, DominatorTree &DT);
679
680  void print(raw_ostream &OS) const;
681  void dump() const;
682
683private:
684  void RateRegister(const SCEV *Reg,
685                    SmallPtrSet<const SCEV *, 16> &Regs,
686                    const Loop *L,
687                    ScalarEvolution &SE, DominatorTree &DT);
688  void RatePrimaryRegister(const SCEV *Reg,
689                           SmallPtrSet<const SCEV *, 16> &Regs,
690                           const Loop *L,
691                           ScalarEvolution &SE, DominatorTree &DT);
692};
693
694}
695
696/// RateRegister - Tally up interesting quantities from the given register.
697void Cost::RateRegister(const SCEV *Reg,
698                        SmallPtrSet<const SCEV *, 16> &Regs,
699                        const Loop *L,
700                        ScalarEvolution &SE, DominatorTree &DT) {
701  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
702    if (AR->getLoop() == L)
703      AddRecCost += 1; /// TODO: This should be a function of the stride.
704
705    // If this is an addrec for a loop that's already been visited by LSR,
706    // don't second-guess its addrec phi nodes. LSR isn't currently smart
707    // enough to reason about more than one loop at a time. Consider these
708    // registers free and leave them alone.
709    else if (L->contains(AR->getLoop()) ||
710             (!AR->getLoop()->contains(L) &&
711              DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) {
712      for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
713           PHINode *PN = dyn_cast<PHINode>(I); ++I)
714        if (SE.isSCEVable(PN->getType()) &&
715            (SE.getEffectiveSCEVType(PN->getType()) ==
716             SE.getEffectiveSCEVType(AR->getType())) &&
717            SE.getSCEV(PN) == AR)
718          return;
719
720      // If this isn't one of the addrecs that the loop already has, it
721      // would require a costly new phi and add. TODO: This isn't
722      // precisely modeled right now.
723      ++NumBaseAdds;
724      if (!Regs.count(AR->getStart()))
725        RateRegister(AR->getStart(), Regs, L, SE, DT);
726    }
727
728    // Add the step value register, if it needs one.
729    // TODO: The non-affine case isn't precisely modeled here.
730    if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1)))
731      if (!Regs.count(AR->getStart()))
732        RateRegister(AR->getOperand(1), Regs, L, SE, DT);
733  }
734  ++NumRegs;
735
736  // Rough heuristic; favor registers which don't require extra setup
737  // instructions in the preheader.
738  if (!isa<SCEVUnknown>(Reg) &&
739      !isa<SCEVConstant>(Reg) &&
740      !(isa<SCEVAddRecExpr>(Reg) &&
741        (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
742         isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
743    ++SetupCost;
744
745    NumIVMuls += isa<SCEVMulExpr>(Reg) &&
746                 SE.hasComputableLoopEvolution(Reg, L);
747}
748
749/// RatePrimaryRegister - Record this register in the set. If we haven't seen it
750/// before, rate it.
751void Cost::RatePrimaryRegister(const SCEV *Reg,
752                               SmallPtrSet<const SCEV *, 16> &Regs,
753                               const Loop *L,
754                               ScalarEvolution &SE, DominatorTree &DT) {
755  if (Regs.insert(Reg))
756    RateRegister(Reg, Regs, L, SE, DT);
757}
758
759void Cost::RateFormula(const Formula &F,
760                       SmallPtrSet<const SCEV *, 16> &Regs,
761                       const DenseSet<const SCEV *> &VisitedRegs,
762                       const Loop *L,
763                       const SmallVectorImpl<int64_t> &Offsets,
764                       ScalarEvolution &SE, DominatorTree &DT) {
765  // Tally up the registers.
766  if (const SCEV *ScaledReg = F.ScaledReg) {
767    if (VisitedRegs.count(ScaledReg)) {
768      Loose();
769      return;
770    }
771    RatePrimaryRegister(ScaledReg, Regs, L, SE, DT);
772  }
773  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
774       E = F.BaseRegs.end(); I != E; ++I) {
775    const SCEV *BaseReg = *I;
776    if (VisitedRegs.count(BaseReg)) {
777      Loose();
778      return;
779    }
780    RatePrimaryRegister(BaseReg, Regs, L, SE, DT);
781  }
782
783  // Determine how many (unfolded) adds we'll need inside the loop.
784  size_t NumBaseParts = F.BaseRegs.size() + (F.UnfoldedOffset != 0);
785  if (NumBaseParts > 1)
786    NumBaseAdds += NumBaseParts - 1;
787
788  // Tally up the non-zero immediates.
789  for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
790       E = Offsets.end(); I != E; ++I) {
791    int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
792    if (F.AM.BaseGV)
793      ImmCost += 64; // Handle symbolic values conservatively.
794                     // TODO: This should probably be the pointer size.
795    else if (Offset != 0)
796      ImmCost += APInt(64, Offset, true).getMinSignedBits();
797  }
798}
799
800/// Loose - Set this cost to a losing value.
801void Cost::Loose() {
802  NumRegs = ~0u;
803  AddRecCost = ~0u;
804  NumIVMuls = ~0u;
805  NumBaseAdds = ~0u;
806  ImmCost = ~0u;
807  SetupCost = ~0u;
808}
809
810/// operator< - Choose the lower cost.
811bool Cost::operator<(const Cost &Other) const {
812  if (NumRegs != Other.NumRegs)
813    return NumRegs < Other.NumRegs;
814  if (AddRecCost != Other.AddRecCost)
815    return AddRecCost < Other.AddRecCost;
816  if (NumIVMuls != Other.NumIVMuls)
817    return NumIVMuls < Other.NumIVMuls;
818  if (NumBaseAdds != Other.NumBaseAdds)
819    return NumBaseAdds < Other.NumBaseAdds;
820  if (ImmCost != Other.ImmCost)
821    return ImmCost < Other.ImmCost;
822  if (SetupCost != Other.SetupCost)
823    return SetupCost < Other.SetupCost;
824  return false;
825}
826
827void Cost::print(raw_ostream &OS) const {
828  OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
829  if (AddRecCost != 0)
830    OS << ", with addrec cost " << AddRecCost;
831  if (NumIVMuls != 0)
832    OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
833  if (NumBaseAdds != 0)
834    OS << ", plus " << NumBaseAdds << " base add"
835       << (NumBaseAdds == 1 ? "" : "s");
836  if (ImmCost != 0)
837    OS << ", plus " << ImmCost << " imm cost";
838  if (SetupCost != 0)
839    OS << ", plus " << SetupCost << " setup cost";
840}
841
842void Cost::dump() const {
843  print(errs()); errs() << '\n';
844}
845
846namespace {
847
848/// LSRFixup - An operand value in an instruction which is to be replaced
849/// with some equivalent, possibly strength-reduced, replacement.
850struct LSRFixup {
851  /// UserInst - The instruction which will be updated.
852  Instruction *UserInst;
853
854  /// OperandValToReplace - The operand of the instruction which will
855  /// be replaced. The operand may be used more than once; every instance
856  /// will be replaced.
857  Value *OperandValToReplace;
858
859  /// PostIncLoops - If this user is to use the post-incremented value of an
860  /// induction variable, this variable is non-null and holds the loop
861  /// associated with the induction variable.
862  PostIncLoopSet PostIncLoops;
863
864  /// LUIdx - The index of the LSRUse describing the expression which
865  /// this fixup needs, minus an offset (below).
866  size_t LUIdx;
867
868  /// Offset - A constant offset to be added to the LSRUse expression.
869  /// This allows multiple fixups to share the same LSRUse with different
870  /// offsets, for example in an unrolled loop.
871  int64_t Offset;
872
873  bool isUseFullyOutsideLoop(const Loop *L) const;
874
875  LSRFixup();
876
877  void print(raw_ostream &OS) const;
878  void dump() const;
879};
880
881}
882
883LSRFixup::LSRFixup()
884  : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {}
885
886/// isUseFullyOutsideLoop - Test whether this fixup always uses its
887/// value outside of the given loop.
888bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
889  // PHI nodes use their value in their incoming blocks.
890  if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
891    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
892      if (PN->getIncomingValue(i) == OperandValToReplace &&
893          L->contains(PN->getIncomingBlock(i)))
894        return false;
895    return true;
896  }
897
898  return !L->contains(UserInst);
899}
900
901void LSRFixup::print(raw_ostream &OS) const {
902  OS << "UserInst=";
903  // Store is common and interesting enough to be worth special-casing.
904  if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
905    OS << "store ";
906    WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
907  } else if (UserInst->getType()->isVoidTy())
908    OS << UserInst->getOpcodeName();
909  else
910    WriteAsOperand(OS, UserInst, /*PrintType=*/false);
911
912  OS << ", OperandValToReplace=";
913  WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
914
915  for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
916       E = PostIncLoops.end(); I != E; ++I) {
917    OS << ", PostIncLoop=";
918    WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false);
919  }
920
921  if (LUIdx != ~size_t(0))
922    OS << ", LUIdx=" << LUIdx;
923
924  if (Offset != 0)
925    OS << ", Offset=" << Offset;
926}
927
928void LSRFixup::dump() const {
929  print(errs()); errs() << '\n';
930}
931
932namespace {
933
934/// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
935/// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
936struct UniquifierDenseMapInfo {
937  static SmallVector<const SCEV *, 2> getEmptyKey() {
938    SmallVector<const SCEV *, 2> V;
939    V.push_back(reinterpret_cast<const SCEV *>(-1));
940    return V;
941  }
942
943  static SmallVector<const SCEV *, 2> getTombstoneKey() {
944    SmallVector<const SCEV *, 2> V;
945    V.push_back(reinterpret_cast<const SCEV *>(-2));
946    return V;
947  }
948
949  static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) {
950    unsigned Result = 0;
951    for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
952         E = V.end(); I != E; ++I)
953      Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I);
954    return Result;
955  }
956
957  static bool isEqual(const SmallVector<const SCEV *, 2> &LHS,
958                      const SmallVector<const SCEV *, 2> &RHS) {
959    return LHS == RHS;
960  }
961};
962
963/// LSRUse - This class holds the state that LSR keeps for each use in
964/// IVUsers, as well as uses invented by LSR itself. It includes information
965/// about what kinds of things can be folded into the user, information about
966/// the user itself, and information about how the use may be satisfied.
967/// TODO: Represent multiple users of the same expression in common?
968class LSRUse {
969  DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier;
970
971public:
972  /// KindType - An enum for a kind of use, indicating what types of
973  /// scaled and immediate operands it might support.
974  enum KindType {
975    Basic,   ///< A normal use, with no folding.
976    Special, ///< A special case of basic, allowing -1 scales.
977    Address, ///< An address use; folding according to TargetLowering
978    ICmpZero ///< An equality icmp with both operands folded into one.
979    // TODO: Add a generic icmp too?
980  };
981
982  KindType Kind;
983  const Type *AccessTy;
984
985  SmallVector<int64_t, 8> Offsets;
986  int64_t MinOffset;
987  int64_t MaxOffset;
988
989  /// AllFixupsOutsideLoop - This records whether all of the fixups using this
990  /// LSRUse are outside of the loop, in which case some special-case heuristics
991  /// may be used.
992  bool AllFixupsOutsideLoop;
993
994  /// WidestFixupType - This records the widest use type for any fixup using
995  /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different
996  /// max fixup widths to be equivalent, because the narrower one may be relying
997  /// on the implicit truncation to truncate away bogus bits.
998  const Type *WidestFixupType;
999
1000  /// Formulae - A list of ways to build a value that can satisfy this user.
1001  /// After the list is populated, one of these is selected heuristically and
1002  /// used to formulate a replacement for OperandValToReplace in UserInst.
1003  SmallVector<Formula, 12> Formulae;
1004
1005  /// Regs - The set of register candidates used by all formulae in this LSRUse.
1006  SmallPtrSet<const SCEV *, 4> Regs;
1007
1008  LSRUse(KindType K, const Type *T) : Kind(K), AccessTy(T),
1009                                      MinOffset(INT64_MAX),
1010                                      MaxOffset(INT64_MIN),
1011                                      AllFixupsOutsideLoop(true),
1012                                      WidestFixupType(0) {}
1013
1014  bool HasFormulaWithSameRegs(const Formula &F) const;
1015  bool InsertFormula(const Formula &F);
1016  void DeleteFormula(Formula &F);
1017  void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1018
1019  void print(raw_ostream &OS) const;
1020  void dump() const;
1021};
1022
1023}
1024
1025/// HasFormula - Test whether this use as a formula which has the same
1026/// registers as the given formula.
1027bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1028  SmallVector<const SCEV *, 2> Key = F.BaseRegs;
1029  if (F.ScaledReg) Key.push_back(F.ScaledReg);
1030  // Unstable sort by host order ok, because this is only used for uniquifying.
1031  std::sort(Key.begin(), Key.end());
1032  return Uniquifier.count(Key);
1033}
1034
1035/// InsertFormula - If the given formula has not yet been inserted, add it to
1036/// the list, and return true. Return false otherwise.
1037bool LSRUse::InsertFormula(const Formula &F) {
1038  SmallVector<const SCEV *, 2> Key = F.BaseRegs;
1039  if (F.ScaledReg) Key.push_back(F.ScaledReg);
1040  // Unstable sort by host order ok, because this is only used for uniquifying.
1041  std::sort(Key.begin(), Key.end());
1042
1043  if (!Uniquifier.insert(Key).second)
1044    return false;
1045
1046  // Using a register to hold the value of 0 is not profitable.
1047  assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1048         "Zero allocated in a scaled register!");
1049#ifndef NDEBUG
1050  for (SmallVectorImpl<const SCEV *>::const_iterator I =
1051       F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
1052    assert(!(*I)->isZero() && "Zero allocated in a base register!");
1053#endif
1054
1055  // Add the formula to the list.
1056  Formulae.push_back(F);
1057
1058  // Record registers now being used by this use.
1059  if (F.ScaledReg) Regs.insert(F.ScaledReg);
1060  Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1061
1062  return true;
1063}
1064
1065/// DeleteFormula - Remove the given formula from this use's list.
1066void LSRUse::DeleteFormula(Formula &F) {
1067  if (&F != &Formulae.back())
1068    std::swap(F, Formulae.back());
1069  Formulae.pop_back();
1070  assert(!Formulae.empty() && "LSRUse has no formulae left!");
1071}
1072
1073/// RecomputeRegs - Recompute the Regs field, and update RegUses.
1074void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1075  // Now that we've filtered out some formulae, recompute the Regs set.
1076  SmallPtrSet<const SCEV *, 4> OldRegs = Regs;
1077  Regs.clear();
1078  for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(),
1079       E = Formulae.end(); I != E; ++I) {
1080    const Formula &F = *I;
1081    if (F.ScaledReg) Regs.insert(F.ScaledReg);
1082    Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1083  }
1084
1085  // Update the RegTracker.
1086  for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(),
1087       E = OldRegs.end(); I != E; ++I)
1088    if (!Regs.count(*I))
1089      RegUses.DropRegister(*I, LUIdx);
1090}
1091
1092void LSRUse::print(raw_ostream &OS) const {
1093  OS << "LSR Use: Kind=";
1094  switch (Kind) {
1095  case Basic:    OS << "Basic"; break;
1096  case Special:  OS << "Special"; break;
1097  case ICmpZero: OS << "ICmpZero"; break;
1098  case Address:
1099    OS << "Address of ";
1100    if (AccessTy->isPointerTy())
1101      OS << "pointer"; // the full pointer type could be really verbose
1102    else
1103      OS << *AccessTy;
1104  }
1105
1106  OS << ", Offsets={";
1107  for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
1108       E = Offsets.end(); I != E; ++I) {
1109    OS << *I;
1110    if (llvm::next(I) != E)
1111      OS << ',';
1112  }
1113  OS << '}';
1114
1115  if (AllFixupsOutsideLoop)
1116    OS << ", all-fixups-outside-loop";
1117
1118  if (WidestFixupType)
1119    OS << ", widest fixup type: " << *WidestFixupType;
1120}
1121
1122void LSRUse::dump() const {
1123  print(errs()); errs() << '\n';
1124}
1125
1126/// isLegalUse - Test whether the use described by AM is "legal", meaning it can
1127/// be completely folded into the user instruction at isel time. This includes
1128/// address-mode folding and special icmp tricks.
1129static bool isLegalUse(const TargetLowering::AddrMode &AM,
1130                       LSRUse::KindType Kind, const Type *AccessTy,
1131                       const TargetLowering *TLI) {
1132  switch (Kind) {
1133  case LSRUse::Address:
1134    // If we have low-level target information, ask the target if it can
1135    // completely fold this address.
1136    if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
1137
1138    // Otherwise, just guess that reg+reg addressing is legal.
1139    return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
1140
1141  case LSRUse::ICmpZero:
1142    // There's not even a target hook for querying whether it would be legal to
1143    // fold a GV into an ICmp.
1144    if (AM.BaseGV)
1145      return false;
1146
1147    // ICmp only has two operands; don't allow more than two non-trivial parts.
1148    if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
1149      return false;
1150
1151    // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1152    // putting the scaled register in the other operand of the icmp.
1153    if (AM.Scale != 0 && AM.Scale != -1)
1154      return false;
1155
1156    // If we have low-level target information, ask the target if it can fold an
1157    // integer immediate on an icmp.
1158    if (AM.BaseOffs != 0) {
1159      if (TLI) return TLI->isLegalICmpImmediate(-AM.BaseOffs);
1160      return false;
1161    }
1162
1163    return true;
1164
1165  case LSRUse::Basic:
1166    // Only handle single-register values.
1167    return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
1168
1169  case LSRUse::Special:
1170    // Only handle -1 scales, or no scale.
1171    return AM.Scale == 0 || AM.Scale == -1;
1172  }
1173
1174  return false;
1175}
1176
1177static bool isLegalUse(TargetLowering::AddrMode AM,
1178                       int64_t MinOffset, int64_t MaxOffset,
1179                       LSRUse::KindType Kind, const Type *AccessTy,
1180                       const TargetLowering *TLI) {
1181  // Check for overflow.
1182  if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
1183      (MinOffset > 0))
1184    return false;
1185  AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
1186  if (isLegalUse(AM, Kind, AccessTy, TLI)) {
1187    AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
1188    // Check for overflow.
1189    if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
1190        (MaxOffset > 0))
1191      return false;
1192    AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
1193    return isLegalUse(AM, Kind, AccessTy, TLI);
1194  }
1195  return false;
1196}
1197
1198static bool isAlwaysFoldable(int64_t BaseOffs,
1199                             GlobalValue *BaseGV,
1200                             bool HasBaseReg,
1201                             LSRUse::KindType Kind, const Type *AccessTy,
1202                             const TargetLowering *TLI) {
1203  // Fast-path: zero is always foldable.
1204  if (BaseOffs == 0 && !BaseGV) return true;
1205
1206  // Conservatively, create an address with an immediate and a
1207  // base and a scale.
1208  TargetLowering::AddrMode AM;
1209  AM.BaseOffs = BaseOffs;
1210  AM.BaseGV = BaseGV;
1211  AM.HasBaseReg = HasBaseReg;
1212  AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1213
1214  // Canonicalize a scale of 1 to a base register if the formula doesn't
1215  // already have a base register.
1216  if (!AM.HasBaseReg && AM.Scale == 1) {
1217    AM.Scale = 0;
1218    AM.HasBaseReg = true;
1219  }
1220
1221  return isLegalUse(AM, Kind, AccessTy, TLI);
1222}
1223
1224static bool isAlwaysFoldable(const SCEV *S,
1225                             int64_t MinOffset, int64_t MaxOffset,
1226                             bool HasBaseReg,
1227                             LSRUse::KindType Kind, const Type *AccessTy,
1228                             const TargetLowering *TLI,
1229                             ScalarEvolution &SE) {
1230  // Fast-path: zero is always foldable.
1231  if (S->isZero()) return true;
1232
1233  // Conservatively, create an address with an immediate and a
1234  // base and a scale.
1235  int64_t BaseOffs = ExtractImmediate(S, SE);
1236  GlobalValue *BaseGV = ExtractSymbol(S, SE);
1237
1238  // If there's anything else involved, it's not foldable.
1239  if (!S->isZero()) return false;
1240
1241  // Fast-path: zero is always foldable.
1242  if (BaseOffs == 0 && !BaseGV) return true;
1243
1244  // Conservatively, create an address with an immediate and a
1245  // base and a scale.
1246  TargetLowering::AddrMode AM;
1247  AM.BaseOffs = BaseOffs;
1248  AM.BaseGV = BaseGV;
1249  AM.HasBaseReg = HasBaseReg;
1250  AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1251
1252  return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
1253}
1254
1255namespace {
1256
1257/// UseMapDenseMapInfo - A DenseMapInfo implementation for holding
1258/// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind.
1259struct UseMapDenseMapInfo {
1260  static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() {
1261    return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic);
1262  }
1263
1264  static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() {
1265    return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic);
1266  }
1267
1268  static unsigned
1269  getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) {
1270    unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first);
1271    Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second));
1272    return Result;
1273  }
1274
1275  static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS,
1276                      const std::pair<const SCEV *, LSRUse::KindType> &RHS) {
1277    return LHS == RHS;
1278  }
1279};
1280
1281/// LSRInstance - This class holds state for the main loop strength reduction
1282/// logic.
1283class LSRInstance {
1284  IVUsers &IU;
1285  ScalarEvolution &SE;
1286  DominatorTree &DT;
1287  LoopInfo &LI;
1288  const TargetLowering *const TLI;
1289  Loop *const L;
1290  bool Changed;
1291
1292  /// IVIncInsertPos - This is the insert position that the current loop's
1293  /// induction variable increment should be placed. In simple loops, this is
1294  /// the latch block's terminator. But in more complicated cases, this is a
1295  /// position which will dominate all the in-loop post-increment users.
1296  Instruction *IVIncInsertPos;
1297
1298  /// Factors - Interesting factors between use strides.
1299  SmallSetVector<int64_t, 8> Factors;
1300
1301  /// Types - Interesting use types, to facilitate truncation reuse.
1302  SmallSetVector<const Type *, 4> Types;
1303
1304  /// Fixups - The list of operands which are to be replaced.
1305  SmallVector<LSRFixup, 16> Fixups;
1306
1307  /// Uses - The list of interesting uses.
1308  SmallVector<LSRUse, 16> Uses;
1309
1310  /// RegUses - Track which uses use which register candidates.
1311  RegUseTracker RegUses;
1312
1313  void OptimizeShadowIV();
1314  bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1315  ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1316  void OptimizeLoopTermCond();
1317
1318  void CollectInterestingTypesAndFactors();
1319  void CollectFixupsAndInitialFormulae();
1320
1321  LSRFixup &getNewFixup() {
1322    Fixups.push_back(LSRFixup());
1323    return Fixups.back();
1324  }
1325
1326  // Support for sharing of LSRUses between LSRFixups.
1327  typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>,
1328                   size_t,
1329                   UseMapDenseMapInfo> UseMapTy;
1330  UseMapTy UseMap;
1331
1332  bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1333                          LSRUse::KindType Kind, const Type *AccessTy);
1334
1335  std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
1336                                    LSRUse::KindType Kind,
1337                                    const Type *AccessTy);
1338
1339  void DeleteUse(LSRUse &LU, size_t LUIdx);
1340
1341  LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1342
1343public:
1344  void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1345  void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1346  void CountRegisters(const Formula &F, size_t LUIdx);
1347  bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1348
1349  void CollectLoopInvariantFixupsAndFormulae();
1350
1351  void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1352                              unsigned Depth = 0);
1353  void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1354  void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1355  void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1356  void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1357  void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1358  void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1359  void GenerateCrossUseConstantOffsets();
1360  void GenerateAllReuseFormulae();
1361
1362  void FilterOutUndesirableDedicatedRegisters();
1363
1364  size_t EstimateSearchSpaceComplexity() const;
1365  void NarrowSearchSpaceByDetectingSupersets();
1366  void NarrowSearchSpaceByCollapsingUnrolledCode();
1367  void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1368  void NarrowSearchSpaceByPickingWinnerRegs();
1369  void NarrowSearchSpaceUsingHeuristics();
1370
1371  void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1372                    Cost &SolutionCost,
1373                    SmallVectorImpl<const Formula *> &Workspace,
1374                    const Cost &CurCost,
1375                    const SmallPtrSet<const SCEV *, 16> &CurRegs,
1376                    DenseSet<const SCEV *> &VisitedRegs) const;
1377  void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1378
1379  BasicBlock::iterator
1380    HoistInsertPosition(BasicBlock::iterator IP,
1381                        const SmallVectorImpl<Instruction *> &Inputs) const;
1382  BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1383                                                     const LSRFixup &LF,
1384                                                     const LSRUse &LU) const;
1385
1386  Value *Expand(const LSRFixup &LF,
1387                const Formula &F,
1388                BasicBlock::iterator IP,
1389                SCEVExpander &Rewriter,
1390                SmallVectorImpl<WeakVH> &DeadInsts) const;
1391  void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1392                     const Formula &F,
1393                     SCEVExpander &Rewriter,
1394                     SmallVectorImpl<WeakVH> &DeadInsts,
1395                     Pass *P) const;
1396  void Rewrite(const LSRFixup &LF,
1397               const Formula &F,
1398               SCEVExpander &Rewriter,
1399               SmallVectorImpl<WeakVH> &DeadInsts,
1400               Pass *P) const;
1401  void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
1402                         Pass *P);
1403
1404  LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
1405
1406  bool getChanged() const { return Changed; }
1407
1408  void print_factors_and_types(raw_ostream &OS) const;
1409  void print_fixups(raw_ostream &OS) const;
1410  void print_uses(raw_ostream &OS) const;
1411  void print(raw_ostream &OS) const;
1412  void dump() const;
1413};
1414
1415}
1416
1417/// OptimizeShadowIV - If IV is used in a int-to-float cast
1418/// inside the loop then try to eliminate the cast operation.
1419void LSRInstance::OptimizeShadowIV() {
1420  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1421  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1422    return;
1423
1424  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1425       UI != E; /* empty */) {
1426    IVUsers::const_iterator CandidateUI = UI;
1427    ++UI;
1428    Instruction *ShadowUse = CandidateUI->getUser();
1429    const Type *DestTy = NULL;
1430
1431    /* If shadow use is a int->float cast then insert a second IV
1432       to eliminate this cast.
1433
1434         for (unsigned i = 0; i < n; ++i)
1435           foo((double)i);
1436
1437       is transformed into
1438
1439         double d = 0.0;
1440         for (unsigned i = 0; i < n; ++i, ++d)
1441           foo(d);
1442    */
1443    if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser()))
1444      DestTy = UCast->getDestTy();
1445    else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser()))
1446      DestTy = SCast->getDestTy();
1447    if (!DestTy) continue;
1448
1449    if (TLI) {
1450      // If target does not support DestTy natively then do not apply
1451      // this transformation.
1452      EVT DVT = TLI->getValueType(DestTy);
1453      if (!TLI->isTypeLegal(DVT)) continue;
1454    }
1455
1456    PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1457    if (!PH) continue;
1458    if (PH->getNumIncomingValues() != 2) continue;
1459
1460    const Type *SrcTy = PH->getType();
1461    int Mantissa = DestTy->getFPMantissaWidth();
1462    if (Mantissa == -1) continue;
1463    if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1464      continue;
1465
1466    unsigned Entry, Latch;
1467    if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1468      Entry = 0;
1469      Latch = 1;
1470    } else {
1471      Entry = 1;
1472      Latch = 0;
1473    }
1474
1475    ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1476    if (!Init) continue;
1477    Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());
1478
1479    BinaryOperator *Incr =
1480      dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1481    if (!Incr) continue;
1482    if (Incr->getOpcode() != Instruction::Add
1483        && Incr->getOpcode() != Instruction::Sub)
1484      continue;
1485
1486    /* Initialize new IV, double d = 0.0 in above example. */
1487    ConstantInt *C = NULL;
1488    if (Incr->getOperand(0) == PH)
1489      C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1490    else if (Incr->getOperand(1) == PH)
1491      C = dyn_cast<ConstantInt>(Incr->getOperand(0));
1492    else
1493      continue;
1494
1495    if (!C) continue;
1496
1497    // Ignore negative constants, as the code below doesn't handle them
1498    // correctly. TODO: Remove this restriction.
1499    if (!C->getValue().isStrictlyPositive()) continue;
1500
1501    /* Add new PHINode. */
1502    PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
1503
1504    /* create new increment. '++d' in above example. */
1505    Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1506    BinaryOperator *NewIncr =
1507      BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1508                               Instruction::FAdd : Instruction::FSub,
1509                             NewPH, CFP, "IV.S.next.", Incr);
1510
1511    NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1512    NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
1513
1514    /* Remove cast operation */
1515    ShadowUse->replaceAllUsesWith(NewPH);
1516    ShadowUse->eraseFromParent();
1517    Changed = true;
1518    break;
1519  }
1520}
1521
1522/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1523/// set the IV user and stride information and return true, otherwise return
1524/// false.
1525bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
1526  for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1527    if (UI->getUser() == Cond) {
1528      // NOTE: we could handle setcc instructions with multiple uses here, but
1529      // InstCombine does it as well for simple uses, it's not clear that it
1530      // occurs enough in real life to handle.
1531      CondUse = UI;
1532      return true;
1533    }
1534  return false;
1535}
1536
1537/// OptimizeMax - Rewrite the loop's terminating condition if it uses
1538/// a max computation.
1539///
1540/// This is a narrow solution to a specific, but acute, problem. For loops
1541/// like this:
1542///
1543///   i = 0;
1544///   do {
1545///     p[i] = 0.0;
1546///   } while (++i < n);
1547///
1548/// the trip count isn't just 'n', because 'n' might not be positive. And
1549/// unfortunately this can come up even for loops where the user didn't use
1550/// a C do-while loop. For example, seemingly well-behaved top-test loops
1551/// will commonly be lowered like this:
1552//
1553///   if (n > 0) {
1554///     i = 0;
1555///     do {
1556///       p[i] = 0.0;
1557///     } while (++i < n);
1558///   }
1559///
1560/// and then it's possible for subsequent optimization to obscure the if
1561/// test in such a way that indvars can't find it.
1562///
1563/// When indvars can't find the if test in loops like this, it creates a
1564/// max expression, which allows it to give the loop a canonical
1565/// induction variable:
1566///
1567///   i = 0;
1568///   max = n < 1 ? 1 : n;
1569///   do {
1570///     p[i] = 0.0;
1571///   } while (++i != max);
1572///
1573/// Canonical induction variables are necessary because the loop passes
1574/// are designed around them. The most obvious example of this is the
1575/// LoopInfo analysis, which doesn't remember trip count values. It
1576/// expects to be able to rediscover the trip count each time it is
1577/// needed, and it does this using a simple analysis that only succeeds if
1578/// the loop has a canonical induction variable.
1579///
1580/// However, when it comes time to generate code, the maximum operation
1581/// can be quite costly, especially if it's inside of an outer loop.
1582///
1583/// This function solves this problem by detecting this type of loop and
1584/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1585/// the instructions for the maximum computation.
1586///
1587ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
1588  // Check that the loop matches the pattern we're looking for.
1589  if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1590      Cond->getPredicate() != CmpInst::ICMP_NE)
1591    return Cond;
1592
1593  SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1594  if (!Sel || !Sel->hasOneUse()) return Cond;
1595
1596  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1597  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1598    return Cond;
1599  const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
1600
1601  // Add one to the backedge-taken count to get the trip count.
1602  const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
1603  if (IterationCount != SE.getSCEV(Sel)) return Cond;
1604
1605  // Check for a max calculation that matches the pattern. There's no check
1606  // for ICMP_ULE here because the comparison would be with zero, which
1607  // isn't interesting.
1608  CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1609  const SCEVNAryExpr *Max = 0;
1610  if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
1611    Pred = ICmpInst::ICMP_SLE;
1612    Max = S;
1613  } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
1614    Pred = ICmpInst::ICMP_SLT;
1615    Max = S;
1616  } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
1617    Pred = ICmpInst::ICMP_ULT;
1618    Max = U;
1619  } else {
1620    // No match; bail.
1621    return Cond;
1622  }
1623
1624  // To handle a max with more than two operands, this optimization would
1625  // require additional checking and setup.
1626  if (Max->getNumOperands() != 2)
1627    return Cond;
1628
1629  const SCEV *MaxLHS = Max->getOperand(0);
1630  const SCEV *MaxRHS = Max->getOperand(1);
1631
1632  // ScalarEvolution canonicalizes constants to the left. For < and >, look
1633  // for a comparison with 1. For <= and >=, a comparison with zero.
1634  if (!MaxLHS ||
1635      (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
1636    return Cond;
1637
1638  // Check the relevant induction variable for conformance to
1639  // the pattern.
1640  const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
1641  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
1642  if (!AR || !AR->isAffine() ||
1643      AR->getStart() != One ||
1644      AR->getStepRecurrence(SE) != One)
1645    return Cond;
1646
1647  assert(AR->getLoop() == L &&
1648         "Loop condition operand is an addrec in a different loop!");
1649
1650  // Check the right operand of the select, and remember it, as it will
1651  // be used in the new comparison instruction.
1652  Value *NewRHS = 0;
1653  if (ICmpInst::isTrueWhenEqual(Pred)) {
1654    // Look for n+1, and grab n.
1655    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
1656      if (isa<ConstantInt>(BO->getOperand(1)) &&
1657          cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1658          SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1659        NewRHS = BO->getOperand(0);
1660    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
1661      if (isa<ConstantInt>(BO->getOperand(1)) &&
1662          cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1663          SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1664        NewRHS = BO->getOperand(0);
1665    if (!NewRHS)
1666      return Cond;
1667  } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
1668    NewRHS = Sel->getOperand(1);
1669  else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
1670    NewRHS = Sel->getOperand(2);
1671  else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
1672    NewRHS = SU->getValue();
1673  else
1674    // Max doesn't match expected pattern.
1675    return Cond;
1676
1677  // Determine the new comparison opcode. It may be signed or unsigned,
1678  // and the original comparison may be either equality or inequality.
1679  if (Cond->getPredicate() == CmpInst::ICMP_EQ)
1680    Pred = CmpInst::getInversePredicate(Pred);
1681
1682  // Ok, everything looks ok to change the condition into an SLT or SGE and
1683  // delete the max calculation.
1684  ICmpInst *NewCond =
1685    new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
1686
1687  // Delete the max calculation instructions.
1688  Cond->replaceAllUsesWith(NewCond);
1689  CondUse->setUser(NewCond);
1690  Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
1691  Cond->eraseFromParent();
1692  Sel->eraseFromParent();
1693  if (Cmp->use_empty())
1694    Cmp->eraseFromParent();
1695  return NewCond;
1696}
1697
1698/// OptimizeLoopTermCond - Change loop terminating condition to use the
1699/// postinc iv when possible.
1700void
1701LSRInstance::OptimizeLoopTermCond() {
1702  SmallPtrSet<Instruction *, 4> PostIncs;
1703
1704  BasicBlock *LatchBlock = L->getLoopLatch();
1705  SmallVector<BasicBlock*, 8> ExitingBlocks;
1706  L->getExitingBlocks(ExitingBlocks);
1707
1708  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
1709    BasicBlock *ExitingBlock = ExitingBlocks[i];
1710
1711    // Get the terminating condition for the loop if possible.  If we
1712    // can, we want to change it to use a post-incremented version of its
1713    // induction variable, to allow coalescing the live ranges for the IV into
1714    // one register value.
1715
1716    BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1717    if (!TermBr)
1718      continue;
1719    // FIXME: Overly conservative, termination condition could be an 'or' etc..
1720    if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
1721      continue;
1722
1723    // Search IVUsesByStride to find Cond's IVUse if there is one.
1724    IVStrideUse *CondUse = 0;
1725    ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
1726    if (!FindIVUserForCond(Cond, CondUse))
1727      continue;
1728
1729    // If the trip count is computed in terms of a max (due to ScalarEvolution
1730    // being unable to find a sufficient guard, for example), change the loop
1731    // comparison to use SLT or ULT instead of NE.
1732    // One consequence of doing this now is that it disrupts the count-down
1733    // optimization. That's not always a bad thing though, because in such
1734    // cases it may still be worthwhile to avoid a max.
1735    Cond = OptimizeMax(Cond, CondUse);
1736
1737    // If this exiting block dominates the latch block, it may also use
1738    // the post-inc value if it won't be shared with other uses.
1739    // Check for dominance.
1740    if (!DT.dominates(ExitingBlock, LatchBlock))
1741      continue;
1742
1743    // Conservatively avoid trying to use the post-inc value in non-latch
1744    // exits if there may be pre-inc users in intervening blocks.
1745    if (LatchBlock != ExitingBlock)
1746      for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1747        // Test if the use is reachable from the exiting block. This dominator
1748        // query is a conservative approximation of reachability.
1749        if (&*UI != CondUse &&
1750            !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
1751          // Conservatively assume there may be reuse if the quotient of their
1752          // strides could be a legal scale.
1753          const SCEV *A = IU.getStride(*CondUse, L);
1754          const SCEV *B = IU.getStride(*UI, L);
1755          if (!A || !B) continue;
1756          if (SE.getTypeSizeInBits(A->getType()) !=
1757              SE.getTypeSizeInBits(B->getType())) {
1758            if (SE.getTypeSizeInBits(A->getType()) >
1759                SE.getTypeSizeInBits(B->getType()))
1760              B = SE.getSignExtendExpr(B, A->getType());
1761            else
1762              A = SE.getSignExtendExpr(A, B->getType());
1763          }
1764          if (const SCEVConstant *D =
1765                dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
1766            const ConstantInt *C = D->getValue();
1767            // Stride of one or negative one can have reuse with non-addresses.
1768            if (C->isOne() || C->isAllOnesValue())
1769              goto decline_post_inc;
1770            // Avoid weird situations.
1771            if (C->getValue().getMinSignedBits() >= 64 ||
1772                C->getValue().isMinSignedValue())
1773              goto decline_post_inc;
1774            // Without TLI, assume that any stride might be valid, and so any
1775            // use might be shared.
1776            if (!TLI)
1777              goto decline_post_inc;
1778            // Check for possible scaled-address reuse.
1779            const Type *AccessTy = getAccessType(UI->getUser());
1780            TargetLowering::AddrMode AM;
1781            AM.Scale = C->getSExtValue();
1782            if (TLI->isLegalAddressingMode(AM, AccessTy))
1783              goto decline_post_inc;
1784            AM.Scale = -AM.Scale;
1785            if (TLI->isLegalAddressingMode(AM, AccessTy))
1786              goto decline_post_inc;
1787          }
1788        }
1789
1790    DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
1791                 << *Cond << '\n');
1792
1793    // It's possible for the setcc instruction to be anywhere in the loop, and
1794    // possible for it to have multiple users.  If it is not immediately before
1795    // the exiting block branch, move it.
1796    if (&*++BasicBlock::iterator(Cond) != TermBr) {
1797      if (Cond->hasOneUse()) {
1798        Cond->moveBefore(TermBr);
1799      } else {
1800        // Clone the terminating condition and insert into the loopend.
1801        ICmpInst *OldCond = Cond;
1802        Cond = cast<ICmpInst>(Cond->clone());
1803        Cond->setName(L->getHeader()->getName() + ".termcond");
1804        ExitingBlock->getInstList().insert(TermBr, Cond);
1805
1806        // Clone the IVUse, as the old use still exists!
1807        CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
1808        TermBr->replaceUsesOfWith(OldCond, Cond);
1809      }
1810    }
1811
1812    // If we get to here, we know that we can transform the setcc instruction to
1813    // use the post-incremented version of the IV, allowing us to coalesce the
1814    // live ranges for the IV correctly.
1815    CondUse->transformToPostInc(L);
1816    Changed = true;
1817
1818    PostIncs.insert(Cond);
1819  decline_post_inc:;
1820  }
1821
1822  // Determine an insertion point for the loop induction variable increment. It
1823  // must dominate all the post-inc comparisons we just set up, and it must
1824  // dominate the loop latch edge.
1825  IVIncInsertPos = L->getLoopLatch()->getTerminator();
1826  for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
1827       E = PostIncs.end(); I != E; ++I) {
1828    BasicBlock *BB =
1829      DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
1830                                    (*I)->getParent());
1831    if (BB == (*I)->getParent())
1832      IVIncInsertPos = *I;
1833    else if (BB != IVIncInsertPos->getParent())
1834      IVIncInsertPos = BB->getTerminator();
1835  }
1836}
1837
1838/// reconcileNewOffset - Determine if the given use can accommodate a fixup
1839/// at the given offset and other details. If so, update the use and
1840/// return true.
1841bool
1842LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1843                                LSRUse::KindType Kind, const Type *AccessTy) {
1844  int64_t NewMinOffset = LU.MinOffset;
1845  int64_t NewMaxOffset = LU.MaxOffset;
1846  const Type *NewAccessTy = AccessTy;
1847
1848  // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
1849  // something conservative, however this can pessimize in the case that one of
1850  // the uses will have all its uses outside the loop, for example.
1851  if (LU.Kind != Kind)
1852    return false;
1853  // Conservatively assume HasBaseReg is true for now.
1854  if (NewOffset < LU.MinOffset) {
1855    if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg,
1856                          Kind, AccessTy, TLI))
1857      return false;
1858    NewMinOffset = NewOffset;
1859  } else if (NewOffset > LU.MaxOffset) {
1860    if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg,
1861                          Kind, AccessTy, TLI))
1862      return false;
1863    NewMaxOffset = NewOffset;
1864  }
1865  // Check for a mismatched access type, and fall back conservatively as needed.
1866  // TODO: Be less conservative when the type is similar and can use the same
1867  // addressing modes.
1868  if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
1869    NewAccessTy = Type::getVoidTy(AccessTy->getContext());
1870
1871  // Update the use.
1872  LU.MinOffset = NewMinOffset;
1873  LU.MaxOffset = NewMaxOffset;
1874  LU.AccessTy = NewAccessTy;
1875  if (NewOffset != LU.Offsets.back())
1876    LU.Offsets.push_back(NewOffset);
1877  return true;
1878}
1879
1880/// getUse - Return an LSRUse index and an offset value for a fixup which
1881/// needs the given expression, with the given kind and optional access type.
1882/// Either reuse an existing use or create a new one, as needed.
1883std::pair<size_t, int64_t>
1884LSRInstance::getUse(const SCEV *&Expr,
1885                    LSRUse::KindType Kind, const Type *AccessTy) {
1886  const SCEV *Copy = Expr;
1887  int64_t Offset = ExtractImmediate(Expr, SE);
1888
1889  // Basic uses can't accept any offset, for example.
1890  if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) {
1891    Expr = Copy;
1892    Offset = 0;
1893  }
1894
1895  std::pair<UseMapTy::iterator, bool> P =
1896    UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0));
1897  if (!P.second) {
1898    // A use already existed with this base.
1899    size_t LUIdx = P.first->second;
1900    LSRUse &LU = Uses[LUIdx];
1901    if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
1902      // Reuse this use.
1903      return std::make_pair(LUIdx, Offset);
1904  }
1905
1906  // Create a new use.
1907  size_t LUIdx = Uses.size();
1908  P.first->second = LUIdx;
1909  Uses.push_back(LSRUse(Kind, AccessTy));
1910  LSRUse &LU = Uses[LUIdx];
1911
1912  // We don't need to track redundant offsets, but we don't need to go out
1913  // of our way here to avoid them.
1914  if (LU.Offsets.empty() || Offset != LU.Offsets.back())
1915    LU.Offsets.push_back(Offset);
1916
1917  LU.MinOffset = Offset;
1918  LU.MaxOffset = Offset;
1919  return std::make_pair(LUIdx, Offset);
1920}
1921
1922/// DeleteUse - Delete the given use from the Uses list.
1923void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
1924  if (&LU != &Uses.back())
1925    std::swap(LU, Uses.back());
1926  Uses.pop_back();
1927
1928  // Update RegUses.
1929  RegUses.SwapAndDropUse(LUIdx, Uses.size());
1930}
1931
1932/// FindUseWithFormula - Look for a use distinct from OrigLU which is has
1933/// a formula that has the same registers as the given formula.
1934LSRUse *
1935LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
1936                                       const LSRUse &OrigLU) {
1937  // Search all uses for the formula. This could be more clever.
1938  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
1939    LSRUse &LU = Uses[LUIdx];
1940    // Check whether this use is close enough to OrigLU, to see whether it's
1941    // worthwhile looking through its formulae.
1942    // Ignore ICmpZero uses because they may contain formulae generated by
1943    // GenerateICmpZeroScales, in which case adding fixup offsets may
1944    // be invalid.
1945    if (&LU != &OrigLU &&
1946        LU.Kind != LSRUse::ICmpZero &&
1947        LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
1948        LU.WidestFixupType == OrigLU.WidestFixupType &&
1949        LU.HasFormulaWithSameRegs(OrigF)) {
1950      // Scan through this use's formulae.
1951      for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
1952           E = LU.Formulae.end(); I != E; ++I) {
1953        const Formula &F = *I;
1954        // Check to see if this formula has the same registers and symbols
1955        // as OrigF.
1956        if (F.BaseRegs == OrigF.BaseRegs &&
1957            F.ScaledReg == OrigF.ScaledReg &&
1958            F.AM.BaseGV == OrigF.AM.BaseGV &&
1959            F.AM.Scale == OrigF.AM.Scale &&
1960            F.UnfoldedOffset == OrigF.UnfoldedOffset) {
1961          if (F.AM.BaseOffs == 0)
1962            return &LU;
1963          // This is the formula where all the registers and symbols matched;
1964          // there aren't going to be any others. Since we declined it, we
1965          // can skip the rest of the formulae and procede to the next LSRUse.
1966          break;
1967        }
1968      }
1969    }
1970  }
1971
1972  // Nothing looked good.
1973  return 0;
1974}
1975
1976void LSRInstance::CollectInterestingTypesAndFactors() {
1977  SmallSetVector<const SCEV *, 4> Strides;
1978
1979  // Collect interesting types and strides.
1980  SmallVector<const SCEV *, 4> Worklist;
1981  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
1982    const SCEV *Expr = IU.getExpr(*UI);
1983
1984    // Collect interesting types.
1985    Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
1986
1987    // Add strides for mentioned loops.
1988    Worklist.push_back(Expr);
1989    do {
1990      const SCEV *S = Worklist.pop_back_val();
1991      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1992        Strides.insert(AR->getStepRecurrence(SE));
1993        Worklist.push_back(AR->getStart());
1994      } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1995        Worklist.append(Add->op_begin(), Add->op_end());
1996      }
1997    } while (!Worklist.empty());
1998  }
1999
2000  // Compute interesting factors from the set of interesting strides.
2001  for (SmallSetVector<const SCEV *, 4>::const_iterator
2002       I = Strides.begin(), E = Strides.end(); I != E; ++I)
2003    for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2004         llvm::next(I); NewStrideIter != E; ++NewStrideIter) {
2005      const SCEV *OldStride = *I;
2006      const SCEV *NewStride = *NewStrideIter;
2007
2008      if (SE.getTypeSizeInBits(OldStride->getType()) !=
2009          SE.getTypeSizeInBits(NewStride->getType())) {
2010        if (SE.getTypeSizeInBits(OldStride->getType()) >
2011            SE.getTypeSizeInBits(NewStride->getType()))
2012          NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2013        else
2014          OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2015      }
2016      if (const SCEVConstant *Factor =
2017            dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2018                                                        SE, true))) {
2019        if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2020          Factors.insert(Factor->getValue()->getValue().getSExtValue());
2021      } else if (const SCEVConstant *Factor =
2022                   dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2023                                                               NewStride,
2024                                                               SE, true))) {
2025        if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2026          Factors.insert(Factor->getValue()->getValue().getSExtValue());
2027      }
2028    }
2029
2030  // If all uses use the same type, don't bother looking for truncation-based
2031  // reuse.
2032  if (Types.size() == 1)
2033    Types.clear();
2034
2035  DEBUG(print_factors_and_types(dbgs()));
2036}
2037
2038void LSRInstance::CollectFixupsAndInitialFormulae() {
2039  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
2040    // Record the uses.
2041    LSRFixup &LF = getNewFixup();
2042    LF.UserInst = UI->getUser();
2043    LF.OperandValToReplace = UI->getOperandValToReplace();
2044    LF.PostIncLoops = UI->getPostIncLoops();
2045
2046    LSRUse::KindType Kind = LSRUse::Basic;
2047    const Type *AccessTy = 0;
2048    if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
2049      Kind = LSRUse::Address;
2050      AccessTy = getAccessType(LF.UserInst);
2051    }
2052
2053    const SCEV *S = IU.getExpr(*UI);
2054
2055    // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
2056    // (N - i == 0), and this allows (N - i) to be the expression that we work
2057    // with rather than just N or i, so we can consider the register
2058    // requirements for both N and i at the same time. Limiting this code to
2059    // equality icmps is not a problem because all interesting loops use
2060    // equality icmps, thanks to IndVarSimplify.
2061    if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
2062      if (CI->isEquality()) {
2063        // Swap the operands if needed to put the OperandValToReplace on the
2064        // left, for consistency.
2065        Value *NV = CI->getOperand(1);
2066        if (NV == LF.OperandValToReplace) {
2067          CI->setOperand(1, CI->getOperand(0));
2068          CI->setOperand(0, NV);
2069          NV = CI->getOperand(1);
2070          Changed = true;
2071        }
2072
2073        // x == y  -->  x - y == 0
2074        const SCEV *N = SE.getSCEV(NV);
2075        if (SE.isLoopInvariant(N, L)) {
2076          // S is normalized, so normalize N before folding it into S
2077          // to keep the result normalized.
2078          N = TransformForPostIncUse(Normalize, N, CI, 0,
2079                                     LF.PostIncLoops, SE, DT);
2080          Kind = LSRUse::ICmpZero;
2081          S = SE.getMinusSCEV(N, S);
2082        }
2083
2084        // -1 and the negations of all interesting strides (except the negation
2085        // of -1) are now also interesting.
2086        for (size_t i = 0, e = Factors.size(); i != e; ++i)
2087          if (Factors[i] != -1)
2088            Factors.insert(-(uint64_t)Factors[i]);
2089        Factors.insert(-1);
2090      }
2091
2092    // Set up the initial formula for this use.
2093    std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
2094    LF.LUIdx = P.first;
2095    LF.Offset = P.second;
2096    LSRUse &LU = Uses[LF.LUIdx];
2097    LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
2098    if (!LU.WidestFixupType ||
2099        SE.getTypeSizeInBits(LU.WidestFixupType) <
2100        SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
2101      LU.WidestFixupType = LF.OperandValToReplace->getType();
2102
2103    // If this is the first use of this LSRUse, give it a formula.
2104    if (LU.Formulae.empty()) {
2105      InsertInitialFormula(S, LU, LF.LUIdx);
2106      CountRegisters(LU.Formulae.back(), LF.LUIdx);
2107    }
2108  }
2109
2110  DEBUG(print_fixups(dbgs()));
2111}
2112
2113/// InsertInitialFormula - Insert a formula for the given expression into
2114/// the given use, separating out loop-variant portions from loop-invariant
2115/// and loop-computable portions.
2116void
2117LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
2118  Formula F;
2119  F.InitialMatch(S, L, SE);
2120  bool Inserted = InsertFormula(LU, LUIdx, F);
2121  assert(Inserted && "Initial formula already exists!"); (void)Inserted;
2122}
2123
2124/// InsertSupplementalFormula - Insert a simple single-register formula for
2125/// the given expression into the given use.
2126void
2127LSRInstance::InsertSupplementalFormula(const SCEV *S,
2128                                       LSRUse &LU, size_t LUIdx) {
2129  Formula F;
2130  F.BaseRegs.push_back(S);
2131  F.AM.HasBaseReg = true;
2132  bool Inserted = InsertFormula(LU, LUIdx, F);
2133  assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
2134}
2135
2136/// CountRegisters - Note which registers are used by the given formula,
2137/// updating RegUses.
2138void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
2139  if (F.ScaledReg)
2140    RegUses.CountRegister(F.ScaledReg, LUIdx);
2141  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
2142       E = F.BaseRegs.end(); I != E; ++I)
2143    RegUses.CountRegister(*I, LUIdx);
2144}
2145
2146/// InsertFormula - If the given formula has not yet been inserted, add it to
2147/// the list, and return true. Return false otherwise.
2148bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
2149  if (!LU.InsertFormula(F))
2150    return false;
2151
2152  CountRegisters(F, LUIdx);
2153  return true;
2154}
2155
2156/// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
2157/// loop-invariant values which we're tracking. These other uses will pin these
2158/// values in registers, making them less profitable for elimination.
2159/// TODO: This currently misses non-constant addrec step registers.
2160/// TODO: Should this give more weight to users inside the loop?
2161void
2162LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
2163  SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
2164  SmallPtrSet<const SCEV *, 8> Inserted;
2165
2166  while (!Worklist.empty()) {
2167    const SCEV *S = Worklist.pop_back_val();
2168
2169    if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
2170      Worklist.append(N->op_begin(), N->op_end());
2171    else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
2172      Worklist.push_back(C->getOperand());
2173    else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2174      Worklist.push_back(D->getLHS());
2175      Worklist.push_back(D->getRHS());
2176    } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2177      if (!Inserted.insert(U)) continue;
2178      const Value *V = U->getValue();
2179      if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
2180        // Look for instructions defined outside the loop.
2181        if (L->contains(Inst)) continue;
2182      } else if (isa<UndefValue>(V))
2183        // Undef doesn't have a live range, so it doesn't matter.
2184        continue;
2185      for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
2186           UI != UE; ++UI) {
2187        const Instruction *UserInst = dyn_cast<Instruction>(*UI);
2188        // Ignore non-instructions.
2189        if (!UserInst)
2190          continue;
2191        // Ignore instructions in other functions (as can happen with
2192        // Constants).
2193        if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
2194          continue;
2195        // Ignore instructions not dominated by the loop.
2196        const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
2197          UserInst->getParent() :
2198          cast<PHINode>(UserInst)->getIncomingBlock(
2199            PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
2200        if (!DT.dominates(L->getHeader(), UseBB))
2201          continue;
2202        // Ignore uses which are part of other SCEV expressions, to avoid
2203        // analyzing them multiple times.
2204        if (SE.isSCEVable(UserInst->getType())) {
2205          const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
2206          // If the user is a no-op, look through to its uses.
2207          if (!isa<SCEVUnknown>(UserS))
2208            continue;
2209          if (UserS == U) {
2210            Worklist.push_back(
2211              SE.getUnknown(const_cast<Instruction *>(UserInst)));
2212            continue;
2213          }
2214        }
2215        // Ignore icmp instructions which are already being analyzed.
2216        if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
2217          unsigned OtherIdx = !UI.getOperandNo();
2218          Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
2219          if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
2220            continue;
2221        }
2222
2223        LSRFixup &LF = getNewFixup();
2224        LF.UserInst = const_cast<Instruction *>(UserInst);
2225        LF.OperandValToReplace = UI.getUse();
2226        std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
2227        LF.LUIdx = P.first;
2228        LF.Offset = P.second;
2229        LSRUse &LU = Uses[LF.LUIdx];
2230        LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
2231        if (!LU.WidestFixupType ||
2232            SE.getTypeSizeInBits(LU.WidestFixupType) <
2233            SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
2234          LU.WidestFixupType = LF.OperandValToReplace->getType();
2235        InsertSupplementalFormula(U, LU, LF.LUIdx);
2236        CountRegisters(LU.Formulae.back(), Uses.size() - 1);
2237        break;
2238      }
2239    }
2240  }
2241}
2242
2243/// CollectSubexprs - Split S into subexpressions which can be pulled out into
2244/// separate registers. If C is non-null, multiply each subexpression by C.
2245static void CollectSubexprs(const SCEV *S, const SCEVConstant *C,
2246                            SmallVectorImpl<const SCEV *> &Ops,
2247                            const Loop *L,
2248                            ScalarEvolution &SE) {
2249  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2250    // Break out add operands.
2251    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
2252         I != E; ++I)
2253      CollectSubexprs(*I, C, Ops, L, SE);
2254    return;
2255  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2256    // Split a non-zero base out of an addrec.
2257    if (!AR->getStart()->isZero()) {
2258      CollectSubexprs(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
2259                                       AR->getStepRecurrence(SE),
2260                                       AR->getLoop(),
2261                                       //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
2262                                       SCEV::FlagAnyWrap),
2263                      C, Ops, L, SE);
2264      CollectSubexprs(AR->getStart(), C, Ops, L, SE);
2265      return;
2266    }
2267  } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2268    // Break (C * (a + b + c)) into C*a + C*b + C*c.
2269    if (Mul->getNumOperands() == 2)
2270      if (const SCEVConstant *Op0 =
2271            dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2272        CollectSubexprs(Mul->getOperand(1),
2273                        C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0,
2274                        Ops, L, SE);
2275        return;
2276      }
2277  }
2278
2279  // Otherwise use the value itself, optionally with a scale applied.
2280  Ops.push_back(C ? SE.getMulExpr(C, S) : S);
2281}
2282
2283/// GenerateReassociations - Split out subexpressions from adds and the bases of
2284/// addrecs.
2285void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
2286                                         Formula Base,
2287                                         unsigned Depth) {
2288  // Arbitrarily cap recursion to protect compile time.
2289  if (Depth >= 3) return;
2290
2291  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2292    const SCEV *BaseReg = Base.BaseRegs[i];
2293
2294    SmallVector<const SCEV *, 8> AddOps;
2295    CollectSubexprs(BaseReg, 0, AddOps, L, SE);
2296
2297    if (AddOps.size() == 1) continue;
2298
2299    for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
2300         JE = AddOps.end(); J != JE; ++J) {
2301
2302      // Loop-variant "unknown" values are uninteresting; we won't be able to
2303      // do anything meaningful with them.
2304      if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
2305        continue;
2306
2307      // Don't pull a constant into a register if the constant could be folded
2308      // into an immediate field.
2309      if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
2310                           Base.getNumRegs() > 1,
2311                           LU.Kind, LU.AccessTy, TLI, SE))
2312        continue;
2313
2314      // Collect all operands except *J.
2315      SmallVector<const SCEV *, 8> InnerAddOps
2316        (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
2317      InnerAddOps.append
2318        (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end());
2319
2320      // Don't leave just a constant behind in a register if the constant could
2321      // be folded into an immediate field.
2322      if (InnerAddOps.size() == 1 &&
2323          isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
2324                           Base.getNumRegs() > 1,
2325                           LU.Kind, LU.AccessTy, TLI, SE))
2326        continue;
2327
2328      const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
2329      if (InnerSum->isZero())
2330        continue;
2331      Formula F = Base;
2332
2333      // Add the remaining pieces of the add back into the new formula.
2334      const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
2335      if (TLI && InnerSumSC &&
2336          SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
2337          TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
2338                                   InnerSumSC->getValue()->getZExtValue())) {
2339        F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
2340                           InnerSumSC->getValue()->getZExtValue();
2341        F.BaseRegs.erase(F.BaseRegs.begin() + i);
2342      } else
2343        F.BaseRegs[i] = InnerSum;
2344
2345      // Add J as its own register, or an unfolded immediate.
2346      const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
2347      if (TLI && SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
2348          TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
2349                                   SC->getValue()->getZExtValue()))
2350        F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
2351                           SC->getValue()->getZExtValue();
2352      else
2353        F.BaseRegs.push_back(*J);
2354
2355      if (InsertFormula(LU, LUIdx, F))
2356        // If that formula hadn't been seen before, recurse to find more like
2357        // it.
2358        GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
2359    }
2360  }
2361}
2362
2363/// GenerateCombinations - Generate a formula consisting of all of the
2364/// loop-dominating registers added into a single register.
2365void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
2366                                       Formula Base) {
2367  // This method is only interesting on a plurality of registers.
2368  if (Base.BaseRegs.size() <= 1) return;
2369
2370  Formula F = Base;
2371  F.BaseRegs.clear();
2372  SmallVector<const SCEV *, 4> Ops;
2373  for (SmallVectorImpl<const SCEV *>::const_iterator
2374       I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
2375    const SCEV *BaseReg = *I;
2376    if (SE.properlyDominates(BaseReg, L->getHeader()) &&
2377        !SE.hasComputableLoopEvolution(BaseReg, L))
2378      Ops.push_back(BaseReg);
2379    else
2380      F.BaseRegs.push_back(BaseReg);
2381  }
2382  if (Ops.size() > 1) {
2383    const SCEV *Sum = SE.getAddExpr(Ops);
2384    // TODO: If Sum is zero, it probably means ScalarEvolution missed an
2385    // opportunity to fold something. For now, just ignore such cases
2386    // rather than proceed with zero in a register.
2387    if (!Sum->isZero()) {
2388      F.BaseRegs.push_back(Sum);
2389      (void)InsertFormula(LU, LUIdx, F);
2390    }
2391  }
2392}
2393
2394/// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
2395void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
2396                                          Formula Base) {
2397  // We can't add a symbolic offset if the address already contains one.
2398  if (Base.AM.BaseGV) return;
2399
2400  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2401    const SCEV *G = Base.BaseRegs[i];
2402    GlobalValue *GV = ExtractSymbol(G, SE);
2403    if (G->isZero() || !GV)
2404      continue;
2405    Formula F = Base;
2406    F.AM.BaseGV = GV;
2407    if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2408                    LU.Kind, LU.AccessTy, TLI))
2409      continue;
2410    F.BaseRegs[i] = G;
2411    (void)InsertFormula(LU, LUIdx, F);
2412  }
2413}
2414
2415/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
2416void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
2417                                          Formula Base) {
2418  // TODO: For now, just add the min and max offset, because it usually isn't
2419  // worthwhile looking at everything inbetween.
2420  SmallVector<int64_t, 2> Worklist;
2421  Worklist.push_back(LU.MinOffset);
2422  if (LU.MaxOffset != LU.MinOffset)
2423    Worklist.push_back(LU.MaxOffset);
2424
2425  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2426    const SCEV *G = Base.BaseRegs[i];
2427
2428    for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
2429         E = Worklist.end(); I != E; ++I) {
2430      Formula F = Base;
2431      F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
2432      if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
2433                     LU.Kind, LU.AccessTy, TLI)) {
2434        // Add the offset to the base register.
2435        const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G);
2436        // If it cancelled out, drop the base register, otherwise update it.
2437        if (NewG->isZero()) {
2438          std::swap(F.BaseRegs[i], F.BaseRegs.back());
2439          F.BaseRegs.pop_back();
2440        } else
2441          F.BaseRegs[i] = NewG;
2442
2443        (void)InsertFormula(LU, LUIdx, F);
2444      }
2445    }
2446
2447    int64_t Imm = ExtractImmediate(G, SE);
2448    if (G->isZero() || Imm == 0)
2449      continue;
2450    Formula F = Base;
2451    F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
2452    if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2453                    LU.Kind, LU.AccessTy, TLI))
2454      continue;
2455    F.BaseRegs[i] = G;
2456    (void)InsertFormula(LU, LUIdx, F);
2457  }
2458}
2459
2460/// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
2461/// the comparison. For example, x == y -> x*c == y*c.
2462void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
2463                                         Formula Base) {
2464  if (LU.Kind != LSRUse::ICmpZero) return;
2465
2466  // Determine the integer type for the base formula.
2467  const Type *IntTy = Base.getType();
2468  if (!IntTy) return;
2469  if (SE.getTypeSizeInBits(IntTy) > 64) return;
2470
2471  // Don't do this if there is more than one offset.
2472  if (LU.MinOffset != LU.MaxOffset) return;
2473
2474  assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
2475
2476  // Check each interesting stride.
2477  for (SmallSetVector<int64_t, 8>::const_iterator
2478       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2479    int64_t Factor = *I;
2480
2481    // Check that the multiplication doesn't overflow.
2482    if (Base.AM.BaseOffs == INT64_MIN && Factor == -1)
2483      continue;
2484    int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
2485    if (NewBaseOffs / Factor != Base.AM.BaseOffs)
2486      continue;
2487
2488    // Check that multiplying with the use offset doesn't overflow.
2489    int64_t Offset = LU.MinOffset;
2490    if (Offset == INT64_MIN && Factor == -1)
2491      continue;
2492    Offset = (uint64_t)Offset * Factor;
2493    if (Offset / Factor != LU.MinOffset)
2494      continue;
2495
2496    Formula F = Base;
2497    F.AM.BaseOffs = NewBaseOffs;
2498
2499    // Check that this scale is legal.
2500    if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
2501      continue;
2502
2503    // Compensate for the use having MinOffset built into it.
2504    F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
2505
2506    const SCEV *FactorS = SE.getConstant(IntTy, Factor);
2507
2508    // Check that multiplying with each base register doesn't overflow.
2509    for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
2510      F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
2511      if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
2512        goto next;
2513    }
2514
2515    // Check that multiplying with the scaled register doesn't overflow.
2516    if (F.ScaledReg) {
2517      F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
2518      if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
2519        continue;
2520    }
2521
2522    // Check that multiplying with the unfolded offset doesn't overflow.
2523    if (F.UnfoldedOffset != 0) {
2524      if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
2525        continue;
2526      F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
2527      if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
2528        continue;
2529    }
2530
2531    // If we make it here and it's legal, add it.
2532    (void)InsertFormula(LU, LUIdx, F);
2533  next:;
2534  }
2535}
2536
2537/// GenerateScales - Generate stride factor reuse formulae by making use of
2538/// scaled-offset address modes, for example.
2539void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
2540  // Determine the integer type for the base formula.
2541  const Type *IntTy = Base.getType();
2542  if (!IntTy) return;
2543
2544  // If this Formula already has a scaled register, we can't add another one.
2545  if (Base.AM.Scale != 0) return;
2546
2547  // Check each interesting stride.
2548  for (SmallSetVector<int64_t, 8>::const_iterator
2549       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2550    int64_t Factor = *I;
2551
2552    Base.AM.Scale = Factor;
2553    Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
2554    // Check whether this scale is going to be legal.
2555    if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2556                    LU.Kind, LU.AccessTy, TLI)) {
2557      // As a special-case, handle special out-of-loop Basic users specially.
2558      // TODO: Reconsider this special case.
2559      if (LU.Kind == LSRUse::Basic &&
2560          isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2561                     LSRUse::Special, LU.AccessTy, TLI) &&
2562          LU.AllFixupsOutsideLoop)
2563        LU.Kind = LSRUse::Special;
2564      else
2565        continue;
2566    }
2567    // For an ICmpZero, negating a solitary base register won't lead to
2568    // new solutions.
2569    if (LU.Kind == LSRUse::ICmpZero &&
2570        !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
2571      continue;
2572    // For each addrec base reg, apply the scale, if possible.
2573    for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
2574      if (const SCEVAddRecExpr *AR =
2575            dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
2576        const SCEV *FactorS = SE.getConstant(IntTy, Factor);
2577        if (FactorS->isZero())
2578          continue;
2579        // Divide out the factor, ignoring high bits, since we'll be
2580        // scaling the value back up in the end.
2581        if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
2582          // TODO: This could be optimized to avoid all the copying.
2583          Formula F = Base;
2584          F.ScaledReg = Quotient;
2585          F.DeleteBaseReg(F.BaseRegs[i]);
2586          (void)InsertFormula(LU, LUIdx, F);
2587        }
2588      }
2589  }
2590}
2591
2592/// GenerateTruncates - Generate reuse formulae from different IV types.
2593void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
2594  // This requires TargetLowering to tell us which truncates are free.
2595  if (!TLI) return;
2596
2597  // Don't bother truncating symbolic values.
2598  if (Base.AM.BaseGV) return;
2599
2600  // Determine the integer type for the base formula.
2601  const Type *DstTy = Base.getType();
2602  if (!DstTy) return;
2603  DstTy = SE.getEffectiveSCEVType(DstTy);
2604
2605  for (SmallSetVector<const Type *, 4>::const_iterator
2606       I = Types.begin(), E = Types.end(); I != E; ++I) {
2607    const Type *SrcTy = *I;
2608    if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
2609      Formula F = Base;
2610
2611      if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
2612      for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
2613           JE = F.BaseRegs.end(); J != JE; ++J)
2614        *J = SE.getAnyExtendExpr(*J, SrcTy);
2615
2616      // TODO: This assumes we've done basic processing on all uses and
2617      // have an idea what the register usage is.
2618      if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
2619        continue;
2620
2621      (void)InsertFormula(LU, LUIdx, F);
2622    }
2623  }
2624}
2625
2626namespace {
2627
2628/// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
2629/// defer modifications so that the search phase doesn't have to worry about
2630/// the data structures moving underneath it.
2631struct WorkItem {
2632  size_t LUIdx;
2633  int64_t Imm;
2634  const SCEV *OrigReg;
2635
2636  WorkItem(size_t LI, int64_t I, const SCEV *R)
2637    : LUIdx(LI), Imm(I), OrigReg(R) {}
2638
2639  void print(raw_ostream &OS) const;
2640  void dump() const;
2641};
2642
2643}
2644
2645void WorkItem::print(raw_ostream &OS) const {
2646  OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
2647     << " , add offset " << Imm;
2648}
2649
2650void WorkItem::dump() const {
2651  print(errs()); errs() << '\n';
2652}
2653
2654/// GenerateCrossUseConstantOffsets - Look for registers which are a constant
2655/// distance apart and try to form reuse opportunities between them.
2656void LSRInstance::GenerateCrossUseConstantOffsets() {
2657  // Group the registers by their value without any added constant offset.
2658  typedef std::map<int64_t, const SCEV *> ImmMapTy;
2659  typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
2660  RegMapTy Map;
2661  DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
2662  SmallVector<const SCEV *, 8> Sequence;
2663  for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
2664       I != E; ++I) {
2665    const SCEV *Reg = *I;
2666    int64_t Imm = ExtractImmediate(Reg, SE);
2667    std::pair<RegMapTy::iterator, bool> Pair =
2668      Map.insert(std::make_pair(Reg, ImmMapTy()));
2669    if (Pair.second)
2670      Sequence.push_back(Reg);
2671    Pair.first->second.insert(std::make_pair(Imm, *I));
2672    UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
2673  }
2674
2675  // Now examine each set of registers with the same base value. Build up
2676  // a list of work to do and do the work in a separate step so that we're
2677  // not adding formulae and register counts while we're searching.
2678  SmallVector<WorkItem, 32> WorkItems;
2679  SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
2680  for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
2681       E = Sequence.end(); I != E; ++I) {
2682    const SCEV *Reg = *I;
2683    const ImmMapTy &Imms = Map.find(Reg)->second;
2684
2685    // It's not worthwhile looking for reuse if there's only one offset.
2686    if (Imms.size() == 1)
2687      continue;
2688
2689    DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
2690          for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2691               J != JE; ++J)
2692            dbgs() << ' ' << J->first;
2693          dbgs() << '\n');
2694
2695    // Examine each offset.
2696    for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2697         J != JE; ++J) {
2698      const SCEV *OrigReg = J->second;
2699
2700      int64_t JImm = J->first;
2701      const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
2702
2703      if (!isa<SCEVConstant>(OrigReg) &&
2704          UsedByIndicesMap[Reg].count() == 1) {
2705        DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
2706        continue;
2707      }
2708
2709      // Conservatively examine offsets between this orig reg a few selected
2710      // other orig regs.
2711      ImmMapTy::const_iterator OtherImms[] = {
2712        Imms.begin(), prior(Imms.end()),
2713        Imms.lower_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
2714      };
2715      for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
2716        ImmMapTy::const_iterator M = OtherImms[i];
2717        if (M == J || M == JE) continue;
2718
2719        // Compute the difference between the two.
2720        int64_t Imm = (uint64_t)JImm - M->first;
2721        for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
2722             LUIdx = UsedByIndices.find_next(LUIdx))
2723          // Make a memo of this use, offset, and register tuple.
2724          if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
2725            WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
2726      }
2727    }
2728  }
2729
2730  Map.clear();
2731  Sequence.clear();
2732  UsedByIndicesMap.clear();
2733  UniqueItems.clear();
2734
2735  // Now iterate through the worklist and add new formulae.
2736  for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
2737       E = WorkItems.end(); I != E; ++I) {
2738    const WorkItem &WI = *I;
2739    size_t LUIdx = WI.LUIdx;
2740    LSRUse &LU = Uses[LUIdx];
2741    int64_t Imm = WI.Imm;
2742    const SCEV *OrigReg = WI.OrigReg;
2743
2744    const Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
2745    const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
2746    unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
2747
2748    // TODO: Use a more targeted data structure.
2749    for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
2750      const Formula &F = LU.Formulae[L];
2751      // Use the immediate in the scaled register.
2752      if (F.ScaledReg == OrigReg) {
2753        int64_t Offs = (uint64_t)F.AM.BaseOffs +
2754                       Imm * (uint64_t)F.AM.Scale;
2755        // Don't create 50 + reg(-50).
2756        if (F.referencesReg(SE.getSCEV(
2757                   ConstantInt::get(IntTy, -(uint64_t)Offs))))
2758          continue;
2759        Formula NewF = F;
2760        NewF.AM.BaseOffs = Offs;
2761        if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2762                        LU.Kind, LU.AccessTy, TLI))
2763          continue;
2764        NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
2765
2766        // If the new scale is a constant in a register, and adding the constant
2767        // value to the immediate would produce a value closer to zero than the
2768        // immediate itself, then the formula isn't worthwhile.
2769        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
2770          if (C->getValue()->isNegative() !=
2771                (NewF.AM.BaseOffs < 0) &&
2772              (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
2773                .ule(abs64(NewF.AM.BaseOffs)))
2774            continue;
2775
2776        // OK, looks good.
2777        (void)InsertFormula(LU, LUIdx, NewF);
2778      } else {
2779        // Use the immediate in a base register.
2780        for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
2781          const SCEV *BaseReg = F.BaseRegs[N];
2782          if (BaseReg != OrigReg)
2783            continue;
2784          Formula NewF = F;
2785          NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
2786          if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2787                          LU.Kind, LU.AccessTy, TLI)) {
2788            if (!TLI ||
2789                !TLI->isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
2790              continue;
2791            NewF = F;
2792            NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
2793          }
2794          NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
2795
2796          // If the new formula has a constant in a register, and adding the
2797          // constant value to the immediate would produce a value closer to
2798          // zero than the immediate itself, then the formula isn't worthwhile.
2799          for (SmallVectorImpl<const SCEV *>::const_iterator
2800               J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
2801               J != JE; ++J)
2802            if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
2803              if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt(
2804                   abs64(NewF.AM.BaseOffs)) &&
2805                  (C->getValue()->getValue() +
2806                   NewF.AM.BaseOffs).countTrailingZeros() >=
2807                   CountTrailingZeros_64(NewF.AM.BaseOffs))
2808                goto skip_formula;
2809
2810          // Ok, looks good.
2811          (void)InsertFormula(LU, LUIdx, NewF);
2812          break;
2813        skip_formula:;
2814        }
2815      }
2816    }
2817  }
2818}
2819
2820/// GenerateAllReuseFormulae - Generate formulae for each use.
2821void
2822LSRInstance::GenerateAllReuseFormulae() {
2823  // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
2824  // queries are more precise.
2825  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2826    LSRUse &LU = Uses[LUIdx];
2827    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2828      GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
2829    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2830      GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
2831  }
2832  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2833    LSRUse &LU = Uses[LUIdx];
2834    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2835      GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
2836    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2837      GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
2838    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2839      GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
2840    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2841      GenerateScales(LU, LUIdx, LU.Formulae[i]);
2842  }
2843  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2844    LSRUse &LU = Uses[LUIdx];
2845    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2846      GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
2847  }
2848
2849  GenerateCrossUseConstantOffsets();
2850
2851  DEBUG(dbgs() << "\n"
2852                  "After generating reuse formulae:\n";
2853        print_uses(dbgs()));
2854}
2855
2856/// If there are multiple formulae with the same set of registers used
2857/// by other uses, pick the best one and delete the others.
2858void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
2859  DenseSet<const SCEV *> VisitedRegs;
2860  SmallPtrSet<const SCEV *, 16> Regs;
2861#ifndef NDEBUG
2862  bool ChangedFormulae = false;
2863#endif
2864
2865  // Collect the best formula for each unique set of shared registers. This
2866  // is reset for each use.
2867  typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
2868    BestFormulaeTy;
2869  BestFormulaeTy BestFormulae;
2870
2871  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2872    LSRUse &LU = Uses[LUIdx];
2873    DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
2874
2875    bool Any = false;
2876    for (size_t FIdx = 0, NumForms = LU.Formulae.size();
2877         FIdx != NumForms; ++FIdx) {
2878      Formula &F = LU.Formulae[FIdx];
2879
2880      SmallVector<const SCEV *, 2> Key;
2881      for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
2882           JE = F.BaseRegs.end(); J != JE; ++J) {
2883        const SCEV *Reg = *J;
2884        if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
2885          Key.push_back(Reg);
2886      }
2887      if (F.ScaledReg &&
2888          RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
2889        Key.push_back(F.ScaledReg);
2890      // Unstable sort by host order ok, because this is only used for
2891      // uniquifying.
2892      std::sort(Key.begin(), Key.end());
2893
2894      std::pair<BestFormulaeTy::const_iterator, bool> P =
2895        BestFormulae.insert(std::make_pair(Key, FIdx));
2896      if (!P.second) {
2897        Formula &Best = LU.Formulae[P.first->second];
2898
2899        Cost CostF;
2900        CostF.RateFormula(F, Regs, VisitedRegs, L, LU.Offsets, SE, DT);
2901        Regs.clear();
2902        Cost CostBest;
2903        CostBest.RateFormula(Best, Regs, VisitedRegs, L, LU.Offsets, SE, DT);
2904        Regs.clear();
2905        if (CostF < CostBest)
2906          std::swap(F, Best);
2907        DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
2908              dbgs() << "\n"
2909                        "    in favor of formula "; Best.print(dbgs());
2910              dbgs() << '\n');
2911#ifndef NDEBUG
2912        ChangedFormulae = true;
2913#endif
2914        LU.DeleteFormula(F);
2915        --FIdx;
2916        --NumForms;
2917        Any = true;
2918        continue;
2919      }
2920    }
2921
2922    // Now that we've filtered out some formulae, recompute the Regs set.
2923    if (Any)
2924      LU.RecomputeRegs(LUIdx, RegUses);
2925
2926    // Reset this to prepare for the next use.
2927    BestFormulae.clear();
2928  }
2929
2930  DEBUG(if (ChangedFormulae) {
2931          dbgs() << "\n"
2932                    "After filtering out undesirable candidates:\n";
2933          print_uses(dbgs());
2934        });
2935}
2936
2937// This is a rough guess that seems to work fairly well.
2938static const size_t ComplexityLimit = UINT16_MAX;
2939
2940/// EstimateSearchSpaceComplexity - Estimate the worst-case number of
2941/// solutions the solver might have to consider. It almost never considers
2942/// this many solutions because it prune the search space, but the pruning
2943/// isn't always sufficient.
2944size_t LSRInstance::EstimateSearchSpaceComplexity() const {
2945  size_t Power = 1;
2946  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
2947       E = Uses.end(); I != E; ++I) {
2948    size_t FSize = I->Formulae.size();
2949    if (FSize >= ComplexityLimit) {
2950      Power = ComplexityLimit;
2951      break;
2952    }
2953    Power *= FSize;
2954    if (Power >= ComplexityLimit)
2955      break;
2956  }
2957  return Power;
2958}
2959
2960/// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset
2961/// of the registers of another formula, it won't help reduce register
2962/// pressure (though it may not necessarily hurt register pressure); remove
2963/// it to simplify the system.
2964void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
2965  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
2966    DEBUG(dbgs() << "The search space is too complex.\n");
2967
2968    DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
2969                    "which use a superset of registers used by other "
2970                    "formulae.\n");
2971
2972    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2973      LSRUse &LU = Uses[LUIdx];
2974      bool Any = false;
2975      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
2976        Formula &F = LU.Formulae[i];
2977        // Look for a formula with a constant or GV in a register. If the use
2978        // also has a formula with that same value in an immediate field,
2979        // delete the one that uses a register.
2980        for (SmallVectorImpl<const SCEV *>::const_iterator
2981             I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
2982          if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
2983            Formula NewF = F;
2984            NewF.AM.BaseOffs += C->getValue()->getSExtValue();
2985            NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
2986                                (I - F.BaseRegs.begin()));
2987            if (LU.HasFormulaWithSameRegs(NewF)) {
2988              DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
2989              LU.DeleteFormula(F);
2990              --i;
2991              --e;
2992              Any = true;
2993              break;
2994            }
2995          } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
2996            if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
2997              if (!F.AM.BaseGV) {
2998                Formula NewF = F;
2999                NewF.AM.BaseGV = GV;
3000                NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
3001                                    (I - F.BaseRegs.begin()));
3002                if (LU.HasFormulaWithSameRegs(NewF)) {
3003                  DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
3004                        dbgs() << '\n');
3005                  LU.DeleteFormula(F);
3006                  --i;
3007                  --e;
3008                  Any = true;
3009                  break;
3010                }
3011              }
3012          }
3013        }
3014      }
3015      if (Any)
3016        LU.RecomputeRegs(LUIdx, RegUses);
3017    }
3018
3019    DEBUG(dbgs() << "After pre-selection:\n";
3020          print_uses(dbgs()));
3021  }
3022}
3023
3024/// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers
3025/// for expressions like A, A+1, A+2, etc., allocate a single register for
3026/// them.
3027void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
3028  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3029    DEBUG(dbgs() << "The search space is too complex.\n");
3030
3031    DEBUG(dbgs() << "Narrowing the search space by assuming that uses "
3032                    "separated by a constant offset will use the same "
3033                    "registers.\n");
3034
3035    // This is especially useful for unrolled loops.
3036
3037    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3038      LSRUse &LU = Uses[LUIdx];
3039      for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
3040           E = LU.Formulae.end(); I != E; ++I) {
3041        const Formula &F = *I;
3042        if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) {
3043          if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) {
3044            if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs,
3045                                   /*HasBaseReg=*/false,
3046                                   LU.Kind, LU.AccessTy)) {
3047              DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs());
3048                    dbgs() << '\n');
3049
3050              LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
3051
3052              // Update the relocs to reference the new use.
3053              for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
3054                   E = Fixups.end(); I != E; ++I) {
3055                LSRFixup &Fixup = *I;
3056                if (Fixup.LUIdx == LUIdx) {
3057                  Fixup.LUIdx = LUThatHas - &Uses.front();
3058                  Fixup.Offset += F.AM.BaseOffs;
3059                  // Add the new offset to LUThatHas' offset list.
3060                  if (LUThatHas->Offsets.back() != Fixup.Offset) {
3061                    LUThatHas->Offsets.push_back(Fixup.Offset);
3062                    if (Fixup.Offset > LUThatHas->MaxOffset)
3063                      LUThatHas->MaxOffset = Fixup.Offset;
3064                    if (Fixup.Offset < LUThatHas->MinOffset)
3065                      LUThatHas->MinOffset = Fixup.Offset;
3066                  }
3067                  DEBUG(dbgs() << "New fixup has offset "
3068                               << Fixup.Offset << '\n');
3069                }
3070                if (Fixup.LUIdx == NumUses-1)
3071                  Fixup.LUIdx = LUIdx;
3072              }
3073
3074              // Delete formulae from the new use which are no longer legal.
3075              bool Any = false;
3076              for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
3077                Formula &F = LUThatHas->Formulae[i];
3078                if (!isLegalUse(F.AM,
3079                                LUThatHas->MinOffset, LUThatHas->MaxOffset,
3080                                LUThatHas->Kind, LUThatHas->AccessTy, TLI)) {
3081                  DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
3082                        dbgs() << '\n');
3083                  LUThatHas->DeleteFormula(F);
3084                  --i;
3085                  --e;
3086                  Any = true;
3087                }
3088              }
3089              if (Any)
3090                LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
3091
3092              // Delete the old use.
3093              DeleteUse(LU, LUIdx);
3094              --LUIdx;
3095              --NumUses;
3096              break;
3097            }
3098          }
3099        }
3100      }
3101    }
3102
3103    DEBUG(dbgs() << "After pre-selection:\n";
3104          print_uses(dbgs()));
3105  }
3106}
3107
3108/// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call
3109/// FilterOutUndesirableDedicatedRegisters again, if necessary, now that
3110/// we've done more filtering, as it may be able to find more formulae to
3111/// eliminate.
3112void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
3113  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3114    DEBUG(dbgs() << "The search space is too complex.\n");
3115
3116    DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
3117                    "undesirable dedicated registers.\n");
3118
3119    FilterOutUndesirableDedicatedRegisters();
3120
3121    DEBUG(dbgs() << "After pre-selection:\n";
3122          print_uses(dbgs()));
3123  }
3124}
3125
3126/// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely
3127/// to be profitable, and then in any use which has any reference to that
3128/// register, delete all formulae which do not reference that register.
3129void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
3130  // With all other options exhausted, loop until the system is simple
3131  // enough to handle.
3132  SmallPtrSet<const SCEV *, 4> Taken;
3133  while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3134    // Ok, we have too many of formulae on our hands to conveniently handle.
3135    // Use a rough heuristic to thin out the list.
3136    DEBUG(dbgs() << "The search space is too complex.\n");
3137
3138    // Pick the register which is used by the most LSRUses, which is likely
3139    // to be a good reuse register candidate.
3140    const SCEV *Best = 0;
3141    unsigned BestNum = 0;
3142    for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
3143         I != E; ++I) {
3144      const SCEV *Reg = *I;
3145      if (Taken.count(Reg))
3146        continue;
3147      if (!Best)
3148        Best = Reg;
3149      else {
3150        unsigned Count = RegUses.getUsedByIndices(Reg).count();
3151        if (Count > BestNum) {
3152          Best = Reg;
3153          BestNum = Count;
3154        }
3155      }
3156    }
3157
3158    DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
3159                 << " will yield profitable reuse.\n");
3160    Taken.insert(Best);
3161
3162    // In any use with formulae which references this register, delete formulae
3163    // which don't reference it.
3164    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3165      LSRUse &LU = Uses[LUIdx];
3166      if (!LU.Regs.count(Best)) continue;
3167
3168      bool Any = false;
3169      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
3170        Formula &F = LU.Formulae[i];
3171        if (!F.referencesReg(Best)) {
3172          DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
3173          LU.DeleteFormula(F);
3174          --e;
3175          --i;
3176          Any = true;
3177          assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
3178          continue;
3179        }
3180      }
3181
3182      if (Any)
3183        LU.RecomputeRegs(LUIdx, RegUses);
3184    }
3185
3186    DEBUG(dbgs() << "After pre-selection:\n";
3187          print_uses(dbgs()));
3188  }
3189}
3190
3191/// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
3192/// formulae to choose from, use some rough heuristics to prune down the number
3193/// of formulae. This keeps the main solver from taking an extraordinary amount
3194/// of time in some worst-case scenarios.
3195void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
3196  NarrowSearchSpaceByDetectingSupersets();
3197  NarrowSearchSpaceByCollapsingUnrolledCode();
3198  NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
3199  NarrowSearchSpaceByPickingWinnerRegs();
3200}
3201
3202/// SolveRecurse - This is the recursive solver.
3203void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
3204                               Cost &SolutionCost,
3205                               SmallVectorImpl<const Formula *> &Workspace,
3206                               const Cost &CurCost,
3207                               const SmallPtrSet<const SCEV *, 16> &CurRegs,
3208                               DenseSet<const SCEV *> &VisitedRegs) const {
3209  // Some ideas:
3210  //  - prune more:
3211  //    - use more aggressive filtering
3212  //    - sort the formula so that the most profitable solutions are found first
3213  //    - sort the uses too
3214  //  - search faster:
3215  //    - don't compute a cost, and then compare. compare while computing a cost
3216  //      and bail early.
3217  //    - track register sets with SmallBitVector
3218
3219  const LSRUse &LU = Uses[Workspace.size()];
3220
3221  // If this use references any register that's already a part of the
3222  // in-progress solution, consider it a requirement that a formula must
3223  // reference that register in order to be considered. This prunes out
3224  // unprofitable searching.
3225  SmallSetVector<const SCEV *, 4> ReqRegs;
3226  for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
3227       E = CurRegs.end(); I != E; ++I)
3228    if (LU.Regs.count(*I))
3229      ReqRegs.insert(*I);
3230
3231  bool AnySatisfiedReqRegs = false;
3232  SmallPtrSet<const SCEV *, 16> NewRegs;
3233  Cost NewCost;
3234retry:
3235  for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
3236       E = LU.Formulae.end(); I != E; ++I) {
3237    const Formula &F = *I;
3238
3239    // Ignore formulae which do not use any of the required registers.
3240    for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
3241         JE = ReqRegs.end(); J != JE; ++J) {
3242      const SCEV *Reg = *J;
3243      if ((!F.ScaledReg || F.ScaledReg != Reg) &&
3244          std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
3245          F.BaseRegs.end())
3246        goto skip;
3247    }
3248    AnySatisfiedReqRegs = true;
3249
3250    // Evaluate the cost of the current formula. If it's already worse than
3251    // the current best, prune the search at that point.
3252    NewCost = CurCost;
3253    NewRegs = CurRegs;
3254    NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT);
3255    if (NewCost < SolutionCost) {
3256      Workspace.push_back(&F);
3257      if (Workspace.size() != Uses.size()) {
3258        SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
3259                     NewRegs, VisitedRegs);
3260        if (F.getNumRegs() == 1 && Workspace.size() == 1)
3261          VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
3262      } else {
3263        DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
3264              dbgs() << ". Regs:";
3265              for (SmallPtrSet<const SCEV *, 16>::const_iterator
3266                   I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
3267                dbgs() << ' ' << **I;
3268              dbgs() << '\n');
3269
3270        SolutionCost = NewCost;
3271        Solution = Workspace;
3272      }
3273      Workspace.pop_back();
3274    }
3275  skip:;
3276  }
3277
3278  // If none of the formulae had all of the required registers, relax the
3279  // constraint so that we don't exclude all formulae.
3280  if (!AnySatisfiedReqRegs) {
3281    assert(!ReqRegs.empty() && "Solver failed even without required registers");
3282    ReqRegs.clear();
3283    goto retry;
3284  }
3285}
3286
3287/// Solve - Choose one formula from each use. Return the results in the given
3288/// Solution vector.
3289void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
3290  SmallVector<const Formula *, 8> Workspace;
3291  Cost SolutionCost;
3292  SolutionCost.Loose();
3293  Cost CurCost;
3294  SmallPtrSet<const SCEV *, 16> CurRegs;
3295  DenseSet<const SCEV *> VisitedRegs;
3296  Workspace.reserve(Uses.size());
3297
3298  // SolveRecurse does all the work.
3299  SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
3300               CurRegs, VisitedRegs);
3301
3302  // Ok, we've now made all our decisions.
3303  DEBUG(dbgs() << "\n"
3304                  "The chosen solution requires "; SolutionCost.print(dbgs());
3305        dbgs() << ":\n";
3306        for (size_t i = 0, e = Uses.size(); i != e; ++i) {
3307          dbgs() << "  ";
3308          Uses[i].print(dbgs());
3309          dbgs() << "\n"
3310                    "    ";
3311          Solution[i]->print(dbgs());
3312          dbgs() << '\n';
3313        });
3314
3315  assert(Solution.size() == Uses.size() && "Malformed solution!");
3316}
3317
3318/// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
3319/// the dominator tree far as we can go while still being dominated by the
3320/// input positions. This helps canonicalize the insert position, which
3321/// encourages sharing.
3322BasicBlock::iterator
3323LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
3324                                 const SmallVectorImpl<Instruction *> &Inputs)
3325                                                                         const {
3326  for (;;) {
3327    const Loop *IPLoop = LI.getLoopFor(IP->getParent());
3328    unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
3329
3330    BasicBlock *IDom;
3331    for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
3332      if (!Rung) return IP;
3333      Rung = Rung->getIDom();
3334      if (!Rung) return IP;
3335      IDom = Rung->getBlock();
3336
3337      // Don't climb into a loop though.
3338      const Loop *IDomLoop = LI.getLoopFor(IDom);
3339      unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
3340      if (IDomDepth <= IPLoopDepth &&
3341          (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
3342        break;
3343    }
3344
3345    bool AllDominate = true;
3346    Instruction *BetterPos = 0;
3347    Instruction *Tentative = IDom->getTerminator();
3348    for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
3349         E = Inputs.end(); I != E; ++I) {
3350      Instruction *Inst = *I;
3351      if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
3352        AllDominate = false;
3353        break;
3354      }
3355      // Attempt to find an insert position in the middle of the block,
3356      // instead of at the end, so that it can be used for other expansions.
3357      if (IDom == Inst->getParent() &&
3358          (!BetterPos || DT.dominates(BetterPos, Inst)))
3359        BetterPos = llvm::next(BasicBlock::iterator(Inst));
3360    }
3361    if (!AllDominate)
3362      break;
3363    if (BetterPos)
3364      IP = BetterPos;
3365    else
3366      IP = Tentative;
3367  }
3368
3369  return IP;
3370}
3371
3372/// AdjustInsertPositionForExpand - Determine an input position which will be
3373/// dominated by the operands and which will dominate the result.
3374BasicBlock::iterator
3375LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP,
3376                                           const LSRFixup &LF,
3377                                           const LSRUse &LU) const {
3378  // Collect some instructions which must be dominated by the
3379  // expanding replacement. These must be dominated by any operands that
3380  // will be required in the expansion.
3381  SmallVector<Instruction *, 4> Inputs;
3382  if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
3383    Inputs.push_back(I);
3384  if (LU.Kind == LSRUse::ICmpZero)
3385    if (Instruction *I =
3386          dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
3387      Inputs.push_back(I);
3388  if (LF.PostIncLoops.count(L)) {
3389    if (LF.isUseFullyOutsideLoop(L))
3390      Inputs.push_back(L->getLoopLatch()->getTerminator());
3391    else
3392      Inputs.push_back(IVIncInsertPos);
3393  }
3394  // The expansion must also be dominated by the increment positions of any
3395  // loops it for which it is using post-inc mode.
3396  for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
3397       E = LF.PostIncLoops.end(); I != E; ++I) {
3398    const Loop *PIL = *I;
3399    if (PIL == L) continue;
3400
3401    // Be dominated by the loop exit.
3402    SmallVector<BasicBlock *, 4> ExitingBlocks;
3403    PIL->getExitingBlocks(ExitingBlocks);
3404    if (!ExitingBlocks.empty()) {
3405      BasicBlock *BB = ExitingBlocks[0];
3406      for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
3407        BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
3408      Inputs.push_back(BB->getTerminator());
3409    }
3410  }
3411
3412  // Then, climb up the immediate dominator tree as far as we can go while
3413  // still being dominated by the input positions.
3414  IP = HoistInsertPosition(IP, Inputs);
3415
3416  // Don't insert instructions before PHI nodes.
3417  while (isa<PHINode>(IP)) ++IP;
3418
3419  // Ignore debug intrinsics.
3420  while (isa<DbgInfoIntrinsic>(IP)) ++IP;
3421
3422  return IP;
3423}
3424
3425/// Expand - Emit instructions for the leading candidate expression for this
3426/// LSRUse (this is called "expanding").
3427Value *LSRInstance::Expand(const LSRFixup &LF,
3428                           const Formula &F,
3429                           BasicBlock::iterator IP,
3430                           SCEVExpander &Rewriter,
3431                           SmallVectorImpl<WeakVH> &DeadInsts) const {
3432  const LSRUse &LU = Uses[LF.LUIdx];
3433
3434  // Determine an input position which will be dominated by the operands and
3435  // which will dominate the result.
3436  IP = AdjustInsertPositionForExpand(IP, LF, LU);
3437
3438  // Inform the Rewriter if we have a post-increment use, so that it can
3439  // perform an advantageous expansion.
3440  Rewriter.setPostInc(LF.PostIncLoops);
3441
3442  // This is the type that the user actually needs.
3443  const Type *OpTy = LF.OperandValToReplace->getType();
3444  // This will be the type that we'll initially expand to.
3445  const Type *Ty = F.getType();
3446  if (!Ty)
3447    // No type known; just expand directly to the ultimate type.
3448    Ty = OpTy;
3449  else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
3450    // Expand directly to the ultimate type if it's the right size.
3451    Ty = OpTy;
3452  // This is the type to do integer arithmetic in.
3453  const Type *IntTy = SE.getEffectiveSCEVType(Ty);
3454
3455  // Build up a list of operands to add together to form the full base.
3456  SmallVector<const SCEV *, 8> Ops;
3457
3458  // Expand the BaseRegs portion.
3459  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
3460       E = F.BaseRegs.end(); I != E; ++I) {
3461    const SCEV *Reg = *I;
3462    assert(!Reg->isZero() && "Zero allocated in a base register!");
3463
3464    // If we're expanding for a post-inc user, make the post-inc adjustment.
3465    PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
3466    Reg = TransformForPostIncUse(Denormalize, Reg,
3467                                 LF.UserInst, LF.OperandValToReplace,
3468                                 Loops, SE, DT);
3469
3470    Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
3471  }
3472
3473  // Flush the operand list to suppress SCEVExpander hoisting.
3474  if (!Ops.empty()) {
3475    Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3476    Ops.clear();
3477    Ops.push_back(SE.getUnknown(FullV));
3478  }
3479
3480  // Expand the ScaledReg portion.
3481  Value *ICmpScaledV = 0;
3482  if (F.AM.Scale != 0) {
3483    const SCEV *ScaledS = F.ScaledReg;
3484
3485    // If we're expanding for a post-inc user, make the post-inc adjustment.
3486    PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
3487    ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
3488                                     LF.UserInst, LF.OperandValToReplace,
3489                                     Loops, SE, DT);
3490
3491    if (LU.Kind == LSRUse::ICmpZero) {
3492      // An interesting way of "folding" with an icmp is to use a negated
3493      // scale, which we'll implement by inserting it into the other operand
3494      // of the icmp.
3495      assert(F.AM.Scale == -1 &&
3496             "The only scale supported by ICmpZero uses is -1!");
3497      ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
3498    } else {
3499      // Otherwise just expand the scaled register and an explicit scale,
3500      // which is expected to be matched as part of the address.
3501      ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
3502      ScaledS = SE.getMulExpr(ScaledS,
3503                              SE.getConstant(ScaledS->getType(), F.AM.Scale));
3504      Ops.push_back(ScaledS);
3505
3506      // Flush the operand list to suppress SCEVExpander hoisting.
3507      Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3508      Ops.clear();
3509      Ops.push_back(SE.getUnknown(FullV));
3510    }
3511  }
3512
3513  // Expand the GV portion.
3514  if (F.AM.BaseGV) {
3515    Ops.push_back(SE.getUnknown(F.AM.BaseGV));
3516
3517    // Flush the operand list to suppress SCEVExpander hoisting.
3518    Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3519    Ops.clear();
3520    Ops.push_back(SE.getUnknown(FullV));
3521  }
3522
3523  // Expand the immediate portion.
3524  int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
3525  if (Offset != 0) {
3526    if (LU.Kind == LSRUse::ICmpZero) {
3527      // The other interesting way of "folding" with an ICmpZero is to use a
3528      // negated immediate.
3529      if (!ICmpScaledV)
3530        ICmpScaledV = ConstantInt::get(IntTy, -Offset);
3531      else {
3532        Ops.push_back(SE.getUnknown(ICmpScaledV));
3533        ICmpScaledV = ConstantInt::get(IntTy, Offset);
3534      }
3535    } else {
3536      // Just add the immediate values. These again are expected to be matched
3537      // as part of the address.
3538      Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
3539    }
3540  }
3541
3542  // Expand the unfolded offset portion.
3543  int64_t UnfoldedOffset = F.UnfoldedOffset;
3544  if (UnfoldedOffset != 0) {
3545    // Just add the immediate values.
3546    Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
3547                                                       UnfoldedOffset)));
3548  }
3549
3550  // Emit instructions summing all the operands.
3551  const SCEV *FullS = Ops.empty() ?
3552                      SE.getConstant(IntTy, 0) :
3553                      SE.getAddExpr(Ops);
3554  Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
3555
3556  // We're done expanding now, so reset the rewriter.
3557  Rewriter.clearPostInc();
3558
3559  // An ICmpZero Formula represents an ICmp which we're handling as a
3560  // comparison against zero. Now that we've expanded an expression for that
3561  // form, update the ICmp's other operand.
3562  if (LU.Kind == LSRUse::ICmpZero) {
3563    ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
3564    DeadInsts.push_back(CI->getOperand(1));
3565    assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
3566                           "a scale at the same time!");
3567    if (F.AM.Scale == -1) {
3568      if (ICmpScaledV->getType() != OpTy) {
3569        Instruction *Cast =
3570          CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
3571                                                   OpTy, false),
3572                           ICmpScaledV, OpTy, "tmp", CI);
3573        ICmpScaledV = Cast;
3574      }
3575      CI->setOperand(1, ICmpScaledV);
3576    } else {
3577      assert(F.AM.Scale == 0 &&
3578             "ICmp does not support folding a global value and "
3579             "a scale at the same time!");
3580      Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
3581                                           -(uint64_t)Offset);
3582      if (C->getType() != OpTy)
3583        C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3584                                                          OpTy, false),
3585                                  C, OpTy);
3586
3587      CI->setOperand(1, C);
3588    }
3589  }
3590
3591  return FullV;
3592}
3593
3594/// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
3595/// of their operands effectively happens in their predecessor blocks, so the
3596/// expression may need to be expanded in multiple places.
3597void LSRInstance::RewriteForPHI(PHINode *PN,
3598                                const LSRFixup &LF,
3599                                const Formula &F,
3600                                SCEVExpander &Rewriter,
3601                                SmallVectorImpl<WeakVH> &DeadInsts,
3602                                Pass *P) const {
3603  DenseMap<BasicBlock *, Value *> Inserted;
3604  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
3605    if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
3606      BasicBlock *BB = PN->getIncomingBlock(i);
3607
3608      // If this is a critical edge, split the edge so that we do not insert
3609      // the code on all predecessor/successor paths.  We do this unless this
3610      // is the canonical backedge for this loop, which complicates post-inc
3611      // users.
3612      if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
3613          !isa<IndirectBrInst>(BB->getTerminator())) {
3614        Loop *PNLoop = LI.getLoopFor(PN->getParent());
3615        if (!PNLoop || PN->getParent() != PNLoop->getHeader()) {
3616          // Split the critical edge.
3617          BasicBlock *NewBB = SplitCriticalEdge(BB, PN->getParent(), P);
3618
3619          // If PN is outside of the loop and BB is in the loop, we want to
3620          // move the block to be immediately before the PHI block, not
3621          // immediately after BB.
3622          if (L->contains(BB) && !L->contains(PN))
3623            NewBB->moveBefore(PN->getParent());
3624
3625          // Splitting the edge can reduce the number of PHI entries we have.
3626          e = PN->getNumIncomingValues();
3627          BB = NewBB;
3628          i = PN->getBasicBlockIndex(BB);
3629        }
3630      }
3631
3632      std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
3633        Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
3634      if (!Pair.second)
3635        PN->setIncomingValue(i, Pair.first->second);
3636      else {
3637        Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
3638
3639        // If this is reuse-by-noop-cast, insert the noop cast.
3640        const Type *OpTy = LF.OperandValToReplace->getType();
3641        if (FullV->getType() != OpTy)
3642          FullV =
3643            CastInst::Create(CastInst::getCastOpcode(FullV, false,
3644                                                     OpTy, false),
3645                             FullV, LF.OperandValToReplace->getType(),
3646                             "tmp", BB->getTerminator());
3647
3648        PN->setIncomingValue(i, FullV);
3649        Pair.first->second = FullV;
3650      }
3651    }
3652}
3653
3654/// Rewrite - Emit instructions for the leading candidate expression for this
3655/// LSRUse (this is called "expanding"), and update the UserInst to reference
3656/// the newly expanded value.
3657void LSRInstance::Rewrite(const LSRFixup &LF,
3658                          const Formula &F,
3659                          SCEVExpander &Rewriter,
3660                          SmallVectorImpl<WeakVH> &DeadInsts,
3661                          Pass *P) const {
3662  // First, find an insertion point that dominates UserInst. For PHI nodes,
3663  // find the nearest block which dominates all the relevant uses.
3664  if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
3665    RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
3666  } else {
3667    Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
3668
3669    // If this is reuse-by-noop-cast, insert the noop cast.
3670    const Type *OpTy = LF.OperandValToReplace->getType();
3671    if (FullV->getType() != OpTy) {
3672      Instruction *Cast =
3673        CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
3674                         FullV, OpTy, "tmp", LF.UserInst);
3675      FullV = Cast;
3676    }
3677
3678    // Update the user. ICmpZero is handled specially here (for now) because
3679    // Expand may have updated one of the operands of the icmp already, and
3680    // its new value may happen to be equal to LF.OperandValToReplace, in
3681    // which case doing replaceUsesOfWith leads to replacing both operands
3682    // with the same value. TODO: Reorganize this.
3683    if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
3684      LF.UserInst->setOperand(0, FullV);
3685    else
3686      LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
3687  }
3688
3689  DeadInsts.push_back(LF.OperandValToReplace);
3690}
3691
3692/// ImplementSolution - Rewrite all the fixup locations with new values,
3693/// following the chosen solution.
3694void
3695LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
3696                               Pass *P) {
3697  // Keep track of instructions we may have made dead, so that
3698  // we can remove them after we are done working.
3699  SmallVector<WeakVH, 16> DeadInsts;
3700
3701  SCEVExpander Rewriter(SE, "lsr");
3702  Rewriter.disableCanonicalMode();
3703  Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
3704
3705  // Expand the new value definitions and update the users.
3706  for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
3707       E = Fixups.end(); I != E; ++I) {
3708    const LSRFixup &Fixup = *I;
3709
3710    Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
3711
3712    Changed = true;
3713  }
3714
3715  // Clean up after ourselves. This must be done before deleting any
3716  // instructions.
3717  Rewriter.clear();
3718
3719  Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
3720}
3721
3722LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
3723  : IU(P->getAnalysis<IVUsers>()),
3724    SE(P->getAnalysis<ScalarEvolution>()),
3725    DT(P->getAnalysis<DominatorTree>()),
3726    LI(P->getAnalysis<LoopInfo>()),
3727    TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
3728
3729  // If LoopSimplify form is not available, stay out of trouble.
3730  if (!L->isLoopSimplifyForm()) return;
3731
3732  // If there's no interesting work to be done, bail early.
3733  if (IU.empty()) return;
3734
3735  DEBUG(dbgs() << "\nLSR on loop ";
3736        WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
3737        dbgs() << ":\n");
3738
3739  // First, perform some low-level loop optimizations.
3740  OptimizeShadowIV();
3741  OptimizeLoopTermCond();
3742
3743  // Start collecting data and preparing for the solver.
3744  CollectInterestingTypesAndFactors();
3745  CollectFixupsAndInitialFormulae();
3746  CollectLoopInvariantFixupsAndFormulae();
3747
3748  DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
3749        print_uses(dbgs()));
3750
3751  // Now use the reuse data to generate a bunch of interesting ways
3752  // to formulate the values needed for the uses.
3753  GenerateAllReuseFormulae();
3754
3755  FilterOutUndesirableDedicatedRegisters();
3756  NarrowSearchSpaceUsingHeuristics();
3757
3758  SmallVector<const Formula *, 8> Solution;
3759  Solve(Solution);
3760
3761  // Release memory that is no longer needed.
3762  Factors.clear();
3763  Types.clear();
3764  RegUses.clear();
3765
3766#ifndef NDEBUG
3767  // Formulae should be legal.
3768  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3769       E = Uses.end(); I != E; ++I) {
3770     const LSRUse &LU = *I;
3771     for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3772          JE = LU.Formulae.end(); J != JE; ++J)
3773        assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
3774                          LU.Kind, LU.AccessTy, TLI) &&
3775               "Illegal formula generated!");
3776  };
3777#endif
3778
3779  // Now that we've decided what we want, make it so.
3780  ImplementSolution(Solution, P);
3781}
3782
3783void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
3784  if (Factors.empty() && Types.empty()) return;
3785
3786  OS << "LSR has identified the following interesting factors and types: ";
3787  bool First = true;
3788
3789  for (SmallSetVector<int64_t, 8>::const_iterator
3790       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3791    if (!First) OS << ", ";
3792    First = false;
3793    OS << '*' << *I;
3794  }
3795
3796  for (SmallSetVector<const Type *, 4>::const_iterator
3797       I = Types.begin(), E = Types.end(); I != E; ++I) {
3798    if (!First) OS << ", ";
3799    First = false;
3800    OS << '(' << **I << ')';
3801  }
3802  OS << '\n';
3803}
3804
3805void LSRInstance::print_fixups(raw_ostream &OS) const {
3806  OS << "LSR is examining the following fixup sites:\n";
3807  for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
3808       E = Fixups.end(); I != E; ++I) {
3809    dbgs() << "  ";
3810    I->print(OS);
3811    OS << '\n';
3812  }
3813}
3814
3815void LSRInstance::print_uses(raw_ostream &OS) const {
3816  OS << "LSR is examining the following uses:\n";
3817  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3818       E = Uses.end(); I != E; ++I) {
3819    const LSRUse &LU = *I;
3820    dbgs() << "  ";
3821    LU.print(OS);
3822    OS << '\n';
3823    for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3824         JE = LU.Formulae.end(); J != JE; ++J) {
3825      OS << "    ";
3826      J->print(OS);
3827      OS << '\n';
3828    }
3829  }
3830}
3831
3832void LSRInstance::print(raw_ostream &OS) const {
3833  print_factors_and_types(OS);
3834  print_fixups(OS);
3835  print_uses(OS);
3836}
3837
3838void LSRInstance::dump() const {
3839  print(errs()); errs() << '\n';
3840}
3841
3842namespace {
3843
3844class LoopStrengthReduce : public LoopPass {
3845  /// TLI - Keep a pointer of a TargetLowering to consult for determining
3846  /// transformation profitability.
3847  const TargetLowering *const TLI;
3848
3849public:
3850  static char ID; // Pass ID, replacement for typeid
3851  explicit LoopStrengthReduce(const TargetLowering *tli = 0);
3852
3853private:
3854  bool runOnLoop(Loop *L, LPPassManager &LPM);
3855  void getAnalysisUsage(AnalysisUsage &AU) const;
3856};
3857
3858}
3859
3860char LoopStrengthReduce::ID = 0;
3861INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
3862                "Loop Strength Reduction", false, false)
3863INITIALIZE_PASS_DEPENDENCY(DominatorTree)
3864INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
3865INITIALIZE_PASS_DEPENDENCY(IVUsers)
3866INITIALIZE_PASS_DEPENDENCY(LoopInfo)
3867INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
3868INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
3869                "Loop Strength Reduction", false, false)
3870
3871
3872Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
3873  return new LoopStrengthReduce(TLI);
3874}
3875
3876LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
3877  : LoopPass(ID), TLI(tli) {
3878    initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
3879  }
3880
3881void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
3882  // We split critical edges, so we change the CFG.  However, we do update
3883  // many analyses if they are around.
3884  AU.addPreservedID(LoopSimplifyID);
3885
3886  AU.addRequired<LoopInfo>();
3887  AU.addPreserved<LoopInfo>();
3888  AU.addRequiredID(LoopSimplifyID);
3889  AU.addRequired<DominatorTree>();
3890  AU.addPreserved<DominatorTree>();
3891  AU.addRequired<ScalarEvolution>();
3892  AU.addPreserved<ScalarEvolution>();
3893  // Requiring LoopSimplify a second time here prevents IVUsers from running
3894  // twice, since LoopSimplify was invalidated by running ScalarEvolution.
3895  AU.addRequiredID(LoopSimplifyID);
3896  AU.addRequired<IVUsers>();
3897  AU.addPreserved<IVUsers>();
3898}
3899
3900bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
3901  bool Changed = false;
3902
3903  // Run the main LSR transformation.
3904  Changed |= LSRInstance(TLI, L, this).getChanged();
3905
3906  // At this point, it is worth checking to see if any recurrence PHIs are also
3907  // dead, so that we can remove them as well.
3908  Changed |= DeleteDeadPHIs(L->getHeader());
3909
3910  return Changed;
3911}
3912