LoopStrengthReduce.cpp revision 203954
1//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into forms suitable for efficient execution
12// on the target.
13//
14// This pass performs a strength reduction on array references inside loops that
15// have as one or more of their components the loop induction variable, it
16// rewrites expressions to take advantage of scaled-index addressing modes
17// available on the target, and it performs a variety of other optimizations
18// related to loop induction variables.
19//
20// Terminology note: this code has a lot of handling for "post-increment" or
21// "post-inc" users. This is not talking about post-increment addressing modes;
22// it is instead talking about code like this:
23//
24//   %i = phi [ 0, %entry ], [ %i.next, %latch ]
25//   ...
26//   %i.next = add %i, 1
27//   %c = icmp eq %i.next, %n
28//
29// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30// it's useful to think about these as the same register, with some uses using
31// the value of the register before the add and some using // it after. In this
32// example, the icmp is a post-increment user, since it uses %i.next, which is
33// the value of the induction variable after the increment. The other common
34// case of post-increment users is users outside the loop.
35//
36// TODO: More sophistication in the way Formulae are generated and filtered.
37//
38// TODO: Handle multiple loops at a time.
39//
40// TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
41//       instead of a GlobalValue?
42//
43// TODO: When truncation is free, truncate ICmp users' operands to make it a
44//       smaller encoding (on x86 at least).
45//
46// TODO: When a negated register is used by an add (such as in a list of
47//       multiple base registers, or as the increment expression in an addrec),
48//       we may not actually need both reg and (-1 * reg) in registers; the
49//       negation can be implemented by using a sub instead of an add. The
50//       lack of support for taking this into consideration when making
51//       register pressure decisions is partly worked around by the "Special"
52//       use kind.
53//
54//===----------------------------------------------------------------------===//
55
56#define DEBUG_TYPE "loop-reduce"
57#include "llvm/Transforms/Scalar.h"
58#include "llvm/Constants.h"
59#include "llvm/Instructions.h"
60#include "llvm/IntrinsicInst.h"
61#include "llvm/DerivedTypes.h"
62#include "llvm/Analysis/IVUsers.h"
63#include "llvm/Analysis/Dominators.h"
64#include "llvm/Analysis/LoopPass.h"
65#include "llvm/Analysis/ScalarEvolutionExpander.h"
66#include "llvm/Transforms/Utils/BasicBlockUtils.h"
67#include "llvm/Transforms/Utils/Local.h"
68#include "llvm/ADT/SmallBitVector.h"
69#include "llvm/ADT/SetVector.h"
70#include "llvm/ADT/DenseSet.h"
71#include "llvm/Support/Debug.h"
72#include "llvm/Support/ValueHandle.h"
73#include "llvm/Support/raw_ostream.h"
74#include "llvm/Target/TargetLowering.h"
75#include <algorithm>
76using namespace llvm;
77
78namespace {
79
80/// RegSortData - This class holds data which is used to order reuse candidates.
81class RegSortData {
82public:
83  /// UsedByIndices - This represents the set of LSRUse indices which reference
84  /// a particular register.
85  SmallBitVector UsedByIndices;
86
87  RegSortData() {}
88
89  void print(raw_ostream &OS) const;
90  void dump() const;
91};
92
93}
94
95void RegSortData::print(raw_ostream &OS) const {
96  OS << "[NumUses=" << UsedByIndices.count() << ']';
97}
98
99void RegSortData::dump() const {
100  print(errs()); errs() << '\n';
101}
102
103namespace {
104
105/// RegUseTracker - Map register candidates to information about how they are
106/// used.
107class RegUseTracker {
108  typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
109
110  RegUsesTy RegUses;
111  SmallVector<const SCEV *, 16> RegSequence;
112
113public:
114  void CountRegister(const SCEV *Reg, size_t LUIdx);
115
116  bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
117
118  const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
119
120  void clear();
121
122  typedef SmallVectorImpl<const SCEV *>::iterator iterator;
123  typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
124  iterator begin() { return RegSequence.begin(); }
125  iterator end()   { return RegSequence.end(); }
126  const_iterator begin() const { return RegSequence.begin(); }
127  const_iterator end() const   { return RegSequence.end(); }
128};
129
130}
131
132void
133RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
134  std::pair<RegUsesTy::iterator, bool> Pair =
135    RegUses.insert(std::make_pair(Reg, RegSortData()));
136  RegSortData &RSD = Pair.first->second;
137  if (Pair.second)
138    RegSequence.push_back(Reg);
139  RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
140  RSD.UsedByIndices.set(LUIdx);
141}
142
143bool
144RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
145  if (!RegUses.count(Reg)) return false;
146  const SmallBitVector &UsedByIndices =
147    RegUses.find(Reg)->second.UsedByIndices;
148  int i = UsedByIndices.find_first();
149  if (i == -1) return false;
150  if ((size_t)i != LUIdx) return true;
151  return UsedByIndices.find_next(i) != -1;
152}
153
154const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
155  RegUsesTy::const_iterator I = RegUses.find(Reg);
156  assert(I != RegUses.end() && "Unknown register!");
157  return I->second.UsedByIndices;
158}
159
160void RegUseTracker::clear() {
161  RegUses.clear();
162  RegSequence.clear();
163}
164
165namespace {
166
167/// Formula - This class holds information that describes a formula for
168/// computing satisfying a use. It may include broken-out immediates and scaled
169/// registers.
170struct Formula {
171  /// AM - This is used to represent complex addressing, as well as other kinds
172  /// of interesting uses.
173  TargetLowering::AddrMode AM;
174
175  /// BaseRegs - The list of "base" registers for this use. When this is
176  /// non-empty, AM.HasBaseReg should be set to true.
177  SmallVector<const SCEV *, 2> BaseRegs;
178
179  /// ScaledReg - The 'scaled' register for this use. This should be non-null
180  /// when AM.Scale is not zero.
181  const SCEV *ScaledReg;
182
183  Formula() : ScaledReg(0) {}
184
185  void InitialMatch(const SCEV *S, Loop *L,
186                    ScalarEvolution &SE, DominatorTree &DT);
187
188  unsigned getNumRegs() const;
189  const Type *getType() const;
190
191  bool referencesReg(const SCEV *S) const;
192  bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
193                                  const RegUseTracker &RegUses) const;
194
195  void print(raw_ostream &OS) const;
196  void dump() const;
197};
198
199}
200
201/// DoInitialMatch - Recurrsion helper for InitialMatch.
202static void DoInitialMatch(const SCEV *S, Loop *L,
203                           SmallVectorImpl<const SCEV *> &Good,
204                           SmallVectorImpl<const SCEV *> &Bad,
205                           ScalarEvolution &SE, DominatorTree &DT) {
206  // Collect expressions which properly dominate the loop header.
207  if (S->properlyDominates(L->getHeader(), &DT)) {
208    Good.push_back(S);
209    return;
210  }
211
212  // Look at add operands.
213  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
214    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
215         I != E; ++I)
216      DoInitialMatch(*I, L, Good, Bad, SE, DT);
217    return;
218  }
219
220  // Look at addrec operands.
221  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
222    if (!AR->getStart()->isZero()) {
223      DoInitialMatch(AR->getStart(), L, Good, Bad, SE, DT);
224      DoInitialMatch(SE.getAddRecExpr(SE.getIntegerSCEV(0, AR->getType()),
225                                      AR->getStepRecurrence(SE),
226                                      AR->getLoop()),
227                     L, Good, Bad, SE, DT);
228      return;
229    }
230
231  // Handle a multiplication by -1 (negation) if it didn't fold.
232  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
233    if (Mul->getOperand(0)->isAllOnesValue()) {
234      SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
235      const SCEV *NewMul = SE.getMulExpr(Ops);
236
237      SmallVector<const SCEV *, 4> MyGood;
238      SmallVector<const SCEV *, 4> MyBad;
239      DoInitialMatch(NewMul, L, MyGood, MyBad, SE, DT);
240      const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
241        SE.getEffectiveSCEVType(NewMul->getType())));
242      for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
243           E = MyGood.end(); I != E; ++I)
244        Good.push_back(SE.getMulExpr(NegOne, *I));
245      for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
246           E = MyBad.end(); I != E; ++I)
247        Bad.push_back(SE.getMulExpr(NegOne, *I));
248      return;
249    }
250
251  // Ok, we can't do anything interesting. Just stuff the whole thing into a
252  // register and hope for the best.
253  Bad.push_back(S);
254}
255
256/// InitialMatch - Incorporate loop-variant parts of S into this Formula,
257/// attempting to keep all loop-invariant and loop-computable values in a
258/// single base register.
259void Formula::InitialMatch(const SCEV *S, Loop *L,
260                           ScalarEvolution &SE, DominatorTree &DT) {
261  SmallVector<const SCEV *, 4> Good;
262  SmallVector<const SCEV *, 4> Bad;
263  DoInitialMatch(S, L, Good, Bad, SE, DT);
264  if (!Good.empty()) {
265    BaseRegs.push_back(SE.getAddExpr(Good));
266    AM.HasBaseReg = true;
267  }
268  if (!Bad.empty()) {
269    BaseRegs.push_back(SE.getAddExpr(Bad));
270    AM.HasBaseReg = true;
271  }
272}
273
274/// getNumRegs - Return the total number of register operands used by this
275/// formula. This does not include register uses implied by non-constant
276/// addrec strides.
277unsigned Formula::getNumRegs() const {
278  return !!ScaledReg + BaseRegs.size();
279}
280
281/// getType - Return the type of this formula, if it has one, or null
282/// otherwise. This type is meaningless except for the bit size.
283const Type *Formula::getType() const {
284  return !BaseRegs.empty() ? BaseRegs.front()->getType() :
285         ScaledReg ? ScaledReg->getType() :
286         AM.BaseGV ? AM.BaseGV->getType() :
287         0;
288}
289
290/// referencesReg - Test if this formula references the given register.
291bool Formula::referencesReg(const SCEV *S) const {
292  return S == ScaledReg ||
293         std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
294}
295
296/// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
297/// which are used by uses other than the use with the given index.
298bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
299                                         const RegUseTracker &RegUses) const {
300  if (ScaledReg)
301    if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
302      return true;
303  for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
304       E = BaseRegs.end(); I != E; ++I)
305    if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
306      return true;
307  return false;
308}
309
310void Formula::print(raw_ostream &OS) const {
311  bool First = true;
312  if (AM.BaseGV) {
313    if (!First) OS << " + "; else First = false;
314    WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
315  }
316  if (AM.BaseOffs != 0) {
317    if (!First) OS << " + "; else First = false;
318    OS << AM.BaseOffs;
319  }
320  for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
321       E = BaseRegs.end(); I != E; ++I) {
322    if (!First) OS << " + "; else First = false;
323    OS << "reg(" << **I << ')';
324  }
325  if (AM.Scale != 0) {
326    if (!First) OS << " + "; else First = false;
327    OS << AM.Scale << "*reg(";
328    if (ScaledReg)
329      OS << *ScaledReg;
330    else
331      OS << "<unknown>";
332    OS << ')';
333  }
334}
335
336void Formula::dump() const {
337  print(errs()); errs() << '\n';
338}
339
340/// getSDiv - Return an expression for LHS /s RHS, if it can be determined,
341/// or null otherwise. If IgnoreSignificantBits is true, expressions like
342/// (X * Y) /s Y are simplified to Y, ignoring that the multiplication may
343/// overflow, which is useful when the result will be used in a context where
344/// the most significant bits are ignored.
345static const SCEV *getSDiv(const SCEV *LHS, const SCEV *RHS,
346                           ScalarEvolution &SE,
347                           bool IgnoreSignificantBits = false) {
348  // Handle the trivial case, which works for any SCEV type.
349  if (LHS == RHS)
350    return SE.getIntegerSCEV(1, LHS->getType());
351
352  // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do some
353  // folding.
354  if (RHS->isAllOnesValue())
355    return SE.getMulExpr(LHS, RHS);
356
357  // Check for a division of a constant by a constant.
358  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
359    const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
360    if (!RC)
361      return 0;
362    if (C->getValue()->getValue().srem(RC->getValue()->getValue()) != 0)
363      return 0;
364    return SE.getConstant(C->getValue()->getValue()
365               .sdiv(RC->getValue()->getValue()));
366  }
367
368  // Distribute the sdiv over addrec operands.
369  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
370    const SCEV *Start = getSDiv(AR->getStart(), RHS, SE,
371                                IgnoreSignificantBits);
372    if (!Start) return 0;
373    const SCEV *Step = getSDiv(AR->getStepRecurrence(SE), RHS, SE,
374                               IgnoreSignificantBits);
375    if (!Step) return 0;
376    return SE.getAddRecExpr(Start, Step, AR->getLoop());
377  }
378
379  // Distribute the sdiv over add operands.
380  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
381    SmallVector<const SCEV *, 8> Ops;
382    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
383         I != E; ++I) {
384      const SCEV *Op = getSDiv(*I, RHS, SE,
385                               IgnoreSignificantBits);
386      if (!Op) return 0;
387      Ops.push_back(Op);
388    }
389    return SE.getAddExpr(Ops);
390  }
391
392  // Check for a multiply operand that we can pull RHS out of.
393  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS))
394    if (IgnoreSignificantBits || Mul->hasNoSignedWrap()) {
395      SmallVector<const SCEV *, 4> Ops;
396      bool Found = false;
397      for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
398           I != E; ++I) {
399        if (!Found)
400          if (const SCEV *Q = getSDiv(*I, RHS, SE, IgnoreSignificantBits)) {
401            Ops.push_back(Q);
402            Found = true;
403            continue;
404          }
405        Ops.push_back(*I);
406      }
407      return Found ? SE.getMulExpr(Ops) : 0;
408    }
409
410  // Otherwise we don't know.
411  return 0;
412}
413
414/// ExtractImmediate - If S involves the addition of a constant integer value,
415/// return that integer value, and mutate S to point to a new SCEV with that
416/// value excluded.
417static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
418  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
419    if (C->getValue()->getValue().getMinSignedBits() <= 64) {
420      S = SE.getIntegerSCEV(0, C->getType());
421      return C->getValue()->getSExtValue();
422    }
423  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
424    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
425    int64_t Result = ExtractImmediate(NewOps.front(), SE);
426    S = SE.getAddExpr(NewOps);
427    return Result;
428  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
429    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
430    int64_t Result = ExtractImmediate(NewOps.front(), SE);
431    S = SE.getAddRecExpr(NewOps, AR->getLoop());
432    return Result;
433  }
434  return 0;
435}
436
437/// ExtractSymbol - If S involves the addition of a GlobalValue address,
438/// return that symbol, and mutate S to point to a new SCEV with that
439/// value excluded.
440static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
441  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
442    if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
443      S = SE.getIntegerSCEV(0, GV->getType());
444      return GV;
445    }
446  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
447    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
448    GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
449    S = SE.getAddExpr(NewOps);
450    return Result;
451  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
452    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
453    GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
454    S = SE.getAddRecExpr(NewOps, AR->getLoop());
455    return Result;
456  }
457  return 0;
458}
459
460/// isAddressUse - Returns true if the specified instruction is using the
461/// specified value as an address.
462static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
463  bool isAddress = isa<LoadInst>(Inst);
464  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
465    if (SI->getOperand(1) == OperandVal)
466      isAddress = true;
467  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
468    // Addressing modes can also be folded into prefetches and a variety
469    // of intrinsics.
470    switch (II->getIntrinsicID()) {
471      default: break;
472      case Intrinsic::prefetch:
473      case Intrinsic::x86_sse2_loadu_dq:
474      case Intrinsic::x86_sse2_loadu_pd:
475      case Intrinsic::x86_sse_loadu_ps:
476      case Intrinsic::x86_sse_storeu_ps:
477      case Intrinsic::x86_sse2_storeu_pd:
478      case Intrinsic::x86_sse2_storeu_dq:
479      case Intrinsic::x86_sse2_storel_dq:
480        if (II->getOperand(1) == OperandVal)
481          isAddress = true;
482        break;
483    }
484  }
485  return isAddress;
486}
487
488/// getAccessType - Return the type of the memory being accessed.
489static const Type *getAccessType(const Instruction *Inst) {
490  const Type *AccessTy = Inst->getType();
491  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
492    AccessTy = SI->getOperand(0)->getType();
493  else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
494    // Addressing modes can also be folded into prefetches and a variety
495    // of intrinsics.
496    switch (II->getIntrinsicID()) {
497    default: break;
498    case Intrinsic::x86_sse_storeu_ps:
499    case Intrinsic::x86_sse2_storeu_pd:
500    case Intrinsic::x86_sse2_storeu_dq:
501    case Intrinsic::x86_sse2_storel_dq:
502      AccessTy = II->getOperand(1)->getType();
503      break;
504    }
505  }
506
507  // All pointers have the same requirements, so canonicalize them to an
508  // arbitrary pointer type to minimize variation.
509  if (const PointerType *PTy = dyn_cast<PointerType>(AccessTy))
510    AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
511                                PTy->getAddressSpace());
512
513  return AccessTy;
514}
515
516/// DeleteTriviallyDeadInstructions - If any of the instructions is the
517/// specified set are trivially dead, delete them and see if this makes any of
518/// their operands subsequently dead.
519static bool
520DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
521  bool Changed = false;
522
523  while (!DeadInsts.empty()) {
524    Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
525
526    if (I == 0 || !isInstructionTriviallyDead(I))
527      continue;
528
529    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
530      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
531        *OI = 0;
532        if (U->use_empty())
533          DeadInsts.push_back(U);
534      }
535
536    I->eraseFromParent();
537    Changed = true;
538  }
539
540  return Changed;
541}
542
543namespace {
544
545/// Cost - This class is used to measure and compare candidate formulae.
546class Cost {
547  /// TODO: Some of these could be merged. Also, a lexical ordering
548  /// isn't always optimal.
549  unsigned NumRegs;
550  unsigned AddRecCost;
551  unsigned NumIVMuls;
552  unsigned NumBaseAdds;
553  unsigned ImmCost;
554  unsigned SetupCost;
555
556public:
557  Cost()
558    : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
559      SetupCost(0) {}
560
561  unsigned getNumRegs() const { return NumRegs; }
562
563  bool operator<(const Cost &Other) const;
564
565  void Loose();
566
567  void RateFormula(const Formula &F,
568                   SmallPtrSet<const SCEV *, 16> &Regs,
569                   const DenseSet<const SCEV *> &VisitedRegs,
570                   const Loop *L,
571                   const SmallVectorImpl<int64_t> &Offsets,
572                   ScalarEvolution &SE, DominatorTree &DT);
573
574  void print(raw_ostream &OS) const;
575  void dump() const;
576
577private:
578  void RateRegister(const SCEV *Reg,
579                    SmallPtrSet<const SCEV *, 16> &Regs,
580                    const Loop *L,
581                    ScalarEvolution &SE, DominatorTree &DT);
582  void RatePrimaryRegister(const SCEV *Reg,
583                           SmallPtrSet<const SCEV *, 16> &Regs,
584                           const Loop *L,
585                           ScalarEvolution &SE, DominatorTree &DT);
586};
587
588}
589
590/// RateRegister - Tally up interesting quantities from the given register.
591void Cost::RateRegister(const SCEV *Reg,
592                        SmallPtrSet<const SCEV *, 16> &Regs,
593                        const Loop *L,
594                        ScalarEvolution &SE, DominatorTree &DT) {
595  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
596    if (AR->getLoop() == L)
597      AddRecCost += 1; /// TODO: This should be a function of the stride.
598
599    // If this is an addrec for a loop that's already been visited by LSR,
600    // don't second-guess its addrec phi nodes. LSR isn't currently smart
601    // enough to reason about more than one loop at a time. Consider these
602    // registers free and leave them alone.
603    else if (L->contains(AR->getLoop()) ||
604             (!AR->getLoop()->contains(L) &&
605              DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) {
606      for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
607           PHINode *PN = dyn_cast<PHINode>(I); ++I)
608        if (SE.isSCEVable(PN->getType()) &&
609            (SE.getEffectiveSCEVType(PN->getType()) ==
610             SE.getEffectiveSCEVType(AR->getType())) &&
611            SE.getSCEV(PN) == AR)
612          return;
613
614      // If this isn't one of the addrecs that the loop already has, it
615      // would require a costly new phi and add. TODO: This isn't
616      // precisely modeled right now.
617      ++NumBaseAdds;
618      if (!Regs.count(AR->getStart()))
619        RateRegister(AR->getStart(), Regs, L, SE, DT);
620    }
621
622    // Add the step value register, if it needs one.
623    // TODO: The non-affine case isn't precisely modeled here.
624    if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1)))
625      if (!Regs.count(AR->getStart()))
626        RateRegister(AR->getOperand(1), Regs, L, SE, DT);
627  }
628  ++NumRegs;
629
630  // Rough heuristic; favor registers which don't require extra setup
631  // instructions in the preheader.
632  if (!isa<SCEVUnknown>(Reg) &&
633      !isa<SCEVConstant>(Reg) &&
634      !(isa<SCEVAddRecExpr>(Reg) &&
635        (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
636         isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
637    ++SetupCost;
638}
639
640/// RatePrimaryRegister - Record this register in the set. If we haven't seen it
641/// before, rate it.
642void Cost::RatePrimaryRegister(const SCEV *Reg,
643                         SmallPtrSet<const SCEV *, 16> &Regs,
644                         const Loop *L,
645                         ScalarEvolution &SE, DominatorTree &DT) {
646  if (Regs.insert(Reg))
647    RateRegister(Reg, Regs, L, SE, DT);
648}
649
650void Cost::RateFormula(const Formula &F,
651                       SmallPtrSet<const SCEV *, 16> &Regs,
652                       const DenseSet<const SCEV *> &VisitedRegs,
653                       const Loop *L,
654                       const SmallVectorImpl<int64_t> &Offsets,
655                       ScalarEvolution &SE, DominatorTree &DT) {
656  // Tally up the registers.
657  if (const SCEV *ScaledReg = F.ScaledReg) {
658    if (VisitedRegs.count(ScaledReg)) {
659      Loose();
660      return;
661    }
662    RatePrimaryRegister(ScaledReg, Regs, L, SE, DT);
663  }
664  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
665       E = F.BaseRegs.end(); I != E; ++I) {
666    const SCEV *BaseReg = *I;
667    if (VisitedRegs.count(BaseReg)) {
668      Loose();
669      return;
670    }
671    RatePrimaryRegister(BaseReg, Regs, L, SE, DT);
672
673    NumIVMuls += isa<SCEVMulExpr>(BaseReg) &&
674                 BaseReg->hasComputableLoopEvolution(L);
675  }
676
677  if (F.BaseRegs.size() > 1)
678    NumBaseAdds += F.BaseRegs.size() - 1;
679
680  // Tally up the non-zero immediates.
681  for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
682       E = Offsets.end(); I != E; ++I) {
683    int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
684    if (F.AM.BaseGV)
685      ImmCost += 64; // Handle symbolic values conservatively.
686                     // TODO: This should probably be the pointer size.
687    else if (Offset != 0)
688      ImmCost += APInt(64, Offset, true).getMinSignedBits();
689  }
690}
691
692/// Loose - Set this cost to a loosing value.
693void Cost::Loose() {
694  NumRegs = ~0u;
695  AddRecCost = ~0u;
696  NumIVMuls = ~0u;
697  NumBaseAdds = ~0u;
698  ImmCost = ~0u;
699  SetupCost = ~0u;
700}
701
702/// operator< - Choose the lower cost.
703bool Cost::operator<(const Cost &Other) const {
704  if (NumRegs != Other.NumRegs)
705    return NumRegs < Other.NumRegs;
706  if (AddRecCost != Other.AddRecCost)
707    return AddRecCost < Other.AddRecCost;
708  if (NumIVMuls != Other.NumIVMuls)
709    return NumIVMuls < Other.NumIVMuls;
710  if (NumBaseAdds != Other.NumBaseAdds)
711    return NumBaseAdds < Other.NumBaseAdds;
712  if (ImmCost != Other.ImmCost)
713    return ImmCost < Other.ImmCost;
714  if (SetupCost != Other.SetupCost)
715    return SetupCost < Other.SetupCost;
716  return false;
717}
718
719void Cost::print(raw_ostream &OS) const {
720  OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
721  if (AddRecCost != 0)
722    OS << ", with addrec cost " << AddRecCost;
723  if (NumIVMuls != 0)
724    OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
725  if (NumBaseAdds != 0)
726    OS << ", plus " << NumBaseAdds << " base add"
727       << (NumBaseAdds == 1 ? "" : "s");
728  if (ImmCost != 0)
729    OS << ", plus " << ImmCost << " imm cost";
730  if (SetupCost != 0)
731    OS << ", plus " << SetupCost << " setup cost";
732}
733
734void Cost::dump() const {
735  print(errs()); errs() << '\n';
736}
737
738namespace {
739
740/// LSRFixup - An operand value in an instruction which is to be replaced
741/// with some equivalent, possibly strength-reduced, replacement.
742struct LSRFixup {
743  /// UserInst - The instruction which will be updated.
744  Instruction *UserInst;
745
746  /// OperandValToReplace - The operand of the instruction which will
747  /// be replaced. The operand may be used more than once; every instance
748  /// will be replaced.
749  Value *OperandValToReplace;
750
751  /// PostIncLoop - If this user is to use the post-incremented value of an
752  /// induction variable, this variable is non-null and holds the loop
753  /// associated with the induction variable.
754  const Loop *PostIncLoop;
755
756  /// LUIdx - The index of the LSRUse describing the expression which
757  /// this fixup needs, minus an offset (below).
758  size_t LUIdx;
759
760  /// Offset - A constant offset to be added to the LSRUse expression.
761  /// This allows multiple fixups to share the same LSRUse with different
762  /// offsets, for example in an unrolled loop.
763  int64_t Offset;
764
765  LSRFixup();
766
767  void print(raw_ostream &OS) const;
768  void dump() const;
769};
770
771}
772
773LSRFixup::LSRFixup()
774  : UserInst(0), OperandValToReplace(0), PostIncLoop(0),
775    LUIdx(~size_t(0)), Offset(0) {}
776
777void LSRFixup::print(raw_ostream &OS) const {
778  OS << "UserInst=";
779  // Store is common and interesting enough to be worth special-casing.
780  if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
781    OS << "store ";
782    WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
783  } else if (UserInst->getType()->isVoidTy())
784    OS << UserInst->getOpcodeName();
785  else
786    WriteAsOperand(OS, UserInst, /*PrintType=*/false);
787
788  OS << ", OperandValToReplace=";
789  WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
790
791  if (PostIncLoop) {
792    OS << ", PostIncLoop=";
793    WriteAsOperand(OS, PostIncLoop->getHeader(), /*PrintType=*/false);
794  }
795
796  if (LUIdx != ~size_t(0))
797    OS << ", LUIdx=" << LUIdx;
798
799  if (Offset != 0)
800    OS << ", Offset=" << Offset;
801}
802
803void LSRFixup::dump() const {
804  print(errs()); errs() << '\n';
805}
806
807namespace {
808
809/// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
810/// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
811struct UniquifierDenseMapInfo {
812  static SmallVector<const SCEV *, 2> getEmptyKey() {
813    SmallVector<const SCEV *, 2> V;
814    V.push_back(reinterpret_cast<const SCEV *>(-1));
815    return V;
816  }
817
818  static SmallVector<const SCEV *, 2> getTombstoneKey() {
819    SmallVector<const SCEV *, 2> V;
820    V.push_back(reinterpret_cast<const SCEV *>(-2));
821    return V;
822  }
823
824  static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) {
825    unsigned Result = 0;
826    for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
827         E = V.end(); I != E; ++I)
828      Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I);
829    return Result;
830  }
831
832  static bool isEqual(const SmallVector<const SCEV *, 2> &LHS,
833                      const SmallVector<const SCEV *, 2> &RHS) {
834    return LHS == RHS;
835  }
836};
837
838/// LSRUse - This class holds the state that LSR keeps for each use in
839/// IVUsers, as well as uses invented by LSR itself. It includes information
840/// about what kinds of things can be folded into the user, information about
841/// the user itself, and information about how the use may be satisfied.
842/// TODO: Represent multiple users of the same expression in common?
843class LSRUse {
844  DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier;
845
846public:
847  /// KindType - An enum for a kind of use, indicating what types of
848  /// scaled and immediate operands it might support.
849  enum KindType {
850    Basic,   ///< A normal use, with no folding.
851    Special, ///< A special case of basic, allowing -1 scales.
852    Address, ///< An address use; folding according to TargetLowering
853    ICmpZero ///< An equality icmp with both operands folded into one.
854    // TODO: Add a generic icmp too?
855  };
856
857  KindType Kind;
858  const Type *AccessTy;
859
860  SmallVector<int64_t, 8> Offsets;
861  int64_t MinOffset;
862  int64_t MaxOffset;
863
864  /// AllFixupsOutsideLoop - This records whether all of the fixups using this
865  /// LSRUse are outside of the loop, in which case some special-case heuristics
866  /// may be used.
867  bool AllFixupsOutsideLoop;
868
869  /// Formulae - A list of ways to build a value that can satisfy this user.
870  /// After the list is populated, one of these is selected heuristically and
871  /// used to formulate a replacement for OperandValToReplace in UserInst.
872  SmallVector<Formula, 12> Formulae;
873
874  /// Regs - The set of register candidates used by all formulae in this LSRUse.
875  SmallPtrSet<const SCEV *, 4> Regs;
876
877  LSRUse(KindType K, const Type *T) : Kind(K), AccessTy(T),
878                                      MinOffset(INT64_MAX),
879                                      MaxOffset(INT64_MIN),
880                                      AllFixupsOutsideLoop(true) {}
881
882  bool InsertFormula(size_t LUIdx, const Formula &F);
883
884  void check() const;
885
886  void print(raw_ostream &OS) const;
887  void dump() const;
888};
889
890/// InsertFormula - If the given formula has not yet been inserted, add it to
891/// the list, and return true. Return false otherwise.
892bool LSRUse::InsertFormula(size_t LUIdx, const Formula &F) {
893  SmallVector<const SCEV *, 2> Key = F.BaseRegs;
894  if (F.ScaledReg) Key.push_back(F.ScaledReg);
895  // Unstable sort by host order ok, because this is only used for uniquifying.
896  std::sort(Key.begin(), Key.end());
897
898  if (!Uniquifier.insert(Key).second)
899    return false;
900
901  // Using a register to hold the value of 0 is not profitable.
902  assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
903         "Zero allocated in a scaled register!");
904#ifndef NDEBUG
905  for (SmallVectorImpl<const SCEV *>::const_iterator I =
906       F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
907    assert(!(*I)->isZero() && "Zero allocated in a base register!");
908#endif
909
910  // Add the formula to the list.
911  Formulae.push_back(F);
912
913  // Record registers now being used by this use.
914  if (F.ScaledReg) Regs.insert(F.ScaledReg);
915  Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
916
917  return true;
918}
919
920void LSRUse::print(raw_ostream &OS) const {
921  OS << "LSR Use: Kind=";
922  switch (Kind) {
923  case Basic:    OS << "Basic"; break;
924  case Special:  OS << "Special"; break;
925  case ICmpZero: OS << "ICmpZero"; break;
926  case Address:
927    OS << "Address of ";
928    if (isa<PointerType>(AccessTy))
929      OS << "pointer"; // the full pointer type could be really verbose
930    else
931      OS << *AccessTy;
932  }
933
934  OS << ", Offsets={";
935  for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
936       E = Offsets.end(); I != E; ++I) {
937    OS << *I;
938    if (next(I) != E)
939      OS << ',';
940  }
941  OS << '}';
942
943  if (AllFixupsOutsideLoop)
944    OS << ", all-fixups-outside-loop";
945}
946
947void LSRUse::dump() const {
948  print(errs()); errs() << '\n';
949}
950
951/// isLegalUse - Test whether the use described by AM is "legal", meaning it can
952/// be completely folded into the user instruction at isel time. This includes
953/// address-mode folding and special icmp tricks.
954static bool isLegalUse(const TargetLowering::AddrMode &AM,
955                       LSRUse::KindType Kind, const Type *AccessTy,
956                       const TargetLowering *TLI) {
957  switch (Kind) {
958  case LSRUse::Address:
959    // If we have low-level target information, ask the target if it can
960    // completely fold this address.
961    if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
962
963    // Otherwise, just guess that reg+reg addressing is legal.
964    return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
965
966  case LSRUse::ICmpZero:
967    // There's not even a target hook for querying whether it would be legal to
968    // fold a GV into an ICmp.
969    if (AM.BaseGV)
970      return false;
971
972    // ICmp only has two operands; don't allow more than two non-trivial parts.
973    if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
974      return false;
975
976    // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
977    // putting the scaled register in the other operand of the icmp.
978    if (AM.Scale != 0 && AM.Scale != -1)
979      return false;
980
981    // If we have low-level target information, ask the target if it can fold an
982    // integer immediate on an icmp.
983    if (AM.BaseOffs != 0) {
984      if (TLI) return TLI->isLegalICmpImmediate(-AM.BaseOffs);
985      return false;
986    }
987
988    return true;
989
990  case LSRUse::Basic:
991    // Only handle single-register values.
992    return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
993
994  case LSRUse::Special:
995    // Only handle -1 scales, or no scale.
996    return AM.Scale == 0 || AM.Scale == -1;
997  }
998
999  return false;
1000}
1001
1002static bool isLegalUse(TargetLowering::AddrMode AM,
1003                       int64_t MinOffset, int64_t MaxOffset,
1004                       LSRUse::KindType Kind, const Type *AccessTy,
1005                       const TargetLowering *TLI) {
1006  // Check for overflow.
1007  if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
1008      (MinOffset > 0))
1009    return false;
1010  AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
1011  if (isLegalUse(AM, Kind, AccessTy, TLI)) {
1012    AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
1013    // Check for overflow.
1014    if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
1015        (MaxOffset > 0))
1016      return false;
1017    AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
1018    return isLegalUse(AM, Kind, AccessTy, TLI);
1019  }
1020  return false;
1021}
1022
1023static bool isAlwaysFoldable(int64_t BaseOffs,
1024                             GlobalValue *BaseGV,
1025                             bool HasBaseReg,
1026                             LSRUse::KindType Kind, const Type *AccessTy,
1027                             const TargetLowering *TLI,
1028                             ScalarEvolution &SE) {
1029  // Fast-path: zero is always foldable.
1030  if (BaseOffs == 0 && !BaseGV) return true;
1031
1032  // Conservatively, create an address with an immediate and a
1033  // base and a scale.
1034  TargetLowering::AddrMode AM;
1035  AM.BaseOffs = BaseOffs;
1036  AM.BaseGV = BaseGV;
1037  AM.HasBaseReg = HasBaseReg;
1038  AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1039
1040  return isLegalUse(AM, Kind, AccessTy, TLI);
1041}
1042
1043static bool isAlwaysFoldable(const SCEV *S,
1044                             int64_t MinOffset, int64_t MaxOffset,
1045                             bool HasBaseReg,
1046                             LSRUse::KindType Kind, const Type *AccessTy,
1047                             const TargetLowering *TLI,
1048                             ScalarEvolution &SE) {
1049  // Fast-path: zero is always foldable.
1050  if (S->isZero()) return true;
1051
1052  // Conservatively, create an address with an immediate and a
1053  // base and a scale.
1054  int64_t BaseOffs = ExtractImmediate(S, SE);
1055  GlobalValue *BaseGV = ExtractSymbol(S, SE);
1056
1057  // If there's anything else involved, it's not foldable.
1058  if (!S->isZero()) return false;
1059
1060  // Fast-path: zero is always foldable.
1061  if (BaseOffs == 0 && !BaseGV) return true;
1062
1063  // Conservatively, create an address with an immediate and a
1064  // base and a scale.
1065  TargetLowering::AddrMode AM;
1066  AM.BaseOffs = BaseOffs;
1067  AM.BaseGV = BaseGV;
1068  AM.HasBaseReg = HasBaseReg;
1069  AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1070
1071  return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
1072}
1073
1074/// FormulaSorter - This class implements an ordering for formulae which sorts
1075/// the by their standalone cost.
1076class FormulaSorter {
1077  /// These two sets are kept empty, so that we compute standalone costs.
1078  DenseSet<const SCEV *> VisitedRegs;
1079  SmallPtrSet<const SCEV *, 16> Regs;
1080  Loop *L;
1081  LSRUse *LU;
1082  ScalarEvolution &SE;
1083  DominatorTree &DT;
1084
1085public:
1086  FormulaSorter(Loop *l, LSRUse &lu, ScalarEvolution &se, DominatorTree &dt)
1087    : L(l), LU(&lu), SE(se), DT(dt) {}
1088
1089  bool operator()(const Formula &A, const Formula &B) {
1090    Cost CostA;
1091    CostA.RateFormula(A, Regs, VisitedRegs, L, LU->Offsets, SE, DT);
1092    Regs.clear();
1093    Cost CostB;
1094    CostB.RateFormula(B, Regs, VisitedRegs, L, LU->Offsets, SE, DT);
1095    Regs.clear();
1096    return CostA < CostB;
1097  }
1098};
1099
1100/// LSRInstance - This class holds state for the main loop strength reduction
1101/// logic.
1102class LSRInstance {
1103  IVUsers &IU;
1104  ScalarEvolution &SE;
1105  DominatorTree &DT;
1106  const TargetLowering *const TLI;
1107  Loop *const L;
1108  bool Changed;
1109
1110  /// IVIncInsertPos - This is the insert position that the current loop's
1111  /// induction variable increment should be placed. In simple loops, this is
1112  /// the latch block's terminator. But in more complicated cases, this is a
1113  /// position which will dominate all the in-loop post-increment users.
1114  Instruction *IVIncInsertPos;
1115
1116  /// Factors - Interesting factors between use strides.
1117  SmallSetVector<int64_t, 8> Factors;
1118
1119  /// Types - Interesting use types, to facilitate truncation reuse.
1120  SmallSetVector<const Type *, 4> Types;
1121
1122  /// Fixups - The list of operands which are to be replaced.
1123  SmallVector<LSRFixup, 16> Fixups;
1124
1125  /// Uses - The list of interesting uses.
1126  SmallVector<LSRUse, 16> Uses;
1127
1128  /// RegUses - Track which uses use which register candidates.
1129  RegUseTracker RegUses;
1130
1131  void OptimizeShadowIV();
1132  bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1133  ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1134  bool OptimizeLoopTermCond();
1135
1136  void CollectInterestingTypesAndFactors();
1137  void CollectFixupsAndInitialFormulae();
1138
1139  LSRFixup &getNewFixup() {
1140    Fixups.push_back(LSRFixup());
1141    return Fixups.back();
1142  }
1143
1144  // Support for sharing of LSRUses between LSRFixups.
1145  typedef DenseMap<const SCEV *, size_t> UseMapTy;
1146  UseMapTy UseMap;
1147
1148  bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
1149                          LSRUse::KindType Kind, const Type *AccessTy);
1150
1151  std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
1152                                    LSRUse::KindType Kind,
1153                                    const Type *AccessTy);
1154
1155public:
1156  void InsertInitialFormula(const SCEV *S, Loop *L, LSRUse &LU, size_t LUIdx);
1157  void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1158  void CountRegisters(const Formula &F, size_t LUIdx);
1159  bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1160
1161  void CollectLoopInvariantFixupsAndFormulae();
1162
1163  void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1164                              unsigned Depth = 0);
1165  void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1166  void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1167  void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1168  void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1169  void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1170  void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1171  void GenerateCrossUseConstantOffsets();
1172  void GenerateAllReuseFormulae();
1173
1174  void FilterOutUndesirableDedicatedRegisters();
1175  void NarrowSearchSpaceUsingHeuristics();
1176
1177  void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1178                    Cost &SolutionCost,
1179                    SmallVectorImpl<const Formula *> &Workspace,
1180                    const Cost &CurCost,
1181                    const SmallPtrSet<const SCEV *, 16> &CurRegs,
1182                    DenseSet<const SCEV *> &VisitedRegs) const;
1183  void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1184
1185  Value *Expand(const LSRFixup &LF,
1186                const Formula &F,
1187                BasicBlock::iterator IP, Loop *L, Instruction *IVIncInsertPos,
1188                SCEVExpander &Rewriter,
1189                SmallVectorImpl<WeakVH> &DeadInsts,
1190                ScalarEvolution &SE, DominatorTree &DT) const;
1191  void Rewrite(const LSRFixup &LF,
1192               const Formula &F,
1193               Loop *L, Instruction *IVIncInsertPos,
1194               SCEVExpander &Rewriter,
1195               SmallVectorImpl<WeakVH> &DeadInsts,
1196               ScalarEvolution &SE, DominatorTree &DT,
1197               Pass *P) const;
1198  void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
1199                         Pass *P);
1200
1201  LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
1202
1203  bool getChanged() const { return Changed; }
1204
1205  void print_factors_and_types(raw_ostream &OS) const;
1206  void print_fixups(raw_ostream &OS) const;
1207  void print_uses(raw_ostream &OS) const;
1208  void print(raw_ostream &OS) const;
1209  void dump() const;
1210};
1211
1212}
1213
1214/// OptimizeShadowIV - If IV is used in a int-to-float cast
1215/// inside the loop then try to eliminate the cast opeation.
1216void LSRInstance::OptimizeShadowIV() {
1217  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1218  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1219    return;
1220
1221  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1222       UI != E; /* empty */) {
1223    IVUsers::const_iterator CandidateUI = UI;
1224    ++UI;
1225    Instruction *ShadowUse = CandidateUI->getUser();
1226    const Type *DestTy = NULL;
1227
1228    /* If shadow use is a int->float cast then insert a second IV
1229       to eliminate this cast.
1230
1231         for (unsigned i = 0; i < n; ++i)
1232           foo((double)i);
1233
1234       is transformed into
1235
1236         double d = 0.0;
1237         for (unsigned i = 0; i < n; ++i, ++d)
1238           foo(d);
1239    */
1240    if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser()))
1241      DestTy = UCast->getDestTy();
1242    else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser()))
1243      DestTy = SCast->getDestTy();
1244    if (!DestTy) continue;
1245
1246    if (TLI) {
1247      // If target does not support DestTy natively then do not apply
1248      // this transformation.
1249      EVT DVT = TLI->getValueType(DestTy);
1250      if (!TLI->isTypeLegal(DVT)) continue;
1251    }
1252
1253    PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1254    if (!PH) continue;
1255    if (PH->getNumIncomingValues() != 2) continue;
1256
1257    const Type *SrcTy = PH->getType();
1258    int Mantissa = DestTy->getFPMantissaWidth();
1259    if (Mantissa == -1) continue;
1260    if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1261      continue;
1262
1263    unsigned Entry, Latch;
1264    if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1265      Entry = 0;
1266      Latch = 1;
1267    } else {
1268      Entry = 1;
1269      Latch = 0;
1270    }
1271
1272    ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1273    if (!Init) continue;
1274    Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());
1275
1276    BinaryOperator *Incr =
1277      dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1278    if (!Incr) continue;
1279    if (Incr->getOpcode() != Instruction::Add
1280        && Incr->getOpcode() != Instruction::Sub)
1281      continue;
1282
1283    /* Initialize new IV, double d = 0.0 in above example. */
1284    ConstantInt *C = NULL;
1285    if (Incr->getOperand(0) == PH)
1286      C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1287    else if (Incr->getOperand(1) == PH)
1288      C = dyn_cast<ConstantInt>(Incr->getOperand(0));
1289    else
1290      continue;
1291
1292    if (!C) continue;
1293
1294    // Ignore negative constants, as the code below doesn't handle them
1295    // correctly. TODO: Remove this restriction.
1296    if (!C->getValue().isStrictlyPositive()) continue;
1297
1298    /* Add new PHINode. */
1299    PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);
1300
1301    /* create new increment. '++d' in above example. */
1302    Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1303    BinaryOperator *NewIncr =
1304      BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1305                               Instruction::FAdd : Instruction::FSub,
1306                             NewPH, CFP, "IV.S.next.", Incr);
1307
1308    NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1309    NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
1310
1311    /* Remove cast operation */
1312    ShadowUse->replaceAllUsesWith(NewPH);
1313    ShadowUse->eraseFromParent();
1314    break;
1315  }
1316}
1317
1318/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1319/// set the IV user and stride information and return true, otherwise return
1320/// false.
1321bool LSRInstance::FindIVUserForCond(ICmpInst *Cond,
1322                                    IVStrideUse *&CondUse) {
1323  for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1324    if (UI->getUser() == Cond) {
1325      // NOTE: we could handle setcc instructions with multiple uses here, but
1326      // InstCombine does it as well for simple uses, it's not clear that it
1327      // occurs enough in real life to handle.
1328      CondUse = UI;
1329      return true;
1330    }
1331  return false;
1332}
1333
1334/// OptimizeMax - Rewrite the loop's terminating condition if it uses
1335/// a max computation.
1336///
1337/// This is a narrow solution to a specific, but acute, problem. For loops
1338/// like this:
1339///
1340///   i = 0;
1341///   do {
1342///     p[i] = 0.0;
1343///   } while (++i < n);
1344///
1345/// the trip count isn't just 'n', because 'n' might not be positive. And
1346/// unfortunately this can come up even for loops where the user didn't use
1347/// a C do-while loop. For example, seemingly well-behaved top-test loops
1348/// will commonly be lowered like this:
1349//
1350///   if (n > 0) {
1351///     i = 0;
1352///     do {
1353///       p[i] = 0.0;
1354///     } while (++i < n);
1355///   }
1356///
1357/// and then it's possible for subsequent optimization to obscure the if
1358/// test in such a way that indvars can't find it.
1359///
1360/// When indvars can't find the if test in loops like this, it creates a
1361/// max expression, which allows it to give the loop a canonical
1362/// induction variable:
1363///
1364///   i = 0;
1365///   max = n < 1 ? 1 : n;
1366///   do {
1367///     p[i] = 0.0;
1368///   } while (++i != max);
1369///
1370/// Canonical induction variables are necessary because the loop passes
1371/// are designed around them. The most obvious example of this is the
1372/// LoopInfo analysis, which doesn't remember trip count values. It
1373/// expects to be able to rediscover the trip count each time it is
1374/// needed, and it does this using a simple analysis that only succeeds if
1375/// the loop has a canonical induction variable.
1376///
1377/// However, when it comes time to generate code, the maximum operation
1378/// can be quite costly, especially if it's inside of an outer loop.
1379///
1380/// This function solves this problem by detecting this type of loop and
1381/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1382/// the instructions for the maximum computation.
1383///
1384ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
1385  // Check that the loop matches the pattern we're looking for.
1386  if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1387      Cond->getPredicate() != CmpInst::ICMP_NE)
1388    return Cond;
1389
1390  SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1391  if (!Sel || !Sel->hasOneUse()) return Cond;
1392
1393  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1394  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1395    return Cond;
1396  const SCEV *One = SE.getIntegerSCEV(1, BackedgeTakenCount->getType());
1397
1398  // Add one to the backedge-taken count to get the trip count.
1399  const SCEV *IterationCount = SE.getAddExpr(BackedgeTakenCount, One);
1400
1401  // Check for a max calculation that matches the pattern.
1402  if (!isa<SCEVSMaxExpr>(IterationCount) && !isa<SCEVUMaxExpr>(IterationCount))
1403    return Cond;
1404  const SCEVNAryExpr *Max = cast<SCEVNAryExpr>(IterationCount);
1405  if (Max != SE.getSCEV(Sel)) return Cond;
1406
1407  // To handle a max with more than two operands, this optimization would
1408  // require additional checking and setup.
1409  if (Max->getNumOperands() != 2)
1410    return Cond;
1411
1412  const SCEV *MaxLHS = Max->getOperand(0);
1413  const SCEV *MaxRHS = Max->getOperand(1);
1414  if (!MaxLHS || MaxLHS != One) return Cond;
1415  // Check the relevant induction variable for conformance to
1416  // the pattern.
1417  const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
1418  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
1419  if (!AR || !AR->isAffine() ||
1420      AR->getStart() != One ||
1421      AR->getStepRecurrence(SE) != One)
1422    return Cond;
1423
1424  assert(AR->getLoop() == L &&
1425         "Loop condition operand is an addrec in a different loop!");
1426
1427  // Check the right operand of the select, and remember it, as it will
1428  // be used in the new comparison instruction.
1429  Value *NewRHS = 0;
1430  if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
1431    NewRHS = Sel->getOperand(1);
1432  else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
1433    NewRHS = Sel->getOperand(2);
1434  if (!NewRHS) return Cond;
1435
1436  // Determine the new comparison opcode. It may be signed or unsigned,
1437  // and the original comparison may be either equality or inequality.
1438  CmpInst::Predicate Pred =
1439    isa<SCEVSMaxExpr>(Max) ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
1440  if (Cond->getPredicate() == CmpInst::ICMP_EQ)
1441    Pred = CmpInst::getInversePredicate(Pred);
1442
1443  // Ok, everything looks ok to change the condition into an SLT or SGE and
1444  // delete the max calculation.
1445  ICmpInst *NewCond =
1446    new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
1447
1448  // Delete the max calculation instructions.
1449  Cond->replaceAllUsesWith(NewCond);
1450  CondUse->setUser(NewCond);
1451  Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
1452  Cond->eraseFromParent();
1453  Sel->eraseFromParent();
1454  if (Cmp->use_empty())
1455    Cmp->eraseFromParent();
1456  return NewCond;
1457}
1458
1459/// OptimizeLoopTermCond - Change loop terminating condition to use the
1460/// postinc iv when possible.
1461bool
1462LSRInstance::OptimizeLoopTermCond() {
1463  SmallPtrSet<Instruction *, 4> PostIncs;
1464
1465  BasicBlock *LatchBlock = L->getLoopLatch();
1466  SmallVector<BasicBlock*, 8> ExitingBlocks;
1467  L->getExitingBlocks(ExitingBlocks);
1468
1469  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
1470    BasicBlock *ExitingBlock = ExitingBlocks[i];
1471
1472    // Get the terminating condition for the loop if possible.  If we
1473    // can, we want to change it to use a post-incremented version of its
1474    // induction variable, to allow coalescing the live ranges for the IV into
1475    // one register value.
1476
1477    BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1478    if (!TermBr)
1479      continue;
1480    // FIXME: Overly conservative, termination condition could be an 'or' etc..
1481    if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
1482      continue;
1483
1484    // Search IVUsesByStride to find Cond's IVUse if there is one.
1485    IVStrideUse *CondUse = 0;
1486    ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
1487    if (!FindIVUserForCond(Cond, CondUse))
1488      continue;
1489
1490    // If the trip count is computed in terms of a max (due to ScalarEvolution
1491    // being unable to find a sufficient guard, for example), change the loop
1492    // comparison to use SLT or ULT instead of NE.
1493    // One consequence of doing this now is that it disrupts the count-down
1494    // optimization. That's not always a bad thing though, because in such
1495    // cases it may still be worthwhile to avoid a max.
1496    Cond = OptimizeMax(Cond, CondUse);
1497
1498    // If this exiting block dominates the latch block, it may also use
1499    // the post-inc value if it won't be shared with other uses.
1500    // Check for dominance.
1501    if (!DT.dominates(ExitingBlock, LatchBlock))
1502      continue;
1503
1504    // Conservatively avoid trying to use the post-inc value in non-latch
1505    // exits if there may be pre-inc users in intervening blocks.
1506    if (LatchBlock != ExitingBlock)
1507      for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1508        // Test if the use is reachable from the exiting block. This dominator
1509        // query is a conservative approximation of reachability.
1510        if (&*UI != CondUse &&
1511            !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
1512          // Conservatively assume there may be reuse if the quotient of their
1513          // strides could be a legal scale.
1514          const SCEV *A = CondUse->getStride();
1515          const SCEV *B = UI->getStride();
1516          if (SE.getTypeSizeInBits(A->getType()) !=
1517              SE.getTypeSizeInBits(B->getType())) {
1518            if (SE.getTypeSizeInBits(A->getType()) >
1519                SE.getTypeSizeInBits(B->getType()))
1520              B = SE.getSignExtendExpr(B, A->getType());
1521            else
1522              A = SE.getSignExtendExpr(A, B->getType());
1523          }
1524          if (const SCEVConstant *D =
1525                dyn_cast_or_null<SCEVConstant>(getSDiv(B, A, SE))) {
1526            // Stride of one or negative one can have reuse with non-addresses.
1527            if (D->getValue()->isOne() ||
1528                D->getValue()->isAllOnesValue())
1529              goto decline_post_inc;
1530            // Avoid weird situations.
1531            if (D->getValue()->getValue().getMinSignedBits() >= 64 ||
1532                D->getValue()->getValue().isMinSignedValue())
1533              goto decline_post_inc;
1534            // Without TLI, assume that any stride might be valid, and so any
1535            // use might be shared.
1536            if (!TLI)
1537              goto decline_post_inc;
1538            // Check for possible scaled-address reuse.
1539            const Type *AccessTy = getAccessType(UI->getUser());
1540            TargetLowering::AddrMode AM;
1541            AM.Scale = D->getValue()->getSExtValue();
1542            if (TLI->isLegalAddressingMode(AM, AccessTy))
1543              goto decline_post_inc;
1544            AM.Scale = -AM.Scale;
1545            if (TLI->isLegalAddressingMode(AM, AccessTy))
1546              goto decline_post_inc;
1547          }
1548        }
1549
1550    DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
1551                 << *Cond << '\n');
1552
1553    // It's possible for the setcc instruction to be anywhere in the loop, and
1554    // possible for it to have multiple users.  If it is not immediately before
1555    // the exiting block branch, move it.
1556    if (&*++BasicBlock::iterator(Cond) != TermBr) {
1557      if (Cond->hasOneUse()) {
1558        Cond->moveBefore(TermBr);
1559      } else {
1560        // Clone the terminating condition and insert into the loopend.
1561        ICmpInst *OldCond = Cond;
1562        Cond = cast<ICmpInst>(Cond->clone());
1563        Cond->setName(L->getHeader()->getName() + ".termcond");
1564        ExitingBlock->getInstList().insert(TermBr, Cond);
1565
1566        // Clone the IVUse, as the old use still exists!
1567        CondUse = &IU.AddUser(CondUse->getStride(), CondUse->getOffset(),
1568                              Cond, CondUse->getOperandValToReplace());
1569        TermBr->replaceUsesOfWith(OldCond, Cond);
1570      }
1571    }
1572
1573    // If we get to here, we know that we can transform the setcc instruction to
1574    // use the post-incremented version of the IV, allowing us to coalesce the
1575    // live ranges for the IV correctly.
1576    CondUse->setOffset(SE.getMinusSCEV(CondUse->getOffset(),
1577                                       CondUse->getStride()));
1578    CondUse->setIsUseOfPostIncrementedValue(true);
1579    Changed = true;
1580
1581    PostIncs.insert(Cond);
1582  decline_post_inc:;
1583  }
1584
1585  // Determine an insertion point for the loop induction variable increment. It
1586  // must dominate all the post-inc comparisons we just set up, and it must
1587  // dominate the loop latch edge.
1588  IVIncInsertPos = L->getLoopLatch()->getTerminator();
1589  for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
1590       E = PostIncs.end(); I != E; ++I) {
1591    BasicBlock *BB =
1592      DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
1593                                    (*I)->getParent());
1594    if (BB == (*I)->getParent())
1595      IVIncInsertPos = *I;
1596    else if (BB != IVIncInsertPos->getParent())
1597      IVIncInsertPos = BB->getTerminator();
1598  }
1599
1600  return Changed;
1601}
1602
1603bool
1604LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
1605                                LSRUse::KindType Kind, const Type *AccessTy) {
1606  int64_t NewMinOffset = LU.MinOffset;
1607  int64_t NewMaxOffset = LU.MaxOffset;
1608  const Type *NewAccessTy = AccessTy;
1609
1610  // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
1611  // something conservative, however this can pessimize in the case that one of
1612  // the uses will have all its uses outside the loop, for example.
1613  if (LU.Kind != Kind)
1614    return false;
1615  // Conservatively assume HasBaseReg is true for now.
1616  if (NewOffset < LU.MinOffset) {
1617    if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, /*HasBaseReg=*/true,
1618                          Kind, AccessTy, TLI, SE))
1619      return false;
1620    NewMinOffset = NewOffset;
1621  } else if (NewOffset > LU.MaxOffset) {
1622    if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, /*HasBaseReg=*/true,
1623                          Kind, AccessTy, TLI, SE))
1624      return false;
1625    NewMaxOffset = NewOffset;
1626  }
1627  // Check for a mismatched access type, and fall back conservatively as needed.
1628  if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
1629    NewAccessTy = Type::getVoidTy(AccessTy->getContext());
1630
1631  // Update the use.
1632  LU.MinOffset = NewMinOffset;
1633  LU.MaxOffset = NewMaxOffset;
1634  LU.AccessTy = NewAccessTy;
1635  if (NewOffset != LU.Offsets.back())
1636    LU.Offsets.push_back(NewOffset);
1637  return true;
1638}
1639
1640/// getUse - Return an LSRUse index and an offset value for a fixup which
1641/// needs the given expression, with the given kind and optional access type.
1642/// Either reuse an exisitng use or create a new one, as needed.
1643std::pair<size_t, int64_t>
1644LSRInstance::getUse(const SCEV *&Expr,
1645                    LSRUse::KindType Kind, const Type *AccessTy) {
1646  const SCEV *Copy = Expr;
1647  int64_t Offset = ExtractImmediate(Expr, SE);
1648
1649  // Basic uses can't accept any offset, for example.
1650  if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true,
1651                        Kind, AccessTy, TLI, SE)) {
1652    Expr = Copy;
1653    Offset = 0;
1654  }
1655
1656  std::pair<UseMapTy::iterator, bool> P =
1657    UseMap.insert(std::make_pair(Expr, 0));
1658  if (!P.second) {
1659    // A use already existed with this base.
1660    size_t LUIdx = P.first->second;
1661    LSRUse &LU = Uses[LUIdx];
1662    if (reconcileNewOffset(LU, Offset, Kind, AccessTy))
1663      // Reuse this use.
1664      return std::make_pair(LUIdx, Offset);
1665  }
1666
1667  // Create a new use.
1668  size_t LUIdx = Uses.size();
1669  P.first->second = LUIdx;
1670  Uses.push_back(LSRUse(Kind, AccessTy));
1671  LSRUse &LU = Uses[LUIdx];
1672
1673  // We don't need to track redundant offsets, but we don't need to go out
1674  // of our way here to avoid them.
1675  if (LU.Offsets.empty() || Offset != LU.Offsets.back())
1676    LU.Offsets.push_back(Offset);
1677
1678  LU.MinOffset = Offset;
1679  LU.MaxOffset = Offset;
1680  return std::make_pair(LUIdx, Offset);
1681}
1682
1683void LSRInstance::CollectInterestingTypesAndFactors() {
1684  SmallSetVector<const SCEV *, 4> Strides;
1685
1686  // Collect interesting types and factors.
1687  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
1688    const SCEV *Stride = UI->getStride();
1689
1690    // Collect interesting types.
1691    Types.insert(SE.getEffectiveSCEVType(Stride->getType()));
1692
1693    // Collect interesting factors.
1694    for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
1695         Strides.begin(), SEnd = Strides.end(); NewStrideIter != SEnd;
1696         ++NewStrideIter) {
1697      const SCEV *OldStride = Stride;
1698      const SCEV *NewStride = *NewStrideIter;
1699      if (OldStride == NewStride)
1700        continue;
1701
1702      if (SE.getTypeSizeInBits(OldStride->getType()) !=
1703          SE.getTypeSizeInBits(NewStride->getType())) {
1704        if (SE.getTypeSizeInBits(OldStride->getType()) >
1705            SE.getTypeSizeInBits(NewStride->getType()))
1706          NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
1707        else
1708          OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
1709      }
1710      if (const SCEVConstant *Factor =
1711            dyn_cast_or_null<SCEVConstant>(getSDiv(NewStride, OldStride,
1712                                                   SE, true))) {
1713        if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
1714          Factors.insert(Factor->getValue()->getValue().getSExtValue());
1715      } else if (const SCEVConstant *Factor =
1716                   dyn_cast_or_null<SCEVConstant>(getSDiv(OldStride, NewStride,
1717                                                          SE, true))) {
1718        if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
1719          Factors.insert(Factor->getValue()->getValue().getSExtValue());
1720      }
1721    }
1722    Strides.insert(Stride);
1723  }
1724
1725  // If all uses use the same type, don't bother looking for truncation-based
1726  // reuse.
1727  if (Types.size() == 1)
1728    Types.clear();
1729
1730  DEBUG(print_factors_and_types(dbgs()));
1731}
1732
1733void LSRInstance::CollectFixupsAndInitialFormulae() {
1734  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
1735    // Record the uses.
1736    LSRFixup &LF = getNewFixup();
1737    LF.UserInst = UI->getUser();
1738    LF.OperandValToReplace = UI->getOperandValToReplace();
1739    if (UI->isUseOfPostIncrementedValue())
1740      LF.PostIncLoop = L;
1741
1742    LSRUse::KindType Kind = LSRUse::Basic;
1743    const Type *AccessTy = 0;
1744    if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
1745      Kind = LSRUse::Address;
1746      AccessTy = getAccessType(LF.UserInst);
1747    }
1748
1749    const SCEV *S = IU.getCanonicalExpr(*UI);
1750
1751    // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
1752    // (N - i == 0), and this allows (N - i) to be the expression that we work
1753    // with rather than just N or i, so we can consider the register
1754    // requirements for both N and i at the same time. Limiting this code to
1755    // equality icmps is not a problem because all interesting loops use
1756    // equality icmps, thanks to IndVarSimplify.
1757    if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
1758      if (CI->isEquality()) {
1759        // Swap the operands if needed to put the OperandValToReplace on the
1760        // left, for consistency.
1761        Value *NV = CI->getOperand(1);
1762        if (NV == LF.OperandValToReplace) {
1763          CI->setOperand(1, CI->getOperand(0));
1764          CI->setOperand(0, NV);
1765        }
1766
1767        // x == y  -->  x - y == 0
1768        const SCEV *N = SE.getSCEV(NV);
1769        if (N->isLoopInvariant(L)) {
1770          Kind = LSRUse::ICmpZero;
1771          S = SE.getMinusSCEV(N, S);
1772        }
1773
1774        // -1 and the negations of all interesting strides (except the negation
1775        // of -1) are now also interesting.
1776        for (size_t i = 0, e = Factors.size(); i != e; ++i)
1777          if (Factors[i] != -1)
1778            Factors.insert(-(uint64_t)Factors[i]);
1779        Factors.insert(-1);
1780      }
1781
1782    // Set up the initial formula for this use.
1783    std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
1784    LF.LUIdx = P.first;
1785    LF.Offset = P.second;
1786    LSRUse &LU = Uses[LF.LUIdx];
1787    LU.AllFixupsOutsideLoop &= !L->contains(LF.UserInst);
1788
1789    // If this is the first use of this LSRUse, give it a formula.
1790    if (LU.Formulae.empty()) {
1791      InsertInitialFormula(S, L, LU, LF.LUIdx);
1792      CountRegisters(LU.Formulae.back(), LF.LUIdx);
1793    }
1794  }
1795
1796  DEBUG(print_fixups(dbgs()));
1797}
1798
1799void
1800LSRInstance::InsertInitialFormula(const SCEV *S, Loop *L,
1801                                  LSRUse &LU, size_t LUIdx) {
1802  Formula F;
1803  F.InitialMatch(S, L, SE, DT);
1804  bool Inserted = InsertFormula(LU, LUIdx, F);
1805  assert(Inserted && "Initial formula already exists!"); (void)Inserted;
1806}
1807
1808void
1809LSRInstance::InsertSupplementalFormula(const SCEV *S,
1810                                       LSRUse &LU, size_t LUIdx) {
1811  Formula F;
1812  F.BaseRegs.push_back(S);
1813  F.AM.HasBaseReg = true;
1814  bool Inserted = InsertFormula(LU, LUIdx, F);
1815  assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
1816}
1817
1818/// CountRegisters - Note which registers are used by the given formula,
1819/// updating RegUses.
1820void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
1821  if (F.ScaledReg)
1822    RegUses.CountRegister(F.ScaledReg, LUIdx);
1823  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
1824       E = F.BaseRegs.end(); I != E; ++I)
1825    RegUses.CountRegister(*I, LUIdx);
1826}
1827
1828/// InsertFormula - If the given formula has not yet been inserted, add it to
1829/// the list, and return true. Return false otherwise.
1830bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
1831  if (!LU.InsertFormula(LUIdx, F))
1832    return false;
1833
1834  CountRegisters(F, LUIdx);
1835  return true;
1836}
1837
1838/// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
1839/// loop-invariant values which we're tracking. These other uses will pin these
1840/// values in registers, making them less profitable for elimination.
1841/// TODO: This currently misses non-constant addrec step registers.
1842/// TODO: Should this give more weight to users inside the loop?
1843void
1844LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
1845  SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
1846  SmallPtrSet<const SCEV *, 8> Inserted;
1847
1848  while (!Worklist.empty()) {
1849    const SCEV *S = Worklist.pop_back_val();
1850
1851    if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
1852      Worklist.insert(Worklist.end(), N->op_begin(), N->op_end());
1853    else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
1854      Worklist.push_back(C->getOperand());
1855    else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
1856      Worklist.push_back(D->getLHS());
1857      Worklist.push_back(D->getRHS());
1858    } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
1859      if (!Inserted.insert(U)) continue;
1860      const Value *V = U->getValue();
1861      if (const Instruction *Inst = dyn_cast<Instruction>(V))
1862        if (L->contains(Inst)) continue;
1863      for (Value::use_const_iterator UI = V->use_begin(), UE = V->use_end();
1864           UI != UE; ++UI) {
1865        const Instruction *UserInst = dyn_cast<Instruction>(*UI);
1866        // Ignore non-instructions.
1867        if (!UserInst)
1868          continue;
1869        // Ignore instructions in other functions (as can happen with
1870        // Constants).
1871        if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
1872          continue;
1873        // Ignore instructions not dominated by the loop.
1874        const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
1875          UserInst->getParent() :
1876          cast<PHINode>(UserInst)->getIncomingBlock(
1877            PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
1878        if (!DT.dominates(L->getHeader(), UseBB))
1879          continue;
1880        // Ignore uses which are part of other SCEV expressions, to avoid
1881        // analyzing them multiple times.
1882        if (SE.isSCEVable(UserInst->getType()) &&
1883            !isa<SCEVUnknown>(SE.getSCEV(const_cast<Instruction *>(UserInst))))
1884          continue;
1885        // Ignore icmp instructions which are already being analyzed.
1886        if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
1887          unsigned OtherIdx = !UI.getOperandNo();
1888          Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
1889          if (SE.getSCEV(OtherOp)->hasComputableLoopEvolution(L))
1890            continue;
1891        }
1892
1893        LSRFixup &LF = getNewFixup();
1894        LF.UserInst = const_cast<Instruction *>(UserInst);
1895        LF.OperandValToReplace = UI.getUse();
1896        std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
1897        LF.LUIdx = P.first;
1898        LF.Offset = P.second;
1899        LSRUse &LU = Uses[LF.LUIdx];
1900        LU.AllFixupsOutsideLoop &= L->contains(LF.UserInst);
1901        InsertSupplementalFormula(U, LU, LF.LUIdx);
1902        CountRegisters(LU.Formulae.back(), Uses.size() - 1);
1903        break;
1904      }
1905    }
1906  }
1907}
1908
1909/// CollectSubexprs - Split S into subexpressions which can be pulled out into
1910/// separate registers. If C is non-null, multiply each subexpression by C.
1911static void CollectSubexprs(const SCEV *S, const SCEVConstant *C,
1912                            SmallVectorImpl<const SCEV *> &Ops,
1913                            ScalarEvolution &SE) {
1914  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1915    // Break out add operands.
1916    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1917         I != E; ++I)
1918      CollectSubexprs(*I, C, Ops, SE);
1919    return;
1920  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1921    // Split a non-zero base out of an addrec.
1922    if (!AR->getStart()->isZero()) {
1923      CollectSubexprs(SE.getAddRecExpr(SE.getIntegerSCEV(0, AR->getType()),
1924                                       AR->getStepRecurrence(SE),
1925                                       AR->getLoop()), C, Ops, SE);
1926      CollectSubexprs(AR->getStart(), C, Ops, SE);
1927      return;
1928    }
1929  } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
1930    // Break (C * (a + b + c)) into C*a + C*b + C*c.
1931    if (Mul->getNumOperands() == 2)
1932      if (const SCEVConstant *Op0 =
1933            dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
1934        CollectSubexprs(Mul->getOperand(1),
1935                        C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0,
1936                        Ops, SE);
1937        return;
1938      }
1939  }
1940
1941  // Otherwise use the value itself.
1942  Ops.push_back(C ? SE.getMulExpr(C, S) : S);
1943}
1944
1945/// GenerateReassociations - Split out subexpressions from adds and the bases of
1946/// addrecs.
1947void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
1948                                         Formula Base,
1949                                         unsigned Depth) {
1950  // Arbitrarily cap recursion to protect compile time.
1951  if (Depth >= 3) return;
1952
1953  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
1954    const SCEV *BaseReg = Base.BaseRegs[i];
1955
1956    SmallVector<const SCEV *, 8> AddOps;
1957    CollectSubexprs(BaseReg, 0, AddOps, SE);
1958    if (AddOps.size() == 1) continue;
1959
1960    for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
1961         JE = AddOps.end(); J != JE; ++J) {
1962      // Don't pull a constant into a register if the constant could be folded
1963      // into an immediate field.
1964      if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
1965                           Base.getNumRegs() > 1,
1966                           LU.Kind, LU.AccessTy, TLI, SE))
1967        continue;
1968
1969      // Collect all operands except *J.
1970      SmallVector<const SCEV *, 8> InnerAddOps;
1971      for (SmallVectorImpl<const SCEV *>::const_iterator K = AddOps.begin(),
1972           KE = AddOps.end(); K != KE; ++K)
1973        if (K != J)
1974          InnerAddOps.push_back(*K);
1975
1976      // Don't leave just a constant behind in a register if the constant could
1977      // be folded into an immediate field.
1978      if (InnerAddOps.size() == 1 &&
1979          isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
1980                           Base.getNumRegs() > 1,
1981                           LU.Kind, LU.AccessTy, TLI, SE))
1982        continue;
1983
1984      Formula F = Base;
1985      F.BaseRegs[i] = SE.getAddExpr(InnerAddOps);
1986      F.BaseRegs.push_back(*J);
1987      if (InsertFormula(LU, LUIdx, F))
1988        // If that formula hadn't been seen before, recurse to find more like
1989        // it.
1990        GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
1991    }
1992  }
1993}
1994
1995/// GenerateCombinations - Generate a formula consisting of all of the
1996/// loop-dominating registers added into a single register.
1997void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
1998                                       Formula Base) {
1999  // This method is only intersting on a plurality of registers.
2000  if (Base.BaseRegs.size() <= 1) return;
2001
2002  Formula F = Base;
2003  F.BaseRegs.clear();
2004  SmallVector<const SCEV *, 4> Ops;
2005  for (SmallVectorImpl<const SCEV *>::const_iterator
2006       I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
2007    const SCEV *BaseReg = *I;
2008    if (BaseReg->properlyDominates(L->getHeader(), &DT) &&
2009        !BaseReg->hasComputableLoopEvolution(L))
2010      Ops.push_back(BaseReg);
2011    else
2012      F.BaseRegs.push_back(BaseReg);
2013  }
2014  if (Ops.size() > 1) {
2015    const SCEV *Sum = SE.getAddExpr(Ops);
2016    // TODO: If Sum is zero, it probably means ScalarEvolution missed an
2017    // opportunity to fold something. For now, just ignore such cases
2018    // rather than procede with zero in a register.
2019    if (!Sum->isZero()) {
2020      F.BaseRegs.push_back(Sum);
2021      (void)InsertFormula(LU, LUIdx, F);
2022    }
2023  }
2024}
2025
2026/// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
2027void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
2028                                          Formula Base) {
2029  // We can't add a symbolic offset if the address already contains one.
2030  if (Base.AM.BaseGV) return;
2031
2032  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2033    const SCEV *G = Base.BaseRegs[i];
2034    GlobalValue *GV = ExtractSymbol(G, SE);
2035    if (G->isZero() || !GV)
2036      continue;
2037    Formula F = Base;
2038    F.AM.BaseGV = GV;
2039    if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2040                    LU.Kind, LU.AccessTy, TLI))
2041      continue;
2042    F.BaseRegs[i] = G;
2043    (void)InsertFormula(LU, LUIdx, F);
2044  }
2045}
2046
2047/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
2048void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
2049                                          Formula Base) {
2050  // TODO: For now, just add the min and max offset, because it usually isn't
2051  // worthwhile looking at everything inbetween.
2052  SmallVector<int64_t, 4> Worklist;
2053  Worklist.push_back(LU.MinOffset);
2054  if (LU.MaxOffset != LU.MinOffset)
2055    Worklist.push_back(LU.MaxOffset);
2056
2057  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2058    const SCEV *G = Base.BaseRegs[i];
2059
2060    for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
2061         E = Worklist.end(); I != E; ++I) {
2062      Formula F = Base;
2063      F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
2064      if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
2065                     LU.Kind, LU.AccessTy, TLI)) {
2066        F.BaseRegs[i] = SE.getAddExpr(G, SE.getIntegerSCEV(*I, G->getType()));
2067
2068        (void)InsertFormula(LU, LUIdx, F);
2069      }
2070    }
2071
2072    int64_t Imm = ExtractImmediate(G, SE);
2073    if (G->isZero() || Imm == 0)
2074      continue;
2075    Formula F = Base;
2076    F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
2077    if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2078                    LU.Kind, LU.AccessTy, TLI))
2079      continue;
2080    F.BaseRegs[i] = G;
2081    (void)InsertFormula(LU, LUIdx, F);
2082  }
2083}
2084
2085/// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
2086/// the comparison. For example, x == y -> x*c == y*c.
2087void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
2088                                         Formula Base) {
2089  if (LU.Kind != LSRUse::ICmpZero) return;
2090
2091  // Determine the integer type for the base formula.
2092  const Type *IntTy = Base.getType();
2093  if (!IntTy) return;
2094  if (SE.getTypeSizeInBits(IntTy) > 64) return;
2095
2096  // Don't do this if there is more than one offset.
2097  if (LU.MinOffset != LU.MaxOffset) return;
2098
2099  assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
2100
2101  // Check each interesting stride.
2102  for (SmallSetVector<int64_t, 8>::const_iterator
2103       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2104    int64_t Factor = *I;
2105    Formula F = Base;
2106
2107    // Check that the multiplication doesn't overflow.
2108    F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
2109    if ((int64_t)F.AM.BaseOffs / Factor != Base.AM.BaseOffs)
2110      continue;
2111
2112    // Check that multiplying with the use offset doesn't overflow.
2113    int64_t Offset = LU.MinOffset;
2114    Offset = (uint64_t)Offset * Factor;
2115    if ((int64_t)Offset / Factor != LU.MinOffset)
2116      continue;
2117
2118    // Check that this scale is legal.
2119    if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
2120      continue;
2121
2122    // Compensate for the use having MinOffset built into it.
2123    F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
2124
2125    const SCEV *FactorS = SE.getIntegerSCEV(Factor, IntTy);
2126
2127    // Check that multiplying with each base register doesn't overflow.
2128    for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
2129      F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
2130      if (getSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
2131        goto next;
2132    }
2133
2134    // Check that multiplying with the scaled register doesn't overflow.
2135    if (F.ScaledReg) {
2136      F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
2137      if (getSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
2138        continue;
2139    }
2140
2141    // If we make it here and it's legal, add it.
2142    (void)InsertFormula(LU, LUIdx, F);
2143  next:;
2144  }
2145}
2146
2147/// GenerateScales - Generate stride factor reuse formulae by making use of
2148/// scaled-offset address modes, for example.
2149void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx,
2150                                 Formula Base) {
2151  // Determine the integer type for the base formula.
2152  const Type *IntTy = Base.getType();
2153  if (!IntTy) return;
2154
2155  // If this Formula already has a scaled register, we can't add another one.
2156  if (Base.AM.Scale != 0) return;
2157
2158  // Check each interesting stride.
2159  for (SmallSetVector<int64_t, 8>::const_iterator
2160       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2161    int64_t Factor = *I;
2162
2163    Base.AM.Scale = Factor;
2164    Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
2165    // Check whether this scale is going to be legal.
2166    if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2167                    LU.Kind, LU.AccessTy, TLI)) {
2168      // As a special-case, handle special out-of-loop Basic users specially.
2169      // TODO: Reconsider this special case.
2170      if (LU.Kind == LSRUse::Basic &&
2171          isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2172                     LSRUse::Special, LU.AccessTy, TLI) &&
2173          LU.AllFixupsOutsideLoop)
2174        LU.Kind = LSRUse::Special;
2175      else
2176        continue;
2177    }
2178    // For an ICmpZero, negating a solitary base register won't lead to
2179    // new solutions.
2180    if (LU.Kind == LSRUse::ICmpZero &&
2181        !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
2182      continue;
2183    // For each addrec base reg, apply the scale, if possible.
2184    for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
2185      if (const SCEVAddRecExpr *AR =
2186            dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
2187        const SCEV *FactorS = SE.getIntegerSCEV(Factor, IntTy);
2188        if (FactorS->isZero())
2189          continue;
2190        // Divide out the factor, ignoring high bits, since we'll be
2191        // scaling the value back up in the end.
2192        if (const SCEV *Quotient = getSDiv(AR, FactorS, SE, true)) {
2193          // TODO: This could be optimized to avoid all the copying.
2194          Formula F = Base;
2195          F.ScaledReg = Quotient;
2196          std::swap(F.BaseRegs[i], F.BaseRegs.back());
2197          F.BaseRegs.pop_back();
2198          (void)InsertFormula(LU, LUIdx, F);
2199        }
2200      }
2201  }
2202}
2203
2204/// GenerateTruncates - Generate reuse formulae from different IV types.
2205void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx,
2206                                    Formula Base) {
2207  // This requires TargetLowering to tell us which truncates are free.
2208  if (!TLI) return;
2209
2210  // Don't bother truncating symbolic values.
2211  if (Base.AM.BaseGV) return;
2212
2213  // Determine the integer type for the base formula.
2214  const Type *DstTy = Base.getType();
2215  if (!DstTy) return;
2216  DstTy = SE.getEffectiveSCEVType(DstTy);
2217
2218  for (SmallSetVector<const Type *, 4>::const_iterator
2219       I = Types.begin(), E = Types.end(); I != E; ++I) {
2220    const Type *SrcTy = *I;
2221    if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
2222      Formula F = Base;
2223
2224      if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
2225      for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
2226           JE = F.BaseRegs.end(); J != JE; ++J)
2227        *J = SE.getAnyExtendExpr(*J, SrcTy);
2228
2229      // TODO: This assumes we've done basic processing on all uses and
2230      // have an idea what the register usage is.
2231      if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
2232        continue;
2233
2234      (void)InsertFormula(LU, LUIdx, F);
2235    }
2236  }
2237}
2238
2239namespace {
2240
2241/// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
2242/// defer modifications so that the search phase doesn't have to worry about
2243/// the data structures moving underneath it.
2244struct WorkItem {
2245  size_t LUIdx;
2246  int64_t Imm;
2247  const SCEV *OrigReg;
2248
2249  WorkItem(size_t LI, int64_t I, const SCEV *R)
2250    : LUIdx(LI), Imm(I), OrigReg(R) {}
2251
2252  void print(raw_ostream &OS) const;
2253  void dump() const;
2254};
2255
2256}
2257
2258void WorkItem::print(raw_ostream &OS) const {
2259  OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
2260     << " , add offset " << Imm;
2261}
2262
2263void WorkItem::dump() const {
2264  print(errs()); errs() << '\n';
2265}
2266
2267/// GenerateCrossUseConstantOffsets - Look for registers which are a constant
2268/// distance apart and try to form reuse opportunities between them.
2269void LSRInstance::GenerateCrossUseConstantOffsets() {
2270  // Group the registers by their value without any added constant offset.
2271  typedef std::map<int64_t, const SCEV *> ImmMapTy;
2272  typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
2273  RegMapTy Map;
2274  DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
2275  SmallVector<const SCEV *, 8> Sequence;
2276  for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
2277       I != E; ++I) {
2278    const SCEV *Reg = *I;
2279    int64_t Imm = ExtractImmediate(Reg, SE);
2280    std::pair<RegMapTy::iterator, bool> Pair =
2281      Map.insert(std::make_pair(Reg, ImmMapTy()));
2282    if (Pair.second)
2283      Sequence.push_back(Reg);
2284    Pair.first->second.insert(std::make_pair(Imm, *I));
2285    UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
2286  }
2287
2288  // Now examine each set of registers with the same base value. Build up
2289  // a list of work to do and do the work in a separate step so that we're
2290  // not adding formulae and register counts while we're searching.
2291  SmallVector<WorkItem, 32> WorkItems;
2292  SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
2293  for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
2294       E = Sequence.end(); I != E; ++I) {
2295    const SCEV *Reg = *I;
2296    const ImmMapTy &Imms = Map.find(Reg)->second;
2297
2298    // It's not worthwhile looking for reuse if there's only one offset.
2299    if (Imms.size() == 1)
2300      continue;
2301
2302    DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
2303          for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2304               J != JE; ++J)
2305            dbgs() << ' ' << J->first;
2306          dbgs() << '\n');
2307
2308    // Examine each offset.
2309    for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2310         J != JE; ++J) {
2311      const SCEV *OrigReg = J->second;
2312
2313      int64_t JImm = J->first;
2314      const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
2315
2316      if (!isa<SCEVConstant>(OrigReg) &&
2317          UsedByIndicesMap[Reg].count() == 1) {
2318        DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
2319        continue;
2320      }
2321
2322      // Conservatively examine offsets between this orig reg a few selected
2323      // other orig regs.
2324      ImmMapTy::const_iterator OtherImms[] = {
2325        Imms.begin(), prior(Imms.end()),
2326        Imms.upper_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
2327      };
2328      for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
2329        ImmMapTy::const_iterator M = OtherImms[i];
2330        if (M == J || M == JE) continue;
2331
2332        // Compute the difference between the two.
2333        int64_t Imm = (uint64_t)JImm - M->first;
2334        for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
2335             LUIdx = UsedByIndices.find_next(LUIdx))
2336          // Make a memo of this use, offset, and register tuple.
2337          if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
2338            WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
2339      }
2340    }
2341  }
2342
2343  Map.clear();
2344  Sequence.clear();
2345  UsedByIndicesMap.clear();
2346  UniqueItems.clear();
2347
2348  // Now iterate through the worklist and add new formulae.
2349  for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
2350       E = WorkItems.end(); I != E; ++I) {
2351    const WorkItem &WI = *I;
2352    size_t LUIdx = WI.LUIdx;
2353    LSRUse &LU = Uses[LUIdx];
2354    int64_t Imm = WI.Imm;
2355    const SCEV *OrigReg = WI.OrigReg;
2356
2357    const Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
2358    const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
2359    unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
2360
2361    // TODO: Use a more targetted data structure.
2362    for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
2363      Formula F = LU.Formulae[L];
2364      // Use the immediate in the scaled register.
2365      if (F.ScaledReg == OrigReg) {
2366        int64_t Offs = (uint64_t)F.AM.BaseOffs +
2367                       Imm * (uint64_t)F.AM.Scale;
2368        // Don't create 50 + reg(-50).
2369        if (F.referencesReg(SE.getSCEV(
2370                   ConstantInt::get(IntTy, -(uint64_t)Offs))))
2371          continue;
2372        Formula NewF = F;
2373        NewF.AM.BaseOffs = Offs;
2374        if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2375                        LU.Kind, LU.AccessTy, TLI))
2376          continue;
2377        NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
2378
2379        // If the new scale is a constant in a register, and adding the constant
2380        // value to the immediate would produce a value closer to zero than the
2381        // immediate itself, then the formula isn't worthwhile.
2382        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
2383          if (C->getValue()->getValue().isNegative() !=
2384                (NewF.AM.BaseOffs < 0) &&
2385              (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
2386                .ule(APInt(BitWidth, NewF.AM.BaseOffs).abs()))
2387            continue;
2388
2389        // OK, looks good.
2390        (void)InsertFormula(LU, LUIdx, NewF);
2391      } else {
2392        // Use the immediate in a base register.
2393        for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
2394          const SCEV *BaseReg = F.BaseRegs[N];
2395          if (BaseReg != OrigReg)
2396            continue;
2397          Formula NewF = F;
2398          NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
2399          if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2400                          LU.Kind, LU.AccessTy, TLI))
2401            continue;
2402          NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
2403
2404          // If the new formula has a constant in a register, and adding the
2405          // constant value to the immediate would produce a value closer to
2406          // zero than the immediate itself, then the formula isn't worthwhile.
2407          for (SmallVectorImpl<const SCEV *>::const_iterator
2408               J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
2409               J != JE; ++J)
2410            if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
2411              if (C->getValue()->getValue().isNegative() !=
2412                    (NewF.AM.BaseOffs < 0) &&
2413                  C->getValue()->getValue().abs()
2414                    .ule(APInt(BitWidth, NewF.AM.BaseOffs).abs()))
2415                goto skip_formula;
2416
2417          // Ok, looks good.
2418          (void)InsertFormula(LU, LUIdx, NewF);
2419          break;
2420        skip_formula:;
2421        }
2422      }
2423    }
2424  }
2425}
2426
2427/// GenerateAllReuseFormulae - Generate formulae for each use.
2428void
2429LSRInstance::GenerateAllReuseFormulae() {
2430  // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
2431  // queries are more precise.
2432  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2433    LSRUse &LU = Uses[LUIdx];
2434    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2435      GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
2436    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2437      GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
2438  }
2439  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2440    LSRUse &LU = Uses[LUIdx];
2441    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2442      GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
2443    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2444      GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
2445    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2446      GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
2447    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2448      GenerateScales(LU, LUIdx, LU.Formulae[i]);
2449  }
2450  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2451    LSRUse &LU = Uses[LUIdx];
2452    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2453      GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
2454  }
2455
2456  GenerateCrossUseConstantOffsets();
2457}
2458
2459/// If their are multiple formulae with the same set of registers used
2460/// by other uses, pick the best one and delete the others.
2461void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
2462#ifndef NDEBUG
2463  bool Changed = false;
2464#endif
2465
2466  // Collect the best formula for each unique set of shared registers. This
2467  // is reset for each use.
2468  typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
2469    BestFormulaeTy;
2470  BestFormulaeTy BestFormulae;
2471
2472  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2473    LSRUse &LU = Uses[LUIdx];
2474    FormulaSorter Sorter(L, LU, SE, DT);
2475
2476    // Clear out the set of used regs; it will be recomputed.
2477    LU.Regs.clear();
2478
2479    for (size_t FIdx = 0, NumForms = LU.Formulae.size();
2480         FIdx != NumForms; ++FIdx) {
2481      Formula &F = LU.Formulae[FIdx];
2482
2483      SmallVector<const SCEV *, 2> Key;
2484      for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
2485           JE = F.BaseRegs.end(); J != JE; ++J) {
2486        const SCEV *Reg = *J;
2487        if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
2488          Key.push_back(Reg);
2489      }
2490      if (F.ScaledReg &&
2491          RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
2492        Key.push_back(F.ScaledReg);
2493      // Unstable sort by host order ok, because this is only used for
2494      // uniquifying.
2495      std::sort(Key.begin(), Key.end());
2496
2497      std::pair<BestFormulaeTy::const_iterator, bool> P =
2498        BestFormulae.insert(std::make_pair(Key, FIdx));
2499      if (!P.second) {
2500        Formula &Best = LU.Formulae[P.first->second];
2501        if (Sorter.operator()(F, Best))
2502          std::swap(F, Best);
2503        DEBUG(dbgs() << "Filtering out "; F.print(dbgs());
2504              dbgs() << "\n"
2505                        "  in favor of "; Best.print(dbgs());
2506              dbgs() << '\n');
2507#ifndef NDEBUG
2508        Changed = true;
2509#endif
2510        std::swap(F, LU.Formulae.back());
2511        LU.Formulae.pop_back();
2512        --FIdx;
2513        --NumForms;
2514        continue;
2515      }
2516      if (F.ScaledReg) LU.Regs.insert(F.ScaledReg);
2517      LU.Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
2518    }
2519    BestFormulae.clear();
2520  }
2521
2522  DEBUG(if (Changed) {
2523          dbgs() << "\n"
2524                    "After filtering out undesirable candidates:\n";
2525          print_uses(dbgs());
2526        });
2527}
2528
2529/// NarrowSearchSpaceUsingHeuristics - If there are an extrordinary number of
2530/// formulae to choose from, use some rough heuristics to prune down the number
2531/// of formulae. This keeps the main solver from taking an extrordinary amount
2532/// of time in some worst-case scenarios.
2533void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
2534  // This is a rough guess that seems to work fairly well.
2535  const size_t Limit = UINT16_MAX;
2536
2537  SmallPtrSet<const SCEV *, 4> Taken;
2538  for (;;) {
2539    // Estimate the worst-case number of solutions we might consider. We almost
2540    // never consider this many solutions because we prune the search space,
2541    // but the pruning isn't always sufficient.
2542    uint32_t Power = 1;
2543    for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
2544         E = Uses.end(); I != E; ++I) {
2545      size_t FSize = I->Formulae.size();
2546      if (FSize >= Limit) {
2547        Power = Limit;
2548        break;
2549      }
2550      Power *= FSize;
2551      if (Power >= Limit)
2552        break;
2553    }
2554    if (Power < Limit)
2555      break;
2556
2557    // Ok, we have too many of formulae on our hands to conveniently handle.
2558    // Use a rough heuristic to thin out the list.
2559
2560    // Pick the register which is used by the most LSRUses, which is likely
2561    // to be a good reuse register candidate.
2562    const SCEV *Best = 0;
2563    unsigned BestNum = 0;
2564    for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
2565         I != E; ++I) {
2566      const SCEV *Reg = *I;
2567      if (Taken.count(Reg))
2568        continue;
2569      if (!Best)
2570        Best = Reg;
2571      else {
2572        unsigned Count = RegUses.getUsedByIndices(Reg).count();
2573        if (Count > BestNum) {
2574          Best = Reg;
2575          BestNum = Count;
2576        }
2577      }
2578    }
2579
2580    DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
2581                 << " will yeild profitable reuse.\n");
2582    Taken.insert(Best);
2583
2584    // In any use with formulae which references this register, delete formulae
2585    // which don't reference it.
2586    for (SmallVectorImpl<LSRUse>::iterator I = Uses.begin(),
2587         E = Uses.end(); I != E; ++I) {
2588      LSRUse &LU = *I;
2589      if (!LU.Regs.count(Best)) continue;
2590
2591      // Clear out the set of used regs; it will be recomputed.
2592      LU.Regs.clear();
2593
2594      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
2595        Formula &F = LU.Formulae[i];
2596        if (!F.referencesReg(Best)) {
2597          DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
2598          std::swap(LU.Formulae.back(), F);
2599          LU.Formulae.pop_back();
2600          --e;
2601          --i;
2602          continue;
2603        }
2604
2605        if (F.ScaledReg) LU.Regs.insert(F.ScaledReg);
2606        LU.Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
2607      }
2608    }
2609
2610    DEBUG(dbgs() << "After pre-selection:\n";
2611          print_uses(dbgs()));
2612  }
2613}
2614
2615/// SolveRecurse - This is the recursive solver.
2616void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2617                               Cost &SolutionCost,
2618                               SmallVectorImpl<const Formula *> &Workspace,
2619                               const Cost &CurCost,
2620                               const SmallPtrSet<const SCEV *, 16> &CurRegs,
2621                               DenseSet<const SCEV *> &VisitedRegs) const {
2622  // Some ideas:
2623  //  - prune more:
2624  //    - use more aggressive filtering
2625  //    - sort the formula so that the most profitable solutions are found first
2626  //    - sort the uses too
2627  //  - search faster:
2628  //    - dont compute a cost, and then compare. compare while computing a cost
2629  //      and bail early.
2630  //    - track register sets with SmallBitVector
2631
2632  const LSRUse &LU = Uses[Workspace.size()];
2633
2634  // If this use references any register that's already a part of the
2635  // in-progress solution, consider it a requirement that a formula must
2636  // reference that register in order to be considered. This prunes out
2637  // unprofitable searching.
2638  SmallSetVector<const SCEV *, 4> ReqRegs;
2639  for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
2640       E = CurRegs.end(); I != E; ++I)
2641    if (LU.Regs.count(*I))
2642      ReqRegs.insert(*I);
2643
2644  bool AnySatisfiedReqRegs = false;
2645  SmallPtrSet<const SCEV *, 16> NewRegs;
2646  Cost NewCost;
2647retry:
2648  for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
2649       E = LU.Formulae.end(); I != E; ++I) {
2650    const Formula &F = *I;
2651
2652    // Ignore formulae which do not use any of the required registers.
2653    for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
2654         JE = ReqRegs.end(); J != JE; ++J) {
2655      const SCEV *Reg = *J;
2656      if ((!F.ScaledReg || F.ScaledReg != Reg) &&
2657          std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
2658          F.BaseRegs.end())
2659        goto skip;
2660    }
2661    AnySatisfiedReqRegs = true;
2662
2663    // Evaluate the cost of the current formula. If it's already worse than
2664    // the current best, prune the search at that point.
2665    NewCost = CurCost;
2666    NewRegs = CurRegs;
2667    NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT);
2668    if (NewCost < SolutionCost) {
2669      Workspace.push_back(&F);
2670      if (Workspace.size() != Uses.size()) {
2671        SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
2672                     NewRegs, VisitedRegs);
2673        if (F.getNumRegs() == 1 && Workspace.size() == 1)
2674          VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
2675      } else {
2676        DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
2677              dbgs() << ". Regs:";
2678              for (SmallPtrSet<const SCEV *, 16>::const_iterator
2679                   I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
2680                dbgs() << ' ' << **I;
2681              dbgs() << '\n');
2682
2683        SolutionCost = NewCost;
2684        Solution = Workspace;
2685      }
2686      Workspace.pop_back();
2687    }
2688  skip:;
2689  }
2690
2691  // If none of the formulae had all of the required registers, relax the
2692  // constraint so that we don't exclude all formulae.
2693  if (!AnySatisfiedReqRegs) {
2694    ReqRegs.clear();
2695    goto retry;
2696  }
2697}
2698
2699void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
2700  SmallVector<const Formula *, 8> Workspace;
2701  Cost SolutionCost;
2702  SolutionCost.Loose();
2703  Cost CurCost;
2704  SmallPtrSet<const SCEV *, 16> CurRegs;
2705  DenseSet<const SCEV *> VisitedRegs;
2706  Workspace.reserve(Uses.size());
2707
2708  SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
2709               CurRegs, VisitedRegs);
2710
2711  // Ok, we've now made all our decisions.
2712  DEBUG(dbgs() << "\n"
2713                  "The chosen solution requires "; SolutionCost.print(dbgs());
2714        dbgs() << ":\n";
2715        for (size_t i = 0, e = Uses.size(); i != e; ++i) {
2716          dbgs() << "  ";
2717          Uses[i].print(dbgs());
2718          dbgs() << "\n"
2719                    "    ";
2720          Solution[i]->print(dbgs());
2721          dbgs() << '\n';
2722        });
2723}
2724
2725/// getImmediateDominator - A handy utility for the specific DominatorTree
2726/// query that we need here.
2727///
2728static BasicBlock *getImmediateDominator(BasicBlock *BB, DominatorTree &DT) {
2729  DomTreeNode *Node = DT.getNode(BB);
2730  if (!Node) return 0;
2731  Node = Node->getIDom();
2732  if (!Node) return 0;
2733  return Node->getBlock();
2734}
2735
2736Value *LSRInstance::Expand(const LSRFixup &LF,
2737                           const Formula &F,
2738                           BasicBlock::iterator IP,
2739                           Loop *L, Instruction *IVIncInsertPos,
2740                           SCEVExpander &Rewriter,
2741                           SmallVectorImpl<WeakVH> &DeadInsts,
2742                           ScalarEvolution &SE, DominatorTree &DT) const {
2743  const LSRUse &LU = Uses[LF.LUIdx];
2744
2745  // Then, collect some instructions which we will remain dominated by when
2746  // expanding the replacement. These must be dominated by any operands that
2747  // will be required in the expansion.
2748  SmallVector<Instruction *, 4> Inputs;
2749  if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
2750    Inputs.push_back(I);
2751  if (LU.Kind == LSRUse::ICmpZero)
2752    if (Instruction *I =
2753          dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
2754      Inputs.push_back(I);
2755  if (LF.PostIncLoop && !L->contains(LF.UserInst))
2756    Inputs.push_back(L->getLoopLatch()->getTerminator());
2757
2758  // Then, climb up the immediate dominator tree as far as we can go while
2759  // still being dominated by the input positions.
2760  for (;;) {
2761    bool AllDominate = true;
2762    Instruction *BetterPos = 0;
2763    BasicBlock *IDom = getImmediateDominator(IP->getParent(), DT);
2764    if (!IDom) break;
2765    Instruction *Tentative = IDom->getTerminator();
2766    for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
2767         E = Inputs.end(); I != E; ++I) {
2768      Instruction *Inst = *I;
2769      if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
2770        AllDominate = false;
2771        break;
2772      }
2773      if (IDom == Inst->getParent() &&
2774          (!BetterPos || DT.dominates(BetterPos, Inst)))
2775        BetterPos = next(BasicBlock::iterator(Inst));
2776    }
2777    if (!AllDominate)
2778      break;
2779    if (BetterPos)
2780      IP = BetterPos;
2781    else
2782      IP = Tentative;
2783  }
2784  while (isa<PHINode>(IP)) ++IP;
2785
2786  // Inform the Rewriter if we have a post-increment use, so that it can
2787  // perform an advantageous expansion.
2788  Rewriter.setPostInc(LF.PostIncLoop);
2789
2790  // This is the type that the user actually needs.
2791  const Type *OpTy = LF.OperandValToReplace->getType();
2792  // This will be the type that we'll initially expand to.
2793  const Type *Ty = F.getType();
2794  if (!Ty)
2795    // No type known; just expand directly to the ultimate type.
2796    Ty = OpTy;
2797  else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
2798    // Expand directly to the ultimate type if it's the right size.
2799    Ty = OpTy;
2800  // This is the type to do integer arithmetic in.
2801  const Type *IntTy = SE.getEffectiveSCEVType(Ty);
2802
2803  // Build up a list of operands to add together to form the full base.
2804  SmallVector<const SCEV *, 8> Ops;
2805
2806  // Expand the BaseRegs portion.
2807  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
2808       E = F.BaseRegs.end(); I != E; ++I) {
2809    const SCEV *Reg = *I;
2810    assert(!Reg->isZero() && "Zero allocated in a base register!");
2811
2812    // If we're expanding for a post-inc user for the add-rec's loop, make the
2813    // post-inc adjustment.
2814    const SCEV *Start = Reg;
2815    while (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Start)) {
2816      if (AR->getLoop() == LF.PostIncLoop) {
2817        Reg = SE.getAddExpr(Reg, AR->getStepRecurrence(SE));
2818        // If the user is inside the loop, insert the code after the increment
2819        // so that it is dominated by its operand.
2820        if (L->contains(LF.UserInst))
2821          IP = IVIncInsertPos;
2822        break;
2823      }
2824      Start = AR->getStart();
2825    }
2826
2827    Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
2828  }
2829
2830  // Expand the ScaledReg portion.
2831  Value *ICmpScaledV = 0;
2832  if (F.AM.Scale != 0) {
2833    const SCEV *ScaledS = F.ScaledReg;
2834
2835    // If we're expanding for a post-inc user for the add-rec's loop, make the
2836    // post-inc adjustment.
2837    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ScaledS))
2838      if (AR->getLoop() == LF.PostIncLoop)
2839        ScaledS = SE.getAddExpr(ScaledS, AR->getStepRecurrence(SE));
2840
2841    if (LU.Kind == LSRUse::ICmpZero) {
2842      // An interesting way of "folding" with an icmp is to use a negated
2843      // scale, which we'll implement by inserting it into the other operand
2844      // of the icmp.
2845      assert(F.AM.Scale == -1 &&
2846             "The only scale supported by ICmpZero uses is -1!");
2847      ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
2848    } else {
2849      // Otherwise just expand the scaled register and an explicit scale,
2850      // which is expected to be matched as part of the address.
2851      ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
2852      ScaledS = SE.getMulExpr(ScaledS,
2853                              SE.getIntegerSCEV(F.AM.Scale,
2854                                                ScaledS->getType()));
2855      Ops.push_back(ScaledS);
2856    }
2857  }
2858
2859  // Expand the immediate portions.
2860  if (F.AM.BaseGV)
2861    Ops.push_back(SE.getSCEV(F.AM.BaseGV));
2862  int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
2863  if (Offset != 0) {
2864    if (LU.Kind == LSRUse::ICmpZero) {
2865      // The other interesting way of "folding" with an ICmpZero is to use a
2866      // negated immediate.
2867      if (!ICmpScaledV)
2868        ICmpScaledV = ConstantInt::get(IntTy, -Offset);
2869      else {
2870        Ops.push_back(SE.getUnknown(ICmpScaledV));
2871        ICmpScaledV = ConstantInt::get(IntTy, Offset);
2872      }
2873    } else {
2874      // Just add the immediate values. These again are expected to be matched
2875      // as part of the address.
2876      Ops.push_back(SE.getIntegerSCEV(Offset, IntTy));
2877    }
2878  }
2879
2880  // Emit instructions summing all the operands.
2881  const SCEV *FullS = Ops.empty() ?
2882                      SE.getIntegerSCEV(0, IntTy) :
2883                      SE.getAddExpr(Ops);
2884  Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
2885
2886  // We're done expanding now, so reset the rewriter.
2887  Rewriter.setPostInc(0);
2888
2889  // An ICmpZero Formula represents an ICmp which we're handling as a
2890  // comparison against zero. Now that we've expanded an expression for that
2891  // form, update the ICmp's other operand.
2892  if (LU.Kind == LSRUse::ICmpZero) {
2893    ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
2894    DeadInsts.push_back(CI->getOperand(1));
2895    assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
2896                           "a scale at the same time!");
2897    if (F.AM.Scale == -1) {
2898      if (ICmpScaledV->getType() != OpTy) {
2899        Instruction *Cast =
2900          CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
2901                                                   OpTy, false),
2902                           ICmpScaledV, OpTy, "tmp", CI);
2903        ICmpScaledV = Cast;
2904      }
2905      CI->setOperand(1, ICmpScaledV);
2906    } else {
2907      assert(F.AM.Scale == 0 &&
2908             "ICmp does not support folding a global value and "
2909             "a scale at the same time!");
2910      Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
2911                                           -(uint64_t)Offset);
2912      if (C->getType() != OpTy)
2913        C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2914                                                          OpTy, false),
2915                                  C, OpTy);
2916
2917      CI->setOperand(1, C);
2918    }
2919  }
2920
2921  return FullV;
2922}
2923
2924/// Rewrite - Emit instructions for the leading candidate expression for this
2925/// LSRUse (this is called "expanding"), and update the UserInst to reference
2926/// the newly expanded value.
2927void LSRInstance::Rewrite(const LSRFixup &LF,
2928                          const Formula &F,
2929                          Loop *L, Instruction *IVIncInsertPos,
2930                          SCEVExpander &Rewriter,
2931                          SmallVectorImpl<WeakVH> &DeadInsts,
2932                          ScalarEvolution &SE, DominatorTree &DT,
2933                          Pass *P) const {
2934  const Type *OpTy = LF.OperandValToReplace->getType();
2935
2936  // First, find an insertion point that dominates UserInst. For PHI nodes,
2937  // find the nearest block which dominates all the relevant uses.
2938  if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
2939    DenseMap<BasicBlock *, Value *> Inserted;
2940    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2941      if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
2942        BasicBlock *BB = PN->getIncomingBlock(i);
2943
2944        // If this is a critical edge, split the edge so that we do not insert
2945        // the code on all predecessor/successor paths.  We do this unless this
2946        // is the canonical backedge for this loop, which complicates post-inc
2947        // users.
2948        if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
2949            !isa<IndirectBrInst>(BB->getTerminator()) &&
2950            (PN->getParent() != L->getHeader() || !L->contains(BB))) {
2951          // Split the critical edge.
2952          BasicBlock *NewBB = SplitCriticalEdge(BB, PN->getParent(), P);
2953
2954          // If PN is outside of the loop and BB is in the loop, we want to
2955          // move the block to be immediately before the PHI block, not
2956          // immediately after BB.
2957          if (L->contains(BB) && !L->contains(PN))
2958            NewBB->moveBefore(PN->getParent());
2959
2960          // Splitting the edge can reduce the number of PHI entries we have.
2961          e = PN->getNumIncomingValues();
2962          BB = NewBB;
2963          i = PN->getBasicBlockIndex(BB);
2964        }
2965
2966        std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
2967          Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
2968        if (!Pair.second)
2969          PN->setIncomingValue(i, Pair.first->second);
2970        else {
2971          Value *FullV = Expand(LF, F, BB->getTerminator(), L, IVIncInsertPos,
2972                                Rewriter, DeadInsts, SE, DT);
2973
2974          // If this is reuse-by-noop-cast, insert the noop cast.
2975          if (FullV->getType() != OpTy)
2976            FullV =
2977              CastInst::Create(CastInst::getCastOpcode(FullV, false,
2978                                                       OpTy, false),
2979                               FullV, LF.OperandValToReplace->getType(),
2980                               "tmp", BB->getTerminator());
2981
2982          PN->setIncomingValue(i, FullV);
2983          Pair.first->second = FullV;
2984        }
2985      }
2986  } else {
2987    Value *FullV = Expand(LF, F, LF.UserInst, L, IVIncInsertPos,
2988                          Rewriter, DeadInsts, SE, DT);
2989
2990    // If this is reuse-by-noop-cast, insert the noop cast.
2991    if (FullV->getType() != OpTy) {
2992      Instruction *Cast =
2993        CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
2994                         FullV, OpTy, "tmp", LF.UserInst);
2995      FullV = Cast;
2996    }
2997
2998    // Update the user. ICmpZero is handled specially here (for now) because
2999    // Expand may have updated one of the operands of the icmp already, and
3000    // its new value may happen to be equal to LF.OperandValToReplace, in
3001    // which case doing replaceUsesOfWith leads to replacing both operands
3002    // with the same value. TODO: Reorganize this.
3003    if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
3004      LF.UserInst->setOperand(0, FullV);
3005    else
3006      LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
3007  }
3008
3009  DeadInsts.push_back(LF.OperandValToReplace);
3010}
3011
3012void
3013LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
3014                               Pass *P) {
3015  // Keep track of instructions we may have made dead, so that
3016  // we can remove them after we are done working.
3017  SmallVector<WeakVH, 16> DeadInsts;
3018
3019  SCEVExpander Rewriter(SE);
3020  Rewriter.disableCanonicalMode();
3021  Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
3022
3023  // Expand the new value definitions and update the users.
3024  for (size_t i = 0, e = Fixups.size(); i != e; ++i) {
3025    size_t LUIdx = Fixups[i].LUIdx;
3026
3027    Rewrite(Fixups[i], *Solution[LUIdx], L, IVIncInsertPos, Rewriter,
3028            DeadInsts, SE, DT, P);
3029
3030    Changed = true;
3031  }
3032
3033  // Clean up after ourselves. This must be done before deleting any
3034  // instructions.
3035  Rewriter.clear();
3036
3037  Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
3038}
3039
3040LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
3041  : IU(P->getAnalysis<IVUsers>()),
3042    SE(P->getAnalysis<ScalarEvolution>()),
3043    DT(P->getAnalysis<DominatorTree>()),
3044    TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
3045
3046  // If LoopSimplify form is not available, stay out of trouble.
3047  if (!L->isLoopSimplifyForm()) return;
3048
3049  // If there's no interesting work to be done, bail early.
3050  if (IU.empty()) return;
3051
3052  DEBUG(dbgs() << "\nLSR on loop ";
3053        WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
3054        dbgs() << ":\n");
3055
3056  /// OptimizeShadowIV - If IV is used in a int-to-float cast
3057  /// inside the loop then try to eliminate the cast opeation.
3058  OptimizeShadowIV();
3059
3060  // Change loop terminating condition to use the postinc iv when possible.
3061  Changed |= OptimizeLoopTermCond();
3062
3063  CollectInterestingTypesAndFactors();
3064  CollectFixupsAndInitialFormulae();
3065  CollectLoopInvariantFixupsAndFormulae();
3066
3067  DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
3068        print_uses(dbgs()));
3069
3070  // Now use the reuse data to generate a bunch of interesting ways
3071  // to formulate the values needed for the uses.
3072  GenerateAllReuseFormulae();
3073
3074  DEBUG(dbgs() << "\n"
3075                  "After generating reuse formulae:\n";
3076        print_uses(dbgs()));
3077
3078  FilterOutUndesirableDedicatedRegisters();
3079  NarrowSearchSpaceUsingHeuristics();
3080
3081  SmallVector<const Formula *, 8> Solution;
3082  Solve(Solution);
3083  assert(Solution.size() == Uses.size() && "Malformed solution!");
3084
3085  // Release memory that is no longer needed.
3086  Factors.clear();
3087  Types.clear();
3088  RegUses.clear();
3089
3090#ifndef NDEBUG
3091  // Formulae should be legal.
3092  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3093       E = Uses.end(); I != E; ++I) {
3094     const LSRUse &LU = *I;
3095     for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3096          JE = LU.Formulae.end(); J != JE; ++J)
3097        assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
3098                          LU.Kind, LU.AccessTy, TLI) &&
3099               "Illegal formula generated!");
3100  };
3101#endif
3102
3103  // Now that we've decided what we want, make it so.
3104  ImplementSolution(Solution, P);
3105}
3106
3107void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
3108  if (Factors.empty() && Types.empty()) return;
3109
3110  OS << "LSR has identified the following interesting factors and types: ";
3111  bool First = true;
3112
3113  for (SmallSetVector<int64_t, 8>::const_iterator
3114       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3115    if (!First) OS << ", ";
3116    First = false;
3117    OS << '*' << *I;
3118  }
3119
3120  for (SmallSetVector<const Type *, 4>::const_iterator
3121       I = Types.begin(), E = Types.end(); I != E; ++I) {
3122    if (!First) OS << ", ";
3123    First = false;
3124    OS << '(' << **I << ')';
3125  }
3126  OS << '\n';
3127}
3128
3129void LSRInstance::print_fixups(raw_ostream &OS) const {
3130  OS << "LSR is examining the following fixup sites:\n";
3131  for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
3132       E = Fixups.end(); I != E; ++I) {
3133    const LSRFixup &LF = *I;
3134    dbgs() << "  ";
3135    LF.print(OS);
3136    OS << '\n';
3137  }
3138}
3139
3140void LSRInstance::print_uses(raw_ostream &OS) const {
3141  OS << "LSR is examining the following uses:\n";
3142  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3143       E = Uses.end(); I != E; ++I) {
3144    const LSRUse &LU = *I;
3145    dbgs() << "  ";
3146    LU.print(OS);
3147    OS << '\n';
3148    for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3149         JE = LU.Formulae.end(); J != JE; ++J) {
3150      OS << "    ";
3151      J->print(OS);
3152      OS << '\n';
3153    }
3154  }
3155}
3156
3157void LSRInstance::print(raw_ostream &OS) const {
3158  print_factors_and_types(OS);
3159  print_fixups(OS);
3160  print_uses(OS);
3161}
3162
3163void LSRInstance::dump() const {
3164  print(errs()); errs() << '\n';
3165}
3166
3167namespace {
3168
3169class LoopStrengthReduce : public LoopPass {
3170  /// TLI - Keep a pointer of a TargetLowering to consult for determining
3171  /// transformation profitability.
3172  const TargetLowering *const TLI;
3173
3174public:
3175  static char ID; // Pass ID, replacement for typeid
3176  explicit LoopStrengthReduce(const TargetLowering *tli = 0);
3177
3178private:
3179  bool runOnLoop(Loop *L, LPPassManager &LPM);
3180  void getAnalysisUsage(AnalysisUsage &AU) const;
3181};
3182
3183}
3184
3185char LoopStrengthReduce::ID = 0;
3186static RegisterPass<LoopStrengthReduce>
3187X("loop-reduce", "Loop Strength Reduction");
3188
3189Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
3190  return new LoopStrengthReduce(TLI);
3191}
3192
3193LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
3194  : LoopPass(&ID), TLI(tli) {}
3195
3196void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
3197  // We split critical edges, so we change the CFG.  However, we do update
3198  // many analyses if they are around.
3199  AU.addPreservedID(LoopSimplifyID);
3200  AU.addPreserved<LoopInfo>();
3201  AU.addPreserved("domfrontier");
3202
3203  AU.addRequiredID(LoopSimplifyID);
3204  AU.addRequired<DominatorTree>();
3205  AU.addPreserved<DominatorTree>();
3206  AU.addRequired<ScalarEvolution>();
3207  AU.addPreserved<ScalarEvolution>();
3208  AU.addRequired<IVUsers>();
3209  AU.addPreserved<IVUsers>();
3210}
3211
3212bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
3213  bool Changed = false;
3214
3215  // Run the main LSR transformation.
3216  Changed |= LSRInstance(TLI, L, this).getChanged();
3217
3218  // At this point, it is worth checking to see if any recurrence PHIs are also
3219  // dead, so that we can remove them as well.
3220  Changed |= DeleteDeadPHIs(L->getHeader());
3221
3222  return Changed;
3223}
3224