LoopStrengthReduce.cpp revision 200581
1//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into forms suitable for efficient execution
12// on the target.
13//
14// This pass performs a strength reduction on array references inside loops that
15// have as one or more of their components the loop induction variable, it
16// rewrites expressions to take advantage of scaled-index addressing modes
17// available on the target, and it performs a variety of other optimizations
18// related to loop induction variables.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "loop-reduce"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/Instructions.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/DerivedTypes.h"
28#include "llvm/Analysis/IVUsers.h"
29#include "llvm/Analysis/LoopPass.h"
30#include "llvm/Analysis/ScalarEvolutionExpander.h"
31#include "llvm/Transforms/Utils/AddrModeMatcher.h"
32#include "llvm/Transforms/Utils/BasicBlockUtils.h"
33#include "llvm/Transforms/Utils/Local.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/CommandLine.h"
37#include "llvm/Support/ValueHandle.h"
38#include "llvm/Support/raw_ostream.h"
39#include "llvm/Target/TargetLowering.h"
40#include <algorithm>
41using namespace llvm;
42
43STATISTIC(NumReduced ,    "Number of IV uses strength reduced");
44STATISTIC(NumInserted,    "Number of PHIs inserted");
45STATISTIC(NumVariable,    "Number of PHIs with variable strides");
46STATISTIC(NumEliminated,  "Number of strides eliminated");
47STATISTIC(NumShadow,      "Number of Shadow IVs optimized");
48STATISTIC(NumImmSunk,     "Number of common expr immediates sunk into uses");
49STATISTIC(NumLoopCond,    "Number of loop terminating conds optimized");
50STATISTIC(NumCountZero,   "Number of count iv optimized to count toward zero");
51
52static cl::opt<bool> EnableFullLSRMode("enable-full-lsr",
53                                       cl::init(false),
54                                       cl::Hidden);
55
56namespace {
57
58  struct BasedUser;
59
60  /// IVInfo - This structure keeps track of one IV expression inserted during
61  /// StrengthReduceStridedIVUsers. It contains the stride, the common base, as
62  /// well as the PHI node and increment value created for rewrite.
63  struct IVExpr {
64    const SCEV *Stride;
65    const SCEV *Base;
66    PHINode    *PHI;
67
68    IVExpr(const SCEV *const stride, const SCEV *const base, PHINode *phi)
69      : Stride(stride), Base(base), PHI(phi) {}
70  };
71
72  /// IVsOfOneStride - This structure keeps track of all IV expression inserted
73  /// during StrengthReduceStridedIVUsers for a particular stride of the IV.
74  struct IVsOfOneStride {
75    std::vector<IVExpr> IVs;
76
77    void addIV(const SCEV *const Stride, const SCEV *const Base, PHINode *PHI) {
78      IVs.push_back(IVExpr(Stride, Base, PHI));
79    }
80  };
81
82  class LoopStrengthReduce : public LoopPass {
83    IVUsers *IU;
84    ScalarEvolution *SE;
85    bool Changed;
86
87    /// IVsByStride - Keep track of all IVs that have been inserted for a
88    /// particular stride.
89    std::map<const SCEV *, IVsOfOneStride> IVsByStride;
90
91    /// DeadInsts - Keep track of instructions we may have made dead, so that
92    /// we can remove them after we are done working.
93    SmallVector<WeakVH, 16> DeadInsts;
94
95    /// TLI - Keep a pointer of a TargetLowering to consult for determining
96    /// transformation profitability.
97    const TargetLowering *TLI;
98
99  public:
100    static char ID; // Pass ID, replacement for typeid
101    explicit LoopStrengthReduce(const TargetLowering *tli = NULL) :
102      LoopPass(&ID), TLI(tli) {}
103
104    bool runOnLoop(Loop *L, LPPassManager &LPM);
105
106    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
107      // We split critical edges, so we change the CFG.  However, we do update
108      // many analyses if they are around.
109      AU.addPreservedID(LoopSimplifyID);
110      AU.addPreserved("loops");
111      AU.addPreserved("domfrontier");
112      AU.addPreserved("domtree");
113
114      AU.addRequiredID(LoopSimplifyID);
115      AU.addRequired<ScalarEvolution>();
116      AU.addPreserved<ScalarEvolution>();
117      AU.addRequired<IVUsers>();
118      AU.addPreserved<IVUsers>();
119    }
120
121  private:
122    void OptimizeIndvars(Loop *L);
123
124    /// OptimizeLoopTermCond - Change loop terminating condition to use the
125    /// postinc iv when possible.
126    void OptimizeLoopTermCond(Loop *L);
127
128    /// OptimizeShadowIV - If IV is used in a int-to-float cast
129    /// inside the loop then try to eliminate the cast opeation.
130    void OptimizeShadowIV(Loop *L);
131
132    /// OptimizeMax - Rewrite the loop's terminating condition
133    /// if it uses a max computation.
134    ICmpInst *OptimizeMax(Loop *L, ICmpInst *Cond,
135                          IVStrideUse* &CondUse);
136
137    /// OptimizeLoopCountIV - If, after all sharing of IVs, the IV used for
138    /// deciding when to exit the loop is used only for that purpose, try to
139    /// rearrange things so it counts down to a test against zero.
140    bool OptimizeLoopCountIV(Loop *L);
141    bool OptimizeLoopCountIVOfStride(const SCEV* &Stride,
142                                     IVStrideUse* &CondUse, Loop *L);
143
144    /// StrengthReduceIVUsersOfStride - Strength reduce all of the users of a
145    /// single stride of IV.  All of the users may have different starting
146    /// values, and this may not be the only stride.
147    void StrengthReduceIVUsersOfStride(const SCEV *const &Stride,
148                                      IVUsersOfOneStride &Uses,
149                                      Loop *L);
150    void StrengthReduceIVUsers(Loop *L);
151
152    ICmpInst *ChangeCompareStride(Loop *L, ICmpInst *Cond,
153                                  IVStrideUse* &CondUse,
154                                  const SCEV* &CondStride,
155                                  bool PostPass = false);
156
157    bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse,
158                           const SCEV* &CondStride);
159    bool RequiresTypeConversion(const Type *Ty, const Type *NewTy);
160    const SCEV *CheckForIVReuse(bool, bool, bool, const SCEV *const&,
161                             IVExpr&, const Type*,
162                             const std::vector<BasedUser>& UsersToProcess);
163    bool ValidScale(bool, int64_t,
164                    const std::vector<BasedUser>& UsersToProcess);
165    bool ValidOffset(bool, int64_t, int64_t,
166                     const std::vector<BasedUser>& UsersToProcess);
167    const SCEV *CollectIVUsers(const SCEV *const &Stride,
168                              IVUsersOfOneStride &Uses,
169                              Loop *L,
170                              bool &AllUsesAreAddresses,
171                              bool &AllUsesAreOutsideLoop,
172                              std::vector<BasedUser> &UsersToProcess);
173    bool StrideMightBeShared(const SCEV *Stride, Loop *L, bool CheckPreInc);
174    bool ShouldUseFullStrengthReductionMode(
175                                const std::vector<BasedUser> &UsersToProcess,
176                                const Loop *L,
177                                bool AllUsesAreAddresses,
178                                const SCEV *Stride);
179    void PrepareToStrengthReduceFully(
180                             std::vector<BasedUser> &UsersToProcess,
181                             const SCEV *Stride,
182                             const SCEV *CommonExprs,
183                             const Loop *L,
184                             SCEVExpander &PreheaderRewriter);
185    void PrepareToStrengthReduceFromSmallerStride(
186                                         std::vector<BasedUser> &UsersToProcess,
187                                         Value *CommonBaseV,
188                                         const IVExpr &ReuseIV,
189                                         Instruction *PreInsertPt);
190    void PrepareToStrengthReduceWithNewPhi(
191                                  std::vector<BasedUser> &UsersToProcess,
192                                  const SCEV *Stride,
193                                  const SCEV *CommonExprs,
194                                  Value *CommonBaseV,
195                                  Instruction *IVIncInsertPt,
196                                  const Loop *L,
197                                  SCEVExpander &PreheaderRewriter);
198
199    void DeleteTriviallyDeadInstructions();
200  };
201}
202
203char LoopStrengthReduce::ID = 0;
204static RegisterPass<LoopStrengthReduce>
205X("loop-reduce", "Loop Strength Reduction");
206
207Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
208  return new LoopStrengthReduce(TLI);
209}
210
211/// DeleteTriviallyDeadInstructions - If any of the instructions is the
212/// specified set are trivially dead, delete them and see if this makes any of
213/// their operands subsequently dead.
214void LoopStrengthReduce::DeleteTriviallyDeadInstructions() {
215  if (DeadInsts.empty()) return;
216
217  while (!DeadInsts.empty()) {
218    Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
219
220    if (I == 0 || !isInstructionTriviallyDead(I))
221      continue;
222
223    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
224      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
225        *OI = 0;
226        if (U->use_empty())
227          DeadInsts.push_back(U);
228      }
229
230    I->eraseFromParent();
231    Changed = true;
232  }
233}
234
235/// containsAddRecFromDifferentLoop - Determine whether expression S involves a
236/// subexpression that is an AddRec from a loop other than L.  An outer loop
237/// of L is OK, but not an inner loop nor a disjoint loop.
238static bool containsAddRecFromDifferentLoop(const SCEV *S, Loop *L) {
239  // This is very common, put it first.
240  if (isa<SCEVConstant>(S))
241    return false;
242  if (const SCEVCommutativeExpr *AE = dyn_cast<SCEVCommutativeExpr>(S)) {
243    for (unsigned int i=0; i< AE->getNumOperands(); i++)
244      if (containsAddRecFromDifferentLoop(AE->getOperand(i), L))
245        return true;
246    return false;
247  }
248  if (const SCEVAddRecExpr *AE = dyn_cast<SCEVAddRecExpr>(S)) {
249    if (const Loop *newLoop = AE->getLoop()) {
250      if (newLoop == L)
251        return false;
252      // if newLoop is an outer loop of L, this is OK.
253      if (newLoop->contains(L->getHeader()))
254        return false;
255    }
256    return true;
257  }
258  if (const SCEVUDivExpr *DE = dyn_cast<SCEVUDivExpr>(S))
259    return containsAddRecFromDifferentLoop(DE->getLHS(), L) ||
260           containsAddRecFromDifferentLoop(DE->getRHS(), L);
261#if 0
262  // SCEVSDivExpr has been backed out temporarily, but will be back; we'll
263  // need this when it is.
264  if (const SCEVSDivExpr *DE = dyn_cast<SCEVSDivExpr>(S))
265    return containsAddRecFromDifferentLoop(DE->getLHS(), L) ||
266           containsAddRecFromDifferentLoop(DE->getRHS(), L);
267#endif
268  if (const SCEVCastExpr *CE = dyn_cast<SCEVCastExpr>(S))
269    return containsAddRecFromDifferentLoop(CE->getOperand(), L);
270  return false;
271}
272
273/// isAddressUse - Returns true if the specified instruction is using the
274/// specified value as an address.
275static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
276  bool isAddress = isa<LoadInst>(Inst);
277  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
278    if (SI->getOperand(1) == OperandVal)
279      isAddress = true;
280  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
281    // Addressing modes can also be folded into prefetches and a variety
282    // of intrinsics.
283    switch (II->getIntrinsicID()) {
284      default: break;
285      case Intrinsic::prefetch:
286      case Intrinsic::x86_sse2_loadu_dq:
287      case Intrinsic::x86_sse2_loadu_pd:
288      case Intrinsic::x86_sse_loadu_ps:
289      case Intrinsic::x86_sse_storeu_ps:
290      case Intrinsic::x86_sse2_storeu_pd:
291      case Intrinsic::x86_sse2_storeu_dq:
292      case Intrinsic::x86_sse2_storel_dq:
293        if (II->getOperand(1) == OperandVal)
294          isAddress = true;
295        break;
296    }
297  }
298  return isAddress;
299}
300
301/// getAccessType - Return the type of the memory being accessed.
302static const Type *getAccessType(const Instruction *Inst) {
303  const Type *AccessTy = Inst->getType();
304  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
305    AccessTy = SI->getOperand(0)->getType();
306  else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
307    // Addressing modes can also be folded into prefetches and a variety
308    // of intrinsics.
309    switch (II->getIntrinsicID()) {
310    default: break;
311    case Intrinsic::x86_sse_storeu_ps:
312    case Intrinsic::x86_sse2_storeu_pd:
313    case Intrinsic::x86_sse2_storeu_dq:
314    case Intrinsic::x86_sse2_storel_dq:
315      AccessTy = II->getOperand(1)->getType();
316      break;
317    }
318  }
319  return AccessTy;
320}
321
322namespace {
323  /// BasedUser - For a particular base value, keep information about how we've
324  /// partitioned the expression so far.
325  struct BasedUser {
326    /// Base - The Base value for the PHI node that needs to be inserted for
327    /// this use.  As the use is processed, information gets moved from this
328    /// field to the Imm field (below).  BasedUser values are sorted by this
329    /// field.
330    const SCEV *Base;
331
332    /// Inst - The instruction using the induction variable.
333    Instruction *Inst;
334
335    /// OperandValToReplace - The operand value of Inst to replace with the
336    /// EmittedBase.
337    Value *OperandValToReplace;
338
339    /// Imm - The immediate value that should be added to the base immediately
340    /// before Inst, because it will be folded into the imm field of the
341    /// instruction.  This is also sometimes used for loop-variant values that
342    /// must be added inside the loop.
343    const SCEV *Imm;
344
345    /// Phi - The induction variable that performs the striding that
346    /// should be used for this user.
347    PHINode *Phi;
348
349    // isUseOfPostIncrementedValue - True if this should use the
350    // post-incremented version of this IV, not the preincremented version.
351    // This can only be set in special cases, such as the terminating setcc
352    // instruction for a loop and uses outside the loop that are dominated by
353    // the loop.
354    bool isUseOfPostIncrementedValue;
355
356    BasedUser(IVStrideUse &IVSU, ScalarEvolution *se)
357      : Base(IVSU.getOffset()), Inst(IVSU.getUser()),
358        OperandValToReplace(IVSU.getOperandValToReplace()),
359        Imm(se->getIntegerSCEV(0, Base->getType())),
360        isUseOfPostIncrementedValue(IVSU.isUseOfPostIncrementedValue()) {}
361
362    // Once we rewrite the code to insert the new IVs we want, update the
363    // operands of Inst to use the new expression 'NewBase', with 'Imm' added
364    // to it.
365    void RewriteInstructionToUseNewBase(const SCEV *const &NewBase,
366                                        Instruction *InsertPt,
367                                       SCEVExpander &Rewriter, Loop *L, Pass *P,
368                                        SmallVectorImpl<WeakVH> &DeadInsts,
369                                        ScalarEvolution *SE);
370
371    Value *InsertCodeForBaseAtPosition(const SCEV *const &NewBase,
372                                       const Type *Ty,
373                                       SCEVExpander &Rewriter,
374                                       Instruction *IP,
375                                       ScalarEvolution *SE);
376    void dump() const;
377  };
378}
379
380void BasedUser::dump() const {
381  errs() << " Base=" << *Base;
382  errs() << " Imm=" << *Imm;
383  errs() << "   Inst: " << *Inst;
384}
385
386Value *BasedUser::InsertCodeForBaseAtPosition(const SCEV *const &NewBase,
387                                              const Type *Ty,
388                                              SCEVExpander &Rewriter,
389                                              Instruction *IP,
390                                              ScalarEvolution *SE) {
391  Value *Base = Rewriter.expandCodeFor(NewBase, 0, IP);
392
393  // Wrap the base in a SCEVUnknown so that ScalarEvolution doesn't try to
394  // re-analyze it.
395  const SCEV *NewValSCEV = SE->getUnknown(Base);
396
397  // Always emit the immediate into the same block as the user.
398  NewValSCEV = SE->getAddExpr(NewValSCEV, Imm);
399
400  return Rewriter.expandCodeFor(NewValSCEV, Ty, IP);
401}
402
403
404// Once we rewrite the code to insert the new IVs we want, update the
405// operands of Inst to use the new expression 'NewBase', with 'Imm' added
406// to it. NewBasePt is the last instruction which contributes to the
407// value of NewBase in the case that it's a diffferent instruction from
408// the PHI that NewBase is computed from, or null otherwise.
409//
410void BasedUser::RewriteInstructionToUseNewBase(const SCEV *const &NewBase,
411                                               Instruction *NewBasePt,
412                                      SCEVExpander &Rewriter, Loop *L, Pass *P,
413                                      SmallVectorImpl<WeakVH> &DeadInsts,
414                                      ScalarEvolution *SE) {
415  if (!isa<PHINode>(Inst)) {
416    // By default, insert code at the user instruction.
417    BasicBlock::iterator InsertPt = Inst;
418
419    // However, if the Operand is itself an instruction, the (potentially
420    // complex) inserted code may be shared by many users.  Because of this, we
421    // want to emit code for the computation of the operand right before its old
422    // computation.  This is usually safe, because we obviously used to use the
423    // computation when it was computed in its current block.  However, in some
424    // cases (e.g. use of a post-incremented induction variable) the NewBase
425    // value will be pinned to live somewhere after the original computation.
426    // In this case, we have to back off.
427    //
428    // If this is a use outside the loop (which means after, since it is based
429    // on a loop indvar) we use the post-incremented value, so that we don't
430    // artificially make the preinc value live out the bottom of the loop.
431    if (!isUseOfPostIncrementedValue && L->contains(Inst->getParent())) {
432      if (NewBasePt && isa<PHINode>(OperandValToReplace)) {
433        InsertPt = NewBasePt;
434        ++InsertPt;
435      } else if (Instruction *OpInst
436                 = dyn_cast<Instruction>(OperandValToReplace)) {
437        InsertPt = OpInst;
438        while (isa<PHINode>(InsertPt)) ++InsertPt;
439      }
440    }
441    Value *NewVal = InsertCodeForBaseAtPosition(NewBase,
442                                                OperandValToReplace->getType(),
443                                                Rewriter, InsertPt, SE);
444    // Replace the use of the operand Value with the new Phi we just created.
445    Inst->replaceUsesOfWith(OperandValToReplace, NewVal);
446
447    DEBUG(errs() << "      Replacing with ");
448    DEBUG(WriteAsOperand(errs(), NewVal, /*PrintType=*/false));
449    DEBUG(errs() << ", which has value " << *NewBase << " plus IMM "
450                 << *Imm << "\n");
451    return;
452  }
453
454  // PHI nodes are more complex.  We have to insert one copy of the NewBase+Imm
455  // expression into each operand block that uses it.  Note that PHI nodes can
456  // have multiple entries for the same predecessor.  We use a map to make sure
457  // that a PHI node only has a single Value* for each predecessor (which also
458  // prevents us from inserting duplicate code in some blocks).
459  DenseMap<BasicBlock*, Value*> InsertedCode;
460  PHINode *PN = cast<PHINode>(Inst);
461  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
462    if (PN->getIncomingValue(i) == OperandValToReplace) {
463      // If the original expression is outside the loop, put the replacement
464      // code in the same place as the original expression,
465      // which need not be an immediate predecessor of this PHI.  This way we
466      // need only one copy of it even if it is referenced multiple times in
467      // the PHI.  We don't do this when the original expression is inside the
468      // loop because multiple copies sometimes do useful sinking of code in
469      // that case(?).
470      Instruction *OldLoc = dyn_cast<Instruction>(OperandValToReplace);
471      BasicBlock *PHIPred = PN->getIncomingBlock(i);
472      if (L->contains(OldLoc->getParent())) {
473        // If this is a critical edge, split the edge so that we do not insert
474        // the code on all predecessor/successor paths.  We do this unless this
475        // is the canonical backedge for this loop, as this can make some
476        // inserted code be in an illegal position.
477        if (e != 1 && PHIPred->getTerminator()->getNumSuccessors() > 1 &&
478            !isa<IndirectBrInst>(PHIPred->getTerminator()) &&
479            (PN->getParent() != L->getHeader() || !L->contains(PHIPred))) {
480
481          // First step, split the critical edge.
482          BasicBlock *NewBB = SplitCriticalEdge(PHIPred, PN->getParent(),
483                                                P, false);
484
485          // Next step: move the basic block.  In particular, if the PHI node
486          // is outside of the loop, and PredTI is in the loop, we want to
487          // move the block to be immediately before the PHI block, not
488          // immediately after PredTI.
489          if (L->contains(PHIPred) && !L->contains(PN->getParent()))
490            NewBB->moveBefore(PN->getParent());
491
492          // Splitting the edge can reduce the number of PHI entries we have.
493          e = PN->getNumIncomingValues();
494          PHIPred = NewBB;
495          i = PN->getBasicBlockIndex(PHIPred);
496        }
497      }
498      Value *&Code = InsertedCode[PHIPred];
499      if (!Code) {
500        // Insert the code into the end of the predecessor block.
501        Instruction *InsertPt = (L->contains(OldLoc->getParent())) ?
502                                PHIPred->getTerminator() :
503                                OldLoc->getParent()->getTerminator();
504        Code = InsertCodeForBaseAtPosition(NewBase, PN->getType(),
505                                           Rewriter, InsertPt, SE);
506
507        DEBUG(errs() << "      Changing PHI use to ");
508        DEBUG(WriteAsOperand(errs(), Code, /*PrintType=*/false));
509        DEBUG(errs() << ", which has value " << *NewBase << " plus IMM "
510                     << *Imm << "\n");
511      }
512
513      // Replace the use of the operand Value with the new Phi we just created.
514      PN->setIncomingValue(i, Code);
515      Rewriter.clear();
516    }
517  }
518
519  // PHI node might have become a constant value after SplitCriticalEdge.
520  DeadInsts.push_back(Inst);
521}
522
523
524/// fitsInAddressMode - Return true if V can be subsumed within an addressing
525/// mode, and does not need to be put in a register first.
526static bool fitsInAddressMode(const SCEV *const &V, const Type *AccessTy,
527                             const TargetLowering *TLI, bool HasBaseReg) {
528  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
529    int64_t VC = SC->getValue()->getSExtValue();
530    if (TLI) {
531      TargetLowering::AddrMode AM;
532      AM.BaseOffs = VC;
533      AM.HasBaseReg = HasBaseReg;
534      return TLI->isLegalAddressingMode(AM, AccessTy);
535    } else {
536      // Defaults to PPC. PPC allows a sign-extended 16-bit immediate field.
537      return (VC > -(1 << 16) && VC < (1 << 16)-1);
538    }
539  }
540
541  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V))
542    if (GlobalValue *GV = dyn_cast<GlobalValue>(SU->getValue())) {
543      if (TLI) {
544        TargetLowering::AddrMode AM;
545        AM.BaseGV = GV;
546        AM.HasBaseReg = HasBaseReg;
547        return TLI->isLegalAddressingMode(AM, AccessTy);
548      } else {
549        // Default: assume global addresses are not legal.
550      }
551    }
552
553  return false;
554}
555
556/// MoveLoopVariantsToImmediateField - Move any subexpressions from Val that are
557/// loop varying to the Imm operand.
558static void MoveLoopVariantsToImmediateField(const SCEV *&Val, const SCEV *&Imm,
559                                             Loop *L, ScalarEvolution *SE) {
560  if (Val->isLoopInvariant(L)) return;  // Nothing to do.
561
562  if (const SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
563    SmallVector<const SCEV *, 4> NewOps;
564    NewOps.reserve(SAE->getNumOperands());
565
566    for (unsigned i = 0; i != SAE->getNumOperands(); ++i)
567      if (!SAE->getOperand(i)->isLoopInvariant(L)) {
568        // If this is a loop-variant expression, it must stay in the immediate
569        // field of the expression.
570        Imm = SE->getAddExpr(Imm, SAE->getOperand(i));
571      } else {
572        NewOps.push_back(SAE->getOperand(i));
573      }
574
575    if (NewOps.empty())
576      Val = SE->getIntegerSCEV(0, Val->getType());
577    else
578      Val = SE->getAddExpr(NewOps);
579  } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
580    // Try to pull immediates out of the start value of nested addrec's.
581    const SCEV *Start = SARE->getStart();
582    MoveLoopVariantsToImmediateField(Start, Imm, L, SE);
583
584    SmallVector<const SCEV *, 4> Ops(SARE->op_begin(), SARE->op_end());
585    Ops[0] = Start;
586    Val = SE->getAddRecExpr(Ops, SARE->getLoop());
587  } else {
588    // Otherwise, all of Val is variant, move the whole thing over.
589    Imm = SE->getAddExpr(Imm, Val);
590    Val = SE->getIntegerSCEV(0, Val->getType());
591  }
592}
593
594
595/// MoveImmediateValues - Look at Val, and pull out any additions of constants
596/// that can fit into the immediate field of instructions in the target.
597/// Accumulate these immediate values into the Imm value.
598static void MoveImmediateValues(const TargetLowering *TLI,
599                                const Type *AccessTy,
600                                const SCEV *&Val, const SCEV *&Imm,
601                                bool isAddress, Loop *L,
602                                ScalarEvolution *SE) {
603  if (const SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
604    SmallVector<const SCEV *, 4> NewOps;
605    NewOps.reserve(SAE->getNumOperands());
606
607    for (unsigned i = 0; i != SAE->getNumOperands(); ++i) {
608      const SCEV *NewOp = SAE->getOperand(i);
609      MoveImmediateValues(TLI, AccessTy, NewOp, Imm, isAddress, L, SE);
610
611      if (!NewOp->isLoopInvariant(L)) {
612        // If this is a loop-variant expression, it must stay in the immediate
613        // field of the expression.
614        Imm = SE->getAddExpr(Imm, NewOp);
615      } else {
616        NewOps.push_back(NewOp);
617      }
618    }
619
620    if (NewOps.empty())
621      Val = SE->getIntegerSCEV(0, Val->getType());
622    else
623      Val = SE->getAddExpr(NewOps);
624    return;
625  } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
626    // Try to pull immediates out of the start value of nested addrec's.
627    const SCEV *Start = SARE->getStart();
628    MoveImmediateValues(TLI, AccessTy, Start, Imm, isAddress, L, SE);
629
630    if (Start != SARE->getStart()) {
631      SmallVector<const SCEV *, 4> Ops(SARE->op_begin(), SARE->op_end());
632      Ops[0] = Start;
633      Val = SE->getAddRecExpr(Ops, SARE->getLoop());
634    }
635    return;
636  } else if (const SCEVMulExpr *SME = dyn_cast<SCEVMulExpr>(Val)) {
637    // Transform "8 * (4 + v)" -> "32 + 8*V" if "32" fits in the immed field.
638    if (isAddress &&
639        fitsInAddressMode(SME->getOperand(0), AccessTy, TLI, false) &&
640        SME->getNumOperands() == 2 && SME->isLoopInvariant(L)) {
641
642      const SCEV *SubImm = SE->getIntegerSCEV(0, Val->getType());
643      const SCEV *NewOp = SME->getOperand(1);
644      MoveImmediateValues(TLI, AccessTy, NewOp, SubImm, isAddress, L, SE);
645
646      // If we extracted something out of the subexpressions, see if we can
647      // simplify this!
648      if (NewOp != SME->getOperand(1)) {
649        // Scale SubImm up by "8".  If the result is a target constant, we are
650        // good.
651        SubImm = SE->getMulExpr(SubImm, SME->getOperand(0));
652        if (fitsInAddressMode(SubImm, AccessTy, TLI, false)) {
653          // Accumulate the immediate.
654          Imm = SE->getAddExpr(Imm, SubImm);
655
656          // Update what is left of 'Val'.
657          Val = SE->getMulExpr(SME->getOperand(0), NewOp);
658          return;
659        }
660      }
661    }
662  }
663
664  // Loop-variant expressions must stay in the immediate field of the
665  // expression.
666  if ((isAddress && fitsInAddressMode(Val, AccessTy, TLI, false)) ||
667      !Val->isLoopInvariant(L)) {
668    Imm = SE->getAddExpr(Imm, Val);
669    Val = SE->getIntegerSCEV(0, Val->getType());
670    return;
671  }
672
673  // Otherwise, no immediates to move.
674}
675
676static void MoveImmediateValues(const TargetLowering *TLI,
677                                Instruction *User,
678                                const SCEV *&Val, const SCEV *&Imm,
679                                bool isAddress, Loop *L,
680                                ScalarEvolution *SE) {
681  const Type *AccessTy = getAccessType(User);
682  MoveImmediateValues(TLI, AccessTy, Val, Imm, isAddress, L, SE);
683}
684
685/// SeparateSubExprs - Decompose Expr into all of the subexpressions that are
686/// added together.  This is used to reassociate common addition subexprs
687/// together for maximal sharing when rewriting bases.
688static void SeparateSubExprs(SmallVector<const SCEV *, 16> &SubExprs,
689                             const SCEV *Expr,
690                             ScalarEvolution *SE) {
691  if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(Expr)) {
692    for (unsigned j = 0, e = AE->getNumOperands(); j != e; ++j)
693      SeparateSubExprs(SubExprs, AE->getOperand(j), SE);
694  } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Expr)) {
695    const SCEV *Zero = SE->getIntegerSCEV(0, Expr->getType());
696    if (SARE->getOperand(0) == Zero) {
697      SubExprs.push_back(Expr);
698    } else {
699      // Compute the addrec with zero as its base.
700      SmallVector<const SCEV *, 4> Ops(SARE->op_begin(), SARE->op_end());
701      Ops[0] = Zero;   // Start with zero base.
702      SubExprs.push_back(SE->getAddRecExpr(Ops, SARE->getLoop()));
703
704
705      SeparateSubExprs(SubExprs, SARE->getOperand(0), SE);
706    }
707  } else if (!Expr->isZero()) {
708    // Do not add zero.
709    SubExprs.push_back(Expr);
710  }
711}
712
713// This is logically local to the following function, but C++ says we have
714// to make it file scope.
715struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; };
716
717/// RemoveCommonExpressionsFromUseBases - Look through all of the Bases of all
718/// the Uses, removing any common subexpressions, except that if all such
719/// subexpressions can be folded into an addressing mode for all uses inside
720/// the loop (this case is referred to as "free" in comments herein) we do
721/// not remove anything.  This looks for things like (a+b+c) and
722/// (a+c+d) and computes the common (a+c) subexpression.  The common expression
723/// is *removed* from the Bases and returned.
724static const SCEV *
725RemoveCommonExpressionsFromUseBases(std::vector<BasedUser> &Uses,
726                                    ScalarEvolution *SE, Loop *L,
727                                    const TargetLowering *TLI) {
728  unsigned NumUses = Uses.size();
729
730  // Only one use?  This is a very common case, so we handle it specially and
731  // cheaply.
732  const SCEV *Zero = SE->getIntegerSCEV(0, Uses[0].Base->getType());
733  const SCEV *Result = Zero;
734  const SCEV *FreeResult = Zero;
735  if (NumUses == 1) {
736    // If the use is inside the loop, use its base, regardless of what it is:
737    // it is clearly shared across all the IV's.  If the use is outside the loop
738    // (which means after it) we don't want to factor anything *into* the loop,
739    // so just use 0 as the base.
740    if (L->contains(Uses[0].Inst->getParent()))
741      std::swap(Result, Uses[0].Base);
742    return Result;
743  }
744
745  // To find common subexpressions, count how many of Uses use each expression.
746  // If any subexpressions are used Uses.size() times, they are common.
747  // Also track whether all uses of each expression can be moved into an
748  // an addressing mode "for free"; such expressions are left within the loop.
749  // struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; };
750  std::map<const SCEV *, SubExprUseData> SubExpressionUseData;
751
752  // UniqueSubExprs - Keep track of all of the subexpressions we see in the
753  // order we see them.
754  SmallVector<const SCEV *, 16> UniqueSubExprs;
755
756  SmallVector<const SCEV *, 16> SubExprs;
757  unsigned NumUsesInsideLoop = 0;
758  for (unsigned i = 0; i != NumUses; ++i) {
759    // If the user is outside the loop, just ignore it for base computation.
760    // Since the user is outside the loop, it must be *after* the loop (if it
761    // were before, it could not be based on the loop IV).  We don't want users
762    // after the loop to affect base computation of values *inside* the loop,
763    // because we can always add their offsets to the result IV after the loop
764    // is done, ensuring we get good code inside the loop.
765    if (!L->contains(Uses[i].Inst->getParent()))
766      continue;
767    NumUsesInsideLoop++;
768
769    // If the base is zero (which is common), return zero now, there are no
770    // CSEs we can find.
771    if (Uses[i].Base == Zero) return Zero;
772
773    // If this use is as an address we may be able to put CSEs in the addressing
774    // mode rather than hoisting them.
775    bool isAddrUse = isAddressUse(Uses[i].Inst, Uses[i].OperandValToReplace);
776    // We may need the AccessTy below, but only when isAddrUse, so compute it
777    // only in that case.
778    const Type *AccessTy = 0;
779    if (isAddrUse)
780      AccessTy = getAccessType(Uses[i].Inst);
781
782    // Split the expression into subexprs.
783    SeparateSubExprs(SubExprs, Uses[i].Base, SE);
784    // Add one to SubExpressionUseData.Count for each subexpr present, and
785    // if the subexpr is not a valid immediate within an addressing mode use,
786    // set SubExpressionUseData.notAllUsesAreFree.  We definitely want to
787    // hoist these out of the loop (if they are common to all uses).
788    for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) {
789      if (++SubExpressionUseData[SubExprs[j]].Count == 1)
790        UniqueSubExprs.push_back(SubExprs[j]);
791      if (!isAddrUse || !fitsInAddressMode(SubExprs[j], AccessTy, TLI, false))
792        SubExpressionUseData[SubExprs[j]].notAllUsesAreFree = true;
793    }
794    SubExprs.clear();
795  }
796
797  // Now that we know how many times each is used, build Result.  Iterate over
798  // UniqueSubexprs so that we have a stable ordering.
799  for (unsigned i = 0, e = UniqueSubExprs.size(); i != e; ++i) {
800    std::map<const SCEV *, SubExprUseData>::iterator I =
801       SubExpressionUseData.find(UniqueSubExprs[i]);
802    assert(I != SubExpressionUseData.end() && "Entry not found?");
803    if (I->second.Count == NumUsesInsideLoop) { // Found CSE!
804      if (I->second.notAllUsesAreFree)
805        Result = SE->getAddExpr(Result, I->first);
806      else
807        FreeResult = SE->getAddExpr(FreeResult, I->first);
808    } else
809      // Remove non-cse's from SubExpressionUseData.
810      SubExpressionUseData.erase(I);
811  }
812
813  if (FreeResult != Zero) {
814    // We have some subexpressions that can be subsumed into addressing
815    // modes in every use inside the loop.  However, it's possible that
816    // there are so many of them that the combined FreeResult cannot
817    // be subsumed, or that the target cannot handle both a FreeResult
818    // and a Result in the same instruction (for example because it would
819    // require too many registers).  Check this.
820    for (unsigned i=0; i<NumUses; ++i) {
821      if (!L->contains(Uses[i].Inst->getParent()))
822        continue;
823      // We know this is an addressing mode use; if there are any uses that
824      // are not, FreeResult would be Zero.
825      const Type *AccessTy = getAccessType(Uses[i].Inst);
826      if (!fitsInAddressMode(FreeResult, AccessTy, TLI, Result!=Zero)) {
827        // FIXME:  could split up FreeResult into pieces here, some hoisted
828        // and some not.  There is no obvious advantage to this.
829        Result = SE->getAddExpr(Result, FreeResult);
830        FreeResult = Zero;
831        break;
832      }
833    }
834  }
835
836  // If we found no CSE's, return now.
837  if (Result == Zero) return Result;
838
839  // If we still have a FreeResult, remove its subexpressions from
840  // SubExpressionUseData.  This means they will remain in the use Bases.
841  if (FreeResult != Zero) {
842    SeparateSubExprs(SubExprs, FreeResult, SE);
843    for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) {
844      std::map<const SCEV *, SubExprUseData>::iterator I =
845         SubExpressionUseData.find(SubExprs[j]);
846      SubExpressionUseData.erase(I);
847    }
848    SubExprs.clear();
849  }
850
851  // Otherwise, remove all of the CSE's we found from each of the base values.
852  for (unsigned i = 0; i != NumUses; ++i) {
853    // Uses outside the loop don't necessarily include the common base, but
854    // the final IV value coming into those uses does.  Instead of trying to
855    // remove the pieces of the common base, which might not be there,
856    // subtract off the base to compensate for this.
857    if (!L->contains(Uses[i].Inst->getParent())) {
858      Uses[i].Base = SE->getMinusSCEV(Uses[i].Base, Result);
859      continue;
860    }
861
862    // Split the expression into subexprs.
863    SeparateSubExprs(SubExprs, Uses[i].Base, SE);
864
865    // Remove any common subexpressions.
866    for (unsigned j = 0, e = SubExprs.size(); j != e; ++j)
867      if (SubExpressionUseData.count(SubExprs[j])) {
868        SubExprs.erase(SubExprs.begin()+j);
869        --j; --e;
870      }
871
872    // Finally, add the non-shared expressions together.
873    if (SubExprs.empty())
874      Uses[i].Base = Zero;
875    else
876      Uses[i].Base = SE->getAddExpr(SubExprs);
877    SubExprs.clear();
878  }
879
880  return Result;
881}
882
883/// ValidScale - Check whether the given Scale is valid for all loads and
884/// stores in UsersToProcess.
885///
886bool LoopStrengthReduce::ValidScale(bool HasBaseReg, int64_t Scale,
887                               const std::vector<BasedUser>& UsersToProcess) {
888  if (!TLI)
889    return true;
890
891  for (unsigned i = 0, e = UsersToProcess.size(); i!=e; ++i) {
892    // If this is a load or other access, pass the type of the access in.
893    const Type *AccessTy =
894        Type::getVoidTy(UsersToProcess[i].Inst->getContext());
895    if (isAddressUse(UsersToProcess[i].Inst,
896                     UsersToProcess[i].OperandValToReplace))
897      AccessTy = getAccessType(UsersToProcess[i].Inst);
898    else if (isa<PHINode>(UsersToProcess[i].Inst))
899      continue;
900
901    TargetLowering::AddrMode AM;
902    if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(UsersToProcess[i].Imm))
903      AM.BaseOffs = SC->getValue()->getSExtValue();
904    AM.HasBaseReg = HasBaseReg || !UsersToProcess[i].Base->isZero();
905    AM.Scale = Scale;
906
907    // If load[imm+r*scale] is illegal, bail out.
908    if (!TLI->isLegalAddressingMode(AM, AccessTy))
909      return false;
910  }
911  return true;
912}
913
914/// ValidOffset - Check whether the given Offset is valid for all loads and
915/// stores in UsersToProcess.
916///
917bool LoopStrengthReduce::ValidOffset(bool HasBaseReg,
918                               int64_t Offset,
919                               int64_t Scale,
920                               const std::vector<BasedUser>& UsersToProcess) {
921  if (!TLI)
922    return true;
923
924  for (unsigned i=0, e = UsersToProcess.size(); i!=e; ++i) {
925    // If this is a load or other access, pass the type of the access in.
926    const Type *AccessTy =
927        Type::getVoidTy(UsersToProcess[i].Inst->getContext());
928    if (isAddressUse(UsersToProcess[i].Inst,
929                     UsersToProcess[i].OperandValToReplace))
930      AccessTy = getAccessType(UsersToProcess[i].Inst);
931    else if (isa<PHINode>(UsersToProcess[i].Inst))
932      continue;
933
934    TargetLowering::AddrMode AM;
935    if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(UsersToProcess[i].Imm))
936      AM.BaseOffs = SC->getValue()->getSExtValue();
937    AM.BaseOffs = (uint64_t)AM.BaseOffs + (uint64_t)Offset;
938    AM.HasBaseReg = HasBaseReg || !UsersToProcess[i].Base->isZero();
939    AM.Scale = Scale;
940
941    // If load[imm+r*scale] is illegal, bail out.
942    if (!TLI->isLegalAddressingMode(AM, AccessTy))
943      return false;
944  }
945  return true;
946}
947
948/// RequiresTypeConversion - Returns true if converting Ty1 to Ty2 is not
949/// a nop.
950bool LoopStrengthReduce::RequiresTypeConversion(const Type *Ty1,
951                                                const Type *Ty2) {
952  if (Ty1 == Ty2)
953    return false;
954  Ty1 = SE->getEffectiveSCEVType(Ty1);
955  Ty2 = SE->getEffectiveSCEVType(Ty2);
956  if (Ty1 == Ty2)
957    return false;
958  if (Ty1->canLosslesslyBitCastTo(Ty2))
959    return false;
960  if (TLI && TLI->isTruncateFree(Ty1, Ty2))
961    return false;
962  return true;
963}
964
965/// CheckForIVReuse - Returns the multiple if the stride is the multiple
966/// of a previous stride and it is a legal value for the target addressing
967/// mode scale component and optional base reg. This allows the users of
968/// this stride to be rewritten as prev iv * factor. It returns 0 if no
969/// reuse is possible.  Factors can be negative on same targets, e.g. ARM.
970///
971/// If all uses are outside the loop, we don't require that all multiplies
972/// be folded into the addressing mode, nor even that the factor be constant;
973/// a multiply (executed once) outside the loop is better than another IV
974/// within.  Well, usually.
975const SCEV *LoopStrengthReduce::CheckForIVReuse(bool HasBaseReg,
976                                bool AllUsesAreAddresses,
977                                bool AllUsesAreOutsideLoop,
978                                const SCEV *const &Stride,
979                                IVExpr &IV, const Type *Ty,
980                                const std::vector<BasedUser>& UsersToProcess) {
981  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Stride)) {
982    int64_t SInt = SC->getValue()->getSExtValue();
983    for (unsigned NewStride = 0, e = IU->StrideOrder.size();
984         NewStride != e; ++NewStride) {
985      std::map<const SCEV *, IVsOfOneStride>::iterator SI =
986                IVsByStride.find(IU->StrideOrder[NewStride]);
987      if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first))
988        continue;
989      // The other stride has no uses, don't reuse it.
990      std::map<const SCEV *, IVUsersOfOneStride *>::iterator UI =
991        IU->IVUsesByStride.find(IU->StrideOrder[NewStride]);
992      if (UI->second->Users.empty())
993        continue;
994      int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
995      if (SI->first != Stride &&
996          (unsigned(abs64(SInt)) < SSInt || (SInt % SSInt) != 0))
997        continue;
998      int64_t Scale = SInt / SSInt;
999      // Check that this stride is valid for all the types used for loads and
1000      // stores; if it can be used for some and not others, we might as well use
1001      // the original stride everywhere, since we have to create the IV for it
1002      // anyway. If the scale is 1, then we don't need to worry about folding
1003      // multiplications.
1004      if (Scale == 1 ||
1005          (AllUsesAreAddresses &&
1006           ValidScale(HasBaseReg, Scale, UsersToProcess))) {
1007        // Prefer to reuse an IV with a base of zero.
1008        for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
1009               IE = SI->second.IVs.end(); II != IE; ++II)
1010          // Only reuse previous IV if it would not require a type conversion
1011          // and if the base difference can be folded.
1012          if (II->Base->isZero() &&
1013              !RequiresTypeConversion(II->Base->getType(), Ty)) {
1014            IV = *II;
1015            return SE->getIntegerSCEV(Scale, Stride->getType());
1016          }
1017        // Otherwise, settle for an IV with a foldable base.
1018        if (AllUsesAreAddresses)
1019          for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
1020                 IE = SI->second.IVs.end(); II != IE; ++II)
1021            // Only reuse previous IV if it would not require a type conversion
1022            // and if the base difference can be folded.
1023            if (SE->getEffectiveSCEVType(II->Base->getType()) ==
1024                SE->getEffectiveSCEVType(Ty) &&
1025                isa<SCEVConstant>(II->Base)) {
1026              int64_t Base =
1027                cast<SCEVConstant>(II->Base)->getValue()->getSExtValue();
1028              if (Base > INT32_MIN && Base <= INT32_MAX &&
1029                  ValidOffset(HasBaseReg, -Base * Scale,
1030                              Scale, UsersToProcess)) {
1031                IV = *II;
1032                return SE->getIntegerSCEV(Scale, Stride->getType());
1033              }
1034            }
1035      }
1036    }
1037  } else if (AllUsesAreOutsideLoop) {
1038    // Accept nonconstant strides here; it is really really right to substitute
1039    // an existing IV if we can.
1040    for (unsigned NewStride = 0, e = IU->StrideOrder.size();
1041         NewStride != e; ++NewStride) {
1042      std::map<const SCEV *, IVsOfOneStride>::iterator SI =
1043                IVsByStride.find(IU->StrideOrder[NewStride]);
1044      if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first))
1045        continue;
1046      int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
1047      if (SI->first != Stride && SSInt != 1)
1048        continue;
1049      for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
1050             IE = SI->second.IVs.end(); II != IE; ++II)
1051        // Accept nonzero base here.
1052        // Only reuse previous IV if it would not require a type conversion.
1053        if (!RequiresTypeConversion(II->Base->getType(), Ty)) {
1054          IV = *II;
1055          return Stride;
1056        }
1057    }
1058    // Special case, old IV is -1*x and this one is x.  Can treat this one as
1059    // -1*old.
1060    for (unsigned NewStride = 0, e = IU->StrideOrder.size();
1061         NewStride != e; ++NewStride) {
1062      std::map<const SCEV *, IVsOfOneStride>::iterator SI =
1063                IVsByStride.find(IU->StrideOrder[NewStride]);
1064      if (SI == IVsByStride.end())
1065        continue;
1066      if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(SI->first))
1067        if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(ME->getOperand(0)))
1068          if (Stride == ME->getOperand(1) &&
1069              SC->getValue()->getSExtValue() == -1LL)
1070            for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
1071                   IE = SI->second.IVs.end(); II != IE; ++II)
1072              // Accept nonzero base here.
1073              // Only reuse previous IV if it would not require type conversion.
1074              if (!RequiresTypeConversion(II->Base->getType(), Ty)) {
1075                IV = *II;
1076                return SE->getIntegerSCEV(-1LL, Stride->getType());
1077              }
1078    }
1079  }
1080  return SE->getIntegerSCEV(0, Stride->getType());
1081}
1082
1083/// PartitionByIsUseOfPostIncrementedValue - Simple boolean predicate that
1084/// returns true if Val's isUseOfPostIncrementedValue is true.
1085static bool PartitionByIsUseOfPostIncrementedValue(const BasedUser &Val) {
1086  return Val.isUseOfPostIncrementedValue;
1087}
1088
1089/// isNonConstantNegative - Return true if the specified scev is negated, but
1090/// not a constant.
1091static bool isNonConstantNegative(const SCEV *const &Expr) {
1092  const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Expr);
1093  if (!Mul) return false;
1094
1095  // If there is a constant factor, it will be first.
1096  const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
1097  if (!SC) return false;
1098
1099  // Return true if the value is negative, this matches things like (-42 * V).
1100  return SC->getValue()->getValue().isNegative();
1101}
1102
1103/// CollectIVUsers - Transform our list of users and offsets to a bit more
1104/// complex table. In this new vector, each 'BasedUser' contains 'Base', the
1105/// base of the strided accesses, as well as the old information from Uses. We
1106/// progressively move information from the Base field to the Imm field, until
1107/// we eventually have the full access expression to rewrite the use.
1108const SCEV *LoopStrengthReduce::CollectIVUsers(const SCEV *const &Stride,
1109                                              IVUsersOfOneStride &Uses,
1110                                              Loop *L,
1111                                              bool &AllUsesAreAddresses,
1112                                              bool &AllUsesAreOutsideLoop,
1113                                       std::vector<BasedUser> &UsersToProcess) {
1114  // FIXME: Generalize to non-affine IV's.
1115  if (!Stride->isLoopInvariant(L))
1116    return SE->getIntegerSCEV(0, Stride->getType());
1117
1118  UsersToProcess.reserve(Uses.Users.size());
1119  for (ilist<IVStrideUse>::iterator I = Uses.Users.begin(),
1120       E = Uses.Users.end(); I != E; ++I) {
1121    UsersToProcess.push_back(BasedUser(*I, SE));
1122
1123    // Move any loop variant operands from the offset field to the immediate
1124    // field of the use, so that we don't try to use something before it is
1125    // computed.
1126    MoveLoopVariantsToImmediateField(UsersToProcess.back().Base,
1127                                     UsersToProcess.back().Imm, L, SE);
1128    assert(UsersToProcess.back().Base->isLoopInvariant(L) &&
1129           "Base value is not loop invariant!");
1130  }
1131
1132  // We now have a whole bunch of uses of like-strided induction variables, but
1133  // they might all have different bases.  We want to emit one PHI node for this
1134  // stride which we fold as many common expressions (between the IVs) into as
1135  // possible.  Start by identifying the common expressions in the base values
1136  // for the strides (e.g. if we have "A+C+B" and "A+B+D" as our bases, find
1137  // "A+B"), emit it to the preheader, then remove the expression from the
1138  // UsersToProcess base values.
1139  const SCEV *CommonExprs =
1140    RemoveCommonExpressionsFromUseBases(UsersToProcess, SE, L, TLI);
1141
1142  // Next, figure out what we can represent in the immediate fields of
1143  // instructions.  If we can represent anything there, move it to the imm
1144  // fields of the BasedUsers.  We do this so that it increases the commonality
1145  // of the remaining uses.
1146  unsigned NumPHI = 0;
1147  bool HasAddress = false;
1148  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
1149    // If the user is not in the current loop, this means it is using the exit
1150    // value of the IV.  Do not put anything in the base, make sure it's all in
1151    // the immediate field to allow as much factoring as possible.
1152    if (!L->contains(UsersToProcess[i].Inst->getParent())) {
1153      UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm,
1154                                             UsersToProcess[i].Base);
1155      UsersToProcess[i].Base =
1156        SE->getIntegerSCEV(0, UsersToProcess[i].Base->getType());
1157    } else {
1158      // Not all uses are outside the loop.
1159      AllUsesAreOutsideLoop = false;
1160
1161      // Addressing modes can be folded into loads and stores.  Be careful that
1162      // the store is through the expression, not of the expression though.
1163      bool isPHI = false;
1164      bool isAddress = isAddressUse(UsersToProcess[i].Inst,
1165                                    UsersToProcess[i].OperandValToReplace);
1166      if (isa<PHINode>(UsersToProcess[i].Inst)) {
1167        isPHI = true;
1168        ++NumPHI;
1169      }
1170
1171      if (isAddress)
1172        HasAddress = true;
1173
1174      // If this use isn't an address, then not all uses are addresses.
1175      if (!isAddress && !isPHI)
1176        AllUsesAreAddresses = false;
1177
1178      MoveImmediateValues(TLI, UsersToProcess[i].Inst, UsersToProcess[i].Base,
1179                          UsersToProcess[i].Imm, isAddress, L, SE);
1180    }
1181  }
1182
1183  // If one of the use is a PHI node and all other uses are addresses, still
1184  // allow iv reuse. Essentially we are trading one constant multiplication
1185  // for one fewer iv.
1186  if (NumPHI > 1)
1187    AllUsesAreAddresses = false;
1188
1189  // There are no in-loop address uses.
1190  if (AllUsesAreAddresses && (!HasAddress && !AllUsesAreOutsideLoop))
1191    AllUsesAreAddresses = false;
1192
1193  return CommonExprs;
1194}
1195
1196/// ShouldUseFullStrengthReductionMode - Test whether full strength-reduction
1197/// is valid and profitable for the given set of users of a stride. In
1198/// full strength-reduction mode, all addresses at the current stride are
1199/// strength-reduced all the way down to pointer arithmetic.
1200///
1201bool LoopStrengthReduce::ShouldUseFullStrengthReductionMode(
1202                                   const std::vector<BasedUser> &UsersToProcess,
1203                                   const Loop *L,
1204                                   bool AllUsesAreAddresses,
1205                                   const SCEV *Stride) {
1206  if (!EnableFullLSRMode)
1207    return false;
1208
1209  // The heuristics below aim to avoid increasing register pressure, but
1210  // fully strength-reducing all the addresses increases the number of
1211  // add instructions, so don't do this when optimizing for size.
1212  // TODO: If the loop is large, the savings due to simpler addresses
1213  // may oughtweight the costs of the extra increment instructions.
1214  if (L->getHeader()->getParent()->hasFnAttr(Attribute::OptimizeForSize))
1215    return false;
1216
1217  // TODO: For now, don't do full strength reduction if there could
1218  // potentially be greater-stride multiples of the current stride
1219  // which could reuse the current stride IV.
1220  if (IU->StrideOrder.back() != Stride)
1221    return false;
1222
1223  // Iterate through the uses to find conditions that automatically rule out
1224  // full-lsr mode.
1225  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ) {
1226    const SCEV *Base = UsersToProcess[i].Base;
1227    const SCEV *Imm = UsersToProcess[i].Imm;
1228    // If any users have a loop-variant component, they can't be fully
1229    // strength-reduced.
1230    if (Imm && !Imm->isLoopInvariant(L))
1231      return false;
1232    // If there are to users with the same base and the difference between
1233    // the two Imm values can't be folded into the address, full
1234    // strength reduction would increase register pressure.
1235    do {
1236      const SCEV *CurImm = UsersToProcess[i].Imm;
1237      if ((CurImm || Imm) && CurImm != Imm) {
1238        if (!CurImm) CurImm = SE->getIntegerSCEV(0, Stride->getType());
1239        if (!Imm)       Imm = SE->getIntegerSCEV(0, Stride->getType());
1240        const Instruction *Inst = UsersToProcess[i].Inst;
1241        const Type *AccessTy = getAccessType(Inst);
1242        const SCEV *Diff = SE->getMinusSCEV(UsersToProcess[i].Imm, Imm);
1243        if (!Diff->isZero() &&
1244            (!AllUsesAreAddresses ||
1245             !fitsInAddressMode(Diff, AccessTy, TLI, /*HasBaseReg=*/true)))
1246          return false;
1247      }
1248    } while (++i != e && Base == UsersToProcess[i].Base);
1249  }
1250
1251  // If there's exactly one user in this stride, fully strength-reducing it
1252  // won't increase register pressure. If it's starting from a non-zero base,
1253  // it'll be simpler this way.
1254  if (UsersToProcess.size() == 1 && !UsersToProcess[0].Base->isZero())
1255    return true;
1256
1257  // Otherwise, if there are any users in this stride that don't require
1258  // a register for their base, full strength-reduction will increase
1259  // register pressure.
1260  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
1261    if (UsersToProcess[i].Base->isZero())
1262      return false;
1263
1264  // Otherwise, go for it.
1265  return true;
1266}
1267
1268/// InsertAffinePhi Create and insert a PHI node for an induction variable
1269/// with the specified start and step values in the specified loop.
1270///
1271/// If NegateStride is true, the stride should be negated by using a
1272/// subtract instead of an add.
1273///
1274/// Return the created phi node.
1275///
1276static PHINode *InsertAffinePhi(const SCEV *Start, const SCEV *Step,
1277                                Instruction *IVIncInsertPt,
1278                                const Loop *L,
1279                                SCEVExpander &Rewriter) {
1280  assert(Start->isLoopInvariant(L) && "New PHI start is not loop invariant!");
1281  assert(Step->isLoopInvariant(L) && "New PHI stride is not loop invariant!");
1282
1283  BasicBlock *Header = L->getHeader();
1284  BasicBlock *Preheader = L->getLoopPreheader();
1285  BasicBlock *LatchBlock = L->getLoopLatch();
1286  const Type *Ty = Start->getType();
1287  Ty = Rewriter.SE.getEffectiveSCEVType(Ty);
1288
1289  PHINode *PN = PHINode::Create(Ty, "lsr.iv", Header->begin());
1290  PN->addIncoming(Rewriter.expandCodeFor(Start, Ty, Preheader->getTerminator()),
1291                  Preheader);
1292
1293  // If the stride is negative, insert a sub instead of an add for the
1294  // increment.
1295  bool isNegative = isNonConstantNegative(Step);
1296  const SCEV *IncAmount = Step;
1297  if (isNegative)
1298    IncAmount = Rewriter.SE.getNegativeSCEV(Step);
1299
1300  // Insert an add instruction right before the terminator corresponding
1301  // to the back-edge or just before the only use. The location is determined
1302  // by the caller and passed in as IVIncInsertPt.
1303  Value *StepV = Rewriter.expandCodeFor(IncAmount, Ty,
1304                                        Preheader->getTerminator());
1305  Instruction *IncV;
1306  if (isNegative) {
1307    IncV = BinaryOperator::CreateSub(PN, StepV, "lsr.iv.next",
1308                                     IVIncInsertPt);
1309  } else {
1310    IncV = BinaryOperator::CreateAdd(PN, StepV, "lsr.iv.next",
1311                                     IVIncInsertPt);
1312  }
1313  if (!isa<ConstantInt>(StepV)) ++NumVariable;
1314
1315  PN->addIncoming(IncV, LatchBlock);
1316
1317  ++NumInserted;
1318  return PN;
1319}
1320
1321static void SortUsersToProcess(std::vector<BasedUser> &UsersToProcess) {
1322  // We want to emit code for users inside the loop first.  To do this, we
1323  // rearrange BasedUser so that the entries at the end have
1324  // isUseOfPostIncrementedValue = false, because we pop off the end of the
1325  // vector (so we handle them first).
1326  std::partition(UsersToProcess.begin(), UsersToProcess.end(),
1327                 PartitionByIsUseOfPostIncrementedValue);
1328
1329  // Sort this by base, so that things with the same base are handled
1330  // together.  By partitioning first and stable-sorting later, we are
1331  // guaranteed that within each base we will pop off users from within the
1332  // loop before users outside of the loop with a particular base.
1333  //
1334  // We would like to use stable_sort here, but we can't.  The problem is that
1335  // const SCEV *'s don't have a deterministic ordering w.r.t to each other, so
1336  // we don't have anything to do a '<' comparison on.  Because we think the
1337  // number of uses is small, do a horrible bubble sort which just relies on
1338  // ==.
1339  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
1340    // Get a base value.
1341    const SCEV *Base = UsersToProcess[i].Base;
1342
1343    // Compact everything with this base to be consecutive with this one.
1344    for (unsigned j = i+1; j != e; ++j) {
1345      if (UsersToProcess[j].Base == Base) {
1346        std::swap(UsersToProcess[i+1], UsersToProcess[j]);
1347        ++i;
1348      }
1349    }
1350  }
1351}
1352
1353/// PrepareToStrengthReduceFully - Prepare to fully strength-reduce
1354/// UsersToProcess, meaning lowering addresses all the way down to direct
1355/// pointer arithmetic.
1356///
1357void
1358LoopStrengthReduce::PrepareToStrengthReduceFully(
1359                                        std::vector<BasedUser> &UsersToProcess,
1360                                        const SCEV *Stride,
1361                                        const SCEV *CommonExprs,
1362                                        const Loop *L,
1363                                        SCEVExpander &PreheaderRewriter) {
1364  DEBUG(errs() << "  Fully reducing all users\n");
1365
1366  // Rewrite the UsersToProcess records, creating a separate PHI for each
1367  // unique Base value.
1368  Instruction *IVIncInsertPt = L->getLoopLatch()->getTerminator();
1369  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ) {
1370    // TODO: The uses are grouped by base, but not sorted. We arbitrarily
1371    // pick the first Imm value here to start with, and adjust it for the
1372    // other uses.
1373    const SCEV *Imm = UsersToProcess[i].Imm;
1374    const SCEV *Base = UsersToProcess[i].Base;
1375    const SCEV *Start = SE->getAddExpr(CommonExprs, Base, Imm);
1376    PHINode *Phi = InsertAffinePhi(Start, Stride, IVIncInsertPt, L,
1377                                   PreheaderRewriter);
1378    // Loop over all the users with the same base.
1379    do {
1380      UsersToProcess[i].Base = SE->getIntegerSCEV(0, Stride->getType());
1381      UsersToProcess[i].Imm = SE->getMinusSCEV(UsersToProcess[i].Imm, Imm);
1382      UsersToProcess[i].Phi = Phi;
1383      assert(UsersToProcess[i].Imm->isLoopInvariant(L) &&
1384             "ShouldUseFullStrengthReductionMode should reject this!");
1385    } while (++i != e && Base == UsersToProcess[i].Base);
1386  }
1387}
1388
1389/// FindIVIncInsertPt - Return the location to insert the increment instruction.
1390/// If the only use if a use of postinc value, (must be the loop termination
1391/// condition), then insert it just before the use.
1392static Instruction *FindIVIncInsertPt(std::vector<BasedUser> &UsersToProcess,
1393                                      const Loop *L) {
1394  if (UsersToProcess.size() == 1 &&
1395      UsersToProcess[0].isUseOfPostIncrementedValue &&
1396      L->contains(UsersToProcess[0].Inst->getParent()))
1397    return UsersToProcess[0].Inst;
1398  return L->getLoopLatch()->getTerminator();
1399}
1400
1401/// PrepareToStrengthReduceWithNewPhi - Insert a new induction variable for the
1402/// given users to share.
1403///
1404void
1405LoopStrengthReduce::PrepareToStrengthReduceWithNewPhi(
1406                                         std::vector<BasedUser> &UsersToProcess,
1407                                         const SCEV *Stride,
1408                                         const SCEV *CommonExprs,
1409                                         Value *CommonBaseV,
1410                                         Instruction *IVIncInsertPt,
1411                                         const Loop *L,
1412                                         SCEVExpander &PreheaderRewriter) {
1413  DEBUG(errs() << "  Inserting new PHI:\n");
1414
1415  PHINode *Phi = InsertAffinePhi(SE->getUnknown(CommonBaseV),
1416                                 Stride, IVIncInsertPt, L,
1417                                 PreheaderRewriter);
1418
1419  // Remember this in case a later stride is multiple of this.
1420  IVsByStride[Stride].addIV(Stride, CommonExprs, Phi);
1421
1422  // All the users will share this new IV.
1423  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
1424    UsersToProcess[i].Phi = Phi;
1425
1426  DEBUG(errs() << "    IV=");
1427  DEBUG(WriteAsOperand(errs(), Phi, /*PrintType=*/false));
1428  DEBUG(errs() << "\n");
1429}
1430
1431/// PrepareToStrengthReduceFromSmallerStride - Prepare for the given users to
1432/// reuse an induction variable with a stride that is a factor of the current
1433/// induction variable.
1434///
1435void
1436LoopStrengthReduce::PrepareToStrengthReduceFromSmallerStride(
1437                                         std::vector<BasedUser> &UsersToProcess,
1438                                         Value *CommonBaseV,
1439                                         const IVExpr &ReuseIV,
1440                                         Instruction *PreInsertPt) {
1441  DEBUG(errs() << "  Rewriting in terms of existing IV of STRIDE "
1442               << *ReuseIV.Stride << " and BASE " << *ReuseIV.Base << "\n");
1443
1444  // All the users will share the reused IV.
1445  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
1446    UsersToProcess[i].Phi = ReuseIV.PHI;
1447
1448  Constant *C = dyn_cast<Constant>(CommonBaseV);
1449  if (C &&
1450      (!C->isNullValue() &&
1451       !fitsInAddressMode(SE->getUnknown(CommonBaseV), CommonBaseV->getType(),
1452                         TLI, false)))
1453    // We want the common base emitted into the preheader! This is just
1454    // using cast as a copy so BitCast (no-op cast) is appropriate
1455    CommonBaseV = new BitCastInst(CommonBaseV, CommonBaseV->getType(),
1456                                  "commonbase", PreInsertPt);
1457}
1458
1459static bool IsImmFoldedIntoAddrMode(GlobalValue *GV, int64_t Offset,
1460                                    const Type *AccessTy,
1461                                   std::vector<BasedUser> &UsersToProcess,
1462                                   const TargetLowering *TLI) {
1463  SmallVector<Instruction*, 16> AddrModeInsts;
1464  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
1465    if (UsersToProcess[i].isUseOfPostIncrementedValue)
1466      continue;
1467    ExtAddrMode AddrMode =
1468      AddressingModeMatcher::Match(UsersToProcess[i].OperandValToReplace,
1469                                   AccessTy, UsersToProcess[i].Inst,
1470                                   AddrModeInsts, *TLI);
1471    if (GV && GV != AddrMode.BaseGV)
1472      return false;
1473    if (Offset && !AddrMode.BaseOffs)
1474      // FIXME: How to accurate check it's immediate offset is folded.
1475      return false;
1476    AddrModeInsts.clear();
1477  }
1478  return true;
1479}
1480
1481/// StrengthReduceIVUsersOfStride - Strength reduce all of the users of a single
1482/// stride of IV.  All of the users may have different starting values, and this
1483/// may not be the only stride.
1484void
1485LoopStrengthReduce::StrengthReduceIVUsersOfStride(const SCEV *const &Stride,
1486                                                  IVUsersOfOneStride &Uses,
1487                                                  Loop *L) {
1488  // If all the users are moved to another stride, then there is nothing to do.
1489  if (Uses.Users.empty())
1490    return;
1491
1492  // Keep track if every use in UsersToProcess is an address. If they all are,
1493  // we may be able to rewrite the entire collection of them in terms of a
1494  // smaller-stride IV.
1495  bool AllUsesAreAddresses = true;
1496
1497  // Keep track if every use of a single stride is outside the loop.  If so,
1498  // we want to be more aggressive about reusing a smaller-stride IV; a
1499  // multiply outside the loop is better than another IV inside.  Well, usually.
1500  bool AllUsesAreOutsideLoop = true;
1501
1502  // Transform our list of users and offsets to a bit more complex table.  In
1503  // this new vector, each 'BasedUser' contains 'Base' the base of the
1504  // strided accessas well as the old information from Uses.  We progressively
1505  // move information from the Base field to the Imm field, until we eventually
1506  // have the full access expression to rewrite the use.
1507  std::vector<BasedUser> UsersToProcess;
1508  const SCEV *CommonExprs = CollectIVUsers(Stride, Uses, L, AllUsesAreAddresses,
1509                                           AllUsesAreOutsideLoop,
1510                                           UsersToProcess);
1511
1512  // Sort the UsersToProcess array so that users with common bases are
1513  // next to each other.
1514  SortUsersToProcess(UsersToProcess);
1515
1516  // If we managed to find some expressions in common, we'll need to carry
1517  // their value in a register and add it in for each use. This will take up
1518  // a register operand, which potentially restricts what stride values are
1519  // valid.
1520  bool HaveCommonExprs = !CommonExprs->isZero();
1521  const Type *ReplacedTy = CommonExprs->getType();
1522
1523  // If all uses are addresses, consider sinking the immediate part of the
1524  // common expression back into uses if they can fit in the immediate fields.
1525  if (TLI && HaveCommonExprs && AllUsesAreAddresses) {
1526    const SCEV *NewCommon = CommonExprs;
1527    const SCEV *Imm = SE->getIntegerSCEV(0, ReplacedTy);
1528    MoveImmediateValues(TLI, Type::getVoidTy(
1529                        L->getLoopPreheader()->getContext()),
1530                        NewCommon, Imm, true, L, SE);
1531    if (!Imm->isZero()) {
1532      bool DoSink = true;
1533
1534      // If the immediate part of the common expression is a GV, check if it's
1535      // possible to fold it into the target addressing mode.
1536      GlobalValue *GV = 0;
1537      if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(Imm))
1538        GV = dyn_cast<GlobalValue>(SU->getValue());
1539      int64_t Offset = 0;
1540      if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Imm))
1541        Offset = SC->getValue()->getSExtValue();
1542      if (GV || Offset)
1543        // Pass VoidTy as the AccessTy to be conservative, because
1544        // there could be multiple access types among all the uses.
1545        DoSink = IsImmFoldedIntoAddrMode(GV, Offset,
1546                          Type::getVoidTy(L->getLoopPreheader()->getContext()),
1547                                         UsersToProcess, TLI);
1548
1549      if (DoSink) {
1550        DEBUG(errs() << "  Sinking " << *Imm << " back down into uses\n");
1551        for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
1552          UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm, Imm);
1553        CommonExprs = NewCommon;
1554        HaveCommonExprs = !CommonExprs->isZero();
1555        ++NumImmSunk;
1556      }
1557    }
1558  }
1559
1560  // Now that we know what we need to do, insert the PHI node itself.
1561  //
1562  DEBUG(errs() << "LSR: Examining IVs of TYPE " << *ReplacedTy << " of STRIDE "
1563               << *Stride << ":\n"
1564               << "  Common base: " << *CommonExprs << "\n");
1565
1566  SCEVExpander Rewriter(*SE);
1567  SCEVExpander PreheaderRewriter(*SE);
1568
1569  BasicBlock  *Preheader = L->getLoopPreheader();
1570  Instruction *PreInsertPt = Preheader->getTerminator();
1571  BasicBlock *LatchBlock = L->getLoopLatch();
1572  Instruction *IVIncInsertPt = LatchBlock->getTerminator();
1573
1574  Value *CommonBaseV = Constant::getNullValue(ReplacedTy);
1575
1576  const SCEV *RewriteFactor = SE->getIntegerSCEV(0, ReplacedTy);
1577  IVExpr   ReuseIV(SE->getIntegerSCEV(0,
1578                                    Type::getInt32Ty(Preheader->getContext())),
1579                   SE->getIntegerSCEV(0,
1580                                    Type::getInt32Ty(Preheader->getContext())),
1581                   0);
1582
1583  // Choose a strength-reduction strategy and prepare for it by creating
1584  // the necessary PHIs and adjusting the bookkeeping.
1585  if (ShouldUseFullStrengthReductionMode(UsersToProcess, L,
1586                                         AllUsesAreAddresses, Stride)) {
1587    PrepareToStrengthReduceFully(UsersToProcess, Stride, CommonExprs, L,
1588                                 PreheaderRewriter);
1589  } else {
1590    // Emit the initial base value into the loop preheader.
1591    CommonBaseV = PreheaderRewriter.expandCodeFor(CommonExprs, ReplacedTy,
1592                                                  PreInsertPt);
1593
1594    // If all uses are addresses, check if it is possible to reuse an IV.  The
1595    // new IV must have a stride that is a multiple of the old stride; the
1596    // multiple must be a number that can be encoded in the scale field of the
1597    // target addressing mode; and we must have a valid instruction after this
1598    // substitution, including the immediate field, if any.
1599    RewriteFactor = CheckForIVReuse(HaveCommonExprs, AllUsesAreAddresses,
1600                                    AllUsesAreOutsideLoop,
1601                                    Stride, ReuseIV, ReplacedTy,
1602                                    UsersToProcess);
1603    if (!RewriteFactor->isZero())
1604      PrepareToStrengthReduceFromSmallerStride(UsersToProcess, CommonBaseV,
1605                                               ReuseIV, PreInsertPt);
1606    else {
1607      IVIncInsertPt = FindIVIncInsertPt(UsersToProcess, L);
1608      PrepareToStrengthReduceWithNewPhi(UsersToProcess, Stride, CommonExprs,
1609                                        CommonBaseV, IVIncInsertPt,
1610                                        L, PreheaderRewriter);
1611    }
1612  }
1613
1614  // Process all the users now, replacing their strided uses with
1615  // strength-reduced forms.  This outer loop handles all bases, the inner
1616  // loop handles all users of a particular base.
1617  while (!UsersToProcess.empty()) {
1618    const SCEV *Base = UsersToProcess.back().Base;
1619    Instruction *Inst = UsersToProcess.back().Inst;
1620
1621    // Emit the code for Base into the preheader.
1622    Value *BaseV = 0;
1623    if (!Base->isZero()) {
1624      BaseV = PreheaderRewriter.expandCodeFor(Base, 0, PreInsertPt);
1625
1626      DEBUG(errs() << "  INSERTING code for BASE = " << *Base << ":");
1627      if (BaseV->hasName())
1628        DEBUG(errs() << " Result value name = %" << BaseV->getName());
1629      DEBUG(errs() << "\n");
1630
1631      // If BaseV is a non-zero constant, make sure that it gets inserted into
1632      // the preheader, instead of being forward substituted into the uses.  We
1633      // do this by forcing a BitCast (noop cast) to be inserted into the
1634      // preheader in this case.
1635      if (!fitsInAddressMode(Base, getAccessType(Inst), TLI, false) &&
1636          isa<Constant>(BaseV)) {
1637        // We want this constant emitted into the preheader! This is just
1638        // using cast as a copy so BitCast (no-op cast) is appropriate
1639        BaseV = new BitCastInst(BaseV, BaseV->getType(), "preheaderinsert",
1640                                PreInsertPt);
1641      }
1642    }
1643
1644    // Emit the code to add the immediate offset to the Phi value, just before
1645    // the instructions that we identified as using this stride and base.
1646    do {
1647      // FIXME: Use emitted users to emit other users.
1648      BasedUser &User = UsersToProcess.back();
1649
1650      DEBUG(errs() << "    Examining ");
1651      if (User.isUseOfPostIncrementedValue)
1652        DEBUG(errs() << "postinc");
1653      else
1654        DEBUG(errs() << "preinc");
1655      DEBUG(errs() << " use ");
1656      DEBUG(WriteAsOperand(errs(), UsersToProcess.back().OperandValToReplace,
1657                           /*PrintType=*/false));
1658      DEBUG(errs() << " in Inst: " << *User.Inst);
1659
1660      // If this instruction wants to use the post-incremented value, move it
1661      // after the post-inc and use its value instead of the PHI.
1662      Value *RewriteOp = User.Phi;
1663      if (User.isUseOfPostIncrementedValue) {
1664        RewriteOp = User.Phi->getIncomingValueForBlock(LatchBlock);
1665        // If this user is in the loop, make sure it is the last thing in the
1666        // loop to ensure it is dominated by the increment. In case it's the
1667        // only use of the iv, the increment instruction is already before the
1668        // use.
1669        if (L->contains(User.Inst->getParent()) && User.Inst != IVIncInsertPt)
1670          User.Inst->moveBefore(IVIncInsertPt);
1671      }
1672
1673      const SCEV *RewriteExpr = SE->getUnknown(RewriteOp);
1674
1675      if (SE->getEffectiveSCEVType(RewriteOp->getType()) !=
1676          SE->getEffectiveSCEVType(ReplacedTy)) {
1677        assert(SE->getTypeSizeInBits(RewriteOp->getType()) >
1678               SE->getTypeSizeInBits(ReplacedTy) &&
1679               "Unexpected widening cast!");
1680        RewriteExpr = SE->getTruncateExpr(RewriteExpr, ReplacedTy);
1681      }
1682
1683      // If we had to insert new instructions for RewriteOp, we have to
1684      // consider that they may not have been able to end up immediately
1685      // next to RewriteOp, because non-PHI instructions may never precede
1686      // PHI instructions in a block. In this case, remember where the last
1687      // instruction was inserted so that if we're replacing a different
1688      // PHI node, we can use the later point to expand the final
1689      // RewriteExpr.
1690      Instruction *NewBasePt = dyn_cast<Instruction>(RewriteOp);
1691      if (RewriteOp == User.Phi) NewBasePt = 0;
1692
1693      // Clear the SCEVExpander's expression map so that we are guaranteed
1694      // to have the code emitted where we expect it.
1695      Rewriter.clear();
1696
1697      // If we are reusing the iv, then it must be multiplied by a constant
1698      // factor to take advantage of the addressing mode scale component.
1699      if (!RewriteFactor->isZero()) {
1700        // If we're reusing an IV with a nonzero base (currently this happens
1701        // only when all reuses are outside the loop) subtract that base here.
1702        // The base has been used to initialize the PHI node but we don't want
1703        // it here.
1704        if (!ReuseIV.Base->isZero()) {
1705          const SCEV *typedBase = ReuseIV.Base;
1706          if (SE->getEffectiveSCEVType(RewriteExpr->getType()) !=
1707              SE->getEffectiveSCEVType(ReuseIV.Base->getType())) {
1708            // It's possible the original IV is a larger type than the new IV,
1709            // in which case we have to truncate the Base.  We checked in
1710            // RequiresTypeConversion that this is valid.
1711            assert(SE->getTypeSizeInBits(RewriteExpr->getType()) <
1712                   SE->getTypeSizeInBits(ReuseIV.Base->getType()) &&
1713                   "Unexpected lengthening conversion!");
1714            typedBase = SE->getTruncateExpr(ReuseIV.Base,
1715                                            RewriteExpr->getType());
1716          }
1717          RewriteExpr = SE->getMinusSCEV(RewriteExpr, typedBase);
1718        }
1719
1720        // Multiply old variable, with base removed, by new scale factor.
1721        RewriteExpr = SE->getMulExpr(RewriteFactor,
1722                                     RewriteExpr);
1723
1724        // The common base is emitted in the loop preheader. But since we
1725        // are reusing an IV, it has not been used to initialize the PHI node.
1726        // Add it to the expression used to rewrite the uses.
1727        // When this use is outside the loop, we earlier subtracted the
1728        // common base, and are adding it back here.  Use the same expression
1729        // as before, rather than CommonBaseV, so DAGCombiner will zap it.
1730        if (!CommonExprs->isZero()) {
1731          if (L->contains(User.Inst->getParent()))
1732            RewriteExpr = SE->getAddExpr(RewriteExpr,
1733                                       SE->getUnknown(CommonBaseV));
1734          else
1735            RewriteExpr = SE->getAddExpr(RewriteExpr, CommonExprs);
1736        }
1737      }
1738
1739      // Now that we know what we need to do, insert code before User for the
1740      // immediate and any loop-variant expressions.
1741      if (BaseV)
1742        // Add BaseV to the PHI value if needed.
1743        RewriteExpr = SE->getAddExpr(RewriteExpr, SE->getUnknown(BaseV));
1744
1745      User.RewriteInstructionToUseNewBase(RewriteExpr, NewBasePt,
1746                                          Rewriter, L, this,
1747                                          DeadInsts, SE);
1748
1749      // Mark old value we replaced as possibly dead, so that it is eliminated
1750      // if we just replaced the last use of that value.
1751      DeadInsts.push_back(User.OperandValToReplace);
1752
1753      UsersToProcess.pop_back();
1754      ++NumReduced;
1755
1756      // If there are any more users to process with the same base, process them
1757      // now.  We sorted by base above, so we just have to check the last elt.
1758    } while (!UsersToProcess.empty() && UsersToProcess.back().Base == Base);
1759    // TODO: Next, find out which base index is the most common, pull it out.
1760  }
1761
1762  // IMPORTANT TODO: Figure out how to partition the IV's with this stride, but
1763  // different starting values, into different PHIs.
1764}
1765
1766void LoopStrengthReduce::StrengthReduceIVUsers(Loop *L) {
1767  // Note: this processes each stride/type pair individually.  All users
1768  // passed into StrengthReduceIVUsersOfStride have the same type AND stride.
1769  // Also, note that we iterate over IVUsesByStride indirectly by using
1770  // StrideOrder. This extra layer of indirection makes the ordering of
1771  // strides deterministic - not dependent on map order.
1772  for (unsigned Stride = 0, e = IU->StrideOrder.size(); Stride != e; ++Stride) {
1773    std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
1774      IU->IVUsesByStride.find(IU->StrideOrder[Stride]);
1775    assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
1776    // FIXME: Generalize to non-affine IV's.
1777    if (!SI->first->isLoopInvariant(L))
1778      continue;
1779    StrengthReduceIVUsersOfStride(SI->first, *SI->second, L);
1780  }
1781}
1782
1783/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1784/// set the IV user and stride information and return true, otherwise return
1785/// false.
1786bool LoopStrengthReduce::FindIVUserForCond(ICmpInst *Cond,
1787                                           IVStrideUse *&CondUse,
1788                                           const SCEV* &CondStride) {
1789  for (unsigned Stride = 0, e = IU->StrideOrder.size();
1790       Stride != e && !CondUse; ++Stride) {
1791    std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
1792      IU->IVUsesByStride.find(IU->StrideOrder[Stride]);
1793    assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
1794
1795    for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(),
1796         E = SI->second->Users.end(); UI != E; ++UI)
1797      if (UI->getUser() == Cond) {
1798        // NOTE: we could handle setcc instructions with multiple uses here, but
1799        // InstCombine does it as well for simple uses, it's not clear that it
1800        // occurs enough in real life to handle.
1801        CondUse = UI;
1802        CondStride = SI->first;
1803        return true;
1804      }
1805  }
1806  return false;
1807}
1808
1809namespace {
1810  // Constant strides come first which in turns are sorted by their absolute
1811  // values. If absolute values are the same, then positive strides comes first.
1812  // e.g.
1813  // 4, -1, X, 1, 2 ==> 1, -1, 2, 4, X
1814  struct StrideCompare {
1815    const ScalarEvolution *SE;
1816    explicit StrideCompare(const ScalarEvolution *se) : SE(se) {}
1817
1818    bool operator()(const SCEV *const &LHS, const SCEV *const &RHS) {
1819      const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS);
1820      const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
1821      if (LHSC && RHSC) {
1822        int64_t  LV = LHSC->getValue()->getSExtValue();
1823        int64_t  RV = RHSC->getValue()->getSExtValue();
1824        uint64_t ALV = (LV < 0) ? -LV : LV;
1825        uint64_t ARV = (RV < 0) ? -RV : RV;
1826        if (ALV == ARV) {
1827          if (LV != RV)
1828            return LV > RV;
1829        } else {
1830          return ALV < ARV;
1831        }
1832
1833        // If it's the same value but different type, sort by bit width so
1834        // that we emit larger induction variables before smaller
1835        // ones, letting the smaller be re-written in terms of larger ones.
1836        return SE->getTypeSizeInBits(RHS->getType()) <
1837               SE->getTypeSizeInBits(LHS->getType());
1838      }
1839      return LHSC && !RHSC;
1840    }
1841  };
1842}
1843
1844/// ChangeCompareStride - If a loop termination compare instruction is the
1845/// only use of its stride, and the compaison is against a constant value,
1846/// try eliminate the stride by moving the compare instruction to another
1847/// stride and change its constant operand accordingly. e.g.
1848///
1849/// loop:
1850/// ...
1851/// v1 = v1 + 3
1852/// v2 = v2 + 1
1853/// if (v2 < 10) goto loop
1854/// =>
1855/// loop:
1856/// ...
1857/// v1 = v1 + 3
1858/// if (v1 < 30) goto loop
1859ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
1860                                                  IVStrideUse* &CondUse,
1861                                                  const SCEV* &CondStride,
1862                                                  bool PostPass) {
1863  // If there's only one stride in the loop, there's nothing to do here.
1864  if (IU->StrideOrder.size() < 2)
1865    return Cond;
1866  // If there are other users of the condition's stride, don't bother
1867  // trying to change the condition because the stride will still
1868  // remain.
1869  std::map<const SCEV *, IVUsersOfOneStride *>::iterator I =
1870    IU->IVUsesByStride.find(CondStride);
1871  if (I == IU->IVUsesByStride.end())
1872    return Cond;
1873  if (I->second->Users.size() > 1) {
1874    for (ilist<IVStrideUse>::iterator II = I->second->Users.begin(),
1875           EE = I->second->Users.end(); II != EE; ++II) {
1876      if (II->getUser() == Cond)
1877        continue;
1878      if (!isInstructionTriviallyDead(II->getUser()))
1879        return Cond;
1880    }
1881  }
1882  // Only handle constant strides for now.
1883  const SCEVConstant *SC = dyn_cast<SCEVConstant>(CondStride);
1884  if (!SC) return Cond;
1885
1886  ICmpInst::Predicate Predicate = Cond->getPredicate();
1887  int64_t CmpSSInt = SC->getValue()->getSExtValue();
1888  unsigned BitWidth = SE->getTypeSizeInBits(CondStride->getType());
1889  uint64_t SignBit = 1ULL << (BitWidth-1);
1890  const Type *CmpTy = Cond->getOperand(0)->getType();
1891  const Type *NewCmpTy = NULL;
1892  unsigned TyBits = SE->getTypeSizeInBits(CmpTy);
1893  unsigned NewTyBits = 0;
1894  const SCEV *NewStride = NULL;
1895  Value *NewCmpLHS = NULL;
1896  Value *NewCmpRHS = NULL;
1897  int64_t Scale = 1;
1898  const SCEV *NewOffset = SE->getIntegerSCEV(0, CmpTy);
1899
1900  if (ConstantInt *C = dyn_cast<ConstantInt>(Cond->getOperand(1))) {
1901    int64_t CmpVal = C->getValue().getSExtValue();
1902
1903    // Check the relevant induction variable for conformance to
1904    // the pattern.
1905    const SCEV *IV = SE->getSCEV(Cond->getOperand(0));
1906    const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
1907    if (!AR || !AR->isAffine())
1908      return Cond;
1909
1910    const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
1911    // Check stride constant and the comparision constant signs to detect
1912    // overflow.
1913    if (StartC) {
1914      if ((StartC->getValue()->getSExtValue() < CmpVal && CmpSSInt < 0) ||
1915          (StartC->getValue()->getSExtValue() > CmpVal && CmpSSInt > 0))
1916        return Cond;
1917    } else {
1918      // More restrictive check for the other cases.
1919      if ((CmpVal & SignBit) != (CmpSSInt & SignBit))
1920        return Cond;
1921    }
1922
1923    // Look for a suitable stride / iv as replacement.
1924    for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
1925      std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
1926        IU->IVUsesByStride.find(IU->StrideOrder[i]);
1927      if (!isa<SCEVConstant>(SI->first) || SI->second->Users.empty())
1928        continue;
1929      int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
1930      if (SSInt == CmpSSInt ||
1931          abs64(SSInt) < abs64(CmpSSInt) ||
1932          (SSInt % CmpSSInt) != 0)
1933        continue;
1934
1935      Scale = SSInt / CmpSSInt;
1936      int64_t NewCmpVal = CmpVal * Scale;
1937
1938      // If old icmp value fits in icmp immediate field, but the new one doesn't
1939      // try something else.
1940      if (TLI &&
1941          TLI->isLegalICmpImmediate(CmpVal) &&
1942          !TLI->isLegalICmpImmediate(NewCmpVal))
1943        continue;
1944
1945      APInt Mul = APInt(BitWidth*2, CmpVal, true);
1946      Mul = Mul * APInt(BitWidth*2, Scale, true);
1947      // Check for overflow.
1948      if (!Mul.isSignedIntN(BitWidth))
1949        continue;
1950      // Check for overflow in the stride's type too.
1951      if (!Mul.isSignedIntN(SE->getTypeSizeInBits(SI->first->getType())))
1952        continue;
1953
1954      // Watch out for overflow.
1955      if (ICmpInst::isSigned(Predicate) &&
1956          (CmpVal & SignBit) != (NewCmpVal & SignBit))
1957        continue;
1958
1959      // Pick the best iv to use trying to avoid a cast.
1960      NewCmpLHS = NULL;
1961      for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(),
1962             E = SI->second->Users.end(); UI != E; ++UI) {
1963        Value *Op = UI->getOperandValToReplace();
1964
1965        // If the IVStrideUse implies a cast, check for an actual cast which
1966        // can be used to find the original IV expression.
1967        if (SE->getEffectiveSCEVType(Op->getType()) !=
1968            SE->getEffectiveSCEVType(SI->first->getType())) {
1969          CastInst *CI = dyn_cast<CastInst>(Op);
1970          // If it's not a simple cast, it's complicated.
1971          if (!CI)
1972            continue;
1973          // If it's a cast from a type other than the stride type,
1974          // it's complicated.
1975          if (CI->getOperand(0)->getType() != SI->first->getType())
1976            continue;
1977          // Ok, we found the IV expression in the stride's type.
1978          Op = CI->getOperand(0);
1979        }
1980
1981        NewCmpLHS = Op;
1982        if (NewCmpLHS->getType() == CmpTy)
1983          break;
1984      }
1985      if (!NewCmpLHS)
1986        continue;
1987
1988      NewCmpTy = NewCmpLHS->getType();
1989      NewTyBits = SE->getTypeSizeInBits(NewCmpTy);
1990      const Type *NewCmpIntTy = IntegerType::get(Cond->getContext(), NewTyBits);
1991      if (RequiresTypeConversion(NewCmpTy, CmpTy)) {
1992        // Check if it is possible to rewrite it using
1993        // an iv / stride of a smaller integer type.
1994        unsigned Bits = NewTyBits;
1995        if (ICmpInst::isSigned(Predicate))
1996          --Bits;
1997        uint64_t Mask = (1ULL << Bits) - 1;
1998        if (((uint64_t)NewCmpVal & Mask) != (uint64_t)NewCmpVal)
1999          continue;
2000      }
2001
2002      // Don't rewrite if use offset is non-constant and the new type is
2003      // of a different type.
2004      // FIXME: too conservative?
2005      if (NewTyBits != TyBits && !isa<SCEVConstant>(CondUse->getOffset()))
2006        continue;
2007
2008      if (!PostPass) {
2009        bool AllUsesAreAddresses = true;
2010        bool AllUsesAreOutsideLoop = true;
2011        std::vector<BasedUser> UsersToProcess;
2012        const SCEV *CommonExprs = CollectIVUsers(SI->first, *SI->second, L,
2013                                                 AllUsesAreAddresses,
2014                                                 AllUsesAreOutsideLoop,
2015                                                 UsersToProcess);
2016        // Avoid rewriting the compare instruction with an iv of new stride
2017        // if it's likely the new stride uses will be rewritten using the
2018        // stride of the compare instruction.
2019        if (AllUsesAreAddresses &&
2020            ValidScale(!CommonExprs->isZero(), Scale, UsersToProcess))
2021          continue;
2022      }
2023
2024      // Avoid rewriting the compare instruction with an iv which has
2025      // implicit extension or truncation built into it.
2026      // TODO: This is over-conservative.
2027      if (SE->getTypeSizeInBits(CondUse->getOffset()->getType()) != TyBits)
2028        continue;
2029
2030      // If scale is negative, use swapped predicate unless it's testing
2031      // for equality.
2032      if (Scale < 0 && !Cond->isEquality())
2033        Predicate = ICmpInst::getSwappedPredicate(Predicate);
2034
2035      NewStride = IU->StrideOrder[i];
2036      if (!isa<PointerType>(NewCmpTy))
2037        NewCmpRHS = ConstantInt::get(NewCmpTy, NewCmpVal);
2038      else {
2039        Constant *CI = ConstantInt::get(NewCmpIntTy, NewCmpVal);
2040        NewCmpRHS = ConstantExpr::getIntToPtr(CI, NewCmpTy);
2041      }
2042      NewOffset = TyBits == NewTyBits
2043        ? SE->getMulExpr(CondUse->getOffset(),
2044                         SE->getConstant(CmpTy, Scale))
2045        : SE->getConstant(NewCmpIntTy,
2046          cast<SCEVConstant>(CondUse->getOffset())->getValue()
2047            ->getSExtValue()*Scale);
2048      break;
2049    }
2050  }
2051
2052  // Forgo this transformation if it the increment happens to be
2053  // unfortunately positioned after the condition, and the condition
2054  // has multiple uses which prevent it from being moved immediately
2055  // before the branch. See
2056  // test/Transforms/LoopStrengthReduce/change-compare-stride-trickiness-*.ll
2057  // for an example of this situation.
2058  if (!Cond->hasOneUse()) {
2059    for (BasicBlock::iterator I = Cond, E = Cond->getParent()->end();
2060         I != E; ++I)
2061      if (I == NewCmpLHS)
2062        return Cond;
2063  }
2064
2065  if (NewCmpRHS) {
2066    // Create a new compare instruction using new stride / iv.
2067    ICmpInst *OldCond = Cond;
2068    // Insert new compare instruction.
2069    Cond = new ICmpInst(OldCond, Predicate, NewCmpLHS, NewCmpRHS,
2070                        L->getHeader()->getName() + ".termcond");
2071
2072    DEBUG(errs() << "    Change compare stride in Inst " << *OldCond);
2073    DEBUG(errs() << " to " << *Cond << '\n');
2074
2075    // Remove the old compare instruction. The old indvar is probably dead too.
2076    DeadInsts.push_back(CondUse->getOperandValToReplace());
2077    OldCond->replaceAllUsesWith(Cond);
2078    OldCond->eraseFromParent();
2079
2080    IU->IVUsesByStride[NewStride]->addUser(NewOffset, Cond, NewCmpLHS);
2081    CondUse = &IU->IVUsesByStride[NewStride]->Users.back();
2082    CondStride = NewStride;
2083    ++NumEliminated;
2084    Changed = true;
2085  }
2086
2087  return Cond;
2088}
2089
2090/// OptimizeMax - Rewrite the loop's terminating condition if it uses
2091/// a max computation.
2092///
2093/// This is a narrow solution to a specific, but acute, problem. For loops
2094/// like this:
2095///
2096///   i = 0;
2097///   do {
2098///     p[i] = 0.0;
2099///   } while (++i < n);
2100///
2101/// the trip count isn't just 'n', because 'n' might not be positive. And
2102/// unfortunately this can come up even for loops where the user didn't use
2103/// a C do-while loop. For example, seemingly well-behaved top-test loops
2104/// will commonly be lowered like this:
2105//
2106///   if (n > 0) {
2107///     i = 0;
2108///     do {
2109///       p[i] = 0.0;
2110///     } while (++i < n);
2111///   }
2112///
2113/// and then it's possible for subsequent optimization to obscure the if
2114/// test in such a way that indvars can't find it.
2115///
2116/// When indvars can't find the if test in loops like this, it creates a
2117/// max expression, which allows it to give the loop a canonical
2118/// induction variable:
2119///
2120///   i = 0;
2121///   max = n < 1 ? 1 : n;
2122///   do {
2123///     p[i] = 0.0;
2124///   } while (++i != max);
2125///
2126/// Canonical induction variables are necessary because the loop passes
2127/// are designed around them. The most obvious example of this is the
2128/// LoopInfo analysis, which doesn't remember trip count values. It
2129/// expects to be able to rediscover the trip count each time it is
2130/// needed, and it does this using a simple analyis that only succeeds if
2131/// the loop has a canonical induction variable.
2132///
2133/// However, when it comes time to generate code, the maximum operation
2134/// can be quite costly, especially if it's inside of an outer loop.
2135///
2136/// This function solves this problem by detecting this type of loop and
2137/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2138/// the instructions for the maximum computation.
2139///
2140ICmpInst *LoopStrengthReduce::OptimizeMax(Loop *L, ICmpInst *Cond,
2141                                          IVStrideUse* &CondUse) {
2142  // Check that the loop matches the pattern we're looking for.
2143  if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2144      Cond->getPredicate() != CmpInst::ICMP_NE)
2145    return Cond;
2146
2147  SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2148  if (!Sel || !Sel->hasOneUse()) return Cond;
2149
2150  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2151  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2152    return Cond;
2153  const SCEV *One = SE->getIntegerSCEV(1, BackedgeTakenCount->getType());
2154
2155  // Add one to the backedge-taken count to get the trip count.
2156  const SCEV *IterationCount = SE->getAddExpr(BackedgeTakenCount, One);
2157
2158  // Check for a max calculation that matches the pattern.
2159  if (!isa<SCEVSMaxExpr>(IterationCount) && !isa<SCEVUMaxExpr>(IterationCount))
2160    return Cond;
2161  const SCEVNAryExpr *Max = cast<SCEVNAryExpr>(IterationCount);
2162  if (Max != SE->getSCEV(Sel)) return Cond;
2163
2164  // To handle a max with more than two operands, this optimization would
2165  // require additional checking and setup.
2166  if (Max->getNumOperands() != 2)
2167    return Cond;
2168
2169  const SCEV *MaxLHS = Max->getOperand(0);
2170  const SCEV *MaxRHS = Max->getOperand(1);
2171  if (!MaxLHS || MaxLHS != One) return Cond;
2172
2173  // Check the relevant induction variable for conformance to
2174  // the pattern.
2175  const SCEV *IV = SE->getSCEV(Cond->getOperand(0));
2176  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2177  if (!AR || !AR->isAffine() ||
2178      AR->getStart() != One ||
2179      AR->getStepRecurrence(*SE) != One)
2180    return Cond;
2181
2182  assert(AR->getLoop() == L &&
2183         "Loop condition operand is an addrec in a different loop!");
2184
2185  // Check the right operand of the select, and remember it, as it will
2186  // be used in the new comparison instruction.
2187  Value *NewRHS = 0;
2188  if (SE->getSCEV(Sel->getOperand(1)) == MaxRHS)
2189    NewRHS = Sel->getOperand(1);
2190  else if (SE->getSCEV(Sel->getOperand(2)) == MaxRHS)
2191    NewRHS = Sel->getOperand(2);
2192  if (!NewRHS) return Cond;
2193
2194  // Determine the new comparison opcode. It may be signed or unsigned,
2195  // and the original comparison may be either equality or inequality.
2196  CmpInst::Predicate Pred =
2197    isa<SCEVSMaxExpr>(Max) ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
2198  if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2199    Pred = CmpInst::getInversePredicate(Pred);
2200
2201  // Ok, everything looks ok to change the condition into an SLT or SGE and
2202  // delete the max calculation.
2203  ICmpInst *NewCond =
2204    new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2205
2206  // Delete the max calculation instructions.
2207  Cond->replaceAllUsesWith(NewCond);
2208  CondUse->setUser(NewCond);
2209  Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2210  Cond->eraseFromParent();
2211  Sel->eraseFromParent();
2212  if (Cmp->use_empty())
2213    Cmp->eraseFromParent();
2214  return NewCond;
2215}
2216
2217/// OptimizeShadowIV - If IV is used in a int-to-float cast
2218/// inside the loop then try to eliminate the cast opeation.
2219void LoopStrengthReduce::OptimizeShadowIV(Loop *L) {
2220
2221  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2222  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2223    return;
2224
2225  for (unsigned Stride = 0, e = IU->StrideOrder.size(); Stride != e;
2226       ++Stride) {
2227    std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
2228      IU->IVUsesByStride.find(IU->StrideOrder[Stride]);
2229    assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
2230    if (!isa<SCEVConstant>(SI->first))
2231      continue;
2232
2233    for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(),
2234           E = SI->second->Users.end(); UI != E; /* empty */) {
2235      ilist<IVStrideUse>::iterator CandidateUI = UI;
2236      ++UI;
2237      Instruction *ShadowUse = CandidateUI->getUser();
2238      const Type *DestTy = NULL;
2239
2240      /* If shadow use is a int->float cast then insert a second IV
2241         to eliminate this cast.
2242
2243           for (unsigned i = 0; i < n; ++i)
2244             foo((double)i);
2245
2246         is transformed into
2247
2248           double d = 0.0;
2249           for (unsigned i = 0; i < n; ++i, ++d)
2250             foo(d);
2251      */
2252      if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser()))
2253        DestTy = UCast->getDestTy();
2254      else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser()))
2255        DestTy = SCast->getDestTy();
2256      if (!DestTy) continue;
2257
2258      if (TLI) {
2259        // If target does not support DestTy natively then do not apply
2260        // this transformation.
2261        EVT DVT = TLI->getValueType(DestTy);
2262        if (!TLI->isTypeLegal(DVT)) continue;
2263      }
2264
2265      PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2266      if (!PH) continue;
2267      if (PH->getNumIncomingValues() != 2) continue;
2268
2269      const Type *SrcTy = PH->getType();
2270      int Mantissa = DestTy->getFPMantissaWidth();
2271      if (Mantissa == -1) continue;
2272      if ((int)SE->getTypeSizeInBits(SrcTy) > Mantissa)
2273        continue;
2274
2275      unsigned Entry, Latch;
2276      if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2277        Entry = 0;
2278        Latch = 1;
2279      } else {
2280        Entry = 1;
2281        Latch = 0;
2282      }
2283
2284      ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2285      if (!Init) continue;
2286      Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());
2287
2288      BinaryOperator *Incr =
2289        dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2290      if (!Incr) continue;
2291      if (Incr->getOpcode() != Instruction::Add
2292          && Incr->getOpcode() != Instruction::Sub)
2293        continue;
2294
2295      /* Initialize new IV, double d = 0.0 in above example. */
2296      ConstantInt *C = NULL;
2297      if (Incr->getOperand(0) == PH)
2298        C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2299      else if (Incr->getOperand(1) == PH)
2300        C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2301      else
2302        continue;
2303
2304      if (!C) continue;
2305
2306      // Ignore negative constants, as the code below doesn't handle them
2307      // correctly. TODO: Remove this restriction.
2308      if (!C->getValue().isStrictlyPositive()) continue;
2309
2310      /* Add new PHINode. */
2311      PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);
2312
2313      /* create new increment. '++d' in above example. */
2314      Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2315      BinaryOperator *NewIncr =
2316        BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2317                                 Instruction::FAdd : Instruction::FSub,
2318                               NewPH, CFP, "IV.S.next.", Incr);
2319
2320      NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2321      NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2322
2323      /* Remove cast operation */
2324      ShadowUse->replaceAllUsesWith(NewPH);
2325      ShadowUse->eraseFromParent();
2326      NumShadow++;
2327      break;
2328    }
2329  }
2330}
2331
2332/// OptimizeIndvars - Now that IVUsesByStride is set up with all of the indvar
2333/// uses in the loop, look to see if we can eliminate some, in favor of using
2334/// common indvars for the different uses.
2335void LoopStrengthReduce::OptimizeIndvars(Loop *L) {
2336  // TODO: implement optzns here.
2337
2338  OptimizeShadowIV(L);
2339}
2340
2341bool LoopStrengthReduce::StrideMightBeShared(const SCEV* Stride, Loop *L,
2342                                             bool CheckPreInc) {
2343  int64_t SInt = cast<SCEVConstant>(Stride)->getValue()->getSExtValue();
2344  for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
2345    std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
2346      IU->IVUsesByStride.find(IU->StrideOrder[i]);
2347    const SCEV *Share = SI->first;
2348    if (!isa<SCEVConstant>(SI->first) || Share == Stride)
2349      continue;
2350    int64_t SSInt = cast<SCEVConstant>(Share)->getValue()->getSExtValue();
2351    if (SSInt == SInt)
2352      return true; // This can definitely be reused.
2353    if (unsigned(abs64(SSInt)) < SInt || (SSInt % SInt) != 0)
2354      continue;
2355    int64_t Scale = SSInt / SInt;
2356    bool AllUsesAreAddresses = true;
2357    bool AllUsesAreOutsideLoop = true;
2358    std::vector<BasedUser> UsersToProcess;
2359    const SCEV *CommonExprs = CollectIVUsers(SI->first, *SI->second, L,
2360                                             AllUsesAreAddresses,
2361                                             AllUsesAreOutsideLoop,
2362                                             UsersToProcess);
2363    if (AllUsesAreAddresses &&
2364        ValidScale(!CommonExprs->isZero(), Scale, UsersToProcess)) {
2365      if (!CheckPreInc)
2366        return true;
2367      // Any pre-inc iv use?
2368      IVUsersOfOneStride &StrideUses = *IU->IVUsesByStride[Share];
2369      for (ilist<IVStrideUse>::iterator I = StrideUses.Users.begin(),
2370             E = StrideUses.Users.end(); I != E; ++I) {
2371        if (!I->isUseOfPostIncrementedValue())
2372          return true;
2373      }
2374    }
2375  }
2376  return false;
2377}
2378
2379/// isUsedByExitBranch - Return true if icmp is used by a loop terminating
2380/// conditional branch or it's and / or with other conditions before being used
2381/// as the condition.
2382static bool isUsedByExitBranch(ICmpInst *Cond, Loop *L) {
2383  BasicBlock *CondBB = Cond->getParent();
2384  if (!L->isLoopExiting(CondBB))
2385    return false;
2386  BranchInst *TermBr = dyn_cast<BranchInst>(CondBB->getTerminator());
2387  if (!TermBr || !TermBr->isConditional())
2388    return false;
2389
2390  Value *User = *Cond->use_begin();
2391  Instruction *UserInst = dyn_cast<Instruction>(User);
2392  while (UserInst &&
2393         (UserInst->getOpcode() == Instruction::And ||
2394          UserInst->getOpcode() == Instruction::Or)) {
2395    if (!UserInst->hasOneUse() || UserInst->getParent() != CondBB)
2396      return false;
2397    User = *User->use_begin();
2398    UserInst = dyn_cast<Instruction>(User);
2399  }
2400  return User == TermBr;
2401}
2402
2403static bool ShouldCountToZero(ICmpInst *Cond, IVStrideUse* &CondUse,
2404                              ScalarEvolution *SE, Loop *L,
2405                              const TargetLowering *TLI = 0) {
2406  if (!L->contains(Cond->getParent()))
2407    return false;
2408
2409  if (!isa<SCEVConstant>(CondUse->getOffset()))
2410    return false;
2411
2412  // Handle only tests for equality for the moment.
2413  if (!Cond->isEquality() || !Cond->hasOneUse())
2414    return false;
2415  if (!isUsedByExitBranch(Cond, L))
2416    return false;
2417
2418  Value *CondOp0 = Cond->getOperand(0);
2419  const SCEV *IV = SE->getSCEV(CondOp0);
2420  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2421  if (!AR || !AR->isAffine())
2422    return false;
2423
2424  const SCEVConstant *SC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
2425  if (!SC || SC->getValue()->getSExtValue() < 0)
2426    // If it's already counting down, don't do anything.
2427    return false;
2428
2429  // If the RHS of the comparison is not an loop invariant, the rewrite
2430  // cannot be done. Also bail out if it's already comparing against a zero.
2431  // If we are checking this before cmp stride optimization, check if it's
2432  // comparing against a already legal immediate.
2433  Value *RHS = Cond->getOperand(1);
2434  ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS);
2435  if (!L->isLoopInvariant(RHS) ||
2436      (RHSC && RHSC->isZero()) ||
2437      (RHSC && TLI && TLI->isLegalICmpImmediate(RHSC->getSExtValue())))
2438    return false;
2439
2440  // Make sure the IV is only used for counting.  Value may be preinc or
2441  // postinc; 2 uses in either case.
2442  if (!CondOp0->hasNUses(2))
2443    return false;
2444
2445  return true;
2446}
2447
2448/// OptimizeLoopTermCond - Change loop terminating condition to use the
2449/// postinc iv when possible.
2450void LoopStrengthReduce::OptimizeLoopTermCond(Loop *L) {
2451  BasicBlock *LatchBlock = L->getLoopLatch();
2452  bool LatchExit = L->isLoopExiting(LatchBlock);
2453  SmallVector<BasicBlock*, 8> ExitingBlocks;
2454  L->getExitingBlocks(ExitingBlocks);
2455
2456  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
2457    BasicBlock *ExitingBlock = ExitingBlocks[i];
2458
2459    // Finally, get the terminating condition for the loop if possible.  If we
2460    // can, we want to change it to use a post-incremented version of its
2461    // induction variable, to allow coalescing the live ranges for the IV into
2462    // one register value.
2463
2464    BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2465    if (!TermBr)
2466      continue;
2467    // FIXME: Overly conservative, termination condition could be an 'or' etc..
2468    if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2469      continue;
2470
2471    // Search IVUsesByStride to find Cond's IVUse if there is one.
2472    IVStrideUse *CondUse = 0;
2473    const SCEV *CondStride = 0;
2474    ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2475    if (!FindIVUserForCond(Cond, CondUse, CondStride))
2476      continue;
2477
2478    // If the latch block is exiting and it's not a single block loop, it's
2479    // not safe to use postinc iv in other exiting blocks. FIXME: overly
2480    // conservative? How about icmp stride optimization?
2481    bool UsePostInc =  !(e > 1 && LatchExit && ExitingBlock != LatchBlock);
2482    if (UsePostInc && ExitingBlock != LatchBlock) {
2483      if (!Cond->hasOneUse())
2484        // See below, we don't want the condition to be cloned.
2485        UsePostInc = false;
2486      else {
2487        // If exiting block is the latch block, we know it's safe and profitable
2488        // to transform the icmp to use post-inc iv. Otherwise do so only if it
2489        // would not reuse another iv and its iv would be reused by other uses.
2490        // We are optimizing for the case where the icmp is the only use of the
2491        // iv.
2492        IVUsersOfOneStride &StrideUses = *IU->IVUsesByStride[CondStride];
2493        for (ilist<IVStrideUse>::iterator I = StrideUses.Users.begin(),
2494               E = StrideUses.Users.end(); I != E; ++I) {
2495          if (I->getUser() == Cond)
2496            continue;
2497          if (!I->isUseOfPostIncrementedValue()) {
2498            UsePostInc = false;
2499            break;
2500          }
2501        }
2502      }
2503
2504      // If iv for the stride might be shared and any of the users use pre-inc
2505      // iv might be used, then it's not safe to use post-inc iv.
2506      if (UsePostInc &&
2507          isa<SCEVConstant>(CondStride) &&
2508          StrideMightBeShared(CondStride, L, true))
2509        UsePostInc = false;
2510    }
2511
2512    // If the trip count is computed in terms of a max (due to ScalarEvolution
2513    // being unable to find a sufficient guard, for example), change the loop
2514    // comparison to use SLT or ULT instead of NE.
2515    Cond = OptimizeMax(L, Cond, CondUse);
2516
2517    // If possible, change stride and operands of the compare instruction to
2518    // eliminate one stride. However, avoid rewriting the compare instruction
2519    // with an iv of new stride if it's likely the new stride uses will be
2520    // rewritten using the stride of the compare instruction.
2521    if (ExitingBlock == LatchBlock && isa<SCEVConstant>(CondStride)) {
2522      // If the condition stride is a constant and it's the only use, we might
2523      // want to optimize it first by turning it to count toward zero.
2524      if (!StrideMightBeShared(CondStride, L, false) &&
2525          !ShouldCountToZero(Cond, CondUse, SE, L, TLI))
2526        Cond = ChangeCompareStride(L, Cond, CondUse, CondStride);
2527    }
2528
2529    if (!UsePostInc)
2530      continue;
2531
2532    DEBUG(errs() << "  Change loop exiting icmp to use postinc iv: "
2533          << *Cond << '\n');
2534
2535    // It's possible for the setcc instruction to be anywhere in the loop, and
2536    // possible for it to have multiple users.  If it is not immediately before
2537    // the exiting block branch, move it.
2538    if (&*++BasicBlock::iterator(Cond) != (Instruction*)TermBr) {
2539      if (Cond->hasOneUse()) {   // Condition has a single use, just move it.
2540        Cond->moveBefore(TermBr);
2541      } else {
2542        // Otherwise, clone the terminating condition and insert into the
2543        // loopend.
2544        Cond = cast<ICmpInst>(Cond->clone());
2545        Cond->setName(L->getHeader()->getName() + ".termcond");
2546        ExitingBlock->getInstList().insert(TermBr, Cond);
2547
2548        // Clone the IVUse, as the old use still exists!
2549        IU->IVUsesByStride[CondStride]->addUser(CondUse->getOffset(), Cond,
2550                                             CondUse->getOperandValToReplace());
2551        CondUse = &IU->IVUsesByStride[CondStride]->Users.back();
2552      }
2553    }
2554
2555    // If we get to here, we know that we can transform the setcc instruction to
2556    // use the post-incremented version of the IV, allowing us to coalesce the
2557    // live ranges for the IV correctly.
2558    CondUse->setOffset(SE->getMinusSCEV(CondUse->getOffset(), CondStride));
2559    CondUse->setIsUseOfPostIncrementedValue(true);
2560    Changed = true;
2561
2562    ++NumLoopCond;
2563  }
2564}
2565
2566bool LoopStrengthReduce::OptimizeLoopCountIVOfStride(const SCEV* &Stride,
2567                                                     IVStrideUse* &CondUse,
2568                                                     Loop *L) {
2569  // If the only use is an icmp of a loop exiting conditional branch, then
2570  // attempt the optimization.
2571  BasedUser User = BasedUser(*CondUse, SE);
2572  assert(isa<ICmpInst>(User.Inst) && "Expecting an ICMPInst!");
2573  ICmpInst *Cond = cast<ICmpInst>(User.Inst);
2574
2575  // Less strict check now that compare stride optimization is done.
2576  if (!ShouldCountToZero(Cond, CondUse, SE, L))
2577    return false;
2578
2579  Value *CondOp0 = Cond->getOperand(0);
2580  PHINode *PHIExpr = dyn_cast<PHINode>(CondOp0);
2581  Instruction *Incr;
2582  if (!PHIExpr) {
2583    // Value tested is postinc. Find the phi node.
2584    Incr = dyn_cast<BinaryOperator>(CondOp0);
2585    // FIXME: Just use User.OperandValToReplace here?
2586    if (!Incr || Incr->getOpcode() != Instruction::Add)
2587      return false;
2588
2589    PHIExpr = dyn_cast<PHINode>(Incr->getOperand(0));
2590    if (!PHIExpr)
2591      return false;
2592    // 1 use for preinc value, the increment.
2593    if (!PHIExpr->hasOneUse())
2594      return false;
2595  } else {
2596    assert(isa<PHINode>(CondOp0) &&
2597           "Unexpected loop exiting counting instruction sequence!");
2598    PHIExpr = cast<PHINode>(CondOp0);
2599    // Value tested is preinc.  Find the increment.
2600    // A CmpInst is not a BinaryOperator; we depend on this.
2601    Instruction::use_iterator UI = PHIExpr->use_begin();
2602    Incr = dyn_cast<BinaryOperator>(UI);
2603    if (!Incr)
2604      Incr = dyn_cast<BinaryOperator>(++UI);
2605    // One use for postinc value, the phi.  Unnecessarily conservative?
2606    if (!Incr || !Incr->hasOneUse() || Incr->getOpcode() != Instruction::Add)
2607      return false;
2608  }
2609
2610  // Replace the increment with a decrement.
2611  DEBUG(errs() << "LSR: Examining use ");
2612  DEBUG(WriteAsOperand(errs(), CondOp0, /*PrintType=*/false));
2613  DEBUG(errs() << " in Inst: " << *Cond << '\n');
2614  BinaryOperator *Decr =  BinaryOperator::Create(Instruction::Sub,
2615                         Incr->getOperand(0), Incr->getOperand(1), "tmp", Incr);
2616  Incr->replaceAllUsesWith(Decr);
2617  Incr->eraseFromParent();
2618
2619  // Substitute endval-startval for the original startval, and 0 for the
2620  // original endval.  Since we're only testing for equality this is OK even
2621  // if the computation wraps around.
2622  BasicBlock  *Preheader = L->getLoopPreheader();
2623  Instruction *PreInsertPt = Preheader->getTerminator();
2624  unsigned InBlock = L->contains(PHIExpr->getIncomingBlock(0)) ? 1 : 0;
2625  Value *StartVal = PHIExpr->getIncomingValue(InBlock);
2626  Value *EndVal = Cond->getOperand(1);
2627  DEBUG(errs() << "    Optimize loop counting iv to count down ["
2628        << *EndVal << " .. " << *StartVal << "]\n");
2629
2630  // FIXME: check for case where both are constant.
2631  Constant* Zero = ConstantInt::get(Cond->getOperand(1)->getType(), 0);
2632  BinaryOperator *NewStartVal = BinaryOperator::Create(Instruction::Sub,
2633                                          EndVal, StartVal, "tmp", PreInsertPt);
2634  PHIExpr->setIncomingValue(InBlock, NewStartVal);
2635  Cond->setOperand(1, Zero);
2636  DEBUG(errs() << "    New icmp: " << *Cond << "\n");
2637
2638  int64_t SInt = cast<SCEVConstant>(Stride)->getValue()->getSExtValue();
2639  const SCEV *NewStride = 0;
2640  bool Found = false;
2641  for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
2642    const SCEV *OldStride = IU->StrideOrder[i];
2643    if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OldStride))
2644      if (SC->getValue()->getSExtValue() == -SInt) {
2645        Found = true;
2646        NewStride = OldStride;
2647        break;
2648      }
2649  }
2650
2651  if (!Found)
2652    NewStride = SE->getIntegerSCEV(-SInt, Stride->getType());
2653  IU->AddUser(NewStride, CondUse->getOffset(), Cond, Cond->getOperand(0));
2654  IU->IVUsesByStride[Stride]->removeUser(CondUse);
2655
2656  CondUse = &IU->IVUsesByStride[NewStride]->Users.back();
2657  Stride = NewStride;
2658
2659  ++NumCountZero;
2660
2661  return true;
2662}
2663
2664/// OptimizeLoopCountIV - If, after all sharing of IVs, the IV used for deciding
2665/// when to exit the loop is used only for that purpose, try to rearrange things
2666/// so it counts down to a test against zero.
2667bool LoopStrengthReduce::OptimizeLoopCountIV(Loop *L) {
2668  bool ThisChanged = false;
2669  for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
2670    const SCEV *Stride = IU->StrideOrder[i];
2671    std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
2672      IU->IVUsesByStride.find(Stride);
2673    assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
2674    // FIXME: Generalize to non-affine IV's.
2675    if (!SI->first->isLoopInvariant(L))
2676      continue;
2677    // If stride is a constant and it has an icmpinst use, check if we can
2678    // optimize the loop to count down.
2679    if (isa<SCEVConstant>(Stride) && SI->second->Users.size() == 1) {
2680      Instruction *User = SI->second->Users.begin()->getUser();
2681      if (!isa<ICmpInst>(User))
2682        continue;
2683      const SCEV *CondStride = Stride;
2684      IVStrideUse *Use = &*SI->second->Users.begin();
2685      if (!OptimizeLoopCountIVOfStride(CondStride, Use, L))
2686        continue;
2687      ThisChanged = true;
2688
2689      // Now check if it's possible to reuse this iv for other stride uses.
2690      for (unsigned j = 0, ee = IU->StrideOrder.size(); j != ee; ++j) {
2691        const SCEV *SStride = IU->StrideOrder[j];
2692        if (SStride == CondStride)
2693          continue;
2694        std::map<const SCEV *, IVUsersOfOneStride *>::iterator SII =
2695          IU->IVUsesByStride.find(SStride);
2696        assert(SII != IU->IVUsesByStride.end() && "Stride doesn't exist!");
2697        // FIXME: Generalize to non-affine IV's.
2698        if (!SII->first->isLoopInvariant(L))
2699          continue;
2700        // FIXME: Rewrite other stride using CondStride.
2701      }
2702    }
2703  }
2704
2705  Changed |= ThisChanged;
2706  return ThisChanged;
2707}
2708
2709bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager &LPM) {
2710  IU = &getAnalysis<IVUsers>();
2711  SE = &getAnalysis<ScalarEvolution>();
2712  Changed = false;
2713
2714  // If LoopSimplify form is not available, stay out of trouble.
2715  if (!L->getLoopPreheader() || !L->getLoopLatch())
2716    return false;
2717
2718  if (!IU->IVUsesByStride.empty()) {
2719    DEBUG(errs() << "\nLSR on \"" << L->getHeader()->getParent()->getName()
2720          << "\" ";
2721          L->dump());
2722
2723    // Sort the StrideOrder so we process larger strides first.
2724    std::stable_sort(IU->StrideOrder.begin(), IU->StrideOrder.end(),
2725                     StrideCompare(SE));
2726
2727    // Optimize induction variables.  Some indvar uses can be transformed to use
2728    // strides that will be needed for other purposes.  A common example of this
2729    // is the exit test for the loop, which can often be rewritten to use the
2730    // computation of some other indvar to decide when to terminate the loop.
2731    OptimizeIndvars(L);
2732
2733    // Change loop terminating condition to use the postinc iv when possible
2734    // and optimize loop terminating compare. FIXME: Move this after
2735    // StrengthReduceIVUsersOfStride?
2736    OptimizeLoopTermCond(L);
2737
2738    // FIXME: We can shrink overlarge IV's here.  e.g. if the code has
2739    // computation in i64 values and the target doesn't support i64, demote
2740    // the computation to 32-bit if safe.
2741
2742    // FIXME: Attempt to reuse values across multiple IV's.  In particular, we
2743    // could have something like "for(i) { foo(i*8); bar(i*16) }", which should
2744    // be codegened as "for (j = 0;; j+=8) { foo(j); bar(j+j); }" on X86/PPC.
2745    // Need to be careful that IV's are all the same type.  Only works for
2746    // intptr_t indvars.
2747
2748    // IVsByStride keeps IVs for one particular loop.
2749    assert(IVsByStride.empty() && "Stale entries in IVsByStride?");
2750
2751    StrengthReduceIVUsers(L);
2752
2753    // After all sharing is done, see if we can adjust the loop to test against
2754    // zero instead of counting up to a maximum.  This is usually faster.
2755    OptimizeLoopCountIV(L);
2756
2757    // We're done analyzing this loop; release all the state we built up for it.
2758    IVsByStride.clear();
2759
2760    // Clean up after ourselves
2761    if (!DeadInsts.empty())
2762      DeleteTriviallyDeadInstructions();
2763  }
2764
2765  // At this point, it is worth checking to see if any recurrence PHIs are also
2766  // dead, so that we can remove them as well.
2767  DeleteDeadPHIs(L->getHeader());
2768
2769  return Changed;
2770}
2771