LoopRotation.cpp revision 251662
1//===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements Loop Rotation Pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "loop-rotate"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/ADT/Statistic.h"
17#include "llvm/Analysis/CodeMetrics.h"
18#include "llvm/Analysis/InstructionSimplify.h"
19#include "llvm/Analysis/LoopPass.h"
20#include "llvm/Analysis/ScalarEvolution.h"
21#include "llvm/Analysis/TargetTransformInfo.h"
22#include "llvm/Analysis/ValueTracking.h"
23#include "llvm/IR/Function.h"
24#include "llvm/IR/IntrinsicInst.h"
25#include "llvm/Support/CFG.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Transforms/Utils/BasicBlockUtils.h"
28#include "llvm/Transforms/Utils/Local.h"
29#include "llvm/Transforms/Utils/SSAUpdater.h"
30#include "llvm/Transforms/Utils/ValueMapper.h"
31using namespace llvm;
32
33#define MAX_HEADER_SIZE 16
34
35STATISTIC(NumRotated, "Number of loops rotated");
36namespace {
37
38  class LoopRotate : public LoopPass {
39  public:
40    static char ID; // Pass ID, replacement for typeid
41    LoopRotate() : LoopPass(ID) {
42      initializeLoopRotatePass(*PassRegistry::getPassRegistry());
43    }
44
45    // LCSSA form makes instruction renaming easier.
46    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
47      AU.addPreserved<DominatorTree>();
48      AU.addRequired<LoopInfo>();
49      AU.addPreserved<LoopInfo>();
50      AU.addRequiredID(LoopSimplifyID);
51      AU.addPreservedID(LoopSimplifyID);
52      AU.addRequiredID(LCSSAID);
53      AU.addPreservedID(LCSSAID);
54      AU.addPreserved<ScalarEvolution>();
55      AU.addRequired<TargetTransformInfo>();
56    }
57
58    bool runOnLoop(Loop *L, LPPassManager &LPM);
59    bool simplifyLoopLatch(Loop *L);
60    bool rotateLoop(Loop *L, bool SimplifiedLatch);
61
62  private:
63    LoopInfo *LI;
64    const TargetTransformInfo *TTI;
65  };
66}
67
68char LoopRotate::ID = 0;
69INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
70INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
71INITIALIZE_PASS_DEPENDENCY(LoopInfo)
72INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
73INITIALIZE_PASS_DEPENDENCY(LCSSA)
74INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
75
76Pass *llvm::createLoopRotatePass() { return new LoopRotate(); }
77
78/// Rotate Loop L as many times as possible. Return true if
79/// the loop is rotated at least once.
80bool LoopRotate::runOnLoop(Loop *L, LPPassManager &LPM) {
81  LI = &getAnalysis<LoopInfo>();
82  TTI = &getAnalysis<TargetTransformInfo>();
83
84  // Simplify the loop latch before attempting to rotate the header
85  // upward. Rotation may not be needed if the loop tail can be folded into the
86  // loop exit.
87  bool SimplifiedLatch = simplifyLoopLatch(L);
88
89  // One loop can be rotated multiple times.
90  bool MadeChange = false;
91  while (rotateLoop(L, SimplifiedLatch)) {
92    MadeChange = true;
93    SimplifiedLatch = false;
94  }
95  return MadeChange;
96}
97
98/// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
99/// old header into the preheader.  If there were uses of the values produced by
100/// these instruction that were outside of the loop, we have to insert PHI nodes
101/// to merge the two values.  Do this now.
102static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
103                                            BasicBlock *OrigPreheader,
104                                            ValueToValueMapTy &ValueMap) {
105  // Remove PHI node entries that are no longer live.
106  BasicBlock::iterator I, E = OrigHeader->end();
107  for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
108    PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
109
110  // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
111  // as necessary.
112  SSAUpdater SSA;
113  for (I = OrigHeader->begin(); I != E; ++I) {
114    Value *OrigHeaderVal = I;
115
116    // If there are no uses of the value (e.g. because it returns void), there
117    // is nothing to rewrite.
118    if (OrigHeaderVal->use_empty())
119      continue;
120
121    Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal];
122
123    // The value now exits in two versions: the initial value in the preheader
124    // and the loop "next" value in the original header.
125    SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
126    SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
127    SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
128
129    // Visit each use of the OrigHeader instruction.
130    for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
131         UE = OrigHeaderVal->use_end(); UI != UE; ) {
132      // Grab the use before incrementing the iterator.
133      Use &U = UI.getUse();
134
135      // Increment the iterator before removing the use from the list.
136      ++UI;
137
138      // SSAUpdater can't handle a non-PHI use in the same block as an
139      // earlier def. We can easily handle those cases manually.
140      Instruction *UserInst = cast<Instruction>(U.getUser());
141      if (!isa<PHINode>(UserInst)) {
142        BasicBlock *UserBB = UserInst->getParent();
143
144        // The original users in the OrigHeader are already using the
145        // original definitions.
146        if (UserBB == OrigHeader)
147          continue;
148
149        // Users in the OrigPreHeader need to use the value to which the
150        // original definitions are mapped.
151        if (UserBB == OrigPreheader) {
152          U = OrigPreHeaderVal;
153          continue;
154        }
155      }
156
157      // Anything else can be handled by SSAUpdater.
158      SSA.RewriteUse(U);
159    }
160  }
161}
162
163/// Determine whether the instructions in this range my be safely and cheaply
164/// speculated. This is not an important enough situation to develop complex
165/// heuristics. We handle a single arithmetic instruction along with any type
166/// conversions.
167static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
168                                  BasicBlock::iterator End) {
169  bool seenIncrement = false;
170  for (BasicBlock::iterator I = Begin; I != End; ++I) {
171
172    if (!isSafeToSpeculativelyExecute(I))
173      return false;
174
175    if (isa<DbgInfoIntrinsic>(I))
176      continue;
177
178    switch (I->getOpcode()) {
179    default:
180      return false;
181    case Instruction::GetElementPtr:
182      // GEPs are cheap if all indices are constant.
183      if (!cast<GEPOperator>(I)->hasAllConstantIndices())
184        return false;
185      // fall-thru to increment case
186    case Instruction::Add:
187    case Instruction::Sub:
188    case Instruction::And:
189    case Instruction::Or:
190    case Instruction::Xor:
191    case Instruction::Shl:
192    case Instruction::LShr:
193    case Instruction::AShr:
194      if (seenIncrement)
195        return false;
196      seenIncrement = true;
197      break;
198    case Instruction::Trunc:
199    case Instruction::ZExt:
200    case Instruction::SExt:
201      // ignore type conversions
202      break;
203    }
204  }
205  return true;
206}
207
208/// Fold the loop tail into the loop exit by speculating the loop tail
209/// instructions. Typically, this is a single post-increment. In the case of a
210/// simple 2-block loop, hoisting the increment can be much better than
211/// duplicating the entire loop header. In the cast of loops with early exits,
212/// rotation will not work anyway, but simplifyLoopLatch will put the loop in
213/// canonical form so downstream passes can handle it.
214///
215/// I don't believe this invalidates SCEV.
216bool LoopRotate::simplifyLoopLatch(Loop *L) {
217  BasicBlock *Latch = L->getLoopLatch();
218  if (!Latch || Latch->hasAddressTaken())
219    return false;
220
221  BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
222  if (!Jmp || !Jmp->isUnconditional())
223    return false;
224
225  BasicBlock *LastExit = Latch->getSinglePredecessor();
226  if (!LastExit || !L->isLoopExiting(LastExit))
227    return false;
228
229  BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
230  if (!BI)
231    return false;
232
233  if (!shouldSpeculateInstrs(Latch->begin(), Jmp))
234    return false;
235
236  DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
237        << LastExit->getName() << "\n");
238
239  // Hoist the instructions from Latch into LastExit.
240  LastExit->getInstList().splice(BI, Latch->getInstList(), Latch->begin(), Jmp);
241
242  unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1;
243  BasicBlock *Header = Jmp->getSuccessor(0);
244  assert(Header == L->getHeader() && "expected a backward branch");
245
246  // Remove Latch from the CFG so that LastExit becomes the new Latch.
247  BI->setSuccessor(FallThruPath, Header);
248  Latch->replaceSuccessorsPhiUsesWith(LastExit);
249  Jmp->eraseFromParent();
250
251  // Nuke the Latch block.
252  assert(Latch->empty() && "unable to evacuate Latch");
253  LI->removeBlock(Latch);
254  if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>())
255    DT->eraseNode(Latch);
256  Latch->eraseFromParent();
257  return true;
258}
259
260/// Rotate loop LP. Return true if the loop is rotated.
261///
262/// \param SimplifiedLatch is true if the latch was just folded into the final
263/// loop exit. In this case we may want to rotate even though the new latch is
264/// now an exiting branch. This rotation would have happened had the latch not
265/// been simplified. However, if SimplifiedLatch is false, then we avoid
266/// rotating loops in which the latch exits to avoid excessive or endless
267/// rotation. LoopRotate should be repeatable and converge to a canonical
268/// form. This property is satisfied because simplifying the loop latch can only
269/// happen once across multiple invocations of the LoopRotate pass.
270bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
271  // If the loop has only one block then there is not much to rotate.
272  if (L->getBlocks().size() == 1)
273    return false;
274
275  BasicBlock *OrigHeader = L->getHeader();
276  BasicBlock *OrigLatch = L->getLoopLatch();
277
278  BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
279  if (BI == 0 || BI->isUnconditional())
280    return false;
281
282  // If the loop header is not one of the loop exiting blocks then
283  // either this loop is already rotated or it is not
284  // suitable for loop rotation transformations.
285  if (!L->isLoopExiting(OrigHeader))
286    return false;
287
288  // If the loop latch already contains a branch that leaves the loop then the
289  // loop is already rotated.
290  if (OrigLatch == 0)
291    return false;
292
293  // Rotate if either the loop latch does *not* exit the loop, or if the loop
294  // latch was just simplified.
295  if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch)
296    return false;
297
298  // Check size of original header and reject loop if it is very big or we can't
299  // duplicate blocks inside it.
300  {
301    CodeMetrics Metrics;
302    Metrics.analyzeBasicBlock(OrigHeader, *TTI);
303    if (Metrics.notDuplicatable) {
304      DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non duplicatable"
305            << " instructions: "; L->dump());
306      return false;
307    }
308    if (Metrics.NumInsts > MAX_HEADER_SIZE)
309      return false;
310  }
311
312  // Now, this loop is suitable for rotation.
313  BasicBlock *OrigPreheader = L->getLoopPreheader();
314
315  // If the loop could not be converted to canonical form, it must have an
316  // indirectbr in it, just give up.
317  if (OrigPreheader == 0)
318    return false;
319
320  // Anything ScalarEvolution may know about this loop or the PHI nodes
321  // in its header will soon be invalidated.
322  if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
323    SE->forgetLoop(L);
324
325  DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
326
327  // Find new Loop header. NewHeader is a Header's one and only successor
328  // that is inside loop.  Header's other successor is outside the
329  // loop.  Otherwise loop is not suitable for rotation.
330  BasicBlock *Exit = BI->getSuccessor(0);
331  BasicBlock *NewHeader = BI->getSuccessor(1);
332  if (L->contains(Exit))
333    std::swap(Exit, NewHeader);
334  assert(NewHeader && "Unable to determine new loop header");
335  assert(L->contains(NewHeader) && !L->contains(Exit) &&
336         "Unable to determine loop header and exit blocks");
337
338  // This code assumes that the new header has exactly one predecessor.
339  // Remove any single-entry PHI nodes in it.
340  assert(NewHeader->getSinglePredecessor() &&
341         "New header doesn't have one pred!");
342  FoldSingleEntryPHINodes(NewHeader);
343
344  // Begin by walking OrigHeader and populating ValueMap with an entry for
345  // each Instruction.
346  BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
347  ValueToValueMapTy ValueMap;
348
349  // For PHI nodes, the value available in OldPreHeader is just the
350  // incoming value from OldPreHeader.
351  for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
352    ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);
353
354  // For the rest of the instructions, either hoist to the OrigPreheader if
355  // possible or create a clone in the OldPreHeader if not.
356  TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator();
357  while (I != E) {
358    Instruction *Inst = I++;
359
360    // If the instruction's operands are invariant and it doesn't read or write
361    // memory, then it is safe to hoist.  Doing this doesn't change the order of
362    // execution in the preheader, but does prevent the instruction from
363    // executing in each iteration of the loop.  This means it is safe to hoist
364    // something that might trap, but isn't safe to hoist something that reads
365    // memory (without proving that the loop doesn't write).
366    if (L->hasLoopInvariantOperands(Inst) &&
367        !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() &&
368        !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst) &&
369        !isa<AllocaInst>(Inst)) {
370      Inst->moveBefore(LoopEntryBranch);
371      continue;
372    }
373
374    // Otherwise, create a duplicate of the instruction.
375    Instruction *C = Inst->clone();
376
377    // Eagerly remap the operands of the instruction.
378    RemapInstruction(C, ValueMap,
379                     RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
380
381    // With the operands remapped, see if the instruction constant folds or is
382    // otherwise simplifyable.  This commonly occurs because the entry from PHI
383    // nodes allows icmps and other instructions to fold.
384    Value *V = SimplifyInstruction(C);
385    if (V && LI->replacementPreservesLCSSAForm(C, V)) {
386      // If so, then delete the temporary instruction and stick the folded value
387      // in the map.
388      delete C;
389      ValueMap[Inst] = V;
390    } else {
391      // Otherwise, stick the new instruction into the new block!
392      C->setName(Inst->getName());
393      C->insertBefore(LoopEntryBranch);
394      ValueMap[Inst] = C;
395    }
396  }
397
398  // Along with all the other instructions, we just cloned OrigHeader's
399  // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
400  // successors by duplicating their incoming values for OrigHeader.
401  TerminatorInst *TI = OrigHeader->getTerminator();
402  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
403    for (BasicBlock::iterator BI = TI->getSuccessor(i)->begin();
404         PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
405      PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
406
407  // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
408  // OrigPreHeader's old terminator (the original branch into the loop), and
409  // remove the corresponding incoming values from the PHI nodes in OrigHeader.
410  LoopEntryBranch->eraseFromParent();
411
412  // If there were any uses of instructions in the duplicated block outside the
413  // loop, update them, inserting PHI nodes as required
414  RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap);
415
416  // NewHeader is now the header of the loop.
417  L->moveToHeader(NewHeader);
418  assert(L->getHeader() == NewHeader && "Latch block is our new header");
419
420
421  // At this point, we've finished our major CFG changes.  As part of cloning
422  // the loop into the preheader we've simplified instructions and the
423  // duplicated conditional branch may now be branching on a constant.  If it is
424  // branching on a constant and if that constant means that we enter the loop,
425  // then we fold away the cond branch to an uncond branch.  This simplifies the
426  // loop in cases important for nested loops, and it also means we don't have
427  // to split as many edges.
428  BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
429  assert(PHBI->isConditional() && "Should be clone of BI condbr!");
430  if (!isa<ConstantInt>(PHBI->getCondition()) ||
431      PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero())
432          != NewHeader) {
433    // The conditional branch can't be folded, handle the general case.
434    // Update DominatorTree to reflect the CFG change we just made.  Then split
435    // edges as necessary to preserve LoopSimplify form.
436    if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
437      // Everything that was dominated by the old loop header is now dominated
438      // by the original loop preheader. Conceptually the header was merged
439      // into the preheader, even though we reuse the actual block as a new
440      // loop latch.
441      DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
442      SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
443                                                   OrigHeaderNode->end());
444      DomTreeNode *OrigPreheaderNode = DT->getNode(OrigPreheader);
445      for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I)
446        DT->changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode);
447
448      assert(DT->getNode(Exit)->getIDom() == OrigPreheaderNode);
449      assert(DT->getNode(NewHeader)->getIDom() == OrigPreheaderNode);
450
451      // Update OrigHeader to be dominated by the new header block.
452      DT->changeImmediateDominator(OrigHeader, OrigLatch);
453    }
454
455    // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
456    // thus is not a preheader anymore.
457    // Split the edge to form a real preheader.
458    BasicBlock *NewPH = SplitCriticalEdge(OrigPreheader, NewHeader, this);
459    NewPH->setName(NewHeader->getName() + ".lr.ph");
460
461    // Preserve canonical loop form, which means that 'Exit' should have only
462    // one predecessor.
463    BasicBlock *ExitSplit = SplitCriticalEdge(L->getLoopLatch(), Exit, this);
464    ExitSplit->moveBefore(Exit);
465  } else {
466    // We can fold the conditional branch in the preheader, this makes things
467    // simpler. The first step is to remove the extra edge to the Exit block.
468    Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
469    BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
470    NewBI->setDebugLoc(PHBI->getDebugLoc());
471    PHBI->eraseFromParent();
472
473    // With our CFG finalized, update DomTree if it is available.
474    if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
475      // Update OrigHeader to be dominated by the new header block.
476      DT->changeImmediateDominator(NewHeader, OrigPreheader);
477      DT->changeImmediateDominator(OrigHeader, OrigLatch);
478
479      // Brute force incremental dominator tree update. Call
480      // findNearestCommonDominator on all CFG predecessors of each child of the
481      // original header.
482      DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
483      SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
484                                                   OrigHeaderNode->end());
485      bool Changed;
486      do {
487        Changed = false;
488        for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) {
489          DomTreeNode *Node = HeaderChildren[I];
490          BasicBlock *BB = Node->getBlock();
491
492          pred_iterator PI = pred_begin(BB);
493          BasicBlock *NearestDom = *PI;
494          for (pred_iterator PE = pred_end(BB); PI != PE; ++PI)
495            NearestDom = DT->findNearestCommonDominator(NearestDom, *PI);
496
497          // Remember if this changes the DomTree.
498          if (Node->getIDom()->getBlock() != NearestDom) {
499            DT->changeImmediateDominator(BB, NearestDom);
500            Changed = true;
501          }
502        }
503
504      // If the dominator changed, this may have an effect on other
505      // predecessors, continue until we reach a fixpoint.
506      } while (Changed);
507    }
508  }
509
510  assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
511  assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
512
513  // Now that the CFG and DomTree are in a consistent state again, try to merge
514  // the OrigHeader block into OrigLatch.  This will succeed if they are
515  // connected by an unconditional branch.  This is just a cleanup so the
516  // emitted code isn't too gross in this common case.
517  MergeBlockIntoPredecessor(OrigHeader, this);
518
519  DEBUG(dbgs() << "LoopRotation: into "; L->dump());
520
521  ++NumRotated;
522  return true;
523}
524