LoopRotation.cpp revision 249423
12490Sjkh//===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===//
274528Sru//
32490Sjkh//                     The LLVM Compiler Infrastructure
42490Sjkh//
52490Sjkh// This file is distributed under the University of Illinois Open Source
62490Sjkh// License. See LICENSE.TXT for details.
7104722Sfanf//
8104722Sfanf//===----------------------------------------------------------------------===//
9104722Sfanf//
10104722Sfanf// This file implements Loop Rotation Pass.
11104722Sfanf//
12104722Sfanf//===----------------------------------------------------------------------===//
13104722Sfanf
1474814Sru#define DEBUG_TYPE "loop-rotate"
152490Sjkh#include "llvm/Transforms/Scalar.h"
162490Sjkh#include "llvm/ADT/Statistic.h"
172490Sjkh#include "llvm/Analysis/CodeMetrics.h"
182490Sjkh#include "llvm/Analysis/InstructionSimplify.h"
19#include "llvm/Analysis/LoopPass.h"
20#include "llvm/Analysis/ScalarEvolution.h"
21#include "llvm/Analysis/TargetTransformInfo.h"
22#include "llvm/Analysis/ValueTracking.h"
23#include "llvm/IR/Function.h"
24#include "llvm/IR/IntrinsicInst.h"
25#include "llvm/Support/CFG.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Transforms/Utils/BasicBlockUtils.h"
28#include "llvm/Transforms/Utils/Local.h"
29#include "llvm/Transforms/Utils/SSAUpdater.h"
30#include "llvm/Transforms/Utils/ValueMapper.h"
31using namespace llvm;
32
33#define MAX_HEADER_SIZE 16
34
35STATISTIC(NumRotated, "Number of loops rotated");
36namespace {
37
38  class LoopRotate : public LoopPass {
39  public:
40    static char ID; // Pass ID, replacement for typeid
41    LoopRotate() : LoopPass(ID) {
42      initializeLoopRotatePass(*PassRegistry::getPassRegistry());
43    }
44
45    // LCSSA form makes instruction renaming easier.
46    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
47      AU.addPreserved<DominatorTree>();
48      AU.addRequired<LoopInfo>();
49      AU.addPreserved<LoopInfo>();
50      AU.addRequiredID(LoopSimplifyID);
51      AU.addPreservedID(LoopSimplifyID);
52      AU.addRequiredID(LCSSAID);
53      AU.addPreservedID(LCSSAID);
54      AU.addPreserved<ScalarEvolution>();
55      AU.addRequired<TargetTransformInfo>();
56    }
57
58    bool runOnLoop(Loop *L, LPPassManager &LPM);
59    void simplifyLoopLatch(Loop *L);
60    bool rotateLoop(Loop *L);
61
62  private:
63    LoopInfo *LI;
64    const TargetTransformInfo *TTI;
65  };
66}
67
68char LoopRotate::ID = 0;
69INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
70INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
71INITIALIZE_PASS_DEPENDENCY(LoopInfo)
72INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
73INITIALIZE_PASS_DEPENDENCY(LCSSA)
74INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
75
76Pass *llvm::createLoopRotatePass() { return new LoopRotate(); }
77
78/// Rotate Loop L as many times as possible. Return true if
79/// the loop is rotated at least once.
80bool LoopRotate::runOnLoop(Loop *L, LPPassManager &LPM) {
81  LI = &getAnalysis<LoopInfo>();
82  TTI = &getAnalysis<TargetTransformInfo>();
83
84  // Simplify the loop latch before attempting to rotate the header
85  // upward. Rotation may not be needed if the loop tail can be folded into the
86  // loop exit.
87  simplifyLoopLatch(L);
88
89  // One loop can be rotated multiple times.
90  bool MadeChange = false;
91  while (rotateLoop(L))
92    MadeChange = true;
93
94  return MadeChange;
95}
96
97/// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
98/// old header into the preheader.  If there were uses of the values produced by
99/// these instruction that were outside of the loop, we have to insert PHI nodes
100/// to merge the two values.  Do this now.
101static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
102                                            BasicBlock *OrigPreheader,
103                                            ValueToValueMapTy &ValueMap) {
104  // Remove PHI node entries that are no longer live.
105  BasicBlock::iterator I, E = OrigHeader->end();
106  for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
107    PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
108
109  // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
110  // as necessary.
111  SSAUpdater SSA;
112  for (I = OrigHeader->begin(); I != E; ++I) {
113    Value *OrigHeaderVal = I;
114
115    // If there are no uses of the value (e.g. because it returns void), there
116    // is nothing to rewrite.
117    if (OrigHeaderVal->use_empty())
118      continue;
119
120    Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal];
121
122    // The value now exits in two versions: the initial value in the preheader
123    // and the loop "next" value in the original header.
124    SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
125    SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
126    SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
127
128    // Visit each use of the OrigHeader instruction.
129    for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
130         UE = OrigHeaderVal->use_end(); UI != UE; ) {
131      // Grab the use before incrementing the iterator.
132      Use &U = UI.getUse();
133
134      // Increment the iterator before removing the use from the list.
135      ++UI;
136
137      // SSAUpdater can't handle a non-PHI use in the same block as an
138      // earlier def. We can easily handle those cases manually.
139      Instruction *UserInst = cast<Instruction>(U.getUser());
140      if (!isa<PHINode>(UserInst)) {
141        BasicBlock *UserBB = UserInst->getParent();
142
143        // The original users in the OrigHeader are already using the
144        // original definitions.
145        if (UserBB == OrigHeader)
146          continue;
147
148        // Users in the OrigPreHeader need to use the value to which the
149        // original definitions are mapped.
150        if (UserBB == OrigPreheader) {
151          U = OrigPreHeaderVal;
152          continue;
153        }
154      }
155
156      // Anything else can be handled by SSAUpdater.
157      SSA.RewriteUse(U);
158    }
159  }
160}
161
162/// Determine whether the instructions in this range my be safely and cheaply
163/// speculated. This is not an important enough situation to develop complex
164/// heuristics. We handle a single arithmetic instruction along with any type
165/// conversions.
166static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
167                                  BasicBlock::iterator End) {
168  bool seenIncrement = false;
169  for (BasicBlock::iterator I = Begin; I != End; ++I) {
170
171    if (!isSafeToSpeculativelyExecute(I))
172      return false;
173
174    if (isa<DbgInfoIntrinsic>(I))
175      continue;
176
177    switch (I->getOpcode()) {
178    default:
179      return false;
180    case Instruction::GetElementPtr:
181      // GEPs are cheap if all indices are constant.
182      if (!cast<GEPOperator>(I)->hasAllConstantIndices())
183        return false;
184      // fall-thru to increment case
185    case Instruction::Add:
186    case Instruction::Sub:
187    case Instruction::And:
188    case Instruction::Or:
189    case Instruction::Xor:
190    case Instruction::Shl:
191    case Instruction::LShr:
192    case Instruction::AShr:
193      if (seenIncrement)
194        return false;
195      seenIncrement = true;
196      break;
197    case Instruction::Trunc:
198    case Instruction::ZExt:
199    case Instruction::SExt:
200      // ignore type conversions
201      break;
202    }
203  }
204  return true;
205}
206
207/// Fold the loop tail into the loop exit by speculating the loop tail
208/// instructions. Typically, this is a single post-increment. In the case of a
209/// simple 2-block loop, hoisting the increment can be much better than
210/// duplicating the entire loop header. In the cast of loops with early exits,
211/// rotation will not work anyway, but simplifyLoopLatch will put the loop in
212/// canonical form so downstream passes can handle it.
213///
214/// I don't believe this invalidates SCEV.
215void LoopRotate::simplifyLoopLatch(Loop *L) {
216  BasicBlock *Latch = L->getLoopLatch();
217  if (!Latch || Latch->hasAddressTaken())
218    return;
219
220  BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
221  if (!Jmp || !Jmp->isUnconditional())
222    return;
223
224  BasicBlock *LastExit = Latch->getSinglePredecessor();
225  if (!LastExit || !L->isLoopExiting(LastExit))
226    return;
227
228  BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
229  if (!BI)
230    return;
231
232  if (!shouldSpeculateInstrs(Latch->begin(), Jmp))
233    return;
234
235  DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
236        << LastExit->getName() << "\n");
237
238  // Hoist the instructions from Latch into LastExit.
239  LastExit->getInstList().splice(BI, Latch->getInstList(), Latch->begin(), Jmp);
240
241  unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1;
242  BasicBlock *Header = Jmp->getSuccessor(0);
243  assert(Header == L->getHeader() && "expected a backward branch");
244
245  // Remove Latch from the CFG so that LastExit becomes the new Latch.
246  BI->setSuccessor(FallThruPath, Header);
247  Latch->replaceSuccessorsPhiUsesWith(LastExit);
248  Jmp->eraseFromParent();
249
250  // Nuke the Latch block.
251  assert(Latch->empty() && "unable to evacuate Latch");
252  LI->removeBlock(Latch);
253  if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>())
254    DT->eraseNode(Latch);
255  Latch->eraseFromParent();
256}
257
258/// Rotate loop LP. Return true if the loop is rotated.
259bool LoopRotate::rotateLoop(Loop *L) {
260  // If the loop has only one block then there is not much to rotate.
261  if (L->getBlocks().size() == 1)
262    return false;
263
264  BasicBlock *OrigHeader = L->getHeader();
265  BasicBlock *OrigLatch = L->getLoopLatch();
266
267  BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
268  if (BI == 0 || BI->isUnconditional())
269    return false;
270
271  // If the loop header is not one of the loop exiting blocks then
272  // either this loop is already rotated or it is not
273  // suitable for loop rotation transformations.
274  if (!L->isLoopExiting(OrigHeader))
275    return false;
276
277  // If the loop latch already contains a branch that leaves the loop then the
278  // loop is already rotated.
279  if (OrigLatch == 0 || L->isLoopExiting(OrigLatch))
280    return false;
281
282  // Check size of original header and reject loop if it is very big or we can't
283  // duplicate blocks inside it.
284  {
285    CodeMetrics Metrics;
286    Metrics.analyzeBasicBlock(OrigHeader, *TTI);
287    if (Metrics.notDuplicatable) {
288      DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non duplicatable"
289            << " instructions: "; L->dump());
290      return false;
291    }
292    if (Metrics.NumInsts > MAX_HEADER_SIZE)
293      return false;
294  }
295
296  // Now, this loop is suitable for rotation.
297  BasicBlock *OrigPreheader = L->getLoopPreheader();
298
299  // If the loop could not be converted to canonical form, it must have an
300  // indirectbr in it, just give up.
301  if (OrigPreheader == 0)
302    return false;
303
304  // Anything ScalarEvolution may know about this loop or the PHI nodes
305  // in its header will soon be invalidated.
306  if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
307    SE->forgetLoop(L);
308
309  DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
310
311  // Find new Loop header. NewHeader is a Header's one and only successor
312  // that is inside loop.  Header's other successor is outside the
313  // loop.  Otherwise loop is not suitable for rotation.
314  BasicBlock *Exit = BI->getSuccessor(0);
315  BasicBlock *NewHeader = BI->getSuccessor(1);
316  if (L->contains(Exit))
317    std::swap(Exit, NewHeader);
318  assert(NewHeader && "Unable to determine new loop header");
319  assert(L->contains(NewHeader) && !L->contains(Exit) &&
320         "Unable to determine loop header and exit blocks");
321
322  // This code assumes that the new header has exactly one predecessor.
323  // Remove any single-entry PHI nodes in it.
324  assert(NewHeader->getSinglePredecessor() &&
325         "New header doesn't have one pred!");
326  FoldSingleEntryPHINodes(NewHeader);
327
328  // Begin by walking OrigHeader and populating ValueMap with an entry for
329  // each Instruction.
330  BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
331  ValueToValueMapTy ValueMap;
332
333  // For PHI nodes, the value available in OldPreHeader is just the
334  // incoming value from OldPreHeader.
335  for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
336    ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);
337
338  // For the rest of the instructions, either hoist to the OrigPreheader if
339  // possible or create a clone in the OldPreHeader if not.
340  TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator();
341  while (I != E) {
342    Instruction *Inst = I++;
343
344    // If the instruction's operands are invariant and it doesn't read or write
345    // memory, then it is safe to hoist.  Doing this doesn't change the order of
346    // execution in the preheader, but does prevent the instruction from
347    // executing in each iteration of the loop.  This means it is safe to hoist
348    // something that might trap, but isn't safe to hoist something that reads
349    // memory (without proving that the loop doesn't write).
350    if (L->hasLoopInvariantOperands(Inst) &&
351        !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() &&
352        !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst) &&
353        !isa<AllocaInst>(Inst)) {
354      Inst->moveBefore(LoopEntryBranch);
355      continue;
356    }
357
358    // Otherwise, create a duplicate of the instruction.
359    Instruction *C = Inst->clone();
360
361    // Eagerly remap the operands of the instruction.
362    RemapInstruction(C, ValueMap,
363                     RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
364
365    // With the operands remapped, see if the instruction constant folds or is
366    // otherwise simplifyable.  This commonly occurs because the entry from PHI
367    // nodes allows icmps and other instructions to fold.
368    Value *V = SimplifyInstruction(C);
369    if (V && LI->replacementPreservesLCSSAForm(C, V)) {
370      // If so, then delete the temporary instruction and stick the folded value
371      // in the map.
372      delete C;
373      ValueMap[Inst] = V;
374    } else {
375      // Otherwise, stick the new instruction into the new block!
376      C->setName(Inst->getName());
377      C->insertBefore(LoopEntryBranch);
378      ValueMap[Inst] = C;
379    }
380  }
381
382  // Along with all the other instructions, we just cloned OrigHeader's
383  // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
384  // successors by duplicating their incoming values for OrigHeader.
385  TerminatorInst *TI = OrigHeader->getTerminator();
386  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
387    for (BasicBlock::iterator BI = TI->getSuccessor(i)->begin();
388         PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
389      PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
390
391  // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
392  // OrigPreHeader's old terminator (the original branch into the loop), and
393  // remove the corresponding incoming values from the PHI nodes in OrigHeader.
394  LoopEntryBranch->eraseFromParent();
395
396  // If there were any uses of instructions in the duplicated block outside the
397  // loop, update them, inserting PHI nodes as required
398  RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap);
399
400  // NewHeader is now the header of the loop.
401  L->moveToHeader(NewHeader);
402  assert(L->getHeader() == NewHeader && "Latch block is our new header");
403
404
405  // At this point, we've finished our major CFG changes.  As part of cloning
406  // the loop into the preheader we've simplified instructions and the
407  // duplicated conditional branch may now be branching on a constant.  If it is
408  // branching on a constant and if that constant means that we enter the loop,
409  // then we fold away the cond branch to an uncond branch.  This simplifies the
410  // loop in cases important for nested loops, and it also means we don't have
411  // to split as many edges.
412  BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
413  assert(PHBI->isConditional() && "Should be clone of BI condbr!");
414  if (!isa<ConstantInt>(PHBI->getCondition()) ||
415      PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero())
416          != NewHeader) {
417    // The conditional branch can't be folded, handle the general case.
418    // Update DominatorTree to reflect the CFG change we just made.  Then split
419    // edges as necessary to preserve LoopSimplify form.
420    if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
421      // Everything that was dominated by the old loop header is now dominated
422      // by the original loop preheader. Conceptually the header was merged
423      // into the preheader, even though we reuse the actual block as a new
424      // loop latch.
425      DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
426      SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
427                                                   OrigHeaderNode->end());
428      DomTreeNode *OrigPreheaderNode = DT->getNode(OrigPreheader);
429      for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I)
430        DT->changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode);
431
432      assert(DT->getNode(Exit)->getIDom() == OrigPreheaderNode);
433      assert(DT->getNode(NewHeader)->getIDom() == OrigPreheaderNode);
434
435      // Update OrigHeader to be dominated by the new header block.
436      DT->changeImmediateDominator(OrigHeader, OrigLatch);
437    }
438
439    // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
440    // thus is not a preheader anymore.
441    // Split the edge to form a real preheader.
442    BasicBlock *NewPH = SplitCriticalEdge(OrigPreheader, NewHeader, this);
443    NewPH->setName(NewHeader->getName() + ".lr.ph");
444
445    // Preserve canonical loop form, which means that 'Exit' should have only
446    // one predecessor.
447    BasicBlock *ExitSplit = SplitCriticalEdge(L->getLoopLatch(), Exit, this);
448    ExitSplit->moveBefore(Exit);
449  } else {
450    // We can fold the conditional branch in the preheader, this makes things
451    // simpler. The first step is to remove the extra edge to the Exit block.
452    Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
453    BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
454    NewBI->setDebugLoc(PHBI->getDebugLoc());
455    PHBI->eraseFromParent();
456
457    // With our CFG finalized, update DomTree if it is available.
458    if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
459      // Update OrigHeader to be dominated by the new header block.
460      DT->changeImmediateDominator(NewHeader, OrigPreheader);
461      DT->changeImmediateDominator(OrigHeader, OrigLatch);
462
463      // Brute force incremental dominator tree update. Call
464      // findNearestCommonDominator on all CFG predecessors of each child of the
465      // original header.
466      DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
467      SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
468                                                   OrigHeaderNode->end());
469      bool Changed;
470      do {
471        Changed = false;
472        for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) {
473          DomTreeNode *Node = HeaderChildren[I];
474          BasicBlock *BB = Node->getBlock();
475
476          pred_iterator PI = pred_begin(BB);
477          BasicBlock *NearestDom = *PI;
478          for (pred_iterator PE = pred_end(BB); PI != PE; ++PI)
479            NearestDom = DT->findNearestCommonDominator(NearestDom, *PI);
480
481          // Remember if this changes the DomTree.
482          if (Node->getIDom()->getBlock() != NearestDom) {
483            DT->changeImmediateDominator(BB, NearestDom);
484            Changed = true;
485          }
486        }
487
488      // If the dominator changed, this may have an effect on other
489      // predecessors, continue until we reach a fixpoint.
490      } while (Changed);
491    }
492  }
493
494  assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
495  assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
496
497  // Now that the CFG and DomTree are in a consistent state again, try to merge
498  // the OrigHeader block into OrigLatch.  This will succeed if they are
499  // connected by an unconditional branch.  This is just a cleanup so the
500  // emitted code isn't too gross in this common case.
501  MergeBlockIntoPredecessor(OrigHeader, this);
502
503  DEBUG(dbgs() << "LoopRotation: into "; L->dump());
504
505  ++NumRotated;
506  return true;
507}
508
509