LoopRotation.cpp revision 198892
1193323Sed//===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===//
2193323Sed//
3193323Sed//                     The LLVM Compiler Infrastructure
4193323Sed//
5193323Sed// This file is distributed under the University of Illinois Open Source
6193323Sed// License. See LICENSE.TXT for details.
7193323Sed//
8193323Sed//===----------------------------------------------------------------------===//
9193323Sed//
10193323Sed// This file implements Loop Rotation Pass.
11193323Sed//
12193323Sed//===----------------------------------------------------------------------===//
13193323Sed
14193323Sed#define DEBUG_TYPE "loop-rotate"
15193323Sed#include "llvm/Transforms/Scalar.h"
16193323Sed#include "llvm/Function.h"
17193323Sed#include "llvm/IntrinsicInst.h"
18193323Sed#include "llvm/Analysis/LoopInfo.h"
19193323Sed#include "llvm/Analysis/LoopPass.h"
20193323Sed#include "llvm/Analysis/Dominators.h"
21193323Sed#include "llvm/Analysis/ScalarEvolution.h"
22193323Sed#include "llvm/Transforms/Utils/Local.h"
23193323Sed#include "llvm/Transforms/Utils/BasicBlockUtils.h"
24198892Srdivacky#include "llvm/Transforms/Utils/SSAUpdater.h"
25193323Sed#include "llvm/Support/CommandLine.h"
26193323Sed#include "llvm/Support/Debug.h"
27193323Sed#include "llvm/ADT/Statistic.h"
28193323Sed#include "llvm/ADT/SmallVector.h"
29193323Sedusing namespace llvm;
30193323Sed
31193323Sed#define MAX_HEADER_SIZE 16
32193323Sed
33193323SedSTATISTIC(NumRotated, "Number of loops rotated");
34193323Sednamespace {
35193323Sed
36198090Srdivacky  class LoopRotate : public LoopPass {
37193323Sed  public:
38193323Sed    static char ID; // Pass ID, replacement for typeid
39193323Sed    LoopRotate() : LoopPass(&ID) {}
40193323Sed
41193323Sed    // Rotate Loop L as many times as possible. Return true if
42193323Sed    // loop is rotated at least once.
43193323Sed    bool runOnLoop(Loop *L, LPPassManager &LPM);
44193323Sed
45193323Sed    // LCSSA form makes instruction renaming easier.
46193323Sed    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
47193323Sed      AU.addRequiredID(LoopSimplifyID);
48193323Sed      AU.addPreservedID(LoopSimplifyID);
49193323Sed      AU.addRequiredID(LCSSAID);
50193323Sed      AU.addPreservedID(LCSSAID);
51193323Sed      AU.addPreserved<ScalarEvolution>();
52193323Sed      AU.addPreserved<LoopInfo>();
53193323Sed      AU.addPreserved<DominatorTree>();
54193323Sed      AU.addPreserved<DominanceFrontier>();
55193323Sed    }
56193323Sed
57193323Sed    // Helper functions
58193323Sed
59193323Sed    /// Do actual work
60193323Sed    bool rotateLoop(Loop *L, LPPassManager &LPM);
61193323Sed
62193323Sed    /// Initialize local data
63193323Sed    void initialize();
64193323Sed
65193323Sed    /// After loop rotation, loop pre-header has multiple sucessors.
66193323Sed    /// Insert one forwarding basic block to ensure that loop pre-header
67193323Sed    /// has only one successor.
68193323Sed    void preserveCanonicalLoopForm(LPPassManager &LPM);
69193323Sed
70193323Sed  private:
71193323Sed    Loop *L;
72193323Sed    BasicBlock *OrigHeader;
73193323Sed    BasicBlock *OrigPreHeader;
74193323Sed    BasicBlock *OrigLatch;
75193323Sed    BasicBlock *NewHeader;
76193323Sed    BasicBlock *Exit;
77193323Sed    LPPassManager *LPM_Ptr;
78193323Sed  };
79193323Sed}
80193323Sed
81193323Sedchar LoopRotate::ID = 0;
82193323Sedstatic RegisterPass<LoopRotate> X("loop-rotate", "Rotate Loops");
83193323Sed
84193323SedPass *llvm::createLoopRotatePass() { return new LoopRotate(); }
85193323Sed
86193323Sed/// Rotate Loop L as many times as possible. Return true if
87195098Sed/// the loop is rotated at least once.
88193323Sedbool LoopRotate::runOnLoop(Loop *Lp, LPPassManager &LPM) {
89193323Sed
90193323Sed  bool RotatedOneLoop = false;
91193323Sed  initialize();
92193323Sed  LPM_Ptr = &LPM;
93193323Sed
94193323Sed  // One loop can be rotated multiple times.
95193323Sed  while (rotateLoop(Lp,LPM)) {
96193323Sed    RotatedOneLoop = true;
97193323Sed    initialize();
98193323Sed  }
99193323Sed
100193323Sed  return RotatedOneLoop;
101193323Sed}
102193323Sed
103193323Sed/// Rotate loop LP. Return true if the loop is rotated.
104193323Sedbool LoopRotate::rotateLoop(Loop *Lp, LPPassManager &LPM) {
105193323Sed  L = Lp;
106193323Sed
107193323Sed  OrigHeader =  L->getHeader();
108193323Sed  OrigPreHeader = L->getLoopPreheader();
109193323Sed  OrigLatch = L->getLoopLatch();
110193323Sed
111195098Sed  // If the loop has only one block then there is not much to rotate.
112193323Sed  if (L->getBlocks().size() == 1)
113193323Sed    return false;
114193323Sed
115193323Sed  assert(OrigHeader && OrigLatch && OrigPreHeader &&
116193323Sed         "Loop is not in canonical form");
117193323Sed
118195098Sed  // If the loop header is not one of the loop exiting blocks then
119195098Sed  // either this loop is already rotated or it is not
120193323Sed  // suitable for loop rotation transformations.
121198892Srdivacky  if (!L->isLoopExiting(OrigHeader))
122193323Sed    return false;
123193323Sed
124193323Sed  BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
125193323Sed  if (!BI)
126193323Sed    return false;
127193323Sed  assert(BI->isConditional() && "Branch Instruction is not conditional");
128193323Sed
129193323Sed  // Updating PHInodes in loops with multiple exits adds complexity.
130193323Sed  // Keep it simple, and restrict loop rotation to loops with one exit only.
131193323Sed  // In future, lift this restriction and support for multiple exits if
132193323Sed  // required.
133193323Sed  SmallVector<BasicBlock*, 8> ExitBlocks;
134193323Sed  L->getExitBlocks(ExitBlocks);
135193323Sed  if (ExitBlocks.size() > 1)
136193323Sed    return false;
137193323Sed
138193323Sed  // Check size of original header and reject
139193323Sed  // loop if it is very big.
140193323Sed  unsigned Size = 0;
141193323Sed
142193323Sed  // FIXME: Use common api to estimate size.
143193323Sed  for (BasicBlock::const_iterator OI = OrigHeader->begin(),
144193323Sed         OE = OrigHeader->end(); OI != OE; ++OI) {
145193323Sed      if (isa<PHINode>(OI))
146193323Sed        continue;           // PHI nodes don't count.
147193323Sed      if (isa<DbgInfoIntrinsic>(OI))
148193323Sed        continue;  // Debug intrinsics don't count as size.
149193323Sed      Size++;
150193323Sed  }
151193323Sed
152193323Sed  if (Size > MAX_HEADER_SIZE)
153193323Sed    return false;
154193323Sed
155193323Sed  // Now, this loop is suitable for rotation.
156193323Sed
157198090Srdivacky  // Anything ScalarEvolution may know about this loop or the PHI nodes
158198090Srdivacky  // in its header will soon be invalidated.
159198090Srdivacky  if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
160198892Srdivacky    SE->forgetLoop(L);
161198090Srdivacky
162193323Sed  // Find new Loop header. NewHeader is a Header's one and only successor
163193323Sed  // that is inside loop.  Header's other successor is outside the
164193323Sed  // loop.  Otherwise loop is not suitable for rotation.
165193323Sed  Exit = BI->getSuccessor(0);
166193323Sed  NewHeader = BI->getSuccessor(1);
167193323Sed  if (L->contains(Exit))
168193323Sed    std::swap(Exit, NewHeader);
169193323Sed  assert(NewHeader && "Unable to determine new loop header");
170193323Sed  assert(L->contains(NewHeader) && !L->contains(Exit) &&
171193323Sed         "Unable to determine loop header and exit blocks");
172193323Sed
173195098Sed  // This code assumes that the new header has exactly one predecessor.
174195098Sed  // Remove any single-entry PHI nodes in it.
175193323Sed  assert(NewHeader->getSinglePredecessor() &&
176193323Sed         "New header doesn't have one pred!");
177193323Sed  FoldSingleEntryPHINodes(NewHeader);
178193323Sed
179198892Srdivacky  // Begin by walking OrigHeader and populating ValueMap with an entry for
180198892Srdivacky  // each Instruction.
181193323Sed  BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
182198892Srdivacky  DenseMap<const Value *, Value *> ValueMap;
183193323Sed
184198892Srdivacky  // For PHI nodes, the value available in OldPreHeader is just the
185198892Srdivacky  // incoming value from OldPreHeader.
186198892Srdivacky  for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
187198892Srdivacky    ValueMap[PN] = PN->getIncomingValue(PN->getBasicBlockIndex(OrigPreHeader));
188193323Sed
189198892Srdivacky  // For the rest of the instructions, create a clone in the OldPreHeader.
190198892Srdivacky  TerminatorInst *LoopEntryBranch = OrigPreHeader->getTerminator();
191193323Sed  for (; I != E; ++I) {
192198892Srdivacky    Instruction *C = I->clone();
193198892Srdivacky    C->setName(I->getName());
194198892Srdivacky    C->insertBefore(LoopEntryBranch);
195198892Srdivacky    ValueMap[I] = C;
196198892Srdivacky  }
197193323Sed
198198892Srdivacky  // Along with all the other instructions, we just cloned OrigHeader's
199198892Srdivacky  // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
200198892Srdivacky  // successors by duplicating their incoming values for OrigHeader.
201198892Srdivacky  TerminatorInst *TI = OrigHeader->getTerminator();
202198892Srdivacky  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
203198892Srdivacky    for (BasicBlock::iterator BI = TI->getSuccessor(i)->begin();
204198892Srdivacky         PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
205198892Srdivacky      PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreHeader);
206193323Sed
207198892Srdivacky  // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
208198892Srdivacky  // OrigPreHeader's old terminator (the original branch into the loop), and
209198892Srdivacky  // remove the corresponding incoming values from the PHI nodes in OrigHeader.
210198892Srdivacky  LoopEntryBranch->eraseFromParent();
211198892Srdivacky  for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
212198892Srdivacky    PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreHeader));
213193323Sed
214198892Srdivacky  // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
215198892Srdivacky  // as necessary.
216198892Srdivacky  SSAUpdater SSA;
217198892Srdivacky  for (I = OrigHeader->begin(); I != E; ++I) {
218198892Srdivacky    Value *OrigHeaderVal = I;
219198892Srdivacky    Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal];
220193323Sed
221198892Srdivacky    // The value now exits in two versions: the initial value in the preheader
222198892Srdivacky    // and the loop "next" value in the original header.
223198892Srdivacky    SSA.Initialize(OrigHeaderVal);
224198892Srdivacky    SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
225198892Srdivacky    SSA.AddAvailableValue(OrigPreHeader, OrigPreHeaderVal);
226193323Sed
227198892Srdivacky    // Visit each use of the OrigHeader instruction.
228198892Srdivacky    for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
229198892Srdivacky         UE = OrigHeaderVal->use_end(); UI != UE; ) {
230198892Srdivacky      // Grab the use before incrementing the iterator.
231198892Srdivacky      Use &U = UI.getUse();
232193323Sed
233198892Srdivacky      // Increment the iterator before removing the use from the list.
234198892Srdivacky      ++UI;
235193323Sed
236198892Srdivacky      // SSAUpdater can't handle a non-PHI use in the same block as an
237198892Srdivacky      // earlier def. We can easily handle those cases manually.
238198892Srdivacky      Instruction *UserInst = cast<Instruction>(U.getUser());
239198892Srdivacky      if (!isa<PHINode>(UserInst)) {
240198892Srdivacky        BasicBlock *UserBB = UserInst->getParent();
241193323Sed
242198892Srdivacky        // The original users in the OrigHeader are already using the
243198892Srdivacky        // original definitions.
244198892Srdivacky        if (UserBB == OrigHeader)
245193323Sed          continue;
246193323Sed
247198892Srdivacky        // Users in the OrigPreHeader need to use the value to which the
248198892Srdivacky        // original definitions are mapped.
249198892Srdivacky        if (UserBB == OrigPreHeader) {
250198892Srdivacky          U = OrigPreHeaderVal;
251193323Sed          continue;
252198892Srdivacky        }
253193323Sed      }
254193323Sed
255198892Srdivacky      // Anything else can be handled by SSAUpdater.
256198892Srdivacky      SSA.RewriteUse(U);
257193323Sed    }
258193323Sed  }
259193323Sed
260198892Srdivacky  // NewHeader is now the header of the loop.
261193323Sed  L->moveToHeader(NewHeader);
262193323Sed
263193323Sed  preserveCanonicalLoopForm(LPM);
264193323Sed
265193323Sed  NumRotated++;
266193323Sed  return true;
267193323Sed}
268193323Sed
269193323Sed/// Initialize local data
270193323Sedvoid LoopRotate::initialize() {
271193323Sed  L = NULL;
272193323Sed  OrigHeader = NULL;
273193323Sed  OrigPreHeader = NULL;
274193323Sed  NewHeader = NULL;
275193323Sed  Exit = NULL;
276193323Sed}
277193323Sed
278193323Sed/// After loop rotation, loop pre-header has multiple sucessors.
279193323Sed/// Insert one forwarding basic block to ensure that loop pre-header
280193323Sed/// has only one successor.
281193323Sedvoid LoopRotate::preserveCanonicalLoopForm(LPPassManager &LPM) {
282193323Sed
283193323Sed  // Right now original pre-header has two successors, new header and
284193323Sed  // exit block. Insert new block between original pre-header and
285193323Sed  // new header such that loop's new pre-header has only one successor.
286198090Srdivacky  BasicBlock *NewPreHeader = BasicBlock::Create(OrigHeader->getContext(),
287198090Srdivacky                                                "bb.nph",
288193323Sed                                                OrigHeader->getParent(),
289193323Sed                                                NewHeader);
290193323Sed  LoopInfo &LI = LPM.getAnalysis<LoopInfo>();
291193323Sed  if (Loop *PL = LI.getLoopFor(OrigPreHeader))
292193323Sed    PL->addBasicBlockToLoop(NewPreHeader, LI.getBase());
293193323Sed  BranchInst::Create(NewHeader, NewPreHeader);
294193323Sed
295193323Sed  BranchInst *OrigPH_BI = cast<BranchInst>(OrigPreHeader->getTerminator());
296193323Sed  if (OrigPH_BI->getSuccessor(0) == NewHeader)
297193323Sed    OrigPH_BI->setSuccessor(0, NewPreHeader);
298193323Sed  else {
299193323Sed    assert(OrigPH_BI->getSuccessor(1) == NewHeader &&
300193323Sed           "Unexpected original pre-header terminator");
301193323Sed    OrigPH_BI->setSuccessor(1, NewPreHeader);
302193323Sed  }
303193323Sed
304195340Sed  PHINode *PN;
305195340Sed  for (BasicBlock::iterator I = NewHeader->begin();
306195340Sed       (PN = dyn_cast<PHINode>(I)); ++I) {
307193323Sed    int index = PN->getBasicBlockIndex(OrigPreHeader);
308193323Sed    assert(index != -1 && "Expected incoming value from Original PreHeader");
309193323Sed    PN->setIncomingBlock(index, NewPreHeader);
310193323Sed    assert(PN->getBasicBlockIndex(OrigPreHeader) == -1 &&
311193323Sed           "Expected only one incoming value from Original PreHeader");
312193323Sed  }
313193323Sed
314193323Sed  if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
315193323Sed    DT->addNewBlock(NewPreHeader, OrigPreHeader);
316193323Sed    DT->changeImmediateDominator(L->getHeader(), NewPreHeader);
317193323Sed    DT->changeImmediateDominator(Exit, OrigPreHeader);
318193323Sed    for (Loop::block_iterator BI = L->block_begin(), BE = L->block_end();
319193323Sed         BI != BE; ++BI) {
320193323Sed      BasicBlock *B = *BI;
321193323Sed      if (L->getHeader() != B) {
322193323Sed        DomTreeNode *Node = DT->getNode(B);
323193323Sed        if (Node && Node->getBlock() == OrigHeader)
324193323Sed          DT->changeImmediateDominator(*BI, L->getHeader());
325193323Sed      }
326193323Sed    }
327193323Sed    DT->changeImmediateDominator(OrigHeader, OrigLatch);
328193323Sed  }
329193323Sed
330193323Sed  if (DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>()) {
331193323Sed    // New Preheader's dominance frontier is Exit block.
332193323Sed    DominanceFrontier::DomSetType NewPHSet;
333193323Sed    NewPHSet.insert(Exit);
334193323Sed    DF->addBasicBlock(NewPreHeader, NewPHSet);
335193323Sed
336193323Sed    // New Header's dominance frontier now includes itself and Exit block
337193323Sed    DominanceFrontier::iterator HeadI = DF->find(L->getHeader());
338193323Sed    if (HeadI != DF->end()) {
339193323Sed      DominanceFrontier::DomSetType & HeaderSet = HeadI->second;
340193323Sed      HeaderSet.clear();
341193323Sed      HeaderSet.insert(L->getHeader());
342193323Sed      HeaderSet.insert(Exit);
343193323Sed    } else {
344193323Sed      DominanceFrontier::DomSetType HeaderSet;
345193323Sed      HeaderSet.insert(L->getHeader());
346193323Sed      HeaderSet.insert(Exit);
347193323Sed      DF->addBasicBlock(L->getHeader(), HeaderSet);
348193323Sed    }
349193323Sed
350193323Sed    // Original header (new Loop Latch)'s dominance frontier is Exit.
351193323Sed    DominanceFrontier::iterator LatchI = DF->find(L->getLoopLatch());
352193323Sed    if (LatchI != DF->end()) {
353193323Sed      DominanceFrontier::DomSetType &LatchSet = LatchI->second;
354193323Sed      LatchSet = LatchI->second;
355193323Sed      LatchSet.clear();
356193323Sed      LatchSet.insert(Exit);
357193323Sed    } else {
358193323Sed      DominanceFrontier::DomSetType LatchSet;
359193323Sed      LatchSet.insert(Exit);
360193323Sed      DF->addBasicBlock(L->getHeader(), LatchSet);
361193323Sed    }
362193323Sed
363198090Srdivacky    // If a loop block dominates new loop latch then add to its frontiers
364198090Srdivacky    // new header and Exit and remove new latch (which is equal to original
365198090Srdivacky    // header).
366193323Sed    BasicBlock *NewLatch = L->getLoopLatch();
367198090Srdivacky
368198090Srdivacky    assert(NewLatch == OrigHeader && "NewLatch is inequal to OrigHeader");
369198090Srdivacky
370198090Srdivacky    if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
371198090Srdivacky      for (Loop::block_iterator BI = L->block_begin(), BE = L->block_end();
372198090Srdivacky           BI != BE; ++BI) {
373198090Srdivacky        BasicBlock *B = *BI;
374198090Srdivacky        if (DT->dominates(B, NewLatch)) {
375198090Srdivacky          DominanceFrontier::iterator BDFI = DF->find(B);
376198090Srdivacky          if (BDFI != DF->end()) {
377198090Srdivacky            DominanceFrontier::DomSetType &BSet = BDFI->second;
378198090Srdivacky            BSet.erase(NewLatch);
379198090Srdivacky            BSet.insert(L->getHeader());
380198090Srdivacky            BSet.insert(Exit);
381198090Srdivacky          } else {
382198090Srdivacky            DominanceFrontier::DomSetType BSet;
383198090Srdivacky            BSet.insert(L->getHeader());
384198090Srdivacky            BSet.insert(Exit);
385198090Srdivacky            DF->addBasicBlock(B, BSet);
386198090Srdivacky          }
387193323Sed        }
388193323Sed      }
389193323Sed    }
390193323Sed  }
391193323Sed
392193323Sed  // Preserve canonical loop form, which means Exit block should
393193323Sed  // have only one predecessor.
394198090Srdivacky  SplitEdge(L->getLoopLatch(), Exit, this);
395193323Sed
396193323Sed  assert(NewHeader && L->getHeader() == NewHeader &&
397193323Sed         "Invalid loop header after loop rotation");
398193323Sed  assert(NewPreHeader && L->getLoopPreheader() == NewPreHeader &&
399193323Sed         "Invalid loop preheader after loop rotation");
400193323Sed  assert(L->getLoopLatch() &&
401193323Sed         "Invalid loop latch after loop rotation");
402193323Sed}
403