LoopDeletion.cpp revision 208954
1//===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Dead Loop Deletion Pass. This pass is responsible
11// for eliminating loops with non-infinite computable trip counts that have no
12// side effects or volatile instructions, and do not contribute to the
13// computation of the function's return value.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "loop-delete"
18#include "llvm/Transforms/Scalar.h"
19#include "llvm/Analysis/LoopPass.h"
20#include "llvm/Analysis/ScalarEvolution.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/ADT/SmallVector.h"
23using namespace llvm;
24
25STATISTIC(NumDeleted, "Number of loops deleted");
26
27namespace {
28  class LoopDeletion : public LoopPass {
29  public:
30    static char ID; // Pass ID, replacement for typeid
31    LoopDeletion() : LoopPass(&ID) {}
32
33    // Possibly eliminate loop L if it is dead.
34    bool runOnLoop(Loop* L, LPPassManager& LPM);
35
36    bool IsLoopDead(Loop* L, SmallVector<BasicBlock*, 4>& exitingBlocks,
37                    SmallVector<BasicBlock*, 4>& exitBlocks,
38                    bool &Changed, BasicBlock *Preheader);
39
40    virtual void getAnalysisUsage(AnalysisUsage& AU) const {
41      AU.addRequired<ScalarEvolution>();
42      AU.addRequired<DominatorTree>();
43      AU.addRequired<LoopInfo>();
44      AU.addRequiredID(LoopSimplifyID);
45      AU.addRequiredID(LCSSAID);
46
47      AU.addPreserved<ScalarEvolution>();
48      AU.addPreserved<DominatorTree>();
49      AU.addPreserved<LoopInfo>();
50      AU.addPreservedID(LoopSimplifyID);
51      AU.addPreservedID(LCSSAID);
52      AU.addPreserved<DominanceFrontier>();
53    }
54  };
55}
56
57char LoopDeletion::ID = 0;
58static RegisterPass<LoopDeletion> X("loop-deletion", "Delete dead loops");
59
60Pass* llvm::createLoopDeletionPass() {
61  return new LoopDeletion();
62}
63
64/// IsLoopDead - Determined if a loop is dead.  This assumes that we've already
65/// checked for unique exit and exiting blocks, and that the code is in LCSSA
66/// form.
67bool LoopDeletion::IsLoopDead(Loop* L,
68                              SmallVector<BasicBlock*, 4>& exitingBlocks,
69                              SmallVector<BasicBlock*, 4>& exitBlocks,
70                              bool &Changed, BasicBlock *Preheader) {
71  BasicBlock* exitingBlock = exitingBlocks[0];
72  BasicBlock* exitBlock = exitBlocks[0];
73
74  // Make sure that all PHI entries coming from the loop are loop invariant.
75  // Because the code is in LCSSA form, any values used outside of the loop
76  // must pass through a PHI in the exit block, meaning that this check is
77  // sufficient to guarantee that no loop-variant values are used outside
78  // of the loop.
79  BasicBlock::iterator BI = exitBlock->begin();
80  while (PHINode* P = dyn_cast<PHINode>(BI)) {
81    Value* incoming = P->getIncomingValueForBlock(exitingBlock);
82    if (Instruction* I = dyn_cast<Instruction>(incoming))
83      if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator()))
84        return false;
85
86    BI++;
87  }
88
89  // Make sure that no instructions in the block have potential side-effects.
90  // This includes instructions that could write to memory, and loads that are
91  // marked volatile.  This could be made more aggressive by using aliasing
92  // information to identify readonly and readnone calls.
93  for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
94       LI != LE; ++LI) {
95    for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end();
96         BI != BE; ++BI) {
97      if (BI->mayHaveSideEffects())
98        return false;
99    }
100  }
101
102  return true;
103}
104
105/// runOnLoop - Remove dead loops, by which we mean loops that do not impact the
106/// observable behavior of the program other than finite running time.  Note
107/// we do ensure that this never remove a loop that might be infinite, as doing
108/// so could change the halting/non-halting nature of a program.
109/// NOTE: This entire process relies pretty heavily on LoopSimplify and LCSSA
110/// in order to make various safety checks work.
111bool LoopDeletion::runOnLoop(Loop* L, LPPassManager& LPM) {
112  // We can only remove the loop if there is a preheader that we can
113  // branch from after removing it.
114  BasicBlock* preheader = L->getLoopPreheader();
115  if (!preheader)
116    return false;
117
118  // If LoopSimplify form is not available, stay out of trouble.
119  if (!L->hasDedicatedExits())
120    return false;
121
122  // We can't remove loops that contain subloops.  If the subloops were dead,
123  // they would already have been removed in earlier executions of this pass.
124  if (L->begin() != L->end())
125    return false;
126
127  SmallVector<BasicBlock*, 4> exitingBlocks;
128  L->getExitingBlocks(exitingBlocks);
129
130  SmallVector<BasicBlock*, 4> exitBlocks;
131  L->getUniqueExitBlocks(exitBlocks);
132
133  // We require that the loop only have a single exit block.  Otherwise, we'd
134  // be in the situation of needing to be able to solve statically which exit
135  // block will be branched to, or trying to preserve the branching logic in
136  // a loop invariant manner.
137  if (exitBlocks.size() != 1)
138    return false;
139
140  // Loops with multiple exits are too complicated to handle correctly.
141  if (exitingBlocks.size() != 1)
142    return false;
143
144  // Finally, we have to check that the loop really is dead.
145  bool Changed = false;
146  if (!IsLoopDead(L, exitingBlocks, exitBlocks, Changed, preheader))
147    return Changed;
148
149  // Don't remove loops for which we can't solve the trip count.
150  // They could be infinite, in which case we'd be changing program behavior.
151  ScalarEvolution& SE = getAnalysis<ScalarEvolution>();
152  const SCEV *S = SE.getMaxBackedgeTakenCount(L);
153  if (isa<SCEVCouldNotCompute>(S))
154    return Changed;
155
156  // Now that we know the removal is safe, remove the loop by changing the
157  // branch from the preheader to go to the single exit block.
158  BasicBlock* exitBlock = exitBlocks[0];
159  BasicBlock* exitingBlock = exitingBlocks[0];
160
161  // Because we're deleting a large chunk of code at once, the sequence in which
162  // we remove things is very important to avoid invalidation issues.  Don't
163  // mess with this unless you have good reason and know what you're doing.
164
165  // Tell ScalarEvolution that the loop is deleted. Do this before
166  // deleting the loop so that ScalarEvolution can look at the loop
167  // to determine what it needs to clean up.
168  SE.forgetLoop(L);
169
170  // Connect the preheader directly to the exit block.
171  TerminatorInst* TI = preheader->getTerminator();
172  TI->replaceUsesOfWith(L->getHeader(), exitBlock);
173
174  // Rewrite phis in the exit block to get their inputs from
175  // the preheader instead of the exiting block.
176  BasicBlock::iterator BI = exitBlock->begin();
177  while (PHINode* P = dyn_cast<PHINode>(BI)) {
178    P->replaceUsesOfWith(exitingBlock, preheader);
179    BI++;
180  }
181
182  // Update the dominator tree and remove the instructions and blocks that will
183  // be deleted from the reference counting scheme.
184  DominatorTree& DT = getAnalysis<DominatorTree>();
185  DominanceFrontier* DF = getAnalysisIfAvailable<DominanceFrontier>();
186  SmallPtrSet<DomTreeNode*, 8> ChildNodes;
187  for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
188       LI != LE; ++LI) {
189    // Move all of the block's children to be children of the preheader, which
190    // allows us to remove the domtree entry for the block.
191    ChildNodes.insert(DT[*LI]->begin(), DT[*LI]->end());
192    for (SmallPtrSet<DomTreeNode*, 8>::iterator DI = ChildNodes.begin(),
193         DE = ChildNodes.end(); DI != DE; ++DI) {
194      DT.changeImmediateDominator(*DI, DT[preheader]);
195      if (DF) DF->changeImmediateDominator((*DI)->getBlock(), preheader, &DT);
196    }
197
198    ChildNodes.clear();
199    DT.eraseNode(*LI);
200    if (DF) DF->removeBlock(*LI);
201
202    // Remove the block from the reference counting scheme, so that we can
203    // delete it freely later.
204    (*LI)->dropAllReferences();
205  }
206
207  // Erase the instructions and the blocks without having to worry
208  // about ordering because we already dropped the references.
209  // NOTE: This iteration is safe because erasing the block does not remove its
210  // entry from the loop's block list.  We do that in the next section.
211  for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
212       LI != LE; ++LI)
213    (*LI)->eraseFromParent();
214
215  // Finally, the blocks from loopinfo.  This has to happen late because
216  // otherwise our loop iterators won't work.
217  LoopInfo& loopInfo = getAnalysis<LoopInfo>();
218  SmallPtrSet<BasicBlock*, 8> blocks;
219  blocks.insert(L->block_begin(), L->block_end());
220  for (SmallPtrSet<BasicBlock*,8>::iterator I = blocks.begin(),
221       E = blocks.end(); I != E; ++I)
222    loopInfo.removeBlock(*I);
223
224  // The last step is to inform the loop pass manager that we've
225  // eliminated this loop.
226  LPM.deleteLoopFromQueue(L);
227  Changed = true;
228
229  NumDeleted++;
230
231  return Changed;
232}
233