InstCombineSimplifyDemanded.cpp revision 296417
1146822Sharti//===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2146822Sharti//
3146822Sharti//                     The LLVM Compiler Infrastructure
4146822Sharti//
5146822Sharti// This file is distributed under the University of Illinois Open Source
6146822Sharti// License. See LICENSE.TXT for details.
7146822Sharti//
8146822Sharti//===----------------------------------------------------------------------===//
9146822Sharti//
10146822Sharti// This file contains logic for simplifying instructions based on information
11146822Sharti// about how they are used.
12146822Sharti//
13146822Sharti//===----------------------------------------------------------------------===//
14146822Sharti
15146822Sharti#include "InstCombineInternal.h"
16#include "llvm/Analysis/ValueTracking.h"
17#include "llvm/IR/IntrinsicInst.h"
18#include "llvm/IR/PatternMatch.h"
19
20using namespace llvm;
21using namespace llvm::PatternMatch;
22
23#define DEBUG_TYPE "instcombine"
24
25/// ShrinkDemandedConstant - Check to see if the specified operand of the
26/// specified instruction is a constant integer.  If so, check to see if there
27/// are any bits set in the constant that are not demanded.  If so, shrink the
28/// constant and return true.
29static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
30                                   APInt Demanded) {
31  assert(I && "No instruction?");
32  assert(OpNo < I->getNumOperands() && "Operand index too large");
33
34  // If the operand is not a constant integer, nothing to do.
35  ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
36  if (!OpC) return false;
37
38  // If there are no bits set that aren't demanded, nothing to do.
39  Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
40  if ((~Demanded & OpC->getValue()) == 0)
41    return false;
42
43  // This instruction is producing bits that are not demanded. Shrink the RHS.
44  Demanded &= OpC->getValue();
45  I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded));
46
47  return true;
48}
49
50
51
52/// SimplifyDemandedInstructionBits - Inst is an integer instruction that
53/// SimplifyDemandedBits knows about.  See if the instruction has any
54/// properties that allow us to simplify its operands.
55bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
56  unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
57  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
58  APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
59
60  Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, KnownZero, KnownOne,
61                                     0, &Inst);
62  if (!V) return false;
63  if (V == &Inst) return true;
64  ReplaceInstUsesWith(Inst, V);
65  return true;
66}
67
68/// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the
69/// specified instruction operand if possible, updating it in place.  It returns
70/// true if it made any change and false otherwise.
71bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
72                                        APInt &KnownZero, APInt &KnownOne,
73                                        unsigned Depth) {
74  auto *UserI = dyn_cast<Instruction>(U.getUser());
75  Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, KnownZero,
76                                          KnownOne, Depth, UserI);
77  if (!NewVal) return false;
78  U = NewVal;
79  return true;
80}
81
82
83/// SimplifyDemandedUseBits - This function attempts to replace V with a simpler
84/// value based on the demanded bits.  When this function is called, it is known
85/// that only the bits set in DemandedMask of the result of V are ever used
86/// downstream. Consequently, depending on the mask and V, it may be possible
87/// to replace V with a constant or one of its operands. In such cases, this
88/// function does the replacement and returns true. In all other cases, it
89/// returns false after analyzing the expression and setting KnownOne and known
90/// to be one in the expression.  KnownZero contains all the bits that are known
91/// to be zero in the expression. These are provided to potentially allow the
92/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
93/// the expression. KnownOne and KnownZero always follow the invariant that
94/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
95/// the bits in KnownOne and KnownZero may only be accurate for those bits set
96/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
97/// and KnownOne must all be the same.
98///
99/// This returns null if it did not change anything and it permits no
100/// simplification.  This returns V itself if it did some simplification of V's
101/// operands based on the information about what bits are demanded. This returns
102/// some other non-null value if it found out that V is equal to another value
103/// in the context where the specified bits are demanded, but not for all users.
104Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
105                                             APInt &KnownZero, APInt &KnownOne,
106                                             unsigned Depth,
107                                             Instruction *CxtI) {
108  assert(V != nullptr && "Null pointer of Value???");
109  assert(Depth <= 6 && "Limit Search Depth");
110  uint32_t BitWidth = DemandedMask.getBitWidth();
111  Type *VTy = V->getType();
112  assert(
113      (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
114      KnownZero.getBitWidth() == BitWidth &&
115      KnownOne.getBitWidth() == BitWidth &&
116      "Value *V, DemandedMask, KnownZero and KnownOne "
117      "must have same BitWidth");
118  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
119    // We know all of the bits for a constant!
120    KnownOne = CI->getValue() & DemandedMask;
121    KnownZero = ~KnownOne & DemandedMask;
122    return nullptr;
123  }
124  if (isa<ConstantPointerNull>(V)) {
125    // We know all of the bits for a constant!
126    KnownOne.clearAllBits();
127    KnownZero = DemandedMask;
128    return nullptr;
129  }
130
131  KnownZero.clearAllBits();
132  KnownOne.clearAllBits();
133  if (DemandedMask == 0) {   // Not demanding any bits from V.
134    if (isa<UndefValue>(V))
135      return nullptr;
136    return UndefValue::get(VTy);
137  }
138
139  if (Depth == 6)        // Limit search depth.
140    return nullptr;
141
142  APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
143  APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
144
145  Instruction *I = dyn_cast<Instruction>(V);
146  if (!I) {
147    computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
148    return nullptr;        // Only analyze instructions.
149  }
150
151  // If there are multiple uses of this value and we aren't at the root, then
152  // we can't do any simplifications of the operands, because DemandedMask
153  // only reflects the bits demanded by *one* of the users.
154  if (Depth != 0 && !I->hasOneUse()) {
155    // Despite the fact that we can't simplify this instruction in all User's
156    // context, we can at least compute the knownzero/knownone bits, and we can
157    // do simplifications that apply to *just* the one user if we know that
158    // this instruction has a simpler value in that context.
159    if (I->getOpcode() == Instruction::And) {
160      // If either the LHS or the RHS are Zero, the result is zero.
161      computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
162                       CxtI);
163      computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
164                       CxtI);
165
166      // If all of the demanded bits are known 1 on one side, return the other.
167      // These bits cannot contribute to the result of the 'and' in this
168      // context.
169      if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
170          (DemandedMask & ~LHSKnownZero))
171        return I->getOperand(0);
172      if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
173          (DemandedMask & ~RHSKnownZero))
174        return I->getOperand(1);
175
176      // If all of the demanded bits in the inputs are known zeros, return zero.
177      if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
178        return Constant::getNullValue(VTy);
179
180    } else if (I->getOpcode() == Instruction::Or) {
181      // We can simplify (X|Y) -> X or Y in the user's context if we know that
182      // only bits from X or Y are demanded.
183
184      // If either the LHS or the RHS are One, the result is One.
185      computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
186                       CxtI);
187      computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
188                       CxtI);
189
190      // If all of the demanded bits are known zero on one side, return the
191      // other.  These bits cannot contribute to the result of the 'or' in this
192      // context.
193      if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
194          (DemandedMask & ~LHSKnownOne))
195        return I->getOperand(0);
196      if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
197          (DemandedMask & ~RHSKnownOne))
198        return I->getOperand(1);
199
200      // If all of the potentially set bits on one side are known to be set on
201      // the other side, just use the 'other' side.
202      if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
203          (DemandedMask & (~RHSKnownZero)))
204        return I->getOperand(0);
205      if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
206          (DemandedMask & (~LHSKnownZero)))
207        return I->getOperand(1);
208    } else if (I->getOpcode() == Instruction::Xor) {
209      // We can simplify (X^Y) -> X or Y in the user's context if we know that
210      // only bits from X or Y are demanded.
211
212      computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
213                       CxtI);
214      computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
215                       CxtI);
216
217      // If all of the demanded bits are known zero on one side, return the
218      // other.
219      if ((DemandedMask & RHSKnownZero) == DemandedMask)
220        return I->getOperand(0);
221      if ((DemandedMask & LHSKnownZero) == DemandedMask)
222        return I->getOperand(1);
223    }
224
225    // Compute the KnownZero/KnownOne bits to simplify things downstream.
226    computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI);
227    return nullptr;
228  }
229
230  // If this is the root being simplified, allow it to have multiple uses,
231  // just set the DemandedMask to all bits so that we can try to simplify the
232  // operands.  This allows visitTruncInst (for example) to simplify the
233  // operand of a trunc without duplicating all the logic below.
234  if (Depth == 0 && !V->hasOneUse())
235    DemandedMask = APInt::getAllOnesValue(BitWidth);
236
237  switch (I->getOpcode()) {
238  default:
239    computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI);
240    break;
241  case Instruction::And:
242    // If either the LHS or the RHS are Zero, the result is zero.
243    if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero,
244                             RHSKnownOne, Depth + 1) ||
245        SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero,
246                             LHSKnownZero, LHSKnownOne, Depth + 1))
247      return I;
248    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
249    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
250
251    // If the client is only demanding bits that we know, return the known
252    // constant.
253    if ((DemandedMask & ((RHSKnownZero | LHSKnownZero)|
254                         (RHSKnownOne & LHSKnownOne))) == DemandedMask)
255      return Constant::getIntegerValue(VTy, RHSKnownOne & LHSKnownOne);
256
257    // If all of the demanded bits are known 1 on one side, return the other.
258    // These bits cannot contribute to the result of the 'and'.
259    if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
260        (DemandedMask & ~LHSKnownZero))
261      return I->getOperand(0);
262    if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
263        (DemandedMask & ~RHSKnownZero))
264      return I->getOperand(1);
265
266    // If all of the demanded bits in the inputs are known zeros, return zero.
267    if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
268      return Constant::getNullValue(VTy);
269
270    // If the RHS is a constant, see if we can simplify it.
271    if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
272      return I;
273
274    // Output known-1 bits are only known if set in both the LHS & RHS.
275    KnownOne = RHSKnownOne & LHSKnownOne;
276    // Output known-0 are known to be clear if zero in either the LHS | RHS.
277    KnownZero = RHSKnownZero | LHSKnownZero;
278    break;
279  case Instruction::Or:
280    // If either the LHS or the RHS are One, the result is One.
281    if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero,
282                             RHSKnownOne, Depth + 1) ||
283        SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,
284                             LHSKnownZero, LHSKnownOne, Depth + 1))
285      return I;
286    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
287    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
288
289    // If the client is only demanding bits that we know, return the known
290    // constant.
291    if ((DemandedMask & ((RHSKnownZero & LHSKnownZero)|
292                         (RHSKnownOne | LHSKnownOne))) == DemandedMask)
293      return Constant::getIntegerValue(VTy, RHSKnownOne | LHSKnownOne);
294
295    // If all of the demanded bits are known zero on one side, return the other.
296    // These bits cannot contribute to the result of the 'or'.
297    if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
298        (DemandedMask & ~LHSKnownOne))
299      return I->getOperand(0);
300    if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
301        (DemandedMask & ~RHSKnownOne))
302      return I->getOperand(1);
303
304    // If all of the potentially set bits on one side are known to be set on
305    // the other side, just use the 'other' side.
306    if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
307        (DemandedMask & (~RHSKnownZero)))
308      return I->getOperand(0);
309    if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
310        (DemandedMask & (~LHSKnownZero)))
311      return I->getOperand(1);
312
313    // If the RHS is a constant, see if we can simplify it.
314    if (ShrinkDemandedConstant(I, 1, DemandedMask))
315      return I;
316
317    // Output known-0 bits are only known if clear in both the LHS & RHS.
318    KnownZero = RHSKnownZero & LHSKnownZero;
319    // Output known-1 are known to be set if set in either the LHS | RHS.
320    KnownOne = RHSKnownOne | LHSKnownOne;
321    break;
322  case Instruction::Xor: {
323    if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero,
324                             RHSKnownOne, Depth + 1) ||
325        SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, LHSKnownZero,
326                             LHSKnownOne, Depth + 1))
327      return I;
328    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
329    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
330
331    // Output known-0 bits are known if clear or set in both the LHS & RHS.
332    APInt IKnownZero = (RHSKnownZero & LHSKnownZero) |
333                       (RHSKnownOne & LHSKnownOne);
334    // Output known-1 are known to be set if set in only one of the LHS, RHS.
335    APInt IKnownOne =  (RHSKnownZero & LHSKnownOne) |
336                       (RHSKnownOne & LHSKnownZero);
337
338    // If the client is only demanding bits that we know, return the known
339    // constant.
340    if ((DemandedMask & (IKnownZero|IKnownOne)) == DemandedMask)
341      return Constant::getIntegerValue(VTy, IKnownOne);
342
343    // If all of the demanded bits are known zero on one side, return the other.
344    // These bits cannot contribute to the result of the 'xor'.
345    if ((DemandedMask & RHSKnownZero) == DemandedMask)
346      return I->getOperand(0);
347    if ((DemandedMask & LHSKnownZero) == DemandedMask)
348      return I->getOperand(1);
349
350    // If all of the demanded bits are known to be zero on one side or the
351    // other, turn this into an *inclusive* or.
352    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
353    if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
354      Instruction *Or =
355        BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
356                                 I->getName());
357      return InsertNewInstWith(Or, *I);
358    }
359
360    // If all of the demanded bits on one side are known, and all of the set
361    // bits on that side are also known to be set on the other side, turn this
362    // into an AND, as we know the bits will be cleared.
363    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
364    if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
365      // all known
366      if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
367        Constant *AndC = Constant::getIntegerValue(VTy,
368                                                   ~RHSKnownOne & DemandedMask);
369        Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
370        return InsertNewInstWith(And, *I);
371      }
372    }
373
374    // If the RHS is a constant, see if we can simplify it.
375    // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
376    if (ShrinkDemandedConstant(I, 1, DemandedMask))
377      return I;
378
379    // If our LHS is an 'and' and if it has one use, and if any of the bits we
380    // are flipping are known to be set, then the xor is just resetting those
381    // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
382    // simplifying both of them.
383    if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
384      if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
385          isa<ConstantInt>(I->getOperand(1)) &&
386          isa<ConstantInt>(LHSInst->getOperand(1)) &&
387          (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) {
388        ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
389        ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
390        APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);
391
392        Constant *AndC =
393          ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
394        Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
395        InsertNewInstWith(NewAnd, *I);
396
397        Constant *XorC =
398          ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
399        Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
400        return InsertNewInstWith(NewXor, *I);
401      }
402
403    // Output known-0 bits are known if clear or set in both the LHS & RHS.
404    KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne);
405    // Output known-1 are known to be set if set in only one of the LHS, RHS.
406    KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero);
407    break;
408  }
409  case Instruction::Select:
410    // If this is a select as part of a min/max pattern, don't simplify any
411    // further in case we break the structure.
412    Value *LHS, *RHS;
413    if (matchSelectPattern(I, LHS, RHS).Flavor != SPF_UNKNOWN)
414      return nullptr;
415
416    if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask, RHSKnownZero,
417                             RHSKnownOne, Depth + 1) ||
418        SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, LHSKnownZero,
419                             LHSKnownOne, Depth + 1))
420      return I;
421    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
422    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
423
424    // If the operands are constants, see if we can simplify them.
425    if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
426        ShrinkDemandedConstant(I, 2, DemandedMask))
427      return I;
428
429    // Only known if known in both the LHS and RHS.
430    KnownOne = RHSKnownOne & LHSKnownOne;
431    KnownZero = RHSKnownZero & LHSKnownZero;
432    break;
433  case Instruction::Trunc: {
434    unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits();
435    DemandedMask = DemandedMask.zext(truncBf);
436    KnownZero = KnownZero.zext(truncBf);
437    KnownOne = KnownOne.zext(truncBf);
438    if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero,
439                             KnownOne, Depth + 1))
440      return I;
441    DemandedMask = DemandedMask.trunc(BitWidth);
442    KnownZero = KnownZero.trunc(BitWidth);
443    KnownOne = KnownOne.trunc(BitWidth);
444    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
445    break;
446  }
447  case Instruction::BitCast:
448    if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
449      return nullptr;  // vector->int or fp->int?
450
451    if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
452      if (VectorType *SrcVTy =
453            dyn_cast<VectorType>(I->getOperand(0)->getType())) {
454        if (DstVTy->getNumElements() != SrcVTy->getNumElements())
455          // Don't touch a bitcast between vectors of different element counts.
456          return nullptr;
457      } else
458        // Don't touch a scalar-to-vector bitcast.
459        return nullptr;
460    } else if (I->getOperand(0)->getType()->isVectorTy())
461      // Don't touch a vector-to-scalar bitcast.
462      return nullptr;
463
464    if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero,
465                             KnownOne, Depth + 1))
466      return I;
467    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
468    break;
469  case Instruction::ZExt: {
470    // Compute the bits in the result that are not present in the input.
471    unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
472
473    DemandedMask = DemandedMask.trunc(SrcBitWidth);
474    KnownZero = KnownZero.trunc(SrcBitWidth);
475    KnownOne = KnownOne.trunc(SrcBitWidth);
476    if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero,
477                             KnownOne, Depth + 1))
478      return I;
479    DemandedMask = DemandedMask.zext(BitWidth);
480    KnownZero = KnownZero.zext(BitWidth);
481    KnownOne = KnownOne.zext(BitWidth);
482    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
483    // The top bits are known to be zero.
484    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
485    break;
486  }
487  case Instruction::SExt: {
488    // Compute the bits in the result that are not present in the input.
489    unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
490
491    APInt InputDemandedBits = DemandedMask &
492                              APInt::getLowBitsSet(BitWidth, SrcBitWidth);
493
494    APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
495    // If any of the sign extended bits are demanded, we know that the sign
496    // bit is demanded.
497    if ((NewBits & DemandedMask) != 0)
498      InputDemandedBits.setBit(SrcBitWidth-1);
499
500    InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth);
501    KnownZero = KnownZero.trunc(SrcBitWidth);
502    KnownOne = KnownOne.trunc(SrcBitWidth);
503    if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits, KnownZero,
504                             KnownOne, Depth + 1))
505      return I;
506    InputDemandedBits = InputDemandedBits.zext(BitWidth);
507    KnownZero = KnownZero.zext(BitWidth);
508    KnownOne = KnownOne.zext(BitWidth);
509    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
510
511    // If the sign bit of the input is known set or clear, then we know the
512    // top bits of the result.
513
514    // If the input sign bit is known zero, or if the NewBits are not demanded
515    // convert this into a zero extension.
516    if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) {
517      // Convert to ZExt cast
518      CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
519      return InsertNewInstWith(NewCast, *I);
520    } else if (KnownOne[SrcBitWidth-1]) {    // Input sign bit known set
521      KnownOne |= NewBits;
522    }
523    break;
524  }
525  case Instruction::Add:
526  case Instruction::Sub: {
527    /// If the high-bits of an ADD/SUB are not demanded, then we do not care
528    /// about the high bits of the operands.
529    unsigned NLZ = DemandedMask.countLeadingZeros();
530    if (NLZ > 0) {
531      // Right fill the mask of bits for this ADD/SUB to demand the most
532      // significant bit and all those below it.
533      APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
534      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
535                               LHSKnownZero, LHSKnownOne, Depth + 1) ||
536          ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
537          SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
538                               LHSKnownZero, LHSKnownOne, Depth + 1)) {
539        // Disable the nsw and nuw flags here: We can no longer guarantee that
540        // we won't wrap after simplification. Removing the nsw/nuw flags is
541        // legal here because the top bit is not demanded.
542        BinaryOperator &BinOP = *cast<BinaryOperator>(I);
543        BinOP.setHasNoSignedWrap(false);
544        BinOP.setHasNoUnsignedWrap(false);
545        return I;
546      }
547    }
548
549    // Otherwise just hand the add/sub off to computeKnownBits to fill in
550    // the known zeros and ones.
551    computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
552    break;
553  }
554  case Instruction::Shl:
555    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
556      {
557        Value *VarX; ConstantInt *C1;
558        if (match(I->getOperand(0), m_Shr(m_Value(VarX), m_ConstantInt(C1)))) {
559          Instruction *Shr = cast<Instruction>(I->getOperand(0));
560          Value *R = SimplifyShrShlDemandedBits(Shr, I, DemandedMask,
561                                                KnownZero, KnownOne);
562          if (R)
563            return R;
564        }
565      }
566
567      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
568      APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
569
570      // If the shift is NUW/NSW, then it does demand the high bits.
571      ShlOperator *IOp = cast<ShlOperator>(I);
572      if (IOp->hasNoSignedWrap())
573        DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
574      else if (IOp->hasNoUnsignedWrap())
575        DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
576
577      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero,
578                               KnownOne, Depth + 1))
579        return I;
580      assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
581      KnownZero <<= ShiftAmt;
582      KnownOne  <<= ShiftAmt;
583      // low bits known zero.
584      if (ShiftAmt)
585        KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
586    }
587    break;
588  case Instruction::LShr:
589    // For a logical shift right
590    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
591      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
592
593      // Unsigned shift right.
594      APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
595
596      // If the shift is exact, then it does demand the low bits (and knows that
597      // they are zero).
598      if (cast<LShrOperator>(I)->isExact())
599        DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
600
601      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero,
602                               KnownOne, Depth + 1))
603        return I;
604      assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
605      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
606      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
607      if (ShiftAmt) {
608        // Compute the new bits that are at the top now.
609        APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
610        KnownZero |= HighBits;  // high bits known zero.
611      }
612    }
613    break;
614  case Instruction::AShr:
615    // If this is an arithmetic shift right and only the low-bit is set, we can
616    // always convert this into a logical shr, even if the shift amount is
617    // variable.  The low bit of the shift cannot be an input sign bit unless
618    // the shift amount is >= the size of the datatype, which is undefined.
619    if (DemandedMask == 1) {
620      // Perform the logical shift right.
621      Instruction *NewVal = BinaryOperator::CreateLShr(
622                        I->getOperand(0), I->getOperand(1), I->getName());
623      return InsertNewInstWith(NewVal, *I);
624    }
625
626    // If the sign bit is the only bit demanded by this ashr, then there is no
627    // need to do it, the shift doesn't change the high bit.
628    if (DemandedMask.isSignBit())
629      return I->getOperand(0);
630
631    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
632      uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
633
634      // Signed shift right.
635      APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
636      // If any of the "high bits" are demanded, we should set the sign bit as
637      // demanded.
638      if (DemandedMask.countLeadingZeros() <= ShiftAmt)
639        DemandedMaskIn.setBit(BitWidth-1);
640
641      // If the shift is exact, then it does demand the low bits (and knows that
642      // they are zero).
643      if (cast<AShrOperator>(I)->isExact())
644        DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
645
646      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero,
647                               KnownOne, Depth + 1))
648        return I;
649      assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
650      // Compute the new bits that are at the top now.
651      APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
652      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
653      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
654
655      // Handle the sign bits.
656      APInt SignBit(APInt::getSignBit(BitWidth));
657      // Adjust to where it is now in the mask.
658      SignBit = APIntOps::lshr(SignBit, ShiftAmt);
659
660      // If the input sign bit is known to be zero, or if none of the top bits
661      // are demanded, turn this into an unsigned shift right.
662      if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||
663          (HighBits & ~DemandedMask) == HighBits) {
664        // Perform the logical shift right.
665        BinaryOperator *NewVal = BinaryOperator::CreateLShr(I->getOperand(0),
666                                                            SA, I->getName());
667        NewVal->setIsExact(cast<BinaryOperator>(I)->isExact());
668        return InsertNewInstWith(NewVal, *I);
669      } else if ((KnownOne & SignBit) != 0) { // New bits are known one.
670        KnownOne |= HighBits;
671      }
672    }
673    break;
674  case Instruction::SRem:
675    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
676      // X % -1 demands all the bits because we don't want to introduce
677      // INT_MIN % -1 (== undef) by accident.
678      if (Rem->isAllOnesValue())
679        break;
680      APInt RA = Rem->getValue().abs();
681      if (RA.isPowerOf2()) {
682        if (DemandedMask.ult(RA))    // srem won't affect demanded bits
683          return I->getOperand(0);
684
685        APInt LowBits = RA - 1;
686        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
687        if (SimplifyDemandedBits(I->getOperandUse(0), Mask2, LHSKnownZero,
688                                 LHSKnownOne, Depth + 1))
689          return I;
690
691        // The low bits of LHS are unchanged by the srem.
692        KnownZero = LHSKnownZero & LowBits;
693        KnownOne = LHSKnownOne & LowBits;
694
695        // If LHS is non-negative or has all low bits zero, then the upper bits
696        // are all zero.
697        if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
698          KnownZero |= ~LowBits;
699
700        // If LHS is negative and not all low bits are zero, then the upper bits
701        // are all one.
702        if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0))
703          KnownOne |= ~LowBits;
704
705        assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
706      }
707    }
708
709    // The sign bit is the LHS's sign bit, except when the result of the
710    // remainder is zero.
711    if (DemandedMask.isNegative() && KnownZero.isNonNegative()) {
712      APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
713      computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
714                       CxtI);
715      // If it's known zero, our sign bit is also zero.
716      if (LHSKnownZero.isNegative())
717        KnownZero.setBit(KnownZero.getBitWidth() - 1);
718    }
719    break;
720  case Instruction::URem: {
721    APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
722    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
723    if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes, KnownZero2,
724                             KnownOne2, Depth + 1) ||
725        SimplifyDemandedBits(I->getOperandUse(1), AllOnes, KnownZero2,
726                             KnownOne2, Depth + 1))
727      return I;
728
729    unsigned Leaders = KnownZero2.countLeadingOnes();
730    Leaders = std::max(Leaders,
731                       KnownZero2.countLeadingOnes());
732    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
733    break;
734  }
735  case Instruction::Call:
736    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
737      switch (II->getIntrinsicID()) {
738      default: break;
739      case Intrinsic::bswap: {
740        // If the only bits demanded come from one byte of the bswap result,
741        // just shift the input byte into position to eliminate the bswap.
742        unsigned NLZ = DemandedMask.countLeadingZeros();
743        unsigned NTZ = DemandedMask.countTrailingZeros();
744
745        // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
746        // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
747        // have 14 leading zeros, round to 8.
748        NLZ &= ~7;
749        NTZ &= ~7;
750        // If we need exactly one byte, we can do this transformation.
751        if (BitWidth-NLZ-NTZ == 8) {
752          unsigned ResultBit = NTZ;
753          unsigned InputBit = BitWidth-NTZ-8;
754
755          // Replace this with either a left or right shift to get the byte into
756          // the right place.
757          Instruction *NewVal;
758          if (InputBit > ResultBit)
759            NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
760                    ConstantInt::get(I->getType(), InputBit-ResultBit));
761          else
762            NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
763                    ConstantInt::get(I->getType(), ResultBit-InputBit));
764          NewVal->takeName(I);
765          return InsertNewInstWith(NewVal, *I);
766        }
767
768        // TODO: Could compute known zero/one bits based on the input.
769        break;
770      }
771      case Intrinsic::x86_sse42_crc32_64_64:
772        KnownZero = APInt::getHighBitsSet(64, 32);
773        return nullptr;
774      }
775    }
776    computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
777    break;
778  }
779
780  // If the client is only demanding bits that we know, return the known
781  // constant.
782  if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
783    return Constant::getIntegerValue(VTy, KnownOne);
784  return nullptr;
785}
786
787/// Helper routine of SimplifyDemandedUseBits. It tries to simplify
788/// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
789/// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
790/// of "C2-C1".
791///
792/// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
793/// ..., bn}, without considering the specific value X is holding.
794/// This transformation is legal iff one of following conditions is hold:
795///  1) All the bit in S are 0, in this case E1 == E2.
796///  2) We don't care those bits in S, per the input DemandedMask.
797///  3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
798///     rest bits.
799///
800/// Currently we only test condition 2).
801///
802/// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
803/// not successful.
804Value *InstCombiner::SimplifyShrShlDemandedBits(Instruction *Shr,
805  Instruction *Shl, APInt DemandedMask, APInt &KnownZero, APInt &KnownOne) {
806
807  const APInt &ShlOp1 = cast<ConstantInt>(Shl->getOperand(1))->getValue();
808  const APInt &ShrOp1 = cast<ConstantInt>(Shr->getOperand(1))->getValue();
809  if (!ShlOp1 || !ShrOp1)
810      return nullptr; // Noop.
811
812  Value *VarX = Shr->getOperand(0);
813  Type *Ty = VarX->getType();
814  unsigned BitWidth = Ty->getIntegerBitWidth();
815  if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
816    return nullptr; // Undef.
817
818  unsigned ShlAmt = ShlOp1.getZExtValue();
819  unsigned ShrAmt = ShrOp1.getZExtValue();
820
821  KnownOne.clearAllBits();
822  KnownZero = APInt::getBitsSet(KnownZero.getBitWidth(), 0, ShlAmt-1);
823  KnownZero &= DemandedMask;
824
825  APInt BitMask1(APInt::getAllOnesValue(BitWidth));
826  APInt BitMask2(APInt::getAllOnesValue(BitWidth));
827
828  bool isLshr = (Shr->getOpcode() == Instruction::LShr);
829  BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
830                      (BitMask1.ashr(ShrAmt) << ShlAmt);
831
832  if (ShrAmt <= ShlAmt) {
833    BitMask2 <<= (ShlAmt - ShrAmt);
834  } else {
835    BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
836                        BitMask2.ashr(ShrAmt - ShlAmt);
837  }
838
839  // Check if condition-2 (see the comment to this function) is satified.
840  if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
841    if (ShrAmt == ShlAmt)
842      return VarX;
843
844    if (!Shr->hasOneUse())
845      return nullptr;
846
847    BinaryOperator *New;
848    if (ShrAmt < ShlAmt) {
849      Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
850      New = BinaryOperator::CreateShl(VarX, Amt);
851      BinaryOperator *Orig = cast<BinaryOperator>(Shl);
852      New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
853      New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
854    } else {
855      Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
856      New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
857                     BinaryOperator::CreateAShr(VarX, Amt);
858      if (cast<BinaryOperator>(Shr)->isExact())
859        New->setIsExact(true);
860    }
861
862    return InsertNewInstWith(New, *Shl);
863  }
864
865  return nullptr;
866}
867
868/// SimplifyDemandedVectorElts - The specified value produces a vector with
869/// any number of elements. DemandedElts contains the set of elements that are
870/// actually used by the caller.  This method analyzes which elements of the
871/// operand are undef and returns that information in UndefElts.
872///
873/// If the information about demanded elements can be used to simplify the
874/// operation, the operation is simplified, then the resultant value is
875/// returned.  This returns null if no change was made.
876Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
877                                                APInt &UndefElts,
878                                                unsigned Depth) {
879  unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
880  APInt EltMask(APInt::getAllOnesValue(VWidth));
881  assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
882
883  if (isa<UndefValue>(V)) {
884    // If the entire vector is undefined, just return this info.
885    UndefElts = EltMask;
886    return nullptr;
887  }
888
889  if (DemandedElts == 0) { // If nothing is demanded, provide undef.
890    UndefElts = EltMask;
891    return UndefValue::get(V->getType());
892  }
893
894  UndefElts = 0;
895
896  // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential.
897  if (Constant *C = dyn_cast<Constant>(V)) {
898    // Check if this is identity. If so, return 0 since we are not simplifying
899    // anything.
900    if (DemandedElts.isAllOnesValue())
901      return nullptr;
902
903    Type *EltTy = cast<VectorType>(V->getType())->getElementType();
904    Constant *Undef = UndefValue::get(EltTy);
905
906    SmallVector<Constant*, 16> Elts;
907    for (unsigned i = 0; i != VWidth; ++i) {
908      if (!DemandedElts[i]) {   // If not demanded, set to undef.
909        Elts.push_back(Undef);
910        UndefElts.setBit(i);
911        continue;
912      }
913
914      Constant *Elt = C->getAggregateElement(i);
915      if (!Elt) return nullptr;
916
917      if (isa<UndefValue>(Elt)) {   // Already undef.
918        Elts.push_back(Undef);
919        UndefElts.setBit(i);
920      } else {                               // Otherwise, defined.
921        Elts.push_back(Elt);
922      }
923    }
924
925    // If we changed the constant, return it.
926    Constant *NewCV = ConstantVector::get(Elts);
927    return NewCV != C ? NewCV : nullptr;
928  }
929
930  // Limit search depth.
931  if (Depth == 10)
932    return nullptr;
933
934  // If multiple users are using the root value, proceed with
935  // simplification conservatively assuming that all elements
936  // are needed.
937  if (!V->hasOneUse()) {
938    // Quit if we find multiple users of a non-root value though.
939    // They'll be handled when it's their turn to be visited by
940    // the main instcombine process.
941    if (Depth != 0)
942      // TODO: Just compute the UndefElts information recursively.
943      return nullptr;
944
945    // Conservatively assume that all elements are needed.
946    DemandedElts = EltMask;
947  }
948
949  Instruction *I = dyn_cast<Instruction>(V);
950  if (!I) return nullptr;        // Only analyze instructions.
951
952  bool MadeChange = false;
953  APInt UndefElts2(VWidth, 0);
954  Value *TmpV;
955  switch (I->getOpcode()) {
956  default: break;
957
958  case Instruction::InsertElement: {
959    // If this is a variable index, we don't know which element it overwrites.
960    // demand exactly the same input as we produce.
961    ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
962    if (!Idx) {
963      // Note that we can't propagate undef elt info, because we don't know
964      // which elt is getting updated.
965      TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
966                                        UndefElts2, Depth + 1);
967      if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
968      break;
969    }
970
971    // If this is inserting an element that isn't demanded, remove this
972    // insertelement.
973    unsigned IdxNo = Idx->getZExtValue();
974    if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
975      Worklist.Add(I);
976      return I->getOperand(0);
977    }
978
979    // Otherwise, the element inserted overwrites whatever was there, so the
980    // input demanded set is simpler than the output set.
981    APInt DemandedElts2 = DemandedElts;
982    DemandedElts2.clearBit(IdxNo);
983    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
984                                      UndefElts, Depth + 1);
985    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
986
987    // The inserted element is defined.
988    UndefElts.clearBit(IdxNo);
989    break;
990  }
991  case Instruction::ShuffleVector: {
992    ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
993    uint64_t LHSVWidth =
994      cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
995    APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
996    for (unsigned i = 0; i < VWidth; i++) {
997      if (DemandedElts[i]) {
998        unsigned MaskVal = Shuffle->getMaskValue(i);
999        if (MaskVal != -1u) {
1000          assert(MaskVal < LHSVWidth * 2 &&
1001                 "shufflevector mask index out of range!");
1002          if (MaskVal < LHSVWidth)
1003            LeftDemanded.setBit(MaskVal);
1004          else
1005            RightDemanded.setBit(MaskVal - LHSVWidth);
1006        }
1007      }
1008    }
1009
1010    APInt UndefElts4(LHSVWidth, 0);
1011    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
1012                                      UndefElts4, Depth + 1);
1013    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1014
1015    APInt UndefElts3(LHSVWidth, 0);
1016    TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
1017                                      UndefElts3, Depth + 1);
1018    if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1019
1020    bool NewUndefElts = false;
1021    for (unsigned i = 0; i < VWidth; i++) {
1022      unsigned MaskVal = Shuffle->getMaskValue(i);
1023      if (MaskVal == -1u) {
1024        UndefElts.setBit(i);
1025      } else if (!DemandedElts[i]) {
1026        NewUndefElts = true;
1027        UndefElts.setBit(i);
1028      } else if (MaskVal < LHSVWidth) {
1029        if (UndefElts4[MaskVal]) {
1030          NewUndefElts = true;
1031          UndefElts.setBit(i);
1032        }
1033      } else {
1034        if (UndefElts3[MaskVal - LHSVWidth]) {
1035          NewUndefElts = true;
1036          UndefElts.setBit(i);
1037        }
1038      }
1039    }
1040
1041    if (NewUndefElts) {
1042      // Add additional discovered undefs.
1043      SmallVector<Constant*, 16> Elts;
1044      for (unsigned i = 0; i < VWidth; ++i) {
1045        if (UndefElts[i])
1046          Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
1047        else
1048          Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
1049                                          Shuffle->getMaskValue(i)));
1050      }
1051      I->setOperand(2, ConstantVector::get(Elts));
1052      MadeChange = true;
1053    }
1054    break;
1055  }
1056  case Instruction::Select: {
1057    APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts);
1058    if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) {
1059      for (unsigned i = 0; i < VWidth; i++) {
1060        Constant *CElt = CV->getAggregateElement(i);
1061        // Method isNullValue always returns false when called on a
1062        // ConstantExpr. If CElt is a ConstantExpr then skip it in order to
1063        // to avoid propagating incorrect information.
1064        if (isa<ConstantExpr>(CElt))
1065          continue;
1066        if (CElt->isNullValue())
1067          LeftDemanded.clearBit(i);
1068        else
1069          RightDemanded.clearBit(i);
1070      }
1071    }
1072
1073    TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, UndefElts,
1074                                      Depth + 1);
1075    if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1076
1077    TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded,
1078                                      UndefElts2, Depth + 1);
1079    if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; }
1080
1081    // Output elements are undefined if both are undefined.
1082    UndefElts &= UndefElts2;
1083    break;
1084  }
1085  case Instruction::BitCast: {
1086    // Vector->vector casts only.
1087    VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1088    if (!VTy) break;
1089    unsigned InVWidth = VTy->getNumElements();
1090    APInt InputDemandedElts(InVWidth, 0);
1091    UndefElts2 = APInt(InVWidth, 0);
1092    unsigned Ratio;
1093
1094    if (VWidth == InVWidth) {
1095      // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1096      // elements as are demanded of us.
1097      Ratio = 1;
1098      InputDemandedElts = DemandedElts;
1099    } else if ((VWidth % InVWidth) == 0) {
1100      // If the number of elements in the output is a multiple of the number of
1101      // elements in the input then an input element is live if any of the
1102      // corresponding output elements are live.
1103      Ratio = VWidth / InVWidth;
1104      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1105        if (DemandedElts[OutIdx])
1106          InputDemandedElts.setBit(OutIdx / Ratio);
1107    } else if ((InVWidth % VWidth) == 0) {
1108      // If the number of elements in the input is a multiple of the number of
1109      // elements in the output then an input element is live if the
1110      // corresponding output element is live.
1111      Ratio = InVWidth / VWidth;
1112      for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1113        if (DemandedElts[InIdx / Ratio])
1114          InputDemandedElts.setBit(InIdx);
1115    } else {
1116      // Unsupported so far.
1117      break;
1118    }
1119
1120    // div/rem demand all inputs, because they don't want divide by zero.
1121    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1122                                      UndefElts2, Depth + 1);
1123    if (TmpV) {
1124      I->setOperand(0, TmpV);
1125      MadeChange = true;
1126    }
1127
1128    if (VWidth == InVWidth) {
1129      UndefElts = UndefElts2;
1130    } else if ((VWidth % InVWidth) == 0) {
1131      // If the number of elements in the output is a multiple of the number of
1132      // elements in the input then an output element is undef if the
1133      // corresponding input element is undef.
1134      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1135        if (UndefElts2[OutIdx / Ratio])
1136          UndefElts.setBit(OutIdx);
1137    } else if ((InVWidth % VWidth) == 0) {
1138      // If the number of elements in the input is a multiple of the number of
1139      // elements in the output then an output element is undef if all of the
1140      // corresponding input elements are undef.
1141      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1142        APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1143        if (SubUndef.countPopulation() == Ratio)
1144          UndefElts.setBit(OutIdx);
1145      }
1146    } else {
1147      llvm_unreachable("Unimp");
1148    }
1149    break;
1150  }
1151  case Instruction::And:
1152  case Instruction::Or:
1153  case Instruction::Xor:
1154  case Instruction::Add:
1155  case Instruction::Sub:
1156  case Instruction::Mul:
1157    // div/rem demand all inputs, because they don't want divide by zero.
1158    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
1159                                      Depth + 1);
1160    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1161    TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1162                                      UndefElts2, Depth + 1);
1163    if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1164
1165    // Output elements are undefined if both are undefined.  Consider things
1166    // like undef&0.  The result is known zero, not undef.
1167    UndefElts &= UndefElts2;
1168    break;
1169  case Instruction::FPTrunc:
1170  case Instruction::FPExt:
1171    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
1172                                      Depth + 1);
1173    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1174    break;
1175
1176  case Instruction::Call: {
1177    IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1178    if (!II) break;
1179    switch (II->getIntrinsicID()) {
1180    default: break;
1181
1182    // Binary vector operations that work column-wise.  A dest element is a
1183    // function of the corresponding input elements from the two inputs.
1184    case Intrinsic::x86_sse_sub_ss:
1185    case Intrinsic::x86_sse_mul_ss:
1186    case Intrinsic::x86_sse_min_ss:
1187    case Intrinsic::x86_sse_max_ss:
1188    case Intrinsic::x86_sse2_sub_sd:
1189    case Intrinsic::x86_sse2_mul_sd:
1190    case Intrinsic::x86_sse2_min_sd:
1191    case Intrinsic::x86_sse2_max_sd:
1192      TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1193                                        UndefElts, Depth + 1);
1194      if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1195      TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1196                                        UndefElts2, Depth + 1);
1197      if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1198
1199      // If only the low elt is demanded and this is a scalarizable intrinsic,
1200      // scalarize it now.
1201      if (DemandedElts == 1) {
1202        switch (II->getIntrinsicID()) {
1203        default: break;
1204        case Intrinsic::x86_sse_sub_ss:
1205        case Intrinsic::x86_sse_mul_ss:
1206        case Intrinsic::x86_sse2_sub_sd:
1207        case Intrinsic::x86_sse2_mul_sd:
1208          // TODO: Lower MIN/MAX/ABS/etc
1209          Value *LHS = II->getArgOperand(0);
1210          Value *RHS = II->getArgOperand(1);
1211          // Extract the element as scalars.
1212          LHS = InsertNewInstWith(ExtractElementInst::Create(LHS,
1213            ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1214          RHS = InsertNewInstWith(ExtractElementInst::Create(RHS,
1215            ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1216
1217          switch (II->getIntrinsicID()) {
1218          default: llvm_unreachable("Case stmts out of sync!");
1219          case Intrinsic::x86_sse_sub_ss:
1220          case Intrinsic::x86_sse2_sub_sd:
1221            TmpV = InsertNewInstWith(BinaryOperator::CreateFSub(LHS, RHS,
1222                                                        II->getName()), *II);
1223            break;
1224          case Intrinsic::x86_sse_mul_ss:
1225          case Intrinsic::x86_sse2_mul_sd:
1226            TmpV = InsertNewInstWith(BinaryOperator::CreateFMul(LHS, RHS,
1227                                                         II->getName()), *II);
1228            break;
1229          }
1230
1231          Instruction *New =
1232            InsertElementInst::Create(
1233              UndefValue::get(II->getType()), TmpV,
1234              ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false),
1235                                      II->getName());
1236          InsertNewInstWith(New, *II);
1237          return New;
1238        }
1239      }
1240
1241      // Output elements are undefined if both are undefined.  Consider things
1242      // like undef&0.  The result is known zero, not undef.
1243      UndefElts &= UndefElts2;
1244      break;
1245
1246    // SSE4A instructions leave the upper 64-bits of the 128-bit result
1247    // in an undefined state.
1248    case Intrinsic::x86_sse4a_extrq:
1249    case Intrinsic::x86_sse4a_extrqi:
1250    case Intrinsic::x86_sse4a_insertq:
1251    case Intrinsic::x86_sse4a_insertqi:
1252      UndefElts |= APInt::getHighBitsSet(VWidth, VWidth / 2);
1253      break;
1254    }
1255    break;
1256  }
1257  }
1258  return MadeChange ? I : nullptr;
1259}
1260