InstCombineSimplifyDemanded.cpp revision 249423
1//===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains logic for simplifying instructions based on information
11// about how they are used.
12//
13//===----------------------------------------------------------------------===//
14
15
16#include "InstCombine.h"
17#include "llvm/IR/DataLayout.h"
18#include "llvm/IR/IntrinsicInst.h"
19#include "llvm/Support/PatternMatch.h"
20
21using namespace llvm;
22using namespace llvm::PatternMatch;
23
24/// ShrinkDemandedConstant - Check to see if the specified operand of the
25/// specified instruction is a constant integer.  If so, check to see if there
26/// are any bits set in the constant that are not demanded.  If so, shrink the
27/// constant and return true.
28static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
29                                   APInt Demanded) {
30  assert(I && "No instruction?");
31  assert(OpNo < I->getNumOperands() && "Operand index too large");
32
33  // If the operand is not a constant integer, nothing to do.
34  ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
35  if (!OpC) return false;
36
37  // If there are no bits set that aren't demanded, nothing to do.
38  Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
39  if ((~Demanded & OpC->getValue()) == 0)
40    return false;
41
42  // This instruction is producing bits that are not demanded. Shrink the RHS.
43  Demanded &= OpC->getValue();
44  I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded));
45  return true;
46}
47
48
49
50/// SimplifyDemandedInstructionBits - Inst is an integer instruction that
51/// SimplifyDemandedBits knows about.  See if the instruction has any
52/// properties that allow us to simplify its operands.
53bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
54  unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
55  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
56  APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
57
58  Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask,
59                                     KnownZero, KnownOne, 0);
60  if (V == 0) return false;
61  if (V == &Inst) return true;
62  ReplaceInstUsesWith(Inst, V);
63  return true;
64}
65
66/// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the
67/// specified instruction operand if possible, updating it in place.  It returns
68/// true if it made any change and false otherwise.
69bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
70                                        APInt &KnownZero, APInt &KnownOne,
71                                        unsigned Depth) {
72  Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask,
73                                          KnownZero, KnownOne, Depth);
74  if (NewVal == 0) return false;
75  U = NewVal;
76  return true;
77}
78
79
80/// SimplifyDemandedUseBits - This function attempts to replace V with a simpler
81/// value based on the demanded bits.  When this function is called, it is known
82/// that only the bits set in DemandedMask of the result of V are ever used
83/// downstream. Consequently, depending on the mask and V, it may be possible
84/// to replace V with a constant or one of its operands. In such cases, this
85/// function does the replacement and returns true. In all other cases, it
86/// returns false after analyzing the expression and setting KnownOne and known
87/// to be one in the expression.  KnownZero contains all the bits that are known
88/// to be zero in the expression. These are provided to potentially allow the
89/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
90/// the expression. KnownOne and KnownZero always follow the invariant that
91/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
92/// the bits in KnownOne and KnownZero may only be accurate for those bits set
93/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
94/// and KnownOne must all be the same.
95///
96/// This returns null if it did not change anything and it permits no
97/// simplification.  This returns V itself if it did some simplification of V's
98/// operands based on the information about what bits are demanded. This returns
99/// some other non-null value if it found out that V is equal to another value
100/// in the context where the specified bits are demanded, but not for all users.
101Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
102                                             APInt &KnownZero, APInt &KnownOne,
103                                             unsigned Depth) {
104  assert(V != 0 && "Null pointer of Value???");
105  assert(Depth <= 6 && "Limit Search Depth");
106  uint32_t BitWidth = DemandedMask.getBitWidth();
107  Type *VTy = V->getType();
108  assert((TD || !VTy->isPointerTy()) &&
109         "SimplifyDemandedBits needs to know bit widths!");
110  assert((!TD || TD->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) &&
111         (!VTy->isIntOrIntVectorTy() ||
112          VTy->getScalarSizeInBits() == BitWidth) &&
113         KnownZero.getBitWidth() == BitWidth &&
114         KnownOne.getBitWidth() == BitWidth &&
115         "Value *V, DemandedMask, KnownZero and KnownOne "
116         "must have same BitWidth");
117  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
118    // We know all of the bits for a constant!
119    KnownOne = CI->getValue() & DemandedMask;
120    KnownZero = ~KnownOne & DemandedMask;
121    return 0;
122  }
123  if (isa<ConstantPointerNull>(V)) {
124    // We know all of the bits for a constant!
125    KnownOne.clearAllBits();
126    KnownZero = DemandedMask;
127    return 0;
128  }
129
130  KnownZero.clearAllBits();
131  KnownOne.clearAllBits();
132  if (DemandedMask == 0) {   // Not demanding any bits from V.
133    if (isa<UndefValue>(V))
134      return 0;
135    return UndefValue::get(VTy);
136  }
137
138  if (Depth == 6)        // Limit search depth.
139    return 0;
140
141  APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
142  APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
143
144  Instruction *I = dyn_cast<Instruction>(V);
145  if (!I) {
146    ComputeMaskedBits(V, KnownZero, KnownOne, Depth);
147    return 0;        // Only analyze instructions.
148  }
149
150  // If there are multiple uses of this value and we aren't at the root, then
151  // we can't do any simplifications of the operands, because DemandedMask
152  // only reflects the bits demanded by *one* of the users.
153  if (Depth != 0 && !I->hasOneUse()) {
154    // Despite the fact that we can't simplify this instruction in all User's
155    // context, we can at least compute the knownzero/knownone bits, and we can
156    // do simplifications that apply to *just* the one user if we know that
157    // this instruction has a simpler value in that context.
158    if (I->getOpcode() == Instruction::And) {
159      // If either the LHS or the RHS are Zero, the result is zero.
160      ComputeMaskedBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
161      ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
162
163      // If all of the demanded bits are known 1 on one side, return the other.
164      // These bits cannot contribute to the result of the 'and' in this
165      // context.
166      if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
167          (DemandedMask & ~LHSKnownZero))
168        return I->getOperand(0);
169      if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
170          (DemandedMask & ~RHSKnownZero))
171        return I->getOperand(1);
172
173      // If all of the demanded bits in the inputs are known zeros, return zero.
174      if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
175        return Constant::getNullValue(VTy);
176
177    } else if (I->getOpcode() == Instruction::Or) {
178      // We can simplify (X|Y) -> X or Y in the user's context if we know that
179      // only bits from X or Y are demanded.
180
181      // If either the LHS or the RHS are One, the result is One.
182      ComputeMaskedBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
183      ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
184
185      // If all of the demanded bits are known zero on one side, return the
186      // other.  These bits cannot contribute to the result of the 'or' in this
187      // context.
188      if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
189          (DemandedMask & ~LHSKnownOne))
190        return I->getOperand(0);
191      if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
192          (DemandedMask & ~RHSKnownOne))
193        return I->getOperand(1);
194
195      // If all of the potentially set bits on one side are known to be set on
196      // the other side, just use the 'other' side.
197      if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
198          (DemandedMask & (~RHSKnownZero)))
199        return I->getOperand(0);
200      if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
201          (DemandedMask & (~LHSKnownZero)))
202        return I->getOperand(1);
203    } else if (I->getOpcode() == Instruction::Xor) {
204      // We can simplify (X^Y) -> X or Y in the user's context if we know that
205      // only bits from X or Y are demanded.
206
207      ComputeMaskedBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
208      ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
209
210      // If all of the demanded bits are known zero on one side, return the
211      // other.
212      if ((DemandedMask & RHSKnownZero) == DemandedMask)
213        return I->getOperand(0);
214      if ((DemandedMask & LHSKnownZero) == DemandedMask)
215        return I->getOperand(1);
216    }
217
218    // Compute the KnownZero/KnownOne bits to simplify things downstream.
219    ComputeMaskedBits(I, KnownZero, KnownOne, Depth);
220    return 0;
221  }
222
223  // If this is the root being simplified, allow it to have multiple uses,
224  // just set the DemandedMask to all bits so that we can try to simplify the
225  // operands.  This allows visitTruncInst (for example) to simplify the
226  // operand of a trunc without duplicating all the logic below.
227  if (Depth == 0 && !V->hasOneUse())
228    DemandedMask = APInt::getAllOnesValue(BitWidth);
229
230  switch (I->getOpcode()) {
231  default:
232    ComputeMaskedBits(I, KnownZero, KnownOne, Depth);
233    break;
234  case Instruction::And:
235    // If either the LHS or the RHS are Zero, the result is zero.
236    if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
237                             RHSKnownZero, RHSKnownOne, Depth+1) ||
238        SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero,
239                             LHSKnownZero, LHSKnownOne, Depth+1))
240      return I;
241    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
242    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
243
244    // If all of the demanded bits are known 1 on one side, return the other.
245    // These bits cannot contribute to the result of the 'and'.
246    if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
247        (DemandedMask & ~LHSKnownZero))
248      return I->getOperand(0);
249    if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
250        (DemandedMask & ~RHSKnownZero))
251      return I->getOperand(1);
252
253    // If all of the demanded bits in the inputs are known zeros, return zero.
254    if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
255      return Constant::getNullValue(VTy);
256
257    // If the RHS is a constant, see if we can simplify it.
258    if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
259      return I;
260
261    // Output known-1 bits are only known if set in both the LHS & RHS.
262    KnownOne = RHSKnownOne & LHSKnownOne;
263    // Output known-0 are known to be clear if zero in either the LHS | RHS.
264    KnownZero = RHSKnownZero | LHSKnownZero;
265    break;
266  case Instruction::Or:
267    // If either the LHS or the RHS are One, the result is One.
268    if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
269                             RHSKnownZero, RHSKnownOne, Depth+1) ||
270        SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,
271                             LHSKnownZero, LHSKnownOne, Depth+1))
272      return I;
273    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
274    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
275
276    // If all of the demanded bits are known zero on one side, return the other.
277    // These bits cannot contribute to the result of the 'or'.
278    if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
279        (DemandedMask & ~LHSKnownOne))
280      return I->getOperand(0);
281    if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
282        (DemandedMask & ~RHSKnownOne))
283      return I->getOperand(1);
284
285    // If all of the potentially set bits on one side are known to be set on
286    // the other side, just use the 'other' side.
287    if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
288        (DemandedMask & (~RHSKnownZero)))
289      return I->getOperand(0);
290    if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
291        (DemandedMask & (~LHSKnownZero)))
292      return I->getOperand(1);
293
294    // If the RHS is a constant, see if we can simplify it.
295    if (ShrinkDemandedConstant(I, 1, DemandedMask))
296      return I;
297
298    // Output known-0 bits are only known if clear in both the LHS & RHS.
299    KnownZero = RHSKnownZero & LHSKnownZero;
300    // Output known-1 are known to be set if set in either the LHS | RHS.
301    KnownOne = RHSKnownOne | LHSKnownOne;
302    break;
303  case Instruction::Xor: {
304    if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
305                             RHSKnownZero, RHSKnownOne, Depth+1) ||
306        SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
307                             LHSKnownZero, LHSKnownOne, Depth+1))
308      return I;
309    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
310    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
311
312    // If all of the demanded bits are known zero on one side, return the other.
313    // These bits cannot contribute to the result of the 'xor'.
314    if ((DemandedMask & RHSKnownZero) == DemandedMask)
315      return I->getOperand(0);
316    if ((DemandedMask & LHSKnownZero) == DemandedMask)
317      return I->getOperand(1);
318
319    // If all of the demanded bits are known to be zero on one side or the
320    // other, turn this into an *inclusive* or.
321    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
322    if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
323      Instruction *Or =
324        BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
325                                 I->getName());
326      return InsertNewInstWith(Or, *I);
327    }
328
329    // If all of the demanded bits on one side are known, and all of the set
330    // bits on that side are also known to be set on the other side, turn this
331    // into an AND, as we know the bits will be cleared.
332    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
333    if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
334      // all known
335      if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
336        Constant *AndC = Constant::getIntegerValue(VTy,
337                                                   ~RHSKnownOne & DemandedMask);
338        Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
339        return InsertNewInstWith(And, *I);
340      }
341    }
342
343    // If the RHS is a constant, see if we can simplify it.
344    // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
345    if (ShrinkDemandedConstant(I, 1, DemandedMask))
346      return I;
347
348    // If our LHS is an 'and' and if it has one use, and if any of the bits we
349    // are flipping are known to be set, then the xor is just resetting those
350    // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
351    // simplifying both of them.
352    if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
353      if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
354          isa<ConstantInt>(I->getOperand(1)) &&
355          isa<ConstantInt>(LHSInst->getOperand(1)) &&
356          (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) {
357        ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
358        ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
359        APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);
360
361        Constant *AndC =
362          ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
363        Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
364        InsertNewInstWith(NewAnd, *I);
365
366        Constant *XorC =
367          ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
368        Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
369        return InsertNewInstWith(NewXor, *I);
370      }
371
372    // Output known-0 bits are known if clear or set in both the LHS & RHS.
373    KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne);
374    // Output known-1 are known to be set if set in only one of the LHS, RHS.
375    KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero);
376    break;
377  }
378  case Instruction::Select:
379    if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask,
380                             RHSKnownZero, RHSKnownOne, Depth+1) ||
381        SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
382                             LHSKnownZero, LHSKnownOne, Depth+1))
383      return I;
384    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
385    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
386
387    // If the operands are constants, see if we can simplify them.
388    if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
389        ShrinkDemandedConstant(I, 2, DemandedMask))
390      return I;
391
392    // Only known if known in both the LHS and RHS.
393    KnownOne = RHSKnownOne & LHSKnownOne;
394    KnownZero = RHSKnownZero & LHSKnownZero;
395    break;
396  case Instruction::Trunc: {
397    unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits();
398    DemandedMask = DemandedMask.zext(truncBf);
399    KnownZero = KnownZero.zext(truncBf);
400    KnownOne = KnownOne.zext(truncBf);
401    if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
402                             KnownZero, KnownOne, Depth+1))
403      return I;
404    DemandedMask = DemandedMask.trunc(BitWidth);
405    KnownZero = KnownZero.trunc(BitWidth);
406    KnownOne = KnownOne.trunc(BitWidth);
407    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
408    break;
409  }
410  case Instruction::BitCast:
411    if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
412      return 0;  // vector->int or fp->int?
413
414    if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
415      if (VectorType *SrcVTy =
416            dyn_cast<VectorType>(I->getOperand(0)->getType())) {
417        if (DstVTy->getNumElements() != SrcVTy->getNumElements())
418          // Don't touch a bitcast between vectors of different element counts.
419          return 0;
420      } else
421        // Don't touch a scalar-to-vector bitcast.
422        return 0;
423    } else if (I->getOperand(0)->getType()->isVectorTy())
424      // Don't touch a vector-to-scalar bitcast.
425      return 0;
426
427    if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
428                             KnownZero, KnownOne, Depth+1))
429      return I;
430    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
431    break;
432  case Instruction::ZExt: {
433    // Compute the bits in the result that are not present in the input.
434    unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
435
436    DemandedMask = DemandedMask.trunc(SrcBitWidth);
437    KnownZero = KnownZero.trunc(SrcBitWidth);
438    KnownOne = KnownOne.trunc(SrcBitWidth);
439    if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
440                             KnownZero, KnownOne, Depth+1))
441      return I;
442    DemandedMask = DemandedMask.zext(BitWidth);
443    KnownZero = KnownZero.zext(BitWidth);
444    KnownOne = KnownOne.zext(BitWidth);
445    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
446    // The top bits are known to be zero.
447    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
448    break;
449  }
450  case Instruction::SExt: {
451    // Compute the bits in the result that are not present in the input.
452    unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
453
454    APInt InputDemandedBits = DemandedMask &
455                              APInt::getLowBitsSet(BitWidth, SrcBitWidth);
456
457    APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
458    // If any of the sign extended bits are demanded, we know that the sign
459    // bit is demanded.
460    if ((NewBits & DemandedMask) != 0)
461      InputDemandedBits.setBit(SrcBitWidth-1);
462
463    InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth);
464    KnownZero = KnownZero.trunc(SrcBitWidth);
465    KnownOne = KnownOne.trunc(SrcBitWidth);
466    if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits,
467                             KnownZero, KnownOne, Depth+1))
468      return I;
469    InputDemandedBits = InputDemandedBits.zext(BitWidth);
470    KnownZero = KnownZero.zext(BitWidth);
471    KnownOne = KnownOne.zext(BitWidth);
472    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
473
474    // If the sign bit of the input is known set or clear, then we know the
475    // top bits of the result.
476
477    // If the input sign bit is known zero, or if the NewBits are not demanded
478    // convert this into a zero extension.
479    if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) {
480      // Convert to ZExt cast
481      CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
482      return InsertNewInstWith(NewCast, *I);
483    } else if (KnownOne[SrcBitWidth-1]) {    // Input sign bit known set
484      KnownOne |= NewBits;
485    }
486    break;
487  }
488  case Instruction::Add: {
489    // Figure out what the input bits are.  If the top bits of the and result
490    // are not demanded, then the add doesn't demand them from its input
491    // either.
492    unsigned NLZ = DemandedMask.countLeadingZeros();
493
494    // If there is a constant on the RHS, there are a variety of xformations
495    // we can do.
496    if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
497      // If null, this should be simplified elsewhere.  Some of the xforms here
498      // won't work if the RHS is zero.
499      if (RHS->isZero())
500        break;
501
502      // If the top bit of the output is demanded, demand everything from the
503      // input.  Otherwise, we demand all the input bits except NLZ top bits.
504      APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
505
506      // Find information about known zero/one bits in the input.
507      if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits,
508                               LHSKnownZero, LHSKnownOne, Depth+1))
509        return I;
510
511      // If the RHS of the add has bits set that can't affect the input, reduce
512      // the constant.
513      if (ShrinkDemandedConstant(I, 1, InDemandedBits))
514        return I;
515
516      // Avoid excess work.
517      if (LHSKnownZero == 0 && LHSKnownOne == 0)
518        break;
519
520      // Turn it into OR if input bits are zero.
521      if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
522        Instruction *Or =
523          BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
524                                   I->getName());
525        return InsertNewInstWith(Or, *I);
526      }
527
528      // We can say something about the output known-zero and known-one bits,
529      // depending on potential carries from the input constant and the
530      // unknowns.  For example if the LHS is known to have at most the 0x0F0F0
531      // bits set and the RHS constant is 0x01001, then we know we have a known
532      // one mask of 0x00001 and a known zero mask of 0xE0F0E.
533
534      // To compute this, we first compute the potential carry bits.  These are
535      // the bits which may be modified.  I'm not aware of a better way to do
536      // this scan.
537      const APInt &RHSVal = RHS->getValue();
538      APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
539
540      // Now that we know which bits have carries, compute the known-1/0 sets.
541
542      // Bits are known one if they are known zero in one operand and one in the
543      // other, and there is no input carry.
544      KnownOne = ((LHSKnownZero & RHSVal) |
545                  (LHSKnownOne & ~RHSVal)) & ~CarryBits;
546
547      // Bits are known zero if they are known zero in both operands and there
548      // is no input carry.
549      KnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
550    } else {
551      // If the high-bits of this ADD are not demanded, then it does not demand
552      // the high bits of its LHS or RHS.
553      if (DemandedMask[BitWidth-1] == 0) {
554        // Right fill the mask of bits for this ADD to demand the most
555        // significant bit and all those below it.
556        APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
557        if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
558                                 LHSKnownZero, LHSKnownOne, Depth+1) ||
559            SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
560                                 LHSKnownZero, LHSKnownOne, Depth+1))
561          return I;
562      }
563    }
564    break;
565  }
566  case Instruction::Sub:
567    // If the high-bits of this SUB are not demanded, then it does not demand
568    // the high bits of its LHS or RHS.
569    if (DemandedMask[BitWidth-1] == 0) {
570      // Right fill the mask of bits for this SUB to demand the most
571      // significant bit and all those below it.
572      uint32_t NLZ = DemandedMask.countLeadingZeros();
573      APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
574      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
575                               LHSKnownZero, LHSKnownOne, Depth+1) ||
576          SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
577                               LHSKnownZero, LHSKnownOne, Depth+1))
578        return I;
579    }
580
581    // Otherwise just hand the sub off to ComputeMaskedBits to fill in
582    // the known zeros and ones.
583    ComputeMaskedBits(V, KnownZero, KnownOne, Depth);
584
585    // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
586    // zero.
587    if (ConstantInt *C0 = dyn_cast<ConstantInt>(I->getOperand(0))) {
588      APInt I0 = C0->getValue();
589      if ((I0 + 1).isPowerOf2() && (I0 | KnownZero).isAllOnesValue()) {
590        Instruction *Xor = BinaryOperator::CreateXor(I->getOperand(1), C0);
591        return InsertNewInstWith(Xor, *I);
592      }
593    }
594    break;
595  case Instruction::Shl:
596    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
597      {
598        Value *VarX; ConstantInt *C1;
599        if (match(I->getOperand(0), m_Shr(m_Value(VarX), m_ConstantInt(C1)))) {
600          Instruction *Shr = cast<Instruction>(I->getOperand(0));
601          Value *R = SimplifyShrShlDemandedBits(Shr, I, DemandedMask,
602                                                KnownZero, KnownOne);
603          if (R)
604            return R;
605        }
606      }
607
608      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
609      APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
610
611      // If the shift is NUW/NSW, then it does demand the high bits.
612      ShlOperator *IOp = cast<ShlOperator>(I);
613      if (IOp->hasNoSignedWrap())
614        DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
615      else if (IOp->hasNoUnsignedWrap())
616        DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
617
618      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
619                               KnownZero, KnownOne, Depth+1))
620        return I;
621      assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
622      KnownZero <<= ShiftAmt;
623      KnownOne  <<= ShiftAmt;
624      // low bits known zero.
625      if (ShiftAmt)
626        KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
627    }
628    break;
629  case Instruction::LShr:
630    // For a logical shift right
631    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
632      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
633
634      // Unsigned shift right.
635      APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
636
637      // If the shift is exact, then it does demand the low bits (and knows that
638      // they are zero).
639      if (cast<LShrOperator>(I)->isExact())
640        DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
641
642      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
643                               KnownZero, KnownOne, Depth+1))
644        return I;
645      assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
646      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
647      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
648      if (ShiftAmt) {
649        // Compute the new bits that are at the top now.
650        APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
651        KnownZero |= HighBits;  // high bits known zero.
652      }
653    }
654    break;
655  case Instruction::AShr:
656    // If this is an arithmetic shift right and only the low-bit is set, we can
657    // always convert this into a logical shr, even if the shift amount is
658    // variable.  The low bit of the shift cannot be an input sign bit unless
659    // the shift amount is >= the size of the datatype, which is undefined.
660    if (DemandedMask == 1) {
661      // Perform the logical shift right.
662      Instruction *NewVal = BinaryOperator::CreateLShr(
663                        I->getOperand(0), I->getOperand(1), I->getName());
664      return InsertNewInstWith(NewVal, *I);
665    }
666
667    // If the sign bit is the only bit demanded by this ashr, then there is no
668    // need to do it, the shift doesn't change the high bit.
669    if (DemandedMask.isSignBit())
670      return I->getOperand(0);
671
672    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
673      uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
674
675      // Signed shift right.
676      APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
677      // If any of the "high bits" are demanded, we should set the sign bit as
678      // demanded.
679      if (DemandedMask.countLeadingZeros() <= ShiftAmt)
680        DemandedMaskIn.setBit(BitWidth-1);
681
682      // If the shift is exact, then it does demand the low bits (and knows that
683      // they are zero).
684      if (cast<AShrOperator>(I)->isExact())
685        DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
686
687      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
688                               KnownZero, KnownOne, Depth+1))
689        return I;
690      assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
691      // Compute the new bits that are at the top now.
692      APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
693      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
694      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
695
696      // Handle the sign bits.
697      APInt SignBit(APInt::getSignBit(BitWidth));
698      // Adjust to where it is now in the mask.
699      SignBit = APIntOps::lshr(SignBit, ShiftAmt);
700
701      // If the input sign bit is known to be zero, or if none of the top bits
702      // are demanded, turn this into an unsigned shift right.
703      if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||
704          (HighBits & ~DemandedMask) == HighBits) {
705        // Perform the logical shift right.
706        BinaryOperator *NewVal = BinaryOperator::CreateLShr(I->getOperand(0),
707                                                            SA, I->getName());
708        NewVal->setIsExact(cast<BinaryOperator>(I)->isExact());
709        return InsertNewInstWith(NewVal, *I);
710      } else if ((KnownOne & SignBit) != 0) { // New bits are known one.
711        KnownOne |= HighBits;
712      }
713    }
714    break;
715  case Instruction::SRem:
716    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
717      // X % -1 demands all the bits because we don't want to introduce
718      // INT_MIN % -1 (== undef) by accident.
719      if (Rem->isAllOnesValue())
720        break;
721      APInt RA = Rem->getValue().abs();
722      if (RA.isPowerOf2()) {
723        if (DemandedMask.ult(RA))    // srem won't affect demanded bits
724          return I->getOperand(0);
725
726        APInt LowBits = RA - 1;
727        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
728        if (SimplifyDemandedBits(I->getOperandUse(0), Mask2,
729                                 LHSKnownZero, LHSKnownOne, Depth+1))
730          return I;
731
732        // The low bits of LHS are unchanged by the srem.
733        KnownZero = LHSKnownZero & LowBits;
734        KnownOne = LHSKnownOne & LowBits;
735
736        // If LHS is non-negative or has all low bits zero, then the upper bits
737        // are all zero.
738        if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
739          KnownZero |= ~LowBits;
740
741        // If LHS is negative and not all low bits are zero, then the upper bits
742        // are all one.
743        if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0))
744          KnownOne |= ~LowBits;
745
746        assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
747      }
748    }
749
750    // The sign bit is the LHS's sign bit, except when the result of the
751    // remainder is zero.
752    if (DemandedMask.isNegative() && KnownZero.isNonNegative()) {
753      APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
754      ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
755      // If it's known zero, our sign bit is also zero.
756      if (LHSKnownZero.isNegative())
757        KnownZero |= LHSKnownZero;
758    }
759    break;
760  case Instruction::URem: {
761    APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
762    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
763    if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes,
764                             KnownZero2, KnownOne2, Depth+1) ||
765        SimplifyDemandedBits(I->getOperandUse(1), AllOnes,
766                             KnownZero2, KnownOne2, Depth+1))
767      return I;
768
769    unsigned Leaders = KnownZero2.countLeadingOnes();
770    Leaders = std::max(Leaders,
771                       KnownZero2.countLeadingOnes());
772    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
773    break;
774  }
775  case Instruction::Call:
776    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
777      switch (II->getIntrinsicID()) {
778      default: break;
779      case Intrinsic::bswap: {
780        // If the only bits demanded come from one byte of the bswap result,
781        // just shift the input byte into position to eliminate the bswap.
782        unsigned NLZ = DemandedMask.countLeadingZeros();
783        unsigned NTZ = DemandedMask.countTrailingZeros();
784
785        // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
786        // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
787        // have 14 leading zeros, round to 8.
788        NLZ &= ~7;
789        NTZ &= ~7;
790        // If we need exactly one byte, we can do this transformation.
791        if (BitWidth-NLZ-NTZ == 8) {
792          unsigned ResultBit = NTZ;
793          unsigned InputBit = BitWidth-NTZ-8;
794
795          // Replace this with either a left or right shift to get the byte into
796          // the right place.
797          Instruction *NewVal;
798          if (InputBit > ResultBit)
799            NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
800                    ConstantInt::get(I->getType(), InputBit-ResultBit));
801          else
802            NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
803                    ConstantInt::get(I->getType(), ResultBit-InputBit));
804          NewVal->takeName(I);
805          return InsertNewInstWith(NewVal, *I);
806        }
807
808        // TODO: Could compute known zero/one bits based on the input.
809        break;
810      }
811      case Intrinsic::x86_sse42_crc32_64_8:
812      case Intrinsic::x86_sse42_crc32_64_64:
813        KnownZero = APInt::getHighBitsSet(64, 32);
814        return 0;
815      }
816    }
817    ComputeMaskedBits(V, KnownZero, KnownOne, Depth);
818    break;
819  }
820
821  // If the client is only demanding bits that we know, return the known
822  // constant.
823  if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
824    return Constant::getIntegerValue(VTy, KnownOne);
825  return 0;
826}
827
828/// Helper routine of SimplifyDemandedUseBits. It tries to simplify
829/// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
830/// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
831/// of "C2-C1".
832///
833/// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
834/// ..., bn}, without considering the specific value X is holding.
835/// This transformation is legal iff one of following conditions is hold:
836///  1) All the bit in S are 0, in this case E1 == E2.
837///  2) We don't care those bits in S, per the input DemandedMask.
838///  3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
839///     rest bits.
840///
841/// Currently we only test condition 2).
842///
843/// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
844/// not successful.
845Value *InstCombiner::SimplifyShrShlDemandedBits(Instruction *Shr,
846  Instruction *Shl, APInt DemandedMask, APInt &KnownZero, APInt &KnownOne) {
847
848  unsigned ShlAmt = cast<ConstantInt>(Shl->getOperand(1))->getZExtValue();
849  unsigned ShrAmt = cast<ConstantInt>(Shr->getOperand(1))->getZExtValue();
850
851  KnownOne.clearAllBits();
852  KnownZero = APInt::getBitsSet(KnownZero.getBitWidth(), 0, ShlAmt-1);
853  KnownZero &= DemandedMask;
854
855  if (ShlAmt == 0 || ShrAmt == 0)
856    return 0;
857
858  Value *VarX = Shr->getOperand(0);
859  Type *Ty = VarX->getType();
860
861  APInt BitMask1(APInt::getAllOnesValue(Ty->getIntegerBitWidth()));
862  APInt BitMask2(APInt::getAllOnesValue(Ty->getIntegerBitWidth()));
863
864  bool isLshr = (Shr->getOpcode() == Instruction::LShr);
865  BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
866                      (BitMask1.ashr(ShrAmt) << ShlAmt);
867
868  if (ShrAmt <= ShlAmt) {
869    BitMask2 <<= (ShlAmt - ShrAmt);
870  } else {
871    BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
872                        BitMask2.ashr(ShrAmt - ShlAmt);
873  }
874
875  // Check if condition-2 (see the comment to this function) is satified.
876  if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
877    if (ShrAmt == ShlAmt)
878      return VarX;
879
880    if (!Shr->hasOneUse())
881      return 0;
882
883    BinaryOperator *New;
884    if (ShrAmt < ShlAmt) {
885      Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
886      New = BinaryOperator::CreateShl(VarX, Amt);
887      BinaryOperator *Orig = cast<BinaryOperator>(Shl);
888      New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
889      New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
890    } else {
891      Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
892      New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
893                     BinaryOperator::CreateAShr(VarX, Amt);
894      if (cast<BinaryOperator>(Shr)->isExact())
895        New->setIsExact(true);
896    }
897
898    return InsertNewInstWith(New, *Shl);
899  }
900
901  return 0;
902}
903
904/// SimplifyDemandedVectorElts - The specified value produces a vector with
905/// any number of elements. DemandedElts contains the set of elements that are
906/// actually used by the caller.  This method analyzes which elements of the
907/// operand are undef and returns that information in UndefElts.
908///
909/// If the information about demanded elements can be used to simplify the
910/// operation, the operation is simplified, then the resultant value is
911/// returned.  This returns null if no change was made.
912Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
913                                                APInt &UndefElts,
914                                                unsigned Depth) {
915  unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
916  APInt EltMask(APInt::getAllOnesValue(VWidth));
917  assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
918
919  if (isa<UndefValue>(V)) {
920    // If the entire vector is undefined, just return this info.
921    UndefElts = EltMask;
922    return 0;
923  }
924
925  if (DemandedElts == 0) { // If nothing is demanded, provide undef.
926    UndefElts = EltMask;
927    return UndefValue::get(V->getType());
928  }
929
930  UndefElts = 0;
931
932  // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential.
933  if (Constant *C = dyn_cast<Constant>(V)) {
934    // Check if this is identity. If so, return 0 since we are not simplifying
935    // anything.
936    if (DemandedElts.isAllOnesValue())
937      return 0;
938
939    Type *EltTy = cast<VectorType>(V->getType())->getElementType();
940    Constant *Undef = UndefValue::get(EltTy);
941
942    SmallVector<Constant*, 16> Elts;
943    for (unsigned i = 0; i != VWidth; ++i) {
944      if (!DemandedElts[i]) {   // If not demanded, set to undef.
945        Elts.push_back(Undef);
946        UndefElts.setBit(i);
947        continue;
948      }
949
950      Constant *Elt = C->getAggregateElement(i);
951      if (Elt == 0) return 0;
952
953      if (isa<UndefValue>(Elt)) {   // Already undef.
954        Elts.push_back(Undef);
955        UndefElts.setBit(i);
956      } else {                               // Otherwise, defined.
957        Elts.push_back(Elt);
958      }
959    }
960
961    // If we changed the constant, return it.
962    Constant *NewCV = ConstantVector::get(Elts);
963    return NewCV != C ? NewCV : 0;
964  }
965
966  // Limit search depth.
967  if (Depth == 10)
968    return 0;
969
970  // If multiple users are using the root value, proceed with
971  // simplification conservatively assuming that all elements
972  // are needed.
973  if (!V->hasOneUse()) {
974    // Quit if we find multiple users of a non-root value though.
975    // They'll be handled when it's their turn to be visited by
976    // the main instcombine process.
977    if (Depth != 0)
978      // TODO: Just compute the UndefElts information recursively.
979      return 0;
980
981    // Conservatively assume that all elements are needed.
982    DemandedElts = EltMask;
983  }
984
985  Instruction *I = dyn_cast<Instruction>(V);
986  if (!I) return 0;        // Only analyze instructions.
987
988  bool MadeChange = false;
989  APInt UndefElts2(VWidth, 0);
990  Value *TmpV;
991  switch (I->getOpcode()) {
992  default: break;
993
994  case Instruction::InsertElement: {
995    // If this is a variable index, we don't know which element it overwrites.
996    // demand exactly the same input as we produce.
997    ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
998    if (Idx == 0) {
999      // Note that we can't propagate undef elt info, because we don't know
1000      // which elt is getting updated.
1001      TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1002                                        UndefElts2, Depth+1);
1003      if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1004      break;
1005    }
1006
1007    // If this is inserting an element that isn't demanded, remove this
1008    // insertelement.
1009    unsigned IdxNo = Idx->getZExtValue();
1010    if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1011      Worklist.Add(I);
1012      return I->getOperand(0);
1013    }
1014
1015    // Otherwise, the element inserted overwrites whatever was there, so the
1016    // input demanded set is simpler than the output set.
1017    APInt DemandedElts2 = DemandedElts;
1018    DemandedElts2.clearBit(IdxNo);
1019    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
1020                                      UndefElts, Depth+1);
1021    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1022
1023    // The inserted element is defined.
1024    UndefElts.clearBit(IdxNo);
1025    break;
1026  }
1027  case Instruction::ShuffleVector: {
1028    ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
1029    uint64_t LHSVWidth =
1030      cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
1031    APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
1032    for (unsigned i = 0; i < VWidth; i++) {
1033      if (DemandedElts[i]) {
1034        unsigned MaskVal = Shuffle->getMaskValue(i);
1035        if (MaskVal != -1u) {
1036          assert(MaskVal < LHSVWidth * 2 &&
1037                 "shufflevector mask index out of range!");
1038          if (MaskVal < LHSVWidth)
1039            LeftDemanded.setBit(MaskVal);
1040          else
1041            RightDemanded.setBit(MaskVal - LHSVWidth);
1042        }
1043      }
1044    }
1045
1046    APInt UndefElts4(LHSVWidth, 0);
1047    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
1048                                      UndefElts4, Depth+1);
1049    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1050
1051    APInt UndefElts3(LHSVWidth, 0);
1052    TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
1053                                      UndefElts3, Depth+1);
1054    if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1055
1056    bool NewUndefElts = false;
1057    for (unsigned i = 0; i < VWidth; i++) {
1058      unsigned MaskVal = Shuffle->getMaskValue(i);
1059      if (MaskVal == -1u) {
1060        UndefElts.setBit(i);
1061      } else if (!DemandedElts[i]) {
1062        NewUndefElts = true;
1063        UndefElts.setBit(i);
1064      } else if (MaskVal < LHSVWidth) {
1065        if (UndefElts4[MaskVal]) {
1066          NewUndefElts = true;
1067          UndefElts.setBit(i);
1068        }
1069      } else {
1070        if (UndefElts3[MaskVal - LHSVWidth]) {
1071          NewUndefElts = true;
1072          UndefElts.setBit(i);
1073        }
1074      }
1075    }
1076
1077    if (NewUndefElts) {
1078      // Add additional discovered undefs.
1079      SmallVector<Constant*, 16> Elts;
1080      for (unsigned i = 0; i < VWidth; ++i) {
1081        if (UndefElts[i])
1082          Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
1083        else
1084          Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
1085                                          Shuffle->getMaskValue(i)));
1086      }
1087      I->setOperand(2, ConstantVector::get(Elts));
1088      MadeChange = true;
1089    }
1090    break;
1091  }
1092  case Instruction::Select: {
1093    APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts);
1094    if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) {
1095      for (unsigned i = 0; i < VWidth; i++) {
1096        if (CV->getAggregateElement(i)->isNullValue())
1097          LeftDemanded.clearBit(i);
1098        else
1099          RightDemanded.clearBit(i);
1100      }
1101    }
1102
1103    TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded,
1104                                      UndefElts, Depth+1);
1105    if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1106
1107    TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded,
1108                                      UndefElts2, Depth+1);
1109    if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; }
1110
1111    // Output elements are undefined if both are undefined.
1112    UndefElts &= UndefElts2;
1113    break;
1114  }
1115  case Instruction::BitCast: {
1116    // Vector->vector casts only.
1117    VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1118    if (!VTy) break;
1119    unsigned InVWidth = VTy->getNumElements();
1120    APInt InputDemandedElts(InVWidth, 0);
1121    unsigned Ratio;
1122
1123    if (VWidth == InVWidth) {
1124      // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1125      // elements as are demanded of us.
1126      Ratio = 1;
1127      InputDemandedElts = DemandedElts;
1128    } else if (VWidth > InVWidth) {
1129      // Untested so far.
1130      break;
1131
1132      // If there are more elements in the result than there are in the source,
1133      // then an input element is live if any of the corresponding output
1134      // elements are live.
1135      Ratio = VWidth/InVWidth;
1136      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1137        if (DemandedElts[OutIdx])
1138          InputDemandedElts.setBit(OutIdx/Ratio);
1139      }
1140    } else {
1141      // Untested so far.
1142      break;
1143
1144      // If there are more elements in the source than there are in the result,
1145      // then an input element is live if the corresponding output element is
1146      // live.
1147      Ratio = InVWidth/VWidth;
1148      for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1149        if (DemandedElts[InIdx/Ratio])
1150          InputDemandedElts.setBit(InIdx);
1151    }
1152
1153    // div/rem demand all inputs, because they don't want divide by zero.
1154    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1155                                      UndefElts2, Depth+1);
1156    if (TmpV) {
1157      I->setOperand(0, TmpV);
1158      MadeChange = true;
1159    }
1160
1161    UndefElts = UndefElts2;
1162    if (VWidth > InVWidth) {
1163      llvm_unreachable("Unimp");
1164      // If there are more elements in the result than there are in the source,
1165      // then an output element is undef if the corresponding input element is
1166      // undef.
1167      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1168        if (UndefElts2[OutIdx/Ratio])
1169          UndefElts.setBit(OutIdx);
1170    } else if (VWidth < InVWidth) {
1171      llvm_unreachable("Unimp");
1172      // If there are more elements in the source than there are in the result,
1173      // then a result element is undef if all of the corresponding input
1174      // elements are undef.
1175      UndefElts = ~0ULL >> (64-VWidth);  // Start out all undef.
1176      for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1177        if (!UndefElts2[InIdx])            // Not undef?
1178          UndefElts.clearBit(InIdx/Ratio);    // Clear undef bit.
1179    }
1180    break;
1181  }
1182  case Instruction::And:
1183  case Instruction::Or:
1184  case Instruction::Xor:
1185  case Instruction::Add:
1186  case Instruction::Sub:
1187  case Instruction::Mul:
1188    // div/rem demand all inputs, because they don't want divide by zero.
1189    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1190                                      UndefElts, Depth+1);
1191    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1192    TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1193                                      UndefElts2, Depth+1);
1194    if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1195
1196    // Output elements are undefined if both are undefined.  Consider things
1197    // like undef&0.  The result is known zero, not undef.
1198    UndefElts &= UndefElts2;
1199    break;
1200  case Instruction::FPTrunc:
1201  case Instruction::FPExt:
1202    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1203                                      UndefElts, Depth+1);
1204    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1205    break;
1206
1207  case Instruction::Call: {
1208    IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1209    if (!II) break;
1210    switch (II->getIntrinsicID()) {
1211    default: break;
1212
1213    // Binary vector operations that work column-wise.  A dest element is a
1214    // function of the corresponding input elements from the two inputs.
1215    case Intrinsic::x86_sse_sub_ss:
1216    case Intrinsic::x86_sse_mul_ss:
1217    case Intrinsic::x86_sse_min_ss:
1218    case Intrinsic::x86_sse_max_ss:
1219    case Intrinsic::x86_sse2_sub_sd:
1220    case Intrinsic::x86_sse2_mul_sd:
1221    case Intrinsic::x86_sse2_min_sd:
1222    case Intrinsic::x86_sse2_max_sd:
1223      TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1224                                        UndefElts, Depth+1);
1225      if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1226      TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1227                                        UndefElts2, Depth+1);
1228      if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1229
1230      // If only the low elt is demanded and this is a scalarizable intrinsic,
1231      // scalarize it now.
1232      if (DemandedElts == 1) {
1233        switch (II->getIntrinsicID()) {
1234        default: break;
1235        case Intrinsic::x86_sse_sub_ss:
1236        case Intrinsic::x86_sse_mul_ss:
1237        case Intrinsic::x86_sse2_sub_sd:
1238        case Intrinsic::x86_sse2_mul_sd:
1239          // TODO: Lower MIN/MAX/ABS/etc
1240          Value *LHS = II->getArgOperand(0);
1241          Value *RHS = II->getArgOperand(1);
1242          // Extract the element as scalars.
1243          LHS = InsertNewInstWith(ExtractElementInst::Create(LHS,
1244            ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1245          RHS = InsertNewInstWith(ExtractElementInst::Create(RHS,
1246            ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1247
1248          switch (II->getIntrinsicID()) {
1249          default: llvm_unreachable("Case stmts out of sync!");
1250          case Intrinsic::x86_sse_sub_ss:
1251          case Intrinsic::x86_sse2_sub_sd:
1252            TmpV = InsertNewInstWith(BinaryOperator::CreateFSub(LHS, RHS,
1253                                                        II->getName()), *II);
1254            break;
1255          case Intrinsic::x86_sse_mul_ss:
1256          case Intrinsic::x86_sse2_mul_sd:
1257            TmpV = InsertNewInstWith(BinaryOperator::CreateFMul(LHS, RHS,
1258                                                         II->getName()), *II);
1259            break;
1260          }
1261
1262          Instruction *New =
1263            InsertElementInst::Create(
1264              UndefValue::get(II->getType()), TmpV,
1265              ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false),
1266                                      II->getName());
1267          InsertNewInstWith(New, *II);
1268          return New;
1269        }
1270      }
1271
1272      // Output elements are undefined if both are undefined.  Consider things
1273      // like undef&0.  The result is known zero, not undef.
1274      UndefElts &= UndefElts2;
1275      break;
1276    }
1277    break;
1278  }
1279  }
1280  return MadeChange ? I : 0;
1281}
1282