InstCombineSimplifyDemanded.cpp revision 218893
133965Sjdp//===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2130561Sobrien//
333965Sjdp//                     The LLVM Compiler Infrastructure
433965Sjdp//
533965Sjdp// This file is distributed under the University of Illinois Open Source
633965Sjdp// License. See LICENSE.TXT for details.
733965Sjdp//
833965Sjdp//===----------------------------------------------------------------------===//
933965Sjdp//
1033965Sjdp// This file contains logic for simplifying instructions based on information
1133965Sjdp// about how they are used.
1233965Sjdp//
1333965Sjdp//===----------------------------------------------------------------------===//
1433965Sjdp
1533965Sjdp
1633965Sjdp#include "InstCombine.h"
1733965Sjdp#include "llvm/Target/TargetData.h"
1833965Sjdp#include "llvm/IntrinsicInst.h"
1933965Sjdp
2033965Sjdpusing namespace llvm;
2133965Sjdp
2233965Sjdp
2333965Sjdp/// ShrinkDemandedConstant - Check to see if the specified operand of the
2433965Sjdp/// specified instruction is a constant integer.  If so, check to see if there
25130561Sobrien/// are any bits set in the constant that are not demanded.  If so, shrink the
26130561Sobrien/// constant and return true.
27130561Sobrienstatic bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
28130561Sobrien                                   APInt Demanded) {
29130561Sobrien  assert(I && "No instruction?");
30130561Sobrien  assert(OpNo < I->getNumOperands() && "Operand index too large");
31130561Sobrien
32130561Sobrien  // If the operand is not a constant integer, nothing to do.
33130561Sobrien  ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
34130561Sobrien  if (!OpC) return false;
35130561Sobrien
36130561Sobrien  // If there are no bits set that aren't demanded, nothing to do.
37130561Sobrien  Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
3833965Sjdp  if ((~Demanded & OpC->getValue()) == 0)
3933965Sjdp    return false;
40
41  // This instruction is producing bits that are not demanded. Shrink the RHS.
42  Demanded &= OpC->getValue();
43  I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded));
44  return true;
45}
46
47
48
49/// SimplifyDemandedInstructionBits - Inst is an integer instruction that
50/// SimplifyDemandedBits knows about.  See if the instruction has any
51/// properties that allow us to simplify its operands.
52bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
53  unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
54  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
55  APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
56
57  Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask,
58                                     KnownZero, KnownOne, 0);
59  if (V == 0) return false;
60  if (V == &Inst) return true;
61  ReplaceInstUsesWith(Inst, V);
62  return true;
63}
64
65/// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the
66/// specified instruction operand if possible, updating it in place.  It returns
67/// true if it made any change and false otherwise.
68bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
69                                        APInt &KnownZero, APInt &KnownOne,
70                                        unsigned Depth) {
71  Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask,
72                                          KnownZero, KnownOne, Depth);
73  if (NewVal == 0) return false;
74  U = NewVal;
75  return true;
76}
77
78
79/// SimplifyDemandedUseBits - This function attempts to replace V with a simpler
80/// value based on the demanded bits.  When this function is called, it is known
81/// that only the bits set in DemandedMask of the result of V are ever used
82/// downstream. Consequently, depending on the mask and V, it may be possible
83/// to replace V with a constant or one of its operands. In such cases, this
84/// function does the replacement and returns true. In all other cases, it
85/// returns false after analyzing the expression and setting KnownOne and known
86/// to be one in the expression.  KnownZero contains all the bits that are known
87/// to be zero in the expression. These are provided to potentially allow the
88/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
89/// the expression. KnownOne and KnownZero always follow the invariant that
90/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
91/// the bits in KnownOne and KnownZero may only be accurate for those bits set
92/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
93/// and KnownOne must all be the same.
94///
95/// This returns null if it did not change anything and it permits no
96/// simplification.  This returns V itself if it did some simplification of V's
97/// operands based on the information about what bits are demanded. This returns
98/// some other non-null value if it found out that V is equal to another value
99/// in the context where the specified bits are demanded, but not for all users.
100Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
101                                             APInt &KnownZero, APInt &KnownOne,
102                                             unsigned Depth) {
103  assert(V != 0 && "Null pointer of Value???");
104  assert(Depth <= 6 && "Limit Search Depth");
105  uint32_t BitWidth = DemandedMask.getBitWidth();
106  const Type *VTy = V->getType();
107  assert((TD || !VTy->isPointerTy()) &&
108         "SimplifyDemandedBits needs to know bit widths!");
109  assert((!TD || TD->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) &&
110         (!VTy->isIntOrIntVectorTy() ||
111          VTy->getScalarSizeInBits() == BitWidth) &&
112         KnownZero.getBitWidth() == BitWidth &&
113         KnownOne.getBitWidth() == BitWidth &&
114         "Value *V, DemandedMask, KnownZero and KnownOne "
115         "must have same BitWidth");
116  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
117    // We know all of the bits for a constant!
118    KnownOne = CI->getValue() & DemandedMask;
119    KnownZero = ~KnownOne & DemandedMask;
120    return 0;
121  }
122  if (isa<ConstantPointerNull>(V)) {
123    // We know all of the bits for a constant!
124    KnownOne.clearAllBits();
125    KnownZero = DemandedMask;
126    return 0;
127  }
128
129  KnownZero.clearAllBits();
130  KnownOne.clearAllBits();
131  if (DemandedMask == 0) {   // Not demanding any bits from V.
132    if (isa<UndefValue>(V))
133      return 0;
134    return UndefValue::get(VTy);
135  }
136
137  if (Depth == 6)        // Limit search depth.
138    return 0;
139
140  APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
141  APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
142
143  Instruction *I = dyn_cast<Instruction>(V);
144  if (!I) {
145    ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
146    return 0;        // Only analyze instructions.
147  }
148
149  // If there are multiple uses of this value and we aren't at the root, then
150  // we can't do any simplifications of the operands, because DemandedMask
151  // only reflects the bits demanded by *one* of the users.
152  if (Depth != 0 && !I->hasOneUse()) {
153    // Despite the fact that we can't simplify this instruction in all User's
154    // context, we can at least compute the knownzero/knownone bits, and we can
155    // do simplifications that apply to *just* the one user if we know that
156    // this instruction has a simpler value in that context.
157    if (I->getOpcode() == Instruction::And) {
158      // If either the LHS or the RHS are Zero, the result is zero.
159      ComputeMaskedBits(I->getOperand(1), DemandedMask,
160                        RHSKnownZero, RHSKnownOne, Depth+1);
161      ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
162                        LHSKnownZero, LHSKnownOne, Depth+1);
163
164      // If all of the demanded bits are known 1 on one side, return the other.
165      // These bits cannot contribute to the result of the 'and' in this
166      // context.
167      if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
168          (DemandedMask & ~LHSKnownZero))
169        return I->getOperand(0);
170      if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
171          (DemandedMask & ~RHSKnownZero))
172        return I->getOperand(1);
173
174      // If all of the demanded bits in the inputs are known zeros, return zero.
175      if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
176        return Constant::getNullValue(VTy);
177
178    } else if (I->getOpcode() == Instruction::Or) {
179      // We can simplify (X|Y) -> X or Y in the user's context if we know that
180      // only bits from X or Y are demanded.
181
182      // If either the LHS or the RHS are One, the result is One.
183      ComputeMaskedBits(I->getOperand(1), DemandedMask,
184                        RHSKnownZero, RHSKnownOne, Depth+1);
185      ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne,
186                        LHSKnownZero, LHSKnownOne, Depth+1);
187
188      // If all of the demanded bits are known zero on one side, return the
189      // other.  These bits cannot contribute to the result of the 'or' in this
190      // context.
191      if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
192          (DemandedMask & ~LHSKnownOne))
193        return I->getOperand(0);
194      if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
195          (DemandedMask & ~RHSKnownOne))
196        return I->getOperand(1);
197
198      // If all of the potentially set bits on one side are known to be set on
199      // the other side, just use the 'other' side.
200      if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
201          (DemandedMask & (~RHSKnownZero)))
202        return I->getOperand(0);
203      if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
204          (DemandedMask & (~LHSKnownZero)))
205        return I->getOperand(1);
206    }
207
208    // Compute the KnownZero/KnownOne bits to simplify things downstream.
209    ComputeMaskedBits(I, DemandedMask, KnownZero, KnownOne, Depth);
210    return 0;
211  }
212
213  // If this is the root being simplified, allow it to have multiple uses,
214  // just set the DemandedMask to all bits so that we can try to simplify the
215  // operands.  This allows visitTruncInst (for example) to simplify the
216  // operand of a trunc without duplicating all the logic below.
217  if (Depth == 0 && !V->hasOneUse())
218    DemandedMask = APInt::getAllOnesValue(BitWidth);
219
220  switch (I->getOpcode()) {
221  default:
222    ComputeMaskedBits(I, DemandedMask, KnownZero, KnownOne, Depth);
223    break;
224  case Instruction::And:
225    // If either the LHS or the RHS are Zero, the result is zero.
226    if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
227                             RHSKnownZero, RHSKnownOne, Depth+1) ||
228        SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero,
229                             LHSKnownZero, LHSKnownOne, Depth+1))
230      return I;
231    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
232    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
233
234    // If all of the demanded bits are known 1 on one side, return the other.
235    // These bits cannot contribute to the result of the 'and'.
236    if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
237        (DemandedMask & ~LHSKnownZero))
238      return I->getOperand(0);
239    if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
240        (DemandedMask & ~RHSKnownZero))
241      return I->getOperand(1);
242
243    // If all of the demanded bits in the inputs are known zeros, return zero.
244    if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
245      return Constant::getNullValue(VTy);
246
247    // If the RHS is a constant, see if we can simplify it.
248    if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
249      return I;
250
251    // Output known-1 bits are only known if set in both the LHS & RHS.
252    KnownOne = RHSKnownOne & LHSKnownOne;
253    // Output known-0 are known to be clear if zero in either the LHS | RHS.
254    KnownZero = RHSKnownZero | LHSKnownZero;
255    break;
256  case Instruction::Or:
257    // If either the LHS or the RHS are One, the result is One.
258    if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
259                             RHSKnownZero, RHSKnownOne, Depth+1) ||
260        SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,
261                             LHSKnownZero, LHSKnownOne, Depth+1))
262      return I;
263    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
264    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
265
266    // If all of the demanded bits are known zero on one side, return the other.
267    // These bits cannot contribute to the result of the 'or'.
268    if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
269        (DemandedMask & ~LHSKnownOne))
270      return I->getOperand(0);
271    if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
272        (DemandedMask & ~RHSKnownOne))
273      return I->getOperand(1);
274
275    // If all of the potentially set bits on one side are known to be set on
276    // the other side, just use the 'other' side.
277    if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
278        (DemandedMask & (~RHSKnownZero)))
279      return I->getOperand(0);
280    if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
281        (DemandedMask & (~LHSKnownZero)))
282      return I->getOperand(1);
283
284    // If the RHS is a constant, see if we can simplify it.
285    if (ShrinkDemandedConstant(I, 1, DemandedMask))
286      return I;
287
288    // Output known-0 bits are only known if clear in both the LHS & RHS.
289    KnownZero = RHSKnownZero & LHSKnownZero;
290    // Output known-1 are known to be set if set in either the LHS | RHS.
291    KnownOne = RHSKnownOne | LHSKnownOne;
292    break;
293  case Instruction::Xor: {
294    if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
295                             RHSKnownZero, RHSKnownOne, Depth+1) ||
296        SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
297                             LHSKnownZero, LHSKnownOne, Depth+1))
298      return I;
299    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
300    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
301
302    // If all of the demanded bits are known zero on one side, return the other.
303    // These bits cannot contribute to the result of the 'xor'.
304    if ((DemandedMask & RHSKnownZero) == DemandedMask)
305      return I->getOperand(0);
306    if ((DemandedMask & LHSKnownZero) == DemandedMask)
307      return I->getOperand(1);
308
309    // If all of the demanded bits are known to be zero on one side or the
310    // other, turn this into an *inclusive* or.
311    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
312    if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
313      Instruction *Or =
314        BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
315                                 I->getName());
316      return InsertNewInstBefore(Or, *I);
317    }
318
319    // If all of the demanded bits on one side are known, and all of the set
320    // bits on that side are also known to be set on the other side, turn this
321    // into an AND, as we know the bits will be cleared.
322    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
323    if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
324      // all known
325      if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
326        Constant *AndC = Constant::getIntegerValue(VTy,
327                                                   ~RHSKnownOne & DemandedMask);
328        Instruction *And =
329          BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp");
330        return InsertNewInstBefore(And, *I);
331      }
332    }
333
334    // If the RHS is a constant, see if we can simplify it.
335    // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
336    if (ShrinkDemandedConstant(I, 1, DemandedMask))
337      return I;
338
339    // If our LHS is an 'and' and if it has one use, and if any of the bits we
340    // are flipping are known to be set, then the xor is just resetting those
341    // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
342    // simplifying both of them.
343    if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
344      if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
345          isa<ConstantInt>(I->getOperand(1)) &&
346          isa<ConstantInt>(LHSInst->getOperand(1)) &&
347          (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) {
348        ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
349        ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
350        APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);
351
352        Constant *AndC =
353          ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
354        Instruction *NewAnd =
355          BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp");
356        InsertNewInstBefore(NewAnd, *I);
357
358        Constant *XorC =
359          ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
360        Instruction *NewXor =
361          BinaryOperator::CreateXor(NewAnd, XorC, "tmp");
362        return InsertNewInstBefore(NewXor, *I);
363      }
364
365    // Output known-0 bits are known if clear or set in both the LHS & RHS.
366    KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne);
367    // Output known-1 are known to be set if set in only one of the LHS, RHS.
368    KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero);
369    break;
370  }
371  case Instruction::Select:
372    if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask,
373                             RHSKnownZero, RHSKnownOne, Depth+1) ||
374        SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
375                             LHSKnownZero, LHSKnownOne, Depth+1))
376      return I;
377    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
378    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
379
380    // If the operands are constants, see if we can simplify them.
381    if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
382        ShrinkDemandedConstant(I, 2, DemandedMask))
383      return I;
384
385    // Only known if known in both the LHS and RHS.
386    KnownOne = RHSKnownOne & LHSKnownOne;
387    KnownZero = RHSKnownZero & LHSKnownZero;
388    break;
389  case Instruction::Trunc: {
390    unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits();
391    DemandedMask = DemandedMask.zext(truncBf);
392    KnownZero = KnownZero.zext(truncBf);
393    KnownOne = KnownOne.zext(truncBf);
394    if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
395                             KnownZero, KnownOne, Depth+1))
396      return I;
397    DemandedMask = DemandedMask.trunc(BitWidth);
398    KnownZero = KnownZero.trunc(BitWidth);
399    KnownOne = KnownOne.trunc(BitWidth);
400    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
401    break;
402  }
403  case Instruction::BitCast:
404    if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
405      return 0;  // vector->int or fp->int?
406
407    if (const VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
408      if (const VectorType *SrcVTy =
409            dyn_cast<VectorType>(I->getOperand(0)->getType())) {
410        if (DstVTy->getNumElements() != SrcVTy->getNumElements())
411          // Don't touch a bitcast between vectors of different element counts.
412          return 0;
413      } else
414        // Don't touch a scalar-to-vector bitcast.
415        return 0;
416    } else if (I->getOperand(0)->getType()->isVectorTy())
417      // Don't touch a vector-to-scalar bitcast.
418      return 0;
419
420    if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
421                             KnownZero, KnownOne, Depth+1))
422      return I;
423    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
424    break;
425  case Instruction::ZExt: {
426    // Compute the bits in the result that are not present in the input.
427    unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
428
429    DemandedMask = DemandedMask.trunc(SrcBitWidth);
430    KnownZero = KnownZero.trunc(SrcBitWidth);
431    KnownOne = KnownOne.trunc(SrcBitWidth);
432    if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
433                             KnownZero, KnownOne, Depth+1))
434      return I;
435    DemandedMask = DemandedMask.zext(BitWidth);
436    KnownZero = KnownZero.zext(BitWidth);
437    KnownOne = KnownOne.zext(BitWidth);
438    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
439    // The top bits are known to be zero.
440    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
441    break;
442  }
443  case Instruction::SExt: {
444    // Compute the bits in the result that are not present in the input.
445    unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
446
447    APInt InputDemandedBits = DemandedMask &
448                              APInt::getLowBitsSet(BitWidth, SrcBitWidth);
449
450    APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
451    // If any of the sign extended bits are demanded, we know that the sign
452    // bit is demanded.
453    if ((NewBits & DemandedMask) != 0)
454      InputDemandedBits.setBit(SrcBitWidth-1);
455
456    InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth);
457    KnownZero = KnownZero.trunc(SrcBitWidth);
458    KnownOne = KnownOne.trunc(SrcBitWidth);
459    if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits,
460                             KnownZero, KnownOne, Depth+1))
461      return I;
462    InputDemandedBits = InputDemandedBits.zext(BitWidth);
463    KnownZero = KnownZero.zext(BitWidth);
464    KnownOne = KnownOne.zext(BitWidth);
465    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
466
467    // If the sign bit of the input is known set or clear, then we know the
468    // top bits of the result.
469
470    // If the input sign bit is known zero, or if the NewBits are not demanded
471    // convert this into a zero extension.
472    if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) {
473      // Convert to ZExt cast
474      CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
475      return InsertNewInstBefore(NewCast, *I);
476    } else if (KnownOne[SrcBitWidth-1]) {    // Input sign bit known set
477      KnownOne |= NewBits;
478    }
479    break;
480  }
481  case Instruction::Add: {
482    // Figure out what the input bits are.  If the top bits of the and result
483    // are not demanded, then the add doesn't demand them from its input
484    // either.
485    unsigned NLZ = DemandedMask.countLeadingZeros();
486
487    // If there is a constant on the RHS, there are a variety of xformations
488    // we can do.
489    if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
490      // If null, this should be simplified elsewhere.  Some of the xforms here
491      // won't work if the RHS is zero.
492      if (RHS->isZero())
493        break;
494
495      // If the top bit of the output is demanded, demand everything from the
496      // input.  Otherwise, we demand all the input bits except NLZ top bits.
497      APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
498
499      // Find information about known zero/one bits in the input.
500      if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits,
501                               LHSKnownZero, LHSKnownOne, Depth+1))
502        return I;
503
504      // If the RHS of the add has bits set that can't affect the input, reduce
505      // the constant.
506      if (ShrinkDemandedConstant(I, 1, InDemandedBits))
507        return I;
508
509      // Avoid excess work.
510      if (LHSKnownZero == 0 && LHSKnownOne == 0)
511        break;
512
513      // Turn it into OR if input bits are zero.
514      if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
515        Instruction *Or =
516          BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
517                                   I->getName());
518        return InsertNewInstBefore(Or, *I);
519      }
520
521      // We can say something about the output known-zero and known-one bits,
522      // depending on potential carries from the input constant and the
523      // unknowns.  For example if the LHS is known to have at most the 0x0F0F0
524      // bits set and the RHS constant is 0x01001, then we know we have a known
525      // one mask of 0x00001 and a known zero mask of 0xE0F0E.
526
527      // To compute this, we first compute the potential carry bits.  These are
528      // the bits which may be modified.  I'm not aware of a better way to do
529      // this scan.
530      const APInt &RHSVal = RHS->getValue();
531      APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
532
533      // Now that we know which bits have carries, compute the known-1/0 sets.
534
535      // Bits are known one if they are known zero in one operand and one in the
536      // other, and there is no input carry.
537      KnownOne = ((LHSKnownZero & RHSVal) |
538                  (LHSKnownOne & ~RHSVal)) & ~CarryBits;
539
540      // Bits are known zero if they are known zero in both operands and there
541      // is no input carry.
542      KnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
543    } else {
544      // If the high-bits of this ADD are not demanded, then it does not demand
545      // the high bits of its LHS or RHS.
546      if (DemandedMask[BitWidth-1] == 0) {
547        // Right fill the mask of bits for this ADD to demand the most
548        // significant bit and all those below it.
549        APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
550        if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
551                                 LHSKnownZero, LHSKnownOne, Depth+1) ||
552            SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
553                                 LHSKnownZero, LHSKnownOne, Depth+1))
554          return I;
555      }
556    }
557    break;
558  }
559  case Instruction::Sub:
560    // If the high-bits of this SUB are not demanded, then it does not demand
561    // the high bits of its LHS or RHS.
562    if (DemandedMask[BitWidth-1] == 0) {
563      // Right fill the mask of bits for this SUB to demand the most
564      // significant bit and all those below it.
565      uint32_t NLZ = DemandedMask.countLeadingZeros();
566      APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
567      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
568                               LHSKnownZero, LHSKnownOne, Depth+1) ||
569          SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
570                               LHSKnownZero, LHSKnownOne, Depth+1))
571        return I;
572    }
573    // Otherwise just hand the sub off to ComputeMaskedBits to fill in
574    // the known zeros and ones.
575    ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
576    break;
577  case Instruction::Shl:
578    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
579      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
580      APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
581
582      // If the shift is NUW/NSW, then it does demand the high bits.
583      ShlOperator *IOp = cast<ShlOperator>(I);
584      if (IOp->hasNoSignedWrap())
585        DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
586      else if (IOp->hasNoUnsignedWrap())
587        DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
588
589      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
590                               KnownZero, KnownOne, Depth+1))
591        return I;
592      assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
593      KnownZero <<= ShiftAmt;
594      KnownOne  <<= ShiftAmt;
595      // low bits known zero.
596      if (ShiftAmt)
597        KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
598    }
599    break;
600  case Instruction::LShr:
601    // For a logical shift right
602    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
603      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
604
605      // Unsigned shift right.
606      APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
607
608      // If the shift is exact, then it does demand the low bits (and knows that
609      // they are zero).
610      if (cast<LShrOperator>(I)->isExact())
611        DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
612
613      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
614                               KnownZero, KnownOne, Depth+1))
615        return I;
616      assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
617      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
618      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
619      if (ShiftAmt) {
620        // Compute the new bits that are at the top now.
621        APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
622        KnownZero |= HighBits;  // high bits known zero.
623      }
624    }
625    break;
626  case Instruction::AShr:
627    // If this is an arithmetic shift right and only the low-bit is set, we can
628    // always convert this into a logical shr, even if the shift amount is
629    // variable.  The low bit of the shift cannot be an input sign bit unless
630    // the shift amount is >= the size of the datatype, which is undefined.
631    if (DemandedMask == 1) {
632      // Perform the logical shift right.
633      Instruction *NewVal = BinaryOperator::CreateLShr(
634                        I->getOperand(0), I->getOperand(1), I->getName());
635      return InsertNewInstBefore(NewVal, *I);
636    }
637
638    // If the sign bit is the only bit demanded by this ashr, then there is no
639    // need to do it, the shift doesn't change the high bit.
640    if (DemandedMask.isSignBit())
641      return I->getOperand(0);
642
643    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
644      uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
645
646      // Signed shift right.
647      APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
648      // If any of the "high bits" are demanded, we should set the sign bit as
649      // demanded.
650      if (DemandedMask.countLeadingZeros() <= ShiftAmt)
651        DemandedMaskIn.setBit(BitWidth-1);
652
653      // If the shift is exact, then it does demand the low bits (and knows that
654      // they are zero).
655      if (cast<AShrOperator>(I)->isExact())
656        DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
657
658      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
659                               KnownZero, KnownOne, Depth+1))
660        return I;
661      assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
662      // Compute the new bits that are at the top now.
663      APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
664      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
665      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
666
667      // Handle the sign bits.
668      APInt SignBit(APInt::getSignBit(BitWidth));
669      // Adjust to where it is now in the mask.
670      SignBit = APIntOps::lshr(SignBit, ShiftAmt);
671
672      // If the input sign bit is known to be zero, or if none of the top bits
673      // are demanded, turn this into an unsigned shift right.
674      if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||
675          (HighBits & ~DemandedMask) == HighBits) {
676        // Perform the logical shift right.
677        Instruction *NewVal = BinaryOperator::CreateLShr(
678                          I->getOperand(0), SA, I->getName());
679        return InsertNewInstBefore(NewVal, *I);
680      } else if ((KnownOne & SignBit) != 0) { // New bits are known one.
681        KnownOne |= HighBits;
682      }
683    }
684    break;
685  case Instruction::SRem:
686    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
687      APInt RA = Rem->getValue().abs();
688      if (RA.isPowerOf2()) {
689        if (DemandedMask.ult(RA))    // srem won't affect demanded bits
690          return I->getOperand(0);
691
692        APInt LowBits = RA - 1;
693        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
694        if (SimplifyDemandedBits(I->getOperandUse(0), Mask2,
695                                 LHSKnownZero, LHSKnownOne, Depth+1))
696          return I;
697
698        // The low bits of LHS are unchanged by the srem.
699        KnownZero = LHSKnownZero & LowBits;
700        KnownOne = LHSKnownOne & LowBits;
701
702        // If LHS is non-negative or has all low bits zero, then the upper bits
703        // are all zero.
704        if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
705          KnownZero |= ~LowBits;
706
707        // If LHS is negative and not all low bits are zero, then the upper bits
708        // are all one.
709        if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0))
710          KnownOne |= ~LowBits;
711
712        assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
713      }
714    }
715    break;
716  case Instruction::URem: {
717    APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
718    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
719    if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes,
720                             KnownZero2, KnownOne2, Depth+1) ||
721        SimplifyDemandedBits(I->getOperandUse(1), AllOnes,
722                             KnownZero2, KnownOne2, Depth+1))
723      return I;
724
725    unsigned Leaders = KnownZero2.countLeadingOnes();
726    Leaders = std::max(Leaders,
727                       KnownZero2.countLeadingOnes());
728    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
729    break;
730  }
731  case Instruction::Call:
732    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
733      switch (II->getIntrinsicID()) {
734      default: break;
735      case Intrinsic::bswap: {
736        // If the only bits demanded come from one byte of the bswap result,
737        // just shift the input byte into position to eliminate the bswap.
738        unsigned NLZ = DemandedMask.countLeadingZeros();
739        unsigned NTZ = DemandedMask.countTrailingZeros();
740
741        // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
742        // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
743        // have 14 leading zeros, round to 8.
744        NLZ &= ~7;
745        NTZ &= ~7;
746        // If we need exactly one byte, we can do this transformation.
747        if (BitWidth-NLZ-NTZ == 8) {
748          unsigned ResultBit = NTZ;
749          unsigned InputBit = BitWidth-NTZ-8;
750
751          // Replace this with either a left or right shift to get the byte into
752          // the right place.
753          Instruction *NewVal;
754          if (InputBit > ResultBit)
755            NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
756                    ConstantInt::get(I->getType(), InputBit-ResultBit));
757          else
758            NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
759                    ConstantInt::get(I->getType(), ResultBit-InputBit));
760          NewVal->takeName(I);
761          return InsertNewInstBefore(NewVal, *I);
762        }
763
764        // TODO: Could compute known zero/one bits based on the input.
765        break;
766      }
767      }
768    }
769    ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
770    break;
771  }
772
773  // If the client is only demanding bits that we know, return the known
774  // constant.
775  if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
776    return Constant::getIntegerValue(VTy, KnownOne);
777  return 0;
778}
779
780
781/// SimplifyDemandedVectorElts - The specified value produces a vector with
782/// any number of elements. DemandedElts contains the set of elements that are
783/// actually used by the caller.  This method analyzes which elements of the
784/// operand are undef and returns that information in UndefElts.
785///
786/// If the information about demanded elements can be used to simplify the
787/// operation, the operation is simplified, then the resultant value is
788/// returned.  This returns null if no change was made.
789Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
790                                                APInt &UndefElts,
791                                                unsigned Depth) {
792  unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
793  APInt EltMask(APInt::getAllOnesValue(VWidth));
794  assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
795
796  if (isa<UndefValue>(V)) {
797    // If the entire vector is undefined, just return this info.
798    UndefElts = EltMask;
799    return 0;
800  }
801
802  if (DemandedElts == 0) { // If nothing is demanded, provide undef.
803    UndefElts = EltMask;
804    return UndefValue::get(V->getType());
805  }
806
807  UndefElts = 0;
808  if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
809    const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
810    Constant *Undef = UndefValue::get(EltTy);
811
812    std::vector<Constant*> Elts;
813    for (unsigned i = 0; i != VWidth; ++i)
814      if (!DemandedElts[i]) {   // If not demanded, set to undef.
815        Elts.push_back(Undef);
816        UndefElts.setBit(i);
817      } else if (isa<UndefValue>(CV->getOperand(i))) {   // Already undef.
818        Elts.push_back(Undef);
819        UndefElts.setBit(i);
820      } else {                               // Otherwise, defined.
821        Elts.push_back(CV->getOperand(i));
822      }
823
824    // If we changed the constant, return it.
825    Constant *NewCP = ConstantVector::get(Elts);
826    return NewCP != CV ? NewCP : 0;
827  }
828
829  if (isa<ConstantAggregateZero>(V)) {
830    // Simplify the CAZ to a ConstantVector where the non-demanded elements are
831    // set to undef.
832
833    // Check if this is identity. If so, return 0 since we are not simplifying
834    // anything.
835    if (DemandedElts.isAllOnesValue())
836      return 0;
837
838    const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
839    Constant *Zero = Constant::getNullValue(EltTy);
840    Constant *Undef = UndefValue::get(EltTy);
841    std::vector<Constant*> Elts;
842    for (unsigned i = 0; i != VWidth; ++i) {
843      Constant *Elt = DemandedElts[i] ? Zero : Undef;
844      Elts.push_back(Elt);
845    }
846    UndefElts = DemandedElts ^ EltMask;
847    return ConstantVector::get(Elts);
848  }
849
850  // Limit search depth.
851  if (Depth == 10)
852    return 0;
853
854  // If multiple users are using the root value, procede with
855  // simplification conservatively assuming that all elements
856  // are needed.
857  if (!V->hasOneUse()) {
858    // Quit if we find multiple users of a non-root value though.
859    // They'll be handled when it's their turn to be visited by
860    // the main instcombine process.
861    if (Depth != 0)
862      // TODO: Just compute the UndefElts information recursively.
863      return 0;
864
865    // Conservatively assume that all elements are needed.
866    DemandedElts = EltMask;
867  }
868
869  Instruction *I = dyn_cast<Instruction>(V);
870  if (!I) return 0;        // Only analyze instructions.
871
872  bool MadeChange = false;
873  APInt UndefElts2(VWidth, 0);
874  Value *TmpV;
875  switch (I->getOpcode()) {
876  default: break;
877
878  case Instruction::InsertElement: {
879    // If this is a variable index, we don't know which element it overwrites.
880    // demand exactly the same input as we produce.
881    ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
882    if (Idx == 0) {
883      // Note that we can't propagate undef elt info, because we don't know
884      // which elt is getting updated.
885      TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
886                                        UndefElts2, Depth+1);
887      if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
888      break;
889    }
890
891    // If this is inserting an element that isn't demanded, remove this
892    // insertelement.
893    unsigned IdxNo = Idx->getZExtValue();
894    if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
895      Worklist.Add(I);
896      return I->getOperand(0);
897    }
898
899    // Otherwise, the element inserted overwrites whatever was there, so the
900    // input demanded set is simpler than the output set.
901    APInt DemandedElts2 = DemandedElts;
902    DemandedElts2.clearBit(IdxNo);
903    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
904                                      UndefElts, Depth+1);
905    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
906
907    // The inserted element is defined.
908    UndefElts.clearBit(IdxNo);
909    break;
910  }
911  case Instruction::ShuffleVector: {
912    ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
913    uint64_t LHSVWidth =
914      cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
915    APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
916    for (unsigned i = 0; i < VWidth; i++) {
917      if (DemandedElts[i]) {
918        unsigned MaskVal = Shuffle->getMaskValue(i);
919        if (MaskVal != -1u) {
920          assert(MaskVal < LHSVWidth * 2 &&
921                 "shufflevector mask index out of range!");
922          if (MaskVal < LHSVWidth)
923            LeftDemanded.setBit(MaskVal);
924          else
925            RightDemanded.setBit(MaskVal - LHSVWidth);
926        }
927      }
928    }
929
930    APInt UndefElts4(LHSVWidth, 0);
931    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
932                                      UndefElts4, Depth+1);
933    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
934
935    APInt UndefElts3(LHSVWidth, 0);
936    TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
937                                      UndefElts3, Depth+1);
938    if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
939
940    bool NewUndefElts = false;
941    for (unsigned i = 0; i < VWidth; i++) {
942      unsigned MaskVal = Shuffle->getMaskValue(i);
943      if (MaskVal == -1u) {
944        UndefElts.setBit(i);
945      } else if (MaskVal < LHSVWidth) {
946        if (UndefElts4[MaskVal]) {
947          NewUndefElts = true;
948          UndefElts.setBit(i);
949        }
950      } else {
951        if (UndefElts3[MaskVal - LHSVWidth]) {
952          NewUndefElts = true;
953          UndefElts.setBit(i);
954        }
955      }
956    }
957
958    if (NewUndefElts) {
959      // Add additional discovered undefs.
960      std::vector<Constant*> Elts;
961      for (unsigned i = 0; i < VWidth; ++i) {
962        if (UndefElts[i])
963          Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
964        else
965          Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
966                                          Shuffle->getMaskValue(i)));
967      }
968      I->setOperand(2, ConstantVector::get(Elts));
969      MadeChange = true;
970    }
971    break;
972  }
973  case Instruction::BitCast: {
974    // Vector->vector casts only.
975    const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
976    if (!VTy) break;
977    unsigned InVWidth = VTy->getNumElements();
978    APInt InputDemandedElts(InVWidth, 0);
979    unsigned Ratio;
980
981    if (VWidth == InVWidth) {
982      // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
983      // elements as are demanded of us.
984      Ratio = 1;
985      InputDemandedElts = DemandedElts;
986    } else if (VWidth > InVWidth) {
987      // Untested so far.
988      break;
989
990      // If there are more elements in the result than there are in the source,
991      // then an input element is live if any of the corresponding output
992      // elements are live.
993      Ratio = VWidth/InVWidth;
994      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
995        if (DemandedElts[OutIdx])
996          InputDemandedElts.setBit(OutIdx/Ratio);
997      }
998    } else {
999      // Untested so far.
1000      break;
1001
1002      // If there are more elements in the source than there are in the result,
1003      // then an input element is live if the corresponding output element is
1004      // live.
1005      Ratio = InVWidth/VWidth;
1006      for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1007        if (DemandedElts[InIdx/Ratio])
1008          InputDemandedElts.setBit(InIdx);
1009    }
1010
1011    // div/rem demand all inputs, because they don't want divide by zero.
1012    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1013                                      UndefElts2, Depth+1);
1014    if (TmpV) {
1015      I->setOperand(0, TmpV);
1016      MadeChange = true;
1017    }
1018
1019    UndefElts = UndefElts2;
1020    if (VWidth > InVWidth) {
1021      llvm_unreachable("Unimp");
1022      // If there are more elements in the result than there are in the source,
1023      // then an output element is undef if the corresponding input element is
1024      // undef.
1025      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1026        if (UndefElts2[OutIdx/Ratio])
1027          UndefElts.setBit(OutIdx);
1028    } else if (VWidth < InVWidth) {
1029      llvm_unreachable("Unimp");
1030      // If there are more elements in the source than there are in the result,
1031      // then a result element is undef if all of the corresponding input
1032      // elements are undef.
1033      UndefElts = ~0ULL >> (64-VWidth);  // Start out all undef.
1034      for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1035        if (!UndefElts2[InIdx])            // Not undef?
1036          UndefElts.clearBit(InIdx/Ratio);    // Clear undef bit.
1037    }
1038    break;
1039  }
1040  case Instruction::And:
1041  case Instruction::Or:
1042  case Instruction::Xor:
1043  case Instruction::Add:
1044  case Instruction::Sub:
1045  case Instruction::Mul:
1046    // div/rem demand all inputs, because they don't want divide by zero.
1047    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1048                                      UndefElts, Depth+1);
1049    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1050    TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1051                                      UndefElts2, Depth+1);
1052    if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1053
1054    // Output elements are undefined if both are undefined.  Consider things
1055    // like undef&0.  The result is known zero, not undef.
1056    UndefElts &= UndefElts2;
1057    break;
1058
1059  case Instruction::Call: {
1060    IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1061    if (!II) break;
1062    switch (II->getIntrinsicID()) {
1063    default: break;
1064
1065    // Binary vector operations that work column-wise.  A dest element is a
1066    // function of the corresponding input elements from the two inputs.
1067    case Intrinsic::x86_sse_sub_ss:
1068    case Intrinsic::x86_sse_mul_ss:
1069    case Intrinsic::x86_sse_min_ss:
1070    case Intrinsic::x86_sse_max_ss:
1071    case Intrinsic::x86_sse2_sub_sd:
1072    case Intrinsic::x86_sse2_mul_sd:
1073    case Intrinsic::x86_sse2_min_sd:
1074    case Intrinsic::x86_sse2_max_sd:
1075      TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1076                                        UndefElts, Depth+1);
1077      if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1078      TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1079                                        UndefElts2, Depth+1);
1080      if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1081
1082      // If only the low elt is demanded and this is a scalarizable intrinsic,
1083      // scalarize it now.
1084      if (DemandedElts == 1) {
1085        switch (II->getIntrinsicID()) {
1086        default: break;
1087        case Intrinsic::x86_sse_sub_ss:
1088        case Intrinsic::x86_sse_mul_ss:
1089        case Intrinsic::x86_sse2_sub_sd:
1090        case Intrinsic::x86_sse2_mul_sd:
1091          // TODO: Lower MIN/MAX/ABS/etc
1092          Value *LHS = II->getArgOperand(0);
1093          Value *RHS = II->getArgOperand(1);
1094          // Extract the element as scalars.
1095          LHS = InsertNewInstBefore(ExtractElementInst::Create(LHS,
1096            ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1097          RHS = InsertNewInstBefore(ExtractElementInst::Create(RHS,
1098            ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1099
1100          switch (II->getIntrinsicID()) {
1101          default: llvm_unreachable("Case stmts out of sync!");
1102          case Intrinsic::x86_sse_sub_ss:
1103          case Intrinsic::x86_sse2_sub_sd:
1104            TmpV = InsertNewInstBefore(BinaryOperator::CreateFSub(LHS, RHS,
1105                                                        II->getName()), *II);
1106            break;
1107          case Intrinsic::x86_sse_mul_ss:
1108          case Intrinsic::x86_sse2_mul_sd:
1109            TmpV = InsertNewInstBefore(BinaryOperator::CreateFMul(LHS, RHS,
1110                                                         II->getName()), *II);
1111            break;
1112          }
1113
1114          Instruction *New =
1115            InsertElementInst::Create(
1116              UndefValue::get(II->getType()), TmpV,
1117              ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false),
1118                                      II->getName());
1119          InsertNewInstBefore(New, *II);
1120          return New;
1121        }
1122      }
1123
1124      // Output elements are undefined if both are undefined.  Consider things
1125      // like undef&0.  The result is known zero, not undef.
1126      UndefElts &= UndefElts2;
1127      break;
1128    }
1129    break;
1130  }
1131  }
1132  return MadeChange ? I : 0;
1133}
1134