1202375Srdivacky//===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2202375Srdivacky//
3202375Srdivacky//                     The LLVM Compiler Infrastructure
4202375Srdivacky//
5202375Srdivacky// This file is distributed under the University of Illinois Open Source
6202375Srdivacky// License. See LICENSE.TXT for details.
7202375Srdivacky//
8202375Srdivacky//===----------------------------------------------------------------------===//
9202375Srdivacky//
10202375Srdivacky// This file contains logic for simplifying instructions based on information
11202375Srdivacky// about how they are used.
12202375Srdivacky//
13202375Srdivacky//===----------------------------------------------------------------------===//
14202375Srdivacky
15288943Sdim#include "InstCombineInternal.h"
16288943Sdim#include "llvm/Analysis/ValueTracking.h"
17249423Sdim#include "llvm/IR/IntrinsicInst.h"
18276479Sdim#include "llvm/IR/PatternMatch.h"
19202375Srdivacky
20202375Srdivackyusing namespace llvm;
21249423Sdimusing namespace llvm::PatternMatch;
22202375Srdivacky
23276479Sdim#define DEBUG_TYPE "instcombine"
24276479Sdim
25249423Sdim/// ShrinkDemandedConstant - Check to see if the specified operand of the
26202375Srdivacky/// specified instruction is a constant integer.  If so, check to see if there
27202375Srdivacky/// are any bits set in the constant that are not demanded.  If so, shrink the
28202375Srdivacky/// constant and return true.
29249423Sdimstatic bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
30202375Srdivacky                                   APInt Demanded) {
31202375Srdivacky  assert(I && "No instruction?");
32202375Srdivacky  assert(OpNo < I->getNumOperands() && "Operand index too large");
33202375Srdivacky
34202375Srdivacky  // If the operand is not a constant integer, nothing to do.
35202375Srdivacky  ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
36202375Srdivacky  if (!OpC) return false;
37202375Srdivacky
38202375Srdivacky  // If there are no bits set that aren't demanded, nothing to do.
39218893Sdim  Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
40202375Srdivacky  if ((~Demanded & OpC->getValue()) == 0)
41202375Srdivacky    return false;
42202375Srdivacky
43202375Srdivacky  // This instruction is producing bits that are not demanded. Shrink the RHS.
44202375Srdivacky  Demanded &= OpC->getValue();
45202375Srdivacky  I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded));
46280031Sdim
47202375Srdivacky  return true;
48202375Srdivacky}
49202375Srdivacky
50202375Srdivacky
51202375Srdivacky
52202375Srdivacky/// SimplifyDemandedInstructionBits - Inst is an integer instruction that
53202375Srdivacky/// SimplifyDemandedBits knows about.  See if the instruction has any
54202375Srdivacky/// properties that allow us to simplify its operands.
55202375Srdivackybool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
56202375Srdivacky  unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
57202375Srdivacky  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
58202375Srdivacky  APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
59249423Sdim
60288943Sdim  Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, KnownZero, KnownOne,
61288943Sdim                                     0, &Inst);
62276479Sdim  if (!V) return false;
63202375Srdivacky  if (V == &Inst) return true;
64202375Srdivacky  ReplaceInstUsesWith(Inst, V);
65202375Srdivacky  return true;
66202375Srdivacky}
67202375Srdivacky
68202375Srdivacky/// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the
69202375Srdivacky/// specified instruction operand if possible, updating it in place.  It returns
70202375Srdivacky/// true if it made any change and false otherwise.
71249423Sdimbool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
72202375Srdivacky                                        APInt &KnownZero, APInt &KnownOne,
73202375Srdivacky                                        unsigned Depth) {
74288943Sdim  auto *UserI = dyn_cast<Instruction>(U.getUser());
75288943Sdim  Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, KnownZero,
76288943Sdim                                          KnownOne, Depth, UserI);
77276479Sdim  if (!NewVal) return false;
78202375Srdivacky  U = NewVal;
79202375Srdivacky  return true;
80202375Srdivacky}
81202375Srdivacky
82202375Srdivacky
83202375Srdivacky/// SimplifyDemandedUseBits - This function attempts to replace V with a simpler
84202375Srdivacky/// value based on the demanded bits.  When this function is called, it is known
85202375Srdivacky/// that only the bits set in DemandedMask of the result of V are ever used
86202375Srdivacky/// downstream. Consequently, depending on the mask and V, it may be possible
87202375Srdivacky/// to replace V with a constant or one of its operands. In such cases, this
88202375Srdivacky/// function does the replacement and returns true. In all other cases, it
89202375Srdivacky/// returns false after analyzing the expression and setting KnownOne and known
90202375Srdivacky/// to be one in the expression.  KnownZero contains all the bits that are known
91202375Srdivacky/// to be zero in the expression. These are provided to potentially allow the
92202375Srdivacky/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
93249423Sdim/// the expression. KnownOne and KnownZero always follow the invariant that
94202375Srdivacky/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
95202375Srdivacky/// the bits in KnownOne and KnownZero may only be accurate for those bits set
96202375Srdivacky/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
97202375Srdivacky/// and KnownOne must all be the same.
98202375Srdivacky///
99202375Srdivacky/// This returns null if it did not change anything and it permits no
100202375Srdivacky/// simplification.  This returns V itself if it did some simplification of V's
101202375Srdivacky/// operands based on the information about what bits are demanded. This returns
102202375Srdivacky/// some other non-null value if it found out that V is equal to another value
103202375Srdivacky/// in the context where the specified bits are demanded, but not for all users.
104202375SrdivackyValue *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
105202375Srdivacky                                             APInt &KnownZero, APInt &KnownOne,
106280031Sdim                                             unsigned Depth,
107280031Sdim                                             Instruction *CxtI) {
108276479Sdim  assert(V != nullptr && "Null pointer of Value???");
109202375Srdivacky  assert(Depth <= 6 && "Limit Search Depth");
110202375Srdivacky  uint32_t BitWidth = DemandedMask.getBitWidth();
111226633Sdim  Type *VTy = V->getType();
112288943Sdim  assert(
113288943Sdim      (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
114288943Sdim      KnownZero.getBitWidth() == BitWidth &&
115288943Sdim      KnownOne.getBitWidth() == BitWidth &&
116288943Sdim      "Value *V, DemandedMask, KnownZero and KnownOne "
117288943Sdim      "must have same BitWidth");
118202375Srdivacky  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
119202375Srdivacky    // We know all of the bits for a constant!
120202375Srdivacky    KnownOne = CI->getValue() & DemandedMask;
121202375Srdivacky    KnownZero = ~KnownOne & DemandedMask;
122276479Sdim    return nullptr;
123202375Srdivacky  }
124202375Srdivacky  if (isa<ConstantPointerNull>(V)) {
125202375Srdivacky    // We know all of the bits for a constant!
126218893Sdim    KnownOne.clearAllBits();
127202375Srdivacky    KnownZero = DemandedMask;
128276479Sdim    return nullptr;
129202375Srdivacky  }
130202375Srdivacky
131218893Sdim  KnownZero.clearAllBits();
132218893Sdim  KnownOne.clearAllBits();
133202375Srdivacky  if (DemandedMask == 0) {   // Not demanding any bits from V.
134202375Srdivacky    if (isa<UndefValue>(V))
135276479Sdim      return nullptr;
136202375Srdivacky    return UndefValue::get(VTy);
137202375Srdivacky  }
138249423Sdim
139202375Srdivacky  if (Depth == 6)        // Limit search depth.
140276479Sdim    return nullptr;
141249423Sdim
142202375Srdivacky  APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
143203954Srdivacky  APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
144202375Srdivacky
145202375Srdivacky  Instruction *I = dyn_cast<Instruction>(V);
146202375Srdivacky  if (!I) {
147280031Sdim    computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
148276479Sdim    return nullptr;        // Only analyze instructions.
149202375Srdivacky  }
150202375Srdivacky
151202375Srdivacky  // If there are multiple uses of this value and we aren't at the root, then
152202375Srdivacky  // we can't do any simplifications of the operands, because DemandedMask
153202375Srdivacky  // only reflects the bits demanded by *one* of the users.
154202375Srdivacky  if (Depth != 0 && !I->hasOneUse()) {
155202375Srdivacky    // Despite the fact that we can't simplify this instruction in all User's
156202375Srdivacky    // context, we can at least compute the knownzero/knownone bits, and we can
157202375Srdivacky    // do simplifications that apply to *just* the one user if we know that
158202375Srdivacky    // this instruction has a simpler value in that context.
159202375Srdivacky    if (I->getOpcode() == Instruction::And) {
160202375Srdivacky      // If either the LHS or the RHS are Zero, the result is zero.
161288943Sdim      computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
162280031Sdim                       CxtI);
163288943Sdim      computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
164280031Sdim                       CxtI);
165249423Sdim
166202375Srdivacky      // If all of the demanded bits are known 1 on one side, return the other.
167202375Srdivacky      // These bits cannot contribute to the result of the 'and' in this
168202375Srdivacky      // context.
169249423Sdim      if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
170202375Srdivacky          (DemandedMask & ~LHSKnownZero))
171202375Srdivacky        return I->getOperand(0);
172249423Sdim      if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
173202375Srdivacky          (DemandedMask & ~RHSKnownZero))
174202375Srdivacky        return I->getOperand(1);
175249423Sdim
176202375Srdivacky      // If all of the demanded bits in the inputs are known zeros, return zero.
177202375Srdivacky      if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
178202375Srdivacky        return Constant::getNullValue(VTy);
179249423Sdim
180202375Srdivacky    } else if (I->getOpcode() == Instruction::Or) {
181202375Srdivacky      // We can simplify (X|Y) -> X or Y in the user's context if we know that
182202375Srdivacky      // only bits from X or Y are demanded.
183249423Sdim
184202375Srdivacky      // If either the LHS or the RHS are One, the result is One.
185288943Sdim      computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
186280031Sdim                       CxtI);
187288943Sdim      computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
188280031Sdim                       CxtI);
189249423Sdim
190202375Srdivacky      // If all of the demanded bits are known zero on one side, return the
191202375Srdivacky      // other.  These bits cannot contribute to the result of the 'or' in this
192202375Srdivacky      // context.
193249423Sdim      if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
194202375Srdivacky          (DemandedMask & ~LHSKnownOne))
195202375Srdivacky        return I->getOperand(0);
196249423Sdim      if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
197202375Srdivacky          (DemandedMask & ~RHSKnownOne))
198202375Srdivacky        return I->getOperand(1);
199249423Sdim
200202375Srdivacky      // If all of the potentially set bits on one side are known to be set on
201202375Srdivacky      // the other side, just use the 'other' side.
202249423Sdim      if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
203202375Srdivacky          (DemandedMask & (~RHSKnownZero)))
204202375Srdivacky        return I->getOperand(0);
205249423Sdim      if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
206202375Srdivacky          (DemandedMask & (~LHSKnownZero)))
207202375Srdivacky        return I->getOperand(1);
208249423Sdim    } else if (I->getOpcode() == Instruction::Xor) {
209249423Sdim      // We can simplify (X^Y) -> X or Y in the user's context if we know that
210249423Sdim      // only bits from X or Y are demanded.
211249423Sdim
212288943Sdim      computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
213280031Sdim                       CxtI);
214288943Sdim      computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
215280031Sdim                       CxtI);
216249423Sdim
217249423Sdim      // If all of the demanded bits are known zero on one side, return the
218249423Sdim      // other.
219249423Sdim      if ((DemandedMask & RHSKnownZero) == DemandedMask)
220249423Sdim        return I->getOperand(0);
221249423Sdim      if ((DemandedMask & LHSKnownZero) == DemandedMask)
222249423Sdim        return I->getOperand(1);
223202375Srdivacky    }
224249423Sdim
225202375Srdivacky    // Compute the KnownZero/KnownOne bits to simplify things downstream.
226280031Sdim    computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI);
227276479Sdim    return nullptr;
228202375Srdivacky  }
229249423Sdim
230202375Srdivacky  // If this is the root being simplified, allow it to have multiple uses,
231202375Srdivacky  // just set the DemandedMask to all bits so that we can try to simplify the
232202375Srdivacky  // operands.  This allows visitTruncInst (for example) to simplify the
233202375Srdivacky  // operand of a trunc without duplicating all the logic below.
234202375Srdivacky  if (Depth == 0 && !V->hasOneUse())
235202375Srdivacky    DemandedMask = APInt::getAllOnesValue(BitWidth);
236249423Sdim
237202375Srdivacky  switch (I->getOpcode()) {
238202375Srdivacky  default:
239280031Sdim    computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI);
240202375Srdivacky    break;
241202375Srdivacky  case Instruction::And:
242202375Srdivacky    // If either the LHS or the RHS are Zero, the result is zero.
243288943Sdim    if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero,
244288943Sdim                             RHSKnownOne, Depth + 1) ||
245202375Srdivacky        SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero,
246288943Sdim                             LHSKnownZero, LHSKnownOne, Depth + 1))
247202375Srdivacky      return I;
248249423Sdim    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
249249423Sdim    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
250202375Srdivacky
251280031Sdim    // If the client is only demanding bits that we know, return the known
252280031Sdim    // constant.
253280031Sdim    if ((DemandedMask & ((RHSKnownZero | LHSKnownZero)|
254280031Sdim                         (RHSKnownOne & LHSKnownOne))) == DemandedMask)
255280031Sdim      return Constant::getIntegerValue(VTy, RHSKnownOne & LHSKnownOne);
256280031Sdim
257202375Srdivacky    // If all of the demanded bits are known 1 on one side, return the other.
258202375Srdivacky    // These bits cannot contribute to the result of the 'and'.
259249423Sdim    if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
260202375Srdivacky        (DemandedMask & ~LHSKnownZero))
261202375Srdivacky      return I->getOperand(0);
262249423Sdim    if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
263202375Srdivacky        (DemandedMask & ~RHSKnownZero))
264202375Srdivacky      return I->getOperand(1);
265249423Sdim
266202375Srdivacky    // If all of the demanded bits in the inputs are known zeros, return zero.
267202375Srdivacky    if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
268202375Srdivacky      return Constant::getNullValue(VTy);
269249423Sdim
270202375Srdivacky    // If the RHS is a constant, see if we can simplify it.
271202375Srdivacky    if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
272202375Srdivacky      return I;
273249423Sdim
274202375Srdivacky    // Output known-1 bits are only known if set in both the LHS & RHS.
275203954Srdivacky    KnownOne = RHSKnownOne & LHSKnownOne;
276202375Srdivacky    // Output known-0 are known to be clear if zero in either the LHS | RHS.
277203954Srdivacky    KnownZero = RHSKnownZero | LHSKnownZero;
278202375Srdivacky    break;
279202375Srdivacky  case Instruction::Or:
280202375Srdivacky    // If either the LHS or the RHS are One, the result is One.
281288943Sdim    if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero,
282288943Sdim                             RHSKnownOne, Depth + 1) ||
283249423Sdim        SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,
284288943Sdim                             LHSKnownZero, LHSKnownOne, Depth + 1))
285202375Srdivacky      return I;
286249423Sdim    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
287249423Sdim    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
288249423Sdim
289280031Sdim    // If the client is only demanding bits that we know, return the known
290280031Sdim    // constant.
291280031Sdim    if ((DemandedMask & ((RHSKnownZero & LHSKnownZero)|
292280031Sdim                         (RHSKnownOne | LHSKnownOne))) == DemandedMask)
293280031Sdim      return Constant::getIntegerValue(VTy, RHSKnownOne | LHSKnownOne);
294280031Sdim
295202375Srdivacky    // If all of the demanded bits are known zero on one side, return the other.
296202375Srdivacky    // These bits cannot contribute to the result of the 'or'.
297249423Sdim    if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
298202375Srdivacky        (DemandedMask & ~LHSKnownOne))
299202375Srdivacky      return I->getOperand(0);
300249423Sdim    if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
301202375Srdivacky        (DemandedMask & ~RHSKnownOne))
302202375Srdivacky      return I->getOperand(1);
303202375Srdivacky
304202375Srdivacky    // If all of the potentially set bits on one side are known to be set on
305202375Srdivacky    // the other side, just use the 'other' side.
306249423Sdim    if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
307202375Srdivacky        (DemandedMask & (~RHSKnownZero)))
308202375Srdivacky      return I->getOperand(0);
309249423Sdim    if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
310202375Srdivacky        (DemandedMask & (~LHSKnownZero)))
311202375Srdivacky      return I->getOperand(1);
312249423Sdim
313202375Srdivacky    // If the RHS is a constant, see if we can simplify it.
314202375Srdivacky    if (ShrinkDemandedConstant(I, 1, DemandedMask))
315202375Srdivacky      return I;
316249423Sdim
317202375Srdivacky    // Output known-0 bits are only known if clear in both the LHS & RHS.
318203954Srdivacky    KnownZero = RHSKnownZero & LHSKnownZero;
319202375Srdivacky    // Output known-1 are known to be set if set in either the LHS | RHS.
320203954Srdivacky    KnownOne = RHSKnownOne | LHSKnownOne;
321202375Srdivacky    break;
322202375Srdivacky  case Instruction::Xor: {
323288943Sdim    if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero,
324288943Sdim                             RHSKnownOne, Depth + 1) ||
325288943Sdim        SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, LHSKnownZero,
326288943Sdim                             LHSKnownOne, Depth + 1))
327202375Srdivacky      return I;
328249423Sdim    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
329249423Sdim    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
330249423Sdim
331280031Sdim    // Output known-0 bits are known if clear or set in both the LHS & RHS.
332280031Sdim    APInt IKnownZero = (RHSKnownZero & LHSKnownZero) |
333280031Sdim                       (RHSKnownOne & LHSKnownOne);
334280031Sdim    // Output known-1 are known to be set if set in only one of the LHS, RHS.
335280031Sdim    APInt IKnownOne =  (RHSKnownZero & LHSKnownOne) |
336280031Sdim                       (RHSKnownOne & LHSKnownZero);
337280031Sdim
338280031Sdim    // If the client is only demanding bits that we know, return the known
339280031Sdim    // constant.
340280031Sdim    if ((DemandedMask & (IKnownZero|IKnownOne)) == DemandedMask)
341280031Sdim      return Constant::getIntegerValue(VTy, IKnownOne);
342280031Sdim
343202375Srdivacky    // If all of the demanded bits are known zero on one side, return the other.
344202375Srdivacky    // These bits cannot contribute to the result of the 'xor'.
345202375Srdivacky    if ((DemandedMask & RHSKnownZero) == DemandedMask)
346202375Srdivacky      return I->getOperand(0);
347202375Srdivacky    if ((DemandedMask & LHSKnownZero) == DemandedMask)
348202375Srdivacky      return I->getOperand(1);
349249423Sdim
350202375Srdivacky    // If all of the demanded bits are known to be zero on one side or the
351202375Srdivacky    // other, turn this into an *inclusive* or.
352202375Srdivacky    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
353202375Srdivacky    if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
354249423Sdim      Instruction *Or =
355202375Srdivacky        BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
356202375Srdivacky                                 I->getName());
357223017Sdim      return InsertNewInstWith(Or, *I);
358202375Srdivacky    }
359249423Sdim
360202375Srdivacky    // If all of the demanded bits on one side are known, and all of the set
361202375Srdivacky    // bits on that side are also known to be set on the other side, turn this
362202375Srdivacky    // into an AND, as we know the bits will be cleared.
363202375Srdivacky    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
364249423Sdim    if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
365202375Srdivacky      // all known
366202375Srdivacky      if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
367202375Srdivacky        Constant *AndC = Constant::getIntegerValue(VTy,
368202375Srdivacky                                                   ~RHSKnownOne & DemandedMask);
369226633Sdim        Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
370223017Sdim        return InsertNewInstWith(And, *I);
371202375Srdivacky      }
372202375Srdivacky    }
373249423Sdim
374202375Srdivacky    // If the RHS is a constant, see if we can simplify it.
375202375Srdivacky    // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
376202375Srdivacky    if (ShrinkDemandedConstant(I, 1, DemandedMask))
377202375Srdivacky      return I;
378249423Sdim
379202375Srdivacky    // If our LHS is an 'and' and if it has one use, and if any of the bits we
380202375Srdivacky    // are flipping are known to be set, then the xor is just resetting those
381202375Srdivacky    // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
382202375Srdivacky    // simplifying both of them.
383202375Srdivacky    if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
384202375Srdivacky      if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
385202375Srdivacky          isa<ConstantInt>(I->getOperand(1)) &&
386202375Srdivacky          isa<ConstantInt>(LHSInst->getOperand(1)) &&
387202375Srdivacky          (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) {
388202375Srdivacky        ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
389202375Srdivacky        ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
390202375Srdivacky        APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);
391249423Sdim
392202375Srdivacky        Constant *AndC =
393202375Srdivacky          ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
394226633Sdim        Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
395223017Sdim        InsertNewInstWith(NewAnd, *I);
396249423Sdim
397202375Srdivacky        Constant *XorC =
398202375Srdivacky          ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
399226633Sdim        Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
400223017Sdim        return InsertNewInstWith(NewXor, *I);
401202375Srdivacky      }
402203954Srdivacky
403203954Srdivacky    // Output known-0 bits are known if clear or set in both the LHS & RHS.
404203954Srdivacky    KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne);
405203954Srdivacky    // Output known-1 are known to be set if set in only one of the LHS, RHS.
406203954Srdivacky    KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero);
407202375Srdivacky    break;
408202375Srdivacky  }
409202375Srdivacky  case Instruction::Select:
410288943Sdim    // If this is a select as part of a min/max pattern, don't simplify any
411288943Sdim    // further in case we break the structure.
412288943Sdim    Value *LHS, *RHS;
413296417Sdim    if (matchSelectPattern(I, LHS, RHS).Flavor != SPF_UNKNOWN)
414288943Sdim      return nullptr;
415296417Sdim
416288943Sdim    if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask, RHSKnownZero,
417288943Sdim                             RHSKnownOne, Depth + 1) ||
418288943Sdim        SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, LHSKnownZero,
419288943Sdim                             LHSKnownOne, Depth + 1))
420202375Srdivacky      return I;
421249423Sdim    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
422249423Sdim    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
423249423Sdim
424202375Srdivacky    // If the operands are constants, see if we can simplify them.
425202375Srdivacky    if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
426202375Srdivacky        ShrinkDemandedConstant(I, 2, DemandedMask))
427202375Srdivacky      return I;
428249423Sdim
429202375Srdivacky    // Only known if known in both the LHS and RHS.
430203954Srdivacky    KnownOne = RHSKnownOne & LHSKnownOne;
431203954Srdivacky    KnownZero = RHSKnownZero & LHSKnownZero;
432202375Srdivacky    break;
433202375Srdivacky  case Instruction::Trunc: {
434202375Srdivacky    unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits();
435218893Sdim    DemandedMask = DemandedMask.zext(truncBf);
436218893Sdim    KnownZero = KnownZero.zext(truncBf);
437218893Sdim    KnownOne = KnownOne.zext(truncBf);
438288943Sdim    if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero,
439288943Sdim                             KnownOne, Depth + 1))
440202375Srdivacky      return I;
441218893Sdim    DemandedMask = DemandedMask.trunc(BitWidth);
442218893Sdim    KnownZero = KnownZero.trunc(BitWidth);
443218893Sdim    KnownOne = KnownOne.trunc(BitWidth);
444249423Sdim    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
445202375Srdivacky    break;
446202375Srdivacky  }
447202375Srdivacky  case Instruction::BitCast:
448203954Srdivacky    if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
449276479Sdim      return nullptr;  // vector->int or fp->int?
450202375Srdivacky
451226633Sdim    if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
452226633Sdim      if (VectorType *SrcVTy =
453202375Srdivacky            dyn_cast<VectorType>(I->getOperand(0)->getType())) {
454202375Srdivacky        if (DstVTy->getNumElements() != SrcVTy->getNumElements())
455202375Srdivacky          // Don't touch a bitcast between vectors of different element counts.
456276479Sdim          return nullptr;
457202375Srdivacky      } else
458202375Srdivacky        // Don't touch a scalar-to-vector bitcast.
459276479Sdim        return nullptr;
460204642Srdivacky    } else if (I->getOperand(0)->getType()->isVectorTy())
461202375Srdivacky      // Don't touch a vector-to-scalar bitcast.
462276479Sdim      return nullptr;
463202375Srdivacky
464288943Sdim    if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero,
465288943Sdim                             KnownOne, Depth + 1))
466202375Srdivacky      return I;
467249423Sdim    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
468202375Srdivacky    break;
469202375Srdivacky  case Instruction::ZExt: {
470202375Srdivacky    // Compute the bits in the result that are not present in the input.
471202375Srdivacky    unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
472249423Sdim
473218893Sdim    DemandedMask = DemandedMask.trunc(SrcBitWidth);
474218893Sdim    KnownZero = KnownZero.trunc(SrcBitWidth);
475218893Sdim    KnownOne = KnownOne.trunc(SrcBitWidth);
476288943Sdim    if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero,
477288943Sdim                             KnownOne, Depth + 1))
478202375Srdivacky      return I;
479218893Sdim    DemandedMask = DemandedMask.zext(BitWidth);
480218893Sdim    KnownZero = KnownZero.zext(BitWidth);
481218893Sdim    KnownOne = KnownOne.zext(BitWidth);
482249423Sdim    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
483202375Srdivacky    // The top bits are known to be zero.
484203954Srdivacky    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
485202375Srdivacky    break;
486202375Srdivacky  }
487202375Srdivacky  case Instruction::SExt: {
488202375Srdivacky    // Compute the bits in the result that are not present in the input.
489202375Srdivacky    unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
490249423Sdim
491249423Sdim    APInt InputDemandedBits = DemandedMask &
492202375Srdivacky                              APInt::getLowBitsSet(BitWidth, SrcBitWidth);
493202375Srdivacky
494202375Srdivacky    APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
495202375Srdivacky    // If any of the sign extended bits are demanded, we know that the sign
496202375Srdivacky    // bit is demanded.
497202375Srdivacky    if ((NewBits & DemandedMask) != 0)
498218893Sdim      InputDemandedBits.setBit(SrcBitWidth-1);
499249423Sdim
500218893Sdim    InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth);
501218893Sdim    KnownZero = KnownZero.trunc(SrcBitWidth);
502218893Sdim    KnownOne = KnownOne.trunc(SrcBitWidth);
503288943Sdim    if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits, KnownZero,
504288943Sdim                             KnownOne, Depth + 1))
505202375Srdivacky      return I;
506218893Sdim    InputDemandedBits = InputDemandedBits.zext(BitWidth);
507218893Sdim    KnownZero = KnownZero.zext(BitWidth);
508218893Sdim    KnownOne = KnownOne.zext(BitWidth);
509249423Sdim    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
510249423Sdim
511202375Srdivacky    // If the sign bit of the input is known set or clear, then we know the
512202375Srdivacky    // top bits of the result.
513202375Srdivacky
514202375Srdivacky    // If the input sign bit is known zero, or if the NewBits are not demanded
515202375Srdivacky    // convert this into a zero extension.
516203954Srdivacky    if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) {
517202375Srdivacky      // Convert to ZExt cast
518202375Srdivacky      CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
519223017Sdim      return InsertNewInstWith(NewCast, *I);
520203954Srdivacky    } else if (KnownOne[SrcBitWidth-1]) {    // Input sign bit known set
521203954Srdivacky      KnownOne |= NewBits;
522202375Srdivacky    }
523202375Srdivacky    break;
524202375Srdivacky  }
525288943Sdim  case Instruction::Add:
526288943Sdim  case Instruction::Sub: {
527288943Sdim    /// If the high-bits of an ADD/SUB are not demanded, then we do not care
528288943Sdim    /// about the high bits of the operands.
529202375Srdivacky    unsigned NLZ = DemandedMask.countLeadingZeros();
530288943Sdim    if (NLZ > 0) {
531288943Sdim      // Right fill the mask of bits for this ADD/SUB to demand the most
532202375Srdivacky      // significant bit and all those below it.
533202375Srdivacky      APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
534202375Srdivacky      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
535288943Sdim                               LHSKnownZero, LHSKnownOne, Depth + 1) ||
536288943Sdim          ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
537202375Srdivacky          SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
538288943Sdim                               LHSKnownZero, LHSKnownOne, Depth + 1)) {
539288943Sdim        // Disable the nsw and nuw flags here: We can no longer guarantee that
540288943Sdim        // we won't wrap after simplification. Removing the nsw/nuw flags is
541288943Sdim        // legal here because the top bit is not demanded.
542288943Sdim        BinaryOperator &BinOP = *cast<BinaryOperator>(I);
543288943Sdim        BinOP.setHasNoSignedWrap(false);
544288943Sdim        BinOP.setHasNoUnsignedWrap(false);
545202375Srdivacky        return I;
546288943Sdim      }
547202375Srdivacky    }
548234353Sdim
549288943Sdim    // Otherwise just hand the add/sub off to computeKnownBits to fill in
550202375Srdivacky    // the known zeros and ones.
551280031Sdim    computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
552202375Srdivacky    break;
553288943Sdim  }
554202375Srdivacky  case Instruction::Shl:
555202375Srdivacky    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
556249423Sdim      {
557249423Sdim        Value *VarX; ConstantInt *C1;
558249423Sdim        if (match(I->getOperand(0), m_Shr(m_Value(VarX), m_ConstantInt(C1)))) {
559249423Sdim          Instruction *Shr = cast<Instruction>(I->getOperand(0));
560249423Sdim          Value *R = SimplifyShrShlDemandedBits(Shr, I, DemandedMask,
561249423Sdim                                                KnownZero, KnownOne);
562249423Sdim          if (R)
563249423Sdim            return R;
564249423Sdim        }
565249423Sdim      }
566249423Sdim
567218893Sdim      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
568202375Srdivacky      APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
569249423Sdim
570218893Sdim      // If the shift is NUW/NSW, then it does demand the high bits.
571218893Sdim      ShlOperator *IOp = cast<ShlOperator>(I);
572218893Sdim      if (IOp->hasNoSignedWrap())
573218893Sdim        DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
574218893Sdim      else if (IOp->hasNoUnsignedWrap())
575218893Sdim        DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
576249423Sdim
577288943Sdim      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero,
578288943Sdim                               KnownOne, Depth + 1))
579202375Srdivacky        return I;
580203954Srdivacky      assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
581203954Srdivacky      KnownZero <<= ShiftAmt;
582203954Srdivacky      KnownOne  <<= ShiftAmt;
583202375Srdivacky      // low bits known zero.
584202375Srdivacky      if (ShiftAmt)
585203954Srdivacky        KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
586202375Srdivacky    }
587202375Srdivacky    break;
588202375Srdivacky  case Instruction::LShr:
589202375Srdivacky    // For a logical shift right
590202375Srdivacky    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
591218893Sdim      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
592249423Sdim
593202375Srdivacky      // Unsigned shift right.
594202375Srdivacky      APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
595249423Sdim
596218893Sdim      // If the shift is exact, then it does demand the low bits (and knows that
597218893Sdim      // they are zero).
598218893Sdim      if (cast<LShrOperator>(I)->isExact())
599218893Sdim        DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
600249423Sdim
601288943Sdim      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero,
602288943Sdim                               KnownOne, Depth + 1))
603202375Srdivacky        return I;
604203954Srdivacky      assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
605203954Srdivacky      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
606203954Srdivacky      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
607202375Srdivacky      if (ShiftAmt) {
608202375Srdivacky        // Compute the new bits that are at the top now.
609202375Srdivacky        APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
610203954Srdivacky        KnownZero |= HighBits;  // high bits known zero.
611202375Srdivacky      }
612202375Srdivacky    }
613202375Srdivacky    break;
614202375Srdivacky  case Instruction::AShr:
615202375Srdivacky    // If this is an arithmetic shift right and only the low-bit is set, we can
616202375Srdivacky    // always convert this into a logical shr, even if the shift amount is
617202375Srdivacky    // variable.  The low bit of the shift cannot be an input sign bit unless
618202375Srdivacky    // the shift amount is >= the size of the datatype, which is undefined.
619202375Srdivacky    if (DemandedMask == 1) {
620202375Srdivacky      // Perform the logical shift right.
621202375Srdivacky      Instruction *NewVal = BinaryOperator::CreateLShr(
622202375Srdivacky                        I->getOperand(0), I->getOperand(1), I->getName());
623223017Sdim      return InsertNewInstWith(NewVal, *I);
624249423Sdim    }
625202375Srdivacky
626202375Srdivacky    // If the sign bit is the only bit demanded by this ashr, then there is no
627202375Srdivacky    // need to do it, the shift doesn't change the high bit.
628202375Srdivacky    if (DemandedMask.isSignBit())
629202375Srdivacky      return I->getOperand(0);
630249423Sdim
631202375Srdivacky    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
632218893Sdim      uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
633249423Sdim
634202375Srdivacky      // Signed shift right.
635202375Srdivacky      APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
636202375Srdivacky      // If any of the "high bits" are demanded, we should set the sign bit as
637202375Srdivacky      // demanded.
638202375Srdivacky      if (DemandedMask.countLeadingZeros() <= ShiftAmt)
639218893Sdim        DemandedMaskIn.setBit(BitWidth-1);
640249423Sdim
641218893Sdim      // If the shift is exact, then it does demand the low bits (and knows that
642218893Sdim      // they are zero).
643218893Sdim      if (cast<AShrOperator>(I)->isExact())
644218893Sdim        DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
645249423Sdim
646288943Sdim      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero,
647288943Sdim                               KnownOne, Depth + 1))
648202375Srdivacky        return I;
649203954Srdivacky      assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
650202375Srdivacky      // Compute the new bits that are at the top now.
651202375Srdivacky      APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
652203954Srdivacky      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
653203954Srdivacky      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
654249423Sdim
655202375Srdivacky      // Handle the sign bits.
656202375Srdivacky      APInt SignBit(APInt::getSignBit(BitWidth));
657202375Srdivacky      // Adjust to where it is now in the mask.
658249423Sdim      SignBit = APIntOps::lshr(SignBit, ShiftAmt);
659249423Sdim
660202375Srdivacky      // If the input sign bit is known to be zero, or if none of the top bits
661202375Srdivacky      // are demanded, turn this into an unsigned shift right.
662249423Sdim      if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||
663202375Srdivacky          (HighBits & ~DemandedMask) == HighBits) {
664202375Srdivacky        // Perform the logical shift right.
665234353Sdim        BinaryOperator *NewVal = BinaryOperator::CreateLShr(I->getOperand(0),
666234353Sdim                                                            SA, I->getName());
667234353Sdim        NewVal->setIsExact(cast<BinaryOperator>(I)->isExact());
668223017Sdim        return InsertNewInstWith(NewVal, *I);
669203954Srdivacky      } else if ((KnownOne & SignBit) != 0) { // New bits are known one.
670203954Srdivacky        KnownOne |= HighBits;
671202375Srdivacky      }
672202375Srdivacky    }
673202375Srdivacky    break;
674202375Srdivacky  case Instruction::SRem:
675202375Srdivacky    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
676221345Sdim      // X % -1 demands all the bits because we don't want to introduce
677221345Sdim      // INT_MIN % -1 (== undef) by accident.
678221345Sdim      if (Rem->isAllOnesValue())
679221345Sdim        break;
680202375Srdivacky      APInt RA = Rem->getValue().abs();
681202375Srdivacky      if (RA.isPowerOf2()) {
682202375Srdivacky        if (DemandedMask.ult(RA))    // srem won't affect demanded bits
683202375Srdivacky          return I->getOperand(0);
684202375Srdivacky
685202375Srdivacky        APInt LowBits = RA - 1;
686202375Srdivacky        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
687288943Sdim        if (SimplifyDemandedBits(I->getOperandUse(0), Mask2, LHSKnownZero,
688288943Sdim                                 LHSKnownOne, Depth + 1))
689202375Srdivacky          return I;
690202375Srdivacky
691203954Srdivacky        // The low bits of LHS are unchanged by the srem.
692203954Srdivacky        KnownZero = LHSKnownZero & LowBits;
693203954Srdivacky        KnownOne = LHSKnownOne & LowBits;
694203954Srdivacky
695203954Srdivacky        // If LHS is non-negative or has all low bits zero, then the upper bits
696203954Srdivacky        // are all zero.
697202375Srdivacky        if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
698203954Srdivacky          KnownZero |= ~LowBits;
699202375Srdivacky
700203954Srdivacky        // If LHS is negative and not all low bits are zero, then the upper bits
701203954Srdivacky        // are all one.
702203954Srdivacky        if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0))
703203954Srdivacky          KnownOne |= ~LowBits;
704202375Srdivacky
705249423Sdim        assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
706202375Srdivacky      }
707202375Srdivacky    }
708221345Sdim
709221345Sdim    // The sign bit is the LHS's sign bit, except when the result of the
710221345Sdim    // remainder is zero.
711221345Sdim    if (DemandedMask.isNegative() && KnownZero.isNonNegative()) {
712221345Sdim      APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
713288943Sdim      computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
714280031Sdim                       CxtI);
715221345Sdim      // If it's known zero, our sign bit is also zero.
716221345Sdim      if (LHSKnownZero.isNegative())
717261991Sdim        KnownZero.setBit(KnownZero.getBitWidth() - 1);
718221345Sdim    }
719202375Srdivacky    break;
720202375Srdivacky  case Instruction::URem: {
721202375Srdivacky    APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
722202375Srdivacky    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
723288943Sdim    if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes, KnownZero2,
724288943Sdim                             KnownOne2, Depth + 1) ||
725288943Sdim        SimplifyDemandedBits(I->getOperandUse(1), AllOnes, KnownZero2,
726288943Sdim                             KnownOne2, Depth + 1))
727202375Srdivacky      return I;
728202375Srdivacky
729202375Srdivacky    unsigned Leaders = KnownZero2.countLeadingOnes();
730202375Srdivacky    Leaders = std::max(Leaders,
731202375Srdivacky                       KnownZero2.countLeadingOnes());
732202375Srdivacky    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
733202375Srdivacky    break;
734202375Srdivacky  }
735202375Srdivacky  case Instruction::Call:
736202375Srdivacky    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
737202375Srdivacky      switch (II->getIntrinsicID()) {
738202375Srdivacky      default: break;
739202375Srdivacky      case Intrinsic::bswap: {
740202375Srdivacky        // If the only bits demanded come from one byte of the bswap result,
741202375Srdivacky        // just shift the input byte into position to eliminate the bswap.
742202375Srdivacky        unsigned NLZ = DemandedMask.countLeadingZeros();
743202375Srdivacky        unsigned NTZ = DemandedMask.countTrailingZeros();
744249423Sdim
745202375Srdivacky        // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
746202375Srdivacky        // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
747202375Srdivacky        // have 14 leading zeros, round to 8.
748202375Srdivacky        NLZ &= ~7;
749202375Srdivacky        NTZ &= ~7;
750202375Srdivacky        // If we need exactly one byte, we can do this transformation.
751202375Srdivacky        if (BitWidth-NLZ-NTZ == 8) {
752202375Srdivacky          unsigned ResultBit = NTZ;
753202375Srdivacky          unsigned InputBit = BitWidth-NTZ-8;
754249423Sdim
755202375Srdivacky          // Replace this with either a left or right shift to get the byte into
756202375Srdivacky          // the right place.
757202375Srdivacky          Instruction *NewVal;
758202375Srdivacky          if (InputBit > ResultBit)
759210299Sed            NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
760202375Srdivacky                    ConstantInt::get(I->getType(), InputBit-ResultBit));
761202375Srdivacky          else
762210299Sed            NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
763202375Srdivacky                    ConstantInt::get(I->getType(), ResultBit-InputBit));
764202375Srdivacky          NewVal->takeName(I);
765223017Sdim          return InsertNewInstWith(NewVal, *I);
766202375Srdivacky        }
767249423Sdim
768202375Srdivacky        // TODO: Could compute known zero/one bits based on the input.
769202375Srdivacky        break;
770202375Srdivacky      }
771223017Sdim      case Intrinsic::x86_sse42_crc32_64_64:
772223017Sdim        KnownZero = APInt::getHighBitsSet(64, 32);
773276479Sdim        return nullptr;
774202375Srdivacky      }
775202375Srdivacky    }
776280031Sdim    computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
777202375Srdivacky    break;
778202375Srdivacky  }
779249423Sdim
780202375Srdivacky  // If the client is only demanding bits that we know, return the known
781202375Srdivacky  // constant.
782203954Srdivacky  if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
783203954Srdivacky    return Constant::getIntegerValue(VTy, KnownOne);
784276479Sdim  return nullptr;
785202375Srdivacky}
786202375Srdivacky
787249423Sdim/// Helper routine of SimplifyDemandedUseBits. It tries to simplify
788249423Sdim/// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
789249423Sdim/// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
790249423Sdim/// of "C2-C1".
791249423Sdim///
792249423Sdim/// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
793249423Sdim/// ..., bn}, without considering the specific value X is holding.
794249423Sdim/// This transformation is legal iff one of following conditions is hold:
795249423Sdim///  1) All the bit in S are 0, in this case E1 == E2.
796249423Sdim///  2) We don't care those bits in S, per the input DemandedMask.
797249423Sdim///  3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
798249423Sdim///     rest bits.
799249423Sdim///
800249423Sdim/// Currently we only test condition 2).
801249423Sdim///
802249423Sdim/// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
803249423Sdim/// not successful.
804249423SdimValue *InstCombiner::SimplifyShrShlDemandedBits(Instruction *Shr,
805249423Sdim  Instruction *Shl, APInt DemandedMask, APInt &KnownZero, APInt &KnownOne) {
806202375Srdivacky
807255076Sdim  const APInt &ShlOp1 = cast<ConstantInt>(Shl->getOperand(1))->getValue();
808255076Sdim  const APInt &ShrOp1 = cast<ConstantInt>(Shr->getOperand(1))->getValue();
809255076Sdim  if (!ShlOp1 || !ShrOp1)
810276479Sdim      return nullptr; // Noop.
811249423Sdim
812255076Sdim  Value *VarX = Shr->getOperand(0);
813255076Sdim  Type *Ty = VarX->getType();
814255076Sdim  unsigned BitWidth = Ty->getIntegerBitWidth();
815255076Sdim  if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
816276479Sdim    return nullptr; // Undef.
817255076Sdim
818255076Sdim  unsigned ShlAmt = ShlOp1.getZExtValue();
819255076Sdim  unsigned ShrAmt = ShrOp1.getZExtValue();
820255076Sdim
821249423Sdim  KnownOne.clearAllBits();
822249423Sdim  KnownZero = APInt::getBitsSet(KnownZero.getBitWidth(), 0, ShlAmt-1);
823249423Sdim  KnownZero &= DemandedMask;
824249423Sdim
825255076Sdim  APInt BitMask1(APInt::getAllOnesValue(BitWidth));
826255076Sdim  APInt BitMask2(APInt::getAllOnesValue(BitWidth));
827249423Sdim
828249423Sdim  bool isLshr = (Shr->getOpcode() == Instruction::LShr);
829249423Sdim  BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
830249423Sdim                      (BitMask1.ashr(ShrAmt) << ShlAmt);
831249423Sdim
832249423Sdim  if (ShrAmt <= ShlAmt) {
833249423Sdim    BitMask2 <<= (ShlAmt - ShrAmt);
834249423Sdim  } else {
835249423Sdim    BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
836249423Sdim                        BitMask2.ashr(ShrAmt - ShlAmt);
837249423Sdim  }
838249423Sdim
839249423Sdim  // Check if condition-2 (see the comment to this function) is satified.
840249423Sdim  if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
841249423Sdim    if (ShrAmt == ShlAmt)
842249423Sdim      return VarX;
843249423Sdim
844249423Sdim    if (!Shr->hasOneUse())
845276479Sdim      return nullptr;
846249423Sdim
847249423Sdim    BinaryOperator *New;
848249423Sdim    if (ShrAmt < ShlAmt) {
849249423Sdim      Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
850249423Sdim      New = BinaryOperator::CreateShl(VarX, Amt);
851249423Sdim      BinaryOperator *Orig = cast<BinaryOperator>(Shl);
852249423Sdim      New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
853249423Sdim      New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
854249423Sdim    } else {
855249423Sdim      Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
856249423Sdim      New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
857249423Sdim                     BinaryOperator::CreateAShr(VarX, Amt);
858249423Sdim      if (cast<BinaryOperator>(Shr)->isExact())
859249423Sdim        New->setIsExact(true);
860249423Sdim    }
861249423Sdim
862249423Sdim    return InsertNewInstWith(New, *Shl);
863249423Sdim  }
864249423Sdim
865276479Sdim  return nullptr;
866249423Sdim}
867249423Sdim
868202375Srdivacky/// SimplifyDemandedVectorElts - The specified value produces a vector with
869202375Srdivacky/// any number of elements. DemandedElts contains the set of elements that are
870202375Srdivacky/// actually used by the caller.  This method analyzes which elements of the
871202375Srdivacky/// operand are undef and returns that information in UndefElts.
872202375Srdivacky///
873202375Srdivacky/// If the information about demanded elements can be used to simplify the
874202375Srdivacky/// operation, the operation is simplified, then the resultant value is
875202375Srdivacky/// returned.  This returns null if no change was made.
876202375SrdivackyValue *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
877203954Srdivacky                                                APInt &UndefElts,
878202375Srdivacky                                                unsigned Depth) {
879202375Srdivacky  unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
880202375Srdivacky  APInt EltMask(APInt::getAllOnesValue(VWidth));
881202375Srdivacky  assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
882202375Srdivacky
883202375Srdivacky  if (isa<UndefValue>(V)) {
884202375Srdivacky    // If the entire vector is undefined, just return this info.
885202375Srdivacky    UndefElts = EltMask;
886276479Sdim    return nullptr;
887203954Srdivacky  }
888249423Sdim
889203954Srdivacky  if (DemandedElts == 0) { // If nothing is demanded, provide undef.
890202375Srdivacky    UndefElts = EltMask;
891202375Srdivacky    return UndefValue::get(V->getType());
892202375Srdivacky  }
893202375Srdivacky
894202375Srdivacky  UndefElts = 0;
895249423Sdim
896234353Sdim  // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential.
897234353Sdim  if (Constant *C = dyn_cast<Constant>(V)) {
898234353Sdim    // Check if this is identity. If so, return 0 since we are not simplifying
899234353Sdim    // anything.
900234353Sdim    if (DemandedElts.isAllOnesValue())
901276479Sdim      return nullptr;
902234353Sdim
903226633Sdim    Type *EltTy = cast<VectorType>(V->getType())->getElementType();
904202375Srdivacky    Constant *Undef = UndefValue::get(EltTy);
905249423Sdim
906234353Sdim    SmallVector<Constant*, 16> Elts;
907234353Sdim    for (unsigned i = 0; i != VWidth; ++i) {
908202375Srdivacky      if (!DemandedElts[i]) {   // If not demanded, set to undef.
909202375Srdivacky        Elts.push_back(Undef);
910218893Sdim        UndefElts.setBit(i);
911234353Sdim        continue;
912234353Sdim      }
913249423Sdim
914234353Sdim      Constant *Elt = C->getAggregateElement(i);
915276479Sdim      if (!Elt) return nullptr;
916249423Sdim
917234353Sdim      if (isa<UndefValue>(Elt)) {   // Already undef.
918202375Srdivacky        Elts.push_back(Undef);
919218893Sdim        UndefElts.setBit(i);
920202375Srdivacky      } else {                               // Otherwise, defined.
921234353Sdim        Elts.push_back(Elt);
922202375Srdivacky      }
923234353Sdim    }
924249423Sdim
925202375Srdivacky    // If we changed the constant, return it.
926234353Sdim    Constant *NewCV = ConstantVector::get(Elts);
927276479Sdim    return NewCV != C ? NewCV : nullptr;
928203954Srdivacky  }
929249423Sdim
930202375Srdivacky  // Limit search depth.
931202375Srdivacky  if (Depth == 10)
932276479Sdim    return nullptr;
933202375Srdivacky
934223017Sdim  // If multiple users are using the root value, proceed with
935202375Srdivacky  // simplification conservatively assuming that all elements
936202375Srdivacky  // are needed.
937202375Srdivacky  if (!V->hasOneUse()) {
938202375Srdivacky    // Quit if we find multiple users of a non-root value though.
939202375Srdivacky    // They'll be handled when it's their turn to be visited by
940202375Srdivacky    // the main instcombine process.
941202375Srdivacky    if (Depth != 0)
942202375Srdivacky      // TODO: Just compute the UndefElts information recursively.
943276479Sdim      return nullptr;
944202375Srdivacky
945202375Srdivacky    // Conservatively assume that all elements are needed.
946202375Srdivacky    DemandedElts = EltMask;
947202375Srdivacky  }
948249423Sdim
949202375Srdivacky  Instruction *I = dyn_cast<Instruction>(V);
950276479Sdim  if (!I) return nullptr;        // Only analyze instructions.
951249423Sdim
952202375Srdivacky  bool MadeChange = false;
953202375Srdivacky  APInt UndefElts2(VWidth, 0);
954202375Srdivacky  Value *TmpV;
955202375Srdivacky  switch (I->getOpcode()) {
956202375Srdivacky  default: break;
957249423Sdim
958202375Srdivacky  case Instruction::InsertElement: {
959202375Srdivacky    // If this is a variable index, we don't know which element it overwrites.
960202375Srdivacky    // demand exactly the same input as we produce.
961202375Srdivacky    ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
962276479Sdim    if (!Idx) {
963202375Srdivacky      // Note that we can't propagate undef elt info, because we don't know
964202375Srdivacky      // which elt is getting updated.
965202375Srdivacky      TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
966288943Sdim                                        UndefElts2, Depth + 1);
967202375Srdivacky      if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
968202375Srdivacky      break;
969202375Srdivacky    }
970249423Sdim
971202375Srdivacky    // If this is inserting an element that isn't demanded, remove this
972202375Srdivacky    // insertelement.
973202375Srdivacky    unsigned IdxNo = Idx->getZExtValue();
974202375Srdivacky    if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
975202375Srdivacky      Worklist.Add(I);
976202375Srdivacky      return I->getOperand(0);
977202375Srdivacky    }
978249423Sdim
979202375Srdivacky    // Otherwise, the element inserted overwrites whatever was there, so the
980202375Srdivacky    // input demanded set is simpler than the output set.
981202375Srdivacky    APInt DemandedElts2 = DemandedElts;
982218893Sdim    DemandedElts2.clearBit(IdxNo);
983202375Srdivacky    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
984288943Sdim                                      UndefElts, Depth + 1);
985202375Srdivacky    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
986202375Srdivacky
987202375Srdivacky    // The inserted element is defined.
988218893Sdim    UndefElts.clearBit(IdxNo);
989202375Srdivacky    break;
990202375Srdivacky  }
991202375Srdivacky  case Instruction::ShuffleVector: {
992202375Srdivacky    ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
993202375Srdivacky    uint64_t LHSVWidth =
994202375Srdivacky      cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
995202375Srdivacky    APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
996202375Srdivacky    for (unsigned i = 0; i < VWidth; i++) {
997202375Srdivacky      if (DemandedElts[i]) {
998202375Srdivacky        unsigned MaskVal = Shuffle->getMaskValue(i);
999202375Srdivacky        if (MaskVal != -1u) {
1000202375Srdivacky          assert(MaskVal < LHSVWidth * 2 &&
1001202375Srdivacky                 "shufflevector mask index out of range!");
1002202375Srdivacky          if (MaskVal < LHSVWidth)
1003218893Sdim            LeftDemanded.setBit(MaskVal);
1004202375Srdivacky          else
1005218893Sdim            RightDemanded.setBit(MaskVal - LHSVWidth);
1006202375Srdivacky        }
1007202375Srdivacky      }
1008202375Srdivacky    }
1009202375Srdivacky
1010202375Srdivacky    APInt UndefElts4(LHSVWidth, 0);
1011202375Srdivacky    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
1012288943Sdim                                      UndefElts4, Depth + 1);
1013202375Srdivacky    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1014202375Srdivacky
1015202375Srdivacky    APInt UndefElts3(LHSVWidth, 0);
1016202375Srdivacky    TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
1017288943Sdim                                      UndefElts3, Depth + 1);
1018202375Srdivacky    if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1019202375Srdivacky
1020202375Srdivacky    bool NewUndefElts = false;
1021202375Srdivacky    for (unsigned i = 0; i < VWidth; i++) {
1022202375Srdivacky      unsigned MaskVal = Shuffle->getMaskValue(i);
1023202375Srdivacky      if (MaskVal == -1u) {
1024218893Sdim        UndefElts.setBit(i);
1025226633Sdim      } else if (!DemandedElts[i]) {
1026226633Sdim        NewUndefElts = true;
1027226633Sdim        UndefElts.setBit(i);
1028202375Srdivacky      } else if (MaskVal < LHSVWidth) {
1029202375Srdivacky        if (UndefElts4[MaskVal]) {
1030202375Srdivacky          NewUndefElts = true;
1031218893Sdim          UndefElts.setBit(i);
1032202375Srdivacky        }
1033202375Srdivacky      } else {
1034202375Srdivacky        if (UndefElts3[MaskVal - LHSVWidth]) {
1035202375Srdivacky          NewUndefElts = true;
1036218893Sdim          UndefElts.setBit(i);
1037202375Srdivacky        }
1038202375Srdivacky      }
1039202375Srdivacky    }
1040202375Srdivacky
1041202375Srdivacky    if (NewUndefElts) {
1042202375Srdivacky      // Add additional discovered undefs.
1043234353Sdim      SmallVector<Constant*, 16> Elts;
1044202375Srdivacky      for (unsigned i = 0; i < VWidth; ++i) {
1045202375Srdivacky        if (UndefElts[i])
1046202375Srdivacky          Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
1047202375Srdivacky        else
1048202375Srdivacky          Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
1049202375Srdivacky                                          Shuffle->getMaskValue(i)));
1050202375Srdivacky      }
1051202375Srdivacky      I->setOperand(2, ConstantVector::get(Elts));
1052202375Srdivacky      MadeChange = true;
1053202375Srdivacky    }
1054202375Srdivacky    break;
1055202375Srdivacky  }
1056239462Sdim  case Instruction::Select: {
1057239462Sdim    APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts);
1058239462Sdim    if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) {
1059239462Sdim      for (unsigned i = 0; i < VWidth; i++) {
1060296417Sdim        Constant *CElt = CV->getAggregateElement(i);
1061296417Sdim        // Method isNullValue always returns false when called on a
1062296417Sdim        // ConstantExpr. If CElt is a ConstantExpr then skip it in order to
1063296417Sdim        // to avoid propagating incorrect information.
1064296417Sdim        if (isa<ConstantExpr>(CElt))
1065296417Sdim          continue;
1066296417Sdim        if (CElt->isNullValue())
1067239462Sdim          LeftDemanded.clearBit(i);
1068239462Sdim        else
1069239462Sdim          RightDemanded.clearBit(i);
1070239462Sdim      }
1071239462Sdim    }
1072239462Sdim
1073288943Sdim    TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, UndefElts,
1074288943Sdim                                      Depth + 1);
1075239462Sdim    if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1076239462Sdim
1077239462Sdim    TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded,
1078288943Sdim                                      UndefElts2, Depth + 1);
1079239462Sdim    if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; }
1080249423Sdim
1081239462Sdim    // Output elements are undefined if both are undefined.
1082239462Sdim    UndefElts &= UndefElts2;
1083239462Sdim    break;
1084239462Sdim  }
1085202375Srdivacky  case Instruction::BitCast: {
1086202375Srdivacky    // Vector->vector casts only.
1087226633Sdim    VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1088202375Srdivacky    if (!VTy) break;
1089202375Srdivacky    unsigned InVWidth = VTy->getNumElements();
1090202375Srdivacky    APInt InputDemandedElts(InVWidth, 0);
1091296417Sdim    UndefElts2 = APInt(InVWidth, 0);
1092202375Srdivacky    unsigned Ratio;
1093202375Srdivacky
1094202375Srdivacky    if (VWidth == InVWidth) {
1095202375Srdivacky      // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1096202375Srdivacky      // elements as are demanded of us.
1097202375Srdivacky      Ratio = 1;
1098202375Srdivacky      InputDemandedElts = DemandedElts;
1099296417Sdim    } else if ((VWidth % InVWidth) == 0) {
1100296417Sdim      // If the number of elements in the output is a multiple of the number of
1101296417Sdim      // elements in the input then an input element is live if any of the
1102296417Sdim      // corresponding output elements are live.
1103296417Sdim      Ratio = VWidth / InVWidth;
1104296417Sdim      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1105202375Srdivacky        if (DemandedElts[OutIdx])
1106296417Sdim          InputDemandedElts.setBit(OutIdx / Ratio);
1107296417Sdim    } else if ((InVWidth % VWidth) == 0) {
1108296417Sdim      // If the number of elements in the input is a multiple of the number of
1109296417Sdim      // elements in the output then an input element is live if the
1110296417Sdim      // corresponding output element is live.
1111296417Sdim      Ratio = InVWidth / VWidth;
1112296417Sdim      for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1113296417Sdim        if (DemandedElts[InIdx / Ratio])
1114296417Sdim          InputDemandedElts.setBit(InIdx);
1115202375Srdivacky    } else {
1116296417Sdim      // Unsupported so far.
1117202375Srdivacky      break;
1118202375Srdivacky    }
1119249423Sdim
1120202375Srdivacky    // div/rem demand all inputs, because they don't want divide by zero.
1121202375Srdivacky    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1122288943Sdim                                      UndefElts2, Depth + 1);
1123202375Srdivacky    if (TmpV) {
1124202375Srdivacky      I->setOperand(0, TmpV);
1125202375Srdivacky      MadeChange = true;
1126202375Srdivacky    }
1127249423Sdim
1128296417Sdim    if (VWidth == InVWidth) {
1129296417Sdim      UndefElts = UndefElts2;
1130296417Sdim    } else if ((VWidth % InVWidth) == 0) {
1131296417Sdim      // If the number of elements in the output is a multiple of the number of
1132296417Sdim      // elements in the input then an output element is undef if the
1133296417Sdim      // corresponding input element is undef.
1134202375Srdivacky      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1135296417Sdim        if (UndefElts2[OutIdx / Ratio])
1136218893Sdim          UndefElts.setBit(OutIdx);
1137296417Sdim    } else if ((InVWidth % VWidth) == 0) {
1138296417Sdim      // If the number of elements in the input is a multiple of the number of
1139296417Sdim      // elements in the output then an output element is undef if all of the
1140296417Sdim      // corresponding input elements are undef.
1141296417Sdim      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1142296417Sdim        APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1143296417Sdim        if (SubUndef.countPopulation() == Ratio)
1144296417Sdim          UndefElts.setBit(OutIdx);
1145296417Sdim      }
1146296417Sdim    } else {
1147202375Srdivacky      llvm_unreachable("Unimp");
1148202375Srdivacky    }
1149202375Srdivacky    break;
1150202375Srdivacky  }
1151202375Srdivacky  case Instruction::And:
1152202375Srdivacky  case Instruction::Or:
1153202375Srdivacky  case Instruction::Xor:
1154202375Srdivacky  case Instruction::Add:
1155202375Srdivacky  case Instruction::Sub:
1156202375Srdivacky  case Instruction::Mul:
1157202375Srdivacky    // div/rem demand all inputs, because they don't want divide by zero.
1158288943Sdim    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
1159288943Sdim                                      Depth + 1);
1160202375Srdivacky    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1161202375Srdivacky    TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1162288943Sdim                                      UndefElts2, Depth + 1);
1163202375Srdivacky    if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1164249423Sdim
1165202375Srdivacky    // Output elements are undefined if both are undefined.  Consider things
1166202375Srdivacky    // like undef&0.  The result is known zero, not undef.
1167202375Srdivacky    UndefElts &= UndefElts2;
1168202375Srdivacky    break;
1169239462Sdim  case Instruction::FPTrunc:
1170239462Sdim  case Instruction::FPExt:
1171288943Sdim    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
1172288943Sdim                                      Depth + 1);
1173239462Sdim    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1174239462Sdim    break;
1175249423Sdim
1176202375Srdivacky  case Instruction::Call: {
1177202375Srdivacky    IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1178202375Srdivacky    if (!II) break;
1179202375Srdivacky    switch (II->getIntrinsicID()) {
1180202375Srdivacky    default: break;
1181249423Sdim
1182202375Srdivacky    // Binary vector operations that work column-wise.  A dest element is a
1183202375Srdivacky    // function of the corresponding input elements from the two inputs.
1184202375Srdivacky    case Intrinsic::x86_sse_sub_ss:
1185202375Srdivacky    case Intrinsic::x86_sse_mul_ss:
1186202375Srdivacky    case Intrinsic::x86_sse_min_ss:
1187202375Srdivacky    case Intrinsic::x86_sse_max_ss:
1188202375Srdivacky    case Intrinsic::x86_sse2_sub_sd:
1189202375Srdivacky    case Intrinsic::x86_sse2_mul_sd:
1190202375Srdivacky    case Intrinsic::x86_sse2_min_sd:
1191202375Srdivacky    case Intrinsic::x86_sse2_max_sd:
1192210299Sed      TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1193288943Sdim                                        UndefElts, Depth + 1);
1194210299Sed      if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1195210299Sed      TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1196288943Sdim                                        UndefElts2, Depth + 1);
1197210299Sed      if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1198202375Srdivacky
1199202375Srdivacky      // If only the low elt is demanded and this is a scalarizable intrinsic,
1200202375Srdivacky      // scalarize it now.
1201202375Srdivacky      if (DemandedElts == 1) {
1202202375Srdivacky        switch (II->getIntrinsicID()) {
1203202375Srdivacky        default: break;
1204202375Srdivacky        case Intrinsic::x86_sse_sub_ss:
1205202375Srdivacky        case Intrinsic::x86_sse_mul_ss:
1206202375Srdivacky        case Intrinsic::x86_sse2_sub_sd:
1207202375Srdivacky        case Intrinsic::x86_sse2_mul_sd:
1208202375Srdivacky          // TODO: Lower MIN/MAX/ABS/etc
1209210299Sed          Value *LHS = II->getArgOperand(0);
1210210299Sed          Value *RHS = II->getArgOperand(1);
1211202375Srdivacky          // Extract the element as scalars.
1212249423Sdim          LHS = InsertNewInstWith(ExtractElementInst::Create(LHS,
1213202375Srdivacky            ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1214223017Sdim          RHS = InsertNewInstWith(ExtractElementInst::Create(RHS,
1215202375Srdivacky            ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1216249423Sdim
1217202375Srdivacky          switch (II->getIntrinsicID()) {
1218202375Srdivacky          default: llvm_unreachable("Case stmts out of sync!");
1219202375Srdivacky          case Intrinsic::x86_sse_sub_ss:
1220202375Srdivacky          case Intrinsic::x86_sse2_sub_sd:
1221223017Sdim            TmpV = InsertNewInstWith(BinaryOperator::CreateFSub(LHS, RHS,
1222202375Srdivacky                                                        II->getName()), *II);
1223202375Srdivacky            break;
1224202375Srdivacky          case Intrinsic::x86_sse_mul_ss:
1225202375Srdivacky          case Intrinsic::x86_sse2_mul_sd:
1226223017Sdim            TmpV = InsertNewInstWith(BinaryOperator::CreateFMul(LHS, RHS,
1227202375Srdivacky                                                         II->getName()), *II);
1228202375Srdivacky            break;
1229202375Srdivacky          }
1230249423Sdim
1231202375Srdivacky          Instruction *New =
1232202375Srdivacky            InsertElementInst::Create(
1233202375Srdivacky              UndefValue::get(II->getType()), TmpV,
1234202375Srdivacky              ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false),
1235202375Srdivacky                                      II->getName());
1236223017Sdim          InsertNewInstWith(New, *II);
1237202375Srdivacky          return New;
1238249423Sdim        }
1239202375Srdivacky      }
1240249423Sdim
1241202375Srdivacky      // Output elements are undefined if both are undefined.  Consider things
1242202375Srdivacky      // like undef&0.  The result is known zero, not undef.
1243202375Srdivacky      UndefElts &= UndefElts2;
1244202375Srdivacky      break;
1245296417Sdim
1246296417Sdim    // SSE4A instructions leave the upper 64-bits of the 128-bit result
1247296417Sdim    // in an undefined state.
1248296417Sdim    case Intrinsic::x86_sse4a_extrq:
1249296417Sdim    case Intrinsic::x86_sse4a_extrqi:
1250296417Sdim    case Intrinsic::x86_sse4a_insertq:
1251296417Sdim    case Intrinsic::x86_sse4a_insertqi:
1252296417Sdim      UndefElts |= APInt::getHighBitsSet(VWidth, VWidth / 2);
1253296417Sdim      break;
1254202375Srdivacky    }
1255202375Srdivacky    break;
1256202375Srdivacky  }
1257202375Srdivacky  }
1258276479Sdim  return MadeChange ? I : nullptr;
1259202375Srdivacky}
1260