1//===- InstCombineCompares.cpp --------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitICmp and visitFCmp functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombineInternal.h"
15#include "llvm/ADT/APSInt.h"
16#include "llvm/ADT/Statistic.h"
17#include "llvm/Analysis/ConstantFolding.h"
18#include "llvm/Analysis/InstructionSimplify.h"
19#include "llvm/Analysis/MemoryBuiltins.h"
20#include "llvm/IR/ConstantRange.h"
21#include "llvm/IR/DataLayout.h"
22#include "llvm/IR/GetElementPtrTypeIterator.h"
23#include "llvm/IR/IntrinsicInst.h"
24#include "llvm/IR/PatternMatch.h"
25#include "llvm/Support/CommandLine.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Analysis/TargetLibraryInfo.h"
28
29using namespace llvm;
30using namespace PatternMatch;
31
32#define DEBUG_TYPE "instcombine"
33
34// How many times is a select replaced by one of its operands?
35STATISTIC(NumSel, "Number of select opts");
36
37// Initialization Routines
38
39static ConstantInt *getOne(Constant *C) {
40  return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
41}
42
43static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
44  return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
45}
46
47static bool HasAddOverflow(ConstantInt *Result,
48                           ConstantInt *In1, ConstantInt *In2,
49                           bool IsSigned) {
50  if (!IsSigned)
51    return Result->getValue().ult(In1->getValue());
52
53  if (In2->isNegative())
54    return Result->getValue().sgt(In1->getValue());
55  return Result->getValue().slt(In1->getValue());
56}
57
58/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
59/// overflowed for this type.
60static bool AddWithOverflow(Constant *&Result, Constant *In1,
61                            Constant *In2, bool IsSigned = false) {
62  Result = ConstantExpr::getAdd(In1, In2);
63
64  if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
65    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
66      Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
67      if (HasAddOverflow(ExtractElement(Result, Idx),
68                         ExtractElement(In1, Idx),
69                         ExtractElement(In2, Idx),
70                         IsSigned))
71        return true;
72    }
73    return false;
74  }
75
76  return HasAddOverflow(cast<ConstantInt>(Result),
77                        cast<ConstantInt>(In1), cast<ConstantInt>(In2),
78                        IsSigned);
79}
80
81static bool HasSubOverflow(ConstantInt *Result,
82                           ConstantInt *In1, ConstantInt *In2,
83                           bool IsSigned) {
84  if (!IsSigned)
85    return Result->getValue().ugt(In1->getValue());
86
87  if (In2->isNegative())
88    return Result->getValue().slt(In1->getValue());
89
90  return Result->getValue().sgt(In1->getValue());
91}
92
93/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
94/// overflowed for this type.
95static bool SubWithOverflow(Constant *&Result, Constant *In1,
96                            Constant *In2, bool IsSigned = false) {
97  Result = ConstantExpr::getSub(In1, In2);
98
99  if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
100    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
101      Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
102      if (HasSubOverflow(ExtractElement(Result, Idx),
103                         ExtractElement(In1, Idx),
104                         ExtractElement(In2, Idx),
105                         IsSigned))
106        return true;
107    }
108    return false;
109  }
110
111  return HasSubOverflow(cast<ConstantInt>(Result),
112                        cast<ConstantInt>(In1), cast<ConstantInt>(In2),
113                        IsSigned);
114}
115
116/// isSignBitCheck - Given an exploded icmp instruction, return true if the
117/// comparison only checks the sign bit.  If it only checks the sign bit, set
118/// TrueIfSigned if the result of the comparison is true when the input value is
119/// signed.
120static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
121                           bool &TrueIfSigned) {
122  switch (pred) {
123  case ICmpInst::ICMP_SLT:   // True if LHS s< 0
124    TrueIfSigned = true;
125    return RHS->isZero();
126  case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
127    TrueIfSigned = true;
128    return RHS->isAllOnesValue();
129  case ICmpInst::ICMP_SGT:   // True if LHS s> -1
130    TrueIfSigned = false;
131    return RHS->isAllOnesValue();
132  case ICmpInst::ICMP_UGT:
133    // True if LHS u> RHS and RHS == high-bit-mask - 1
134    TrueIfSigned = true;
135    return RHS->isMaxValue(true);
136  case ICmpInst::ICMP_UGE:
137    // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
138    TrueIfSigned = true;
139    return RHS->getValue().isSignBit();
140  default:
141    return false;
142  }
143}
144
145/// Returns true if the exploded icmp can be expressed as a signed comparison
146/// to zero and updates the predicate accordingly.
147/// The signedness of the comparison is preserved.
148static bool isSignTest(ICmpInst::Predicate &pred, const ConstantInt *RHS) {
149  if (!ICmpInst::isSigned(pred))
150    return false;
151
152  if (RHS->isZero())
153    return ICmpInst::isRelational(pred);
154
155  if (RHS->isOne()) {
156    if (pred == ICmpInst::ICMP_SLT) {
157      pred = ICmpInst::ICMP_SLE;
158      return true;
159    }
160  } else if (RHS->isAllOnesValue()) {
161    if (pred == ICmpInst::ICMP_SGT) {
162      pred = ICmpInst::ICMP_SGE;
163      return true;
164    }
165  }
166
167  return false;
168}
169
170// isHighOnes - Return true if the constant is of the form 1+0+.
171// This is the same as lowones(~X).
172static bool isHighOnes(const ConstantInt *CI) {
173  return (~CI->getValue() + 1).isPowerOf2();
174}
175
176/// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
177/// set of known zero and one bits, compute the maximum and minimum values that
178/// could have the specified known zero and known one bits, returning them in
179/// min/max.
180static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
181                                                   const APInt& KnownOne,
182                                                   APInt& Min, APInt& Max) {
183  assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
184         KnownZero.getBitWidth() == Min.getBitWidth() &&
185         KnownZero.getBitWidth() == Max.getBitWidth() &&
186         "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
187  APInt UnknownBits = ~(KnownZero|KnownOne);
188
189  // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
190  // bit if it is unknown.
191  Min = KnownOne;
192  Max = KnownOne|UnknownBits;
193
194  if (UnknownBits.isNegative()) { // Sign bit is unknown
195    Min.setBit(Min.getBitWidth()-1);
196    Max.clearBit(Max.getBitWidth()-1);
197  }
198}
199
200// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
201// a set of known zero and one bits, compute the maximum and minimum values that
202// could have the specified known zero and known one bits, returning them in
203// min/max.
204static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
205                                                     const APInt &KnownOne,
206                                                     APInt &Min, APInt &Max) {
207  assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
208         KnownZero.getBitWidth() == Min.getBitWidth() &&
209         KnownZero.getBitWidth() == Max.getBitWidth() &&
210         "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
211  APInt UnknownBits = ~(KnownZero|KnownOne);
212
213  // The minimum value is when the unknown bits are all zeros.
214  Min = KnownOne;
215  // The maximum value is when the unknown bits are all ones.
216  Max = KnownOne|UnknownBits;
217}
218
219/// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
220///   cmp pred (load (gep GV, ...)), cmpcst
221/// where GV is a global variable with a constant initializer.  Try to simplify
222/// this into some simple computation that does not need the load.  For example
223/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
224///
225/// If AndCst is non-null, then the loaded value is masked with that constant
226/// before doing the comparison.  This handles cases like "A[i]&4 == 0".
227Instruction *InstCombiner::
228FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
229                             CmpInst &ICI, ConstantInt *AndCst) {
230  Constant *Init = GV->getInitializer();
231  if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
232    return nullptr;
233
234  uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
235  if (ArrayElementCount > 1024) return nullptr; // Don't blow up on huge arrays.
236
237  // There are many forms of this optimization we can handle, for now, just do
238  // the simple index into a single-dimensional array.
239  //
240  // Require: GEP GV, 0, i {{, constant indices}}
241  if (GEP->getNumOperands() < 3 ||
242      !isa<ConstantInt>(GEP->getOperand(1)) ||
243      !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
244      isa<Constant>(GEP->getOperand(2)))
245    return nullptr;
246
247  // Check that indices after the variable are constants and in-range for the
248  // type they index.  Collect the indices.  This is typically for arrays of
249  // structs.
250  SmallVector<unsigned, 4> LaterIndices;
251
252  Type *EltTy = Init->getType()->getArrayElementType();
253  for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
254    ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
255    if (!Idx) return nullptr;  // Variable index.
256
257    uint64_t IdxVal = Idx->getZExtValue();
258    if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
259
260    if (StructType *STy = dyn_cast<StructType>(EltTy))
261      EltTy = STy->getElementType(IdxVal);
262    else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
263      if (IdxVal >= ATy->getNumElements()) return nullptr;
264      EltTy = ATy->getElementType();
265    } else {
266      return nullptr; // Unknown type.
267    }
268
269    LaterIndices.push_back(IdxVal);
270  }
271
272  enum { Overdefined = -3, Undefined = -2 };
273
274  // Variables for our state machines.
275
276  // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
277  // "i == 47 | i == 87", where 47 is the first index the condition is true for,
278  // and 87 is the second (and last) index.  FirstTrueElement is -2 when
279  // undefined, otherwise set to the first true element.  SecondTrueElement is
280  // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
281  int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
282
283  // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
284  // form "i != 47 & i != 87".  Same state transitions as for true elements.
285  int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
286
287  /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
288  /// define a state machine that triggers for ranges of values that the index
289  /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
290  /// This is -2 when undefined, -3 when overdefined, and otherwise the last
291  /// index in the range (inclusive).  We use -2 for undefined here because we
292  /// use relative comparisons and don't want 0-1 to match -1.
293  int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
294
295  // MagicBitvector - This is a magic bitvector where we set a bit if the
296  // comparison is true for element 'i'.  If there are 64 elements or less in
297  // the array, this will fully represent all the comparison results.
298  uint64_t MagicBitvector = 0;
299
300  // Scan the array and see if one of our patterns matches.
301  Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
302  for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
303    Constant *Elt = Init->getAggregateElement(i);
304    if (!Elt) return nullptr;
305
306    // If this is indexing an array of structures, get the structure element.
307    if (!LaterIndices.empty())
308      Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
309
310    // If the element is masked, handle it.
311    if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
312
313    // Find out if the comparison would be true or false for the i'th element.
314    Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
315                                                  CompareRHS, DL, TLI);
316    // If the result is undef for this element, ignore it.
317    if (isa<UndefValue>(C)) {
318      // Extend range state machines to cover this element in case there is an
319      // undef in the middle of the range.
320      if (TrueRangeEnd == (int)i-1)
321        TrueRangeEnd = i;
322      if (FalseRangeEnd == (int)i-1)
323        FalseRangeEnd = i;
324      continue;
325    }
326
327    // If we can't compute the result for any of the elements, we have to give
328    // up evaluating the entire conditional.
329    if (!isa<ConstantInt>(C)) return nullptr;
330
331    // Otherwise, we know if the comparison is true or false for this element,
332    // update our state machines.
333    bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
334
335    // State machine for single/double/range index comparison.
336    if (IsTrueForElt) {
337      // Update the TrueElement state machine.
338      if (FirstTrueElement == Undefined)
339        FirstTrueElement = TrueRangeEnd = i;  // First true element.
340      else {
341        // Update double-compare state machine.
342        if (SecondTrueElement == Undefined)
343          SecondTrueElement = i;
344        else
345          SecondTrueElement = Overdefined;
346
347        // Update range state machine.
348        if (TrueRangeEnd == (int)i-1)
349          TrueRangeEnd = i;
350        else
351          TrueRangeEnd = Overdefined;
352      }
353    } else {
354      // Update the FalseElement state machine.
355      if (FirstFalseElement == Undefined)
356        FirstFalseElement = FalseRangeEnd = i; // First false element.
357      else {
358        // Update double-compare state machine.
359        if (SecondFalseElement == Undefined)
360          SecondFalseElement = i;
361        else
362          SecondFalseElement = Overdefined;
363
364        // Update range state machine.
365        if (FalseRangeEnd == (int)i-1)
366          FalseRangeEnd = i;
367        else
368          FalseRangeEnd = Overdefined;
369      }
370    }
371
372    // If this element is in range, update our magic bitvector.
373    if (i < 64 && IsTrueForElt)
374      MagicBitvector |= 1ULL << i;
375
376    // If all of our states become overdefined, bail out early.  Since the
377    // predicate is expensive, only check it every 8 elements.  This is only
378    // really useful for really huge arrays.
379    if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
380        SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
381        FalseRangeEnd == Overdefined)
382      return nullptr;
383  }
384
385  // Now that we've scanned the entire array, emit our new comparison(s).  We
386  // order the state machines in complexity of the generated code.
387  Value *Idx = GEP->getOperand(2);
388
389  // If the index is larger than the pointer size of the target, truncate the
390  // index down like the GEP would do implicitly.  We don't have to do this for
391  // an inbounds GEP because the index can't be out of range.
392  if (!GEP->isInBounds()) {
393    Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
394    unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
395    if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
396      Idx = Builder->CreateTrunc(Idx, IntPtrTy);
397  }
398
399  // If the comparison is only true for one or two elements, emit direct
400  // comparisons.
401  if (SecondTrueElement != Overdefined) {
402    // None true -> false.
403    if (FirstTrueElement == Undefined)
404      return ReplaceInstUsesWith(ICI, Builder->getFalse());
405
406    Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
407
408    // True for one element -> 'i == 47'.
409    if (SecondTrueElement == Undefined)
410      return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
411
412    // True for two elements -> 'i == 47 | i == 72'.
413    Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
414    Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
415    Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
416    return BinaryOperator::CreateOr(C1, C2);
417  }
418
419  // If the comparison is only false for one or two elements, emit direct
420  // comparisons.
421  if (SecondFalseElement != Overdefined) {
422    // None false -> true.
423    if (FirstFalseElement == Undefined)
424      return ReplaceInstUsesWith(ICI, Builder->getTrue());
425
426    Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
427
428    // False for one element -> 'i != 47'.
429    if (SecondFalseElement == Undefined)
430      return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
431
432    // False for two elements -> 'i != 47 & i != 72'.
433    Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
434    Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
435    Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
436    return BinaryOperator::CreateAnd(C1, C2);
437  }
438
439  // If the comparison can be replaced with a range comparison for the elements
440  // where it is true, emit the range check.
441  if (TrueRangeEnd != Overdefined) {
442    assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
443
444    // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
445    if (FirstTrueElement) {
446      Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
447      Idx = Builder->CreateAdd(Idx, Offs);
448    }
449
450    Value *End = ConstantInt::get(Idx->getType(),
451                                  TrueRangeEnd-FirstTrueElement+1);
452    return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
453  }
454
455  // False range check.
456  if (FalseRangeEnd != Overdefined) {
457    assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
458    // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
459    if (FirstFalseElement) {
460      Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
461      Idx = Builder->CreateAdd(Idx, Offs);
462    }
463
464    Value *End = ConstantInt::get(Idx->getType(),
465                                  FalseRangeEnd-FirstFalseElement);
466    return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
467  }
468
469  // If a magic bitvector captures the entire comparison state
470  // of this load, replace it with computation that does:
471  //   ((magic_cst >> i) & 1) != 0
472  {
473    Type *Ty = nullptr;
474
475    // Look for an appropriate type:
476    // - The type of Idx if the magic fits
477    // - The smallest fitting legal type if we have a DataLayout
478    // - Default to i32
479    if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
480      Ty = Idx->getType();
481    else
482      Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
483
484    if (Ty) {
485      Value *V = Builder->CreateIntCast(Idx, Ty, false);
486      V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
487      V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
488      return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
489    }
490  }
491
492  return nullptr;
493}
494
495/// EvaluateGEPOffsetExpression - Return a value that can be used to compare
496/// the *offset* implied by a GEP to zero.  For example, if we have &A[i], we
497/// want to return 'i' for "icmp ne i, 0".  Note that, in general, indices can
498/// be complex, and scales are involved.  The above expression would also be
499/// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
500/// This later form is less amenable to optimization though, and we are allowed
501/// to generate the first by knowing that pointer arithmetic doesn't overflow.
502///
503/// If we can't emit an optimized form for this expression, this returns null.
504///
505static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
506                                          const DataLayout &DL) {
507  gep_type_iterator GTI = gep_type_begin(GEP);
508
509  // Check to see if this gep only has a single variable index.  If so, and if
510  // any constant indices are a multiple of its scale, then we can compute this
511  // in terms of the scale of the variable index.  For example, if the GEP
512  // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
513  // because the expression will cross zero at the same point.
514  unsigned i, e = GEP->getNumOperands();
515  int64_t Offset = 0;
516  for (i = 1; i != e; ++i, ++GTI) {
517    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
518      // Compute the aggregate offset of constant indices.
519      if (CI->isZero()) continue;
520
521      // Handle a struct index, which adds its field offset to the pointer.
522      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
523        Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
524      } else {
525        uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
526        Offset += Size*CI->getSExtValue();
527      }
528    } else {
529      // Found our variable index.
530      break;
531    }
532  }
533
534  // If there are no variable indices, we must have a constant offset, just
535  // evaluate it the general way.
536  if (i == e) return nullptr;
537
538  Value *VariableIdx = GEP->getOperand(i);
539  // Determine the scale factor of the variable element.  For example, this is
540  // 4 if the variable index is into an array of i32.
541  uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
542
543  // Verify that there are no other variable indices.  If so, emit the hard way.
544  for (++i, ++GTI; i != e; ++i, ++GTI) {
545    ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
546    if (!CI) return nullptr;
547
548    // Compute the aggregate offset of constant indices.
549    if (CI->isZero()) continue;
550
551    // Handle a struct index, which adds its field offset to the pointer.
552    if (StructType *STy = dyn_cast<StructType>(*GTI)) {
553      Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
554    } else {
555      uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
556      Offset += Size*CI->getSExtValue();
557    }
558  }
559
560  // Okay, we know we have a single variable index, which must be a
561  // pointer/array/vector index.  If there is no offset, life is simple, return
562  // the index.
563  Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
564  unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
565  if (Offset == 0) {
566    // Cast to intptrty in case a truncation occurs.  If an extension is needed,
567    // we don't need to bother extending: the extension won't affect where the
568    // computation crosses zero.
569    if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
570      VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
571    }
572    return VariableIdx;
573  }
574
575  // Otherwise, there is an index.  The computation we will do will be modulo
576  // the pointer size, so get it.
577  uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
578
579  Offset &= PtrSizeMask;
580  VariableScale &= PtrSizeMask;
581
582  // To do this transformation, any constant index must be a multiple of the
583  // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
584  // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
585  // multiple of the variable scale.
586  int64_t NewOffs = Offset / (int64_t)VariableScale;
587  if (Offset != NewOffs*(int64_t)VariableScale)
588    return nullptr;
589
590  // Okay, we can do this evaluation.  Start by converting the index to intptr.
591  if (VariableIdx->getType() != IntPtrTy)
592    VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
593                                            true /*Signed*/);
594  Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
595  return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
596}
597
598/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
599/// else.  At this point we know that the GEP is on the LHS of the comparison.
600Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
601                                       ICmpInst::Predicate Cond,
602                                       Instruction &I) {
603  // Don't transform signed compares of GEPs into index compares. Even if the
604  // GEP is inbounds, the final add of the base pointer can have signed overflow
605  // and would change the result of the icmp.
606  // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
607  // the maximum signed value for the pointer type.
608  if (ICmpInst::isSigned(Cond))
609    return nullptr;
610
611  // Look through bitcasts and addrspacecasts. We do not however want to remove
612  // 0 GEPs.
613  if (!isa<GetElementPtrInst>(RHS))
614    RHS = RHS->stripPointerCasts();
615
616  Value *PtrBase = GEPLHS->getOperand(0);
617  if (PtrBase == RHS && GEPLHS->isInBounds()) {
618    // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
619    // This transformation (ignoring the base and scales) is valid because we
620    // know pointers can't overflow since the gep is inbounds.  See if we can
621    // output an optimized form.
622    Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this, DL);
623
624    // If not, synthesize the offset the hard way.
625    if (!Offset)
626      Offset = EmitGEPOffset(GEPLHS);
627    return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
628                        Constant::getNullValue(Offset->getType()));
629  } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
630    // If the base pointers are different, but the indices are the same, just
631    // compare the base pointer.
632    if (PtrBase != GEPRHS->getOperand(0)) {
633      bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
634      IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
635                        GEPRHS->getOperand(0)->getType();
636      if (IndicesTheSame)
637        for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
638          if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
639            IndicesTheSame = false;
640            break;
641          }
642
643      // If all indices are the same, just compare the base pointers.
644      if (IndicesTheSame)
645        return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
646
647      // If we're comparing GEPs with two base pointers that only differ in type
648      // and both GEPs have only constant indices or just one use, then fold
649      // the compare with the adjusted indices.
650      if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
651          (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
652          (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
653          PtrBase->stripPointerCasts() ==
654              GEPRHS->getOperand(0)->stripPointerCasts()) {
655        Value *LOffset = EmitGEPOffset(GEPLHS);
656        Value *ROffset = EmitGEPOffset(GEPRHS);
657
658        // If we looked through an addrspacecast between different sized address
659        // spaces, the LHS and RHS pointers are different sized
660        // integers. Truncate to the smaller one.
661        Type *LHSIndexTy = LOffset->getType();
662        Type *RHSIndexTy = ROffset->getType();
663        if (LHSIndexTy != RHSIndexTy) {
664          if (LHSIndexTy->getPrimitiveSizeInBits() <
665              RHSIndexTy->getPrimitiveSizeInBits()) {
666            ROffset = Builder->CreateTrunc(ROffset, LHSIndexTy);
667          } else
668            LOffset = Builder->CreateTrunc(LOffset, RHSIndexTy);
669        }
670
671        Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond),
672                                         LOffset, ROffset);
673        return ReplaceInstUsesWith(I, Cmp);
674      }
675
676      // Otherwise, the base pointers are different and the indices are
677      // different, bail out.
678      return nullptr;
679    }
680
681    // If one of the GEPs has all zero indices, recurse.
682    if (GEPLHS->hasAllZeroIndices())
683      return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
684                         ICmpInst::getSwappedPredicate(Cond), I);
685
686    // If the other GEP has all zero indices, recurse.
687    if (GEPRHS->hasAllZeroIndices())
688      return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
689
690    bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
691    if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
692      // If the GEPs only differ by one index, compare it.
693      unsigned NumDifferences = 0;  // Keep track of # differences.
694      unsigned DiffOperand = 0;     // The operand that differs.
695      for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
696        if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
697          if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
698                   GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
699            // Irreconcilable differences.
700            NumDifferences = 2;
701            break;
702          } else {
703            if (NumDifferences++) break;
704            DiffOperand = i;
705          }
706        }
707
708      if (NumDifferences == 0)   // SAME GEP?
709        return ReplaceInstUsesWith(I, // No comparison is needed here.
710                             Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond)));
711
712      else if (NumDifferences == 1 && GEPsInBounds) {
713        Value *LHSV = GEPLHS->getOperand(DiffOperand);
714        Value *RHSV = GEPRHS->getOperand(DiffOperand);
715        // Make sure we do a signed comparison here.
716        return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
717      }
718    }
719
720    // Only lower this if the icmp is the only user of the GEP or if we expect
721    // the result to fold to a constant!
722    if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
723        (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
724      // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
725      Value *L = EmitGEPOffset(GEPLHS);
726      Value *R = EmitGEPOffset(GEPRHS);
727      return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
728    }
729  }
730  return nullptr;
731}
732
733Instruction *InstCombiner::FoldAllocaCmp(ICmpInst &ICI, AllocaInst *Alloca,
734                                         Value *Other) {
735  assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
736
737  // It would be tempting to fold away comparisons between allocas and any
738  // pointer not based on that alloca (e.g. an argument). However, even
739  // though such pointers cannot alias, they can still compare equal.
740  //
741  // But LLVM doesn't specify where allocas get their memory, so if the alloca
742  // doesn't escape we can argue that it's impossible to guess its value, and we
743  // can therefore act as if any such guesses are wrong.
744  //
745  // The code below checks that the alloca doesn't escape, and that it's only
746  // used in a comparison once (the current instruction). The
747  // single-comparison-use condition ensures that we're trivially folding all
748  // comparisons against the alloca consistently, and avoids the risk of
749  // erroneously folding a comparison of the pointer with itself.
750
751  unsigned MaxIter = 32; // Break cycles and bound to constant-time.
752
753  SmallVector<Use *, 32> Worklist;
754  for (Use &U : Alloca->uses()) {
755    if (Worklist.size() >= MaxIter)
756      return nullptr;
757    Worklist.push_back(&U);
758  }
759
760  unsigned NumCmps = 0;
761  while (!Worklist.empty()) {
762    assert(Worklist.size() <= MaxIter);
763    Use *U = Worklist.pop_back_val();
764    Value *V = U->getUser();
765    --MaxIter;
766
767    if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
768        isa<SelectInst>(V)) {
769      // Track the uses.
770    } else if (isa<LoadInst>(V)) {
771      // Loading from the pointer doesn't escape it.
772      continue;
773    } else if (auto *SI = dyn_cast<StoreInst>(V)) {
774      // Storing *to* the pointer is fine, but storing the pointer escapes it.
775      if (SI->getValueOperand() == U->get())
776        return nullptr;
777      continue;
778    } else if (isa<ICmpInst>(V)) {
779      if (NumCmps++)
780        return nullptr; // Found more than one cmp.
781      continue;
782    } else if (auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
783      switch (Intrin->getIntrinsicID()) {
784        // These intrinsics don't escape or compare the pointer. Memset is safe
785        // because we don't allow ptrtoint. Memcpy and memmove are safe because
786        // we don't allow stores, so src cannot point to V.
787        case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
788        case Intrinsic::dbg_declare: case Intrinsic::dbg_value:
789        case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
790          continue;
791        default:
792          return nullptr;
793      }
794    } else {
795      return nullptr;
796    }
797    for (Use &U : V->uses()) {
798      if (Worklist.size() >= MaxIter)
799        return nullptr;
800      Worklist.push_back(&U);
801    }
802  }
803
804  Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
805  return ReplaceInstUsesWith(
806      ICI,
807      ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
808}
809
810/// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
811Instruction *InstCombiner::FoldICmpAddOpCst(Instruction &ICI,
812                                            Value *X, ConstantInt *CI,
813                                            ICmpInst::Predicate Pred) {
814  // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
815  // so the values can never be equal.  Similarly for all other "or equals"
816  // operators.
817
818  // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
819  // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
820  // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
821  if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
822    Value *R =
823      ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
824    return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
825  }
826
827  // (X+1) >u X        --> X <u (0-1)        --> X != 255
828  // (X+2) >u X        --> X <u (0-2)        --> X <u 254
829  // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
830  if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
831    return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
832
833  unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
834  ConstantInt *SMax = ConstantInt::get(X->getContext(),
835                                       APInt::getSignedMaxValue(BitWidth));
836
837  // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
838  // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
839  // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
840  // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
841  // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
842  // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
843  if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
844    return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
845
846  // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
847  // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
848  // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
849  // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
850  // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
851  // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
852
853  assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
854  Constant *C = Builder->getInt(CI->getValue()-1);
855  return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
856}
857
858/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
859/// and CmpRHS are both known to be integer constants.
860Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
861                                          ConstantInt *DivRHS) {
862  ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
863  const APInt &CmpRHSV = CmpRHS->getValue();
864
865  // FIXME: If the operand types don't match the type of the divide
866  // then don't attempt this transform. The code below doesn't have the
867  // logic to deal with a signed divide and an unsigned compare (and
868  // vice versa). This is because (x /s C1) <s C2  produces different
869  // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
870  // (x /u C1) <u C2.  Simply casting the operands and result won't
871  // work. :(  The if statement below tests that condition and bails
872  // if it finds it.
873  bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
874  if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
875    return nullptr;
876  if (DivRHS->isZero())
877    return nullptr; // The ProdOV computation fails on divide by zero.
878  if (DivIsSigned && DivRHS->isAllOnesValue())
879    return nullptr; // The overflow computation also screws up here
880  if (DivRHS->isOne()) {
881    // This eliminates some funny cases with INT_MIN.
882    ICI.setOperand(0, DivI->getOperand(0));   // X/1 == X.
883    return &ICI;
884  }
885
886  // Compute Prod = CI * DivRHS. We are essentially solving an equation
887  // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
888  // C2 (CI). By solving for X we can turn this into a range check
889  // instead of computing a divide.
890  Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
891
892  // Determine if the product overflows by seeing if the product is
893  // not equal to the divide. Make sure we do the same kind of divide
894  // as in the LHS instruction that we're folding.
895  bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
896                 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
897
898  // Get the ICmp opcode
899  ICmpInst::Predicate Pred = ICI.getPredicate();
900
901  /// If the division is known to be exact, then there is no remainder from the
902  /// divide, so the covered range size is unit, otherwise it is the divisor.
903  ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
904
905  // Figure out the interval that is being checked.  For example, a comparison
906  // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
907  // Compute this interval based on the constants involved and the signedness of
908  // the compare/divide.  This computes a half-open interval, keeping track of
909  // whether either value in the interval overflows.  After analysis each
910  // overflow variable is set to 0 if it's corresponding bound variable is valid
911  // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
912  int LoOverflow = 0, HiOverflow = 0;
913  Constant *LoBound = nullptr, *HiBound = nullptr;
914
915  if (!DivIsSigned) {  // udiv
916    // e.g. X/5 op 3  --> [15, 20)
917    LoBound = Prod;
918    HiOverflow = LoOverflow = ProdOV;
919    if (!HiOverflow) {
920      // If this is not an exact divide, then many values in the range collapse
921      // to the same result value.
922      HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
923    }
924  } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
925    if (CmpRHSV == 0) {       // (X / pos) op 0
926      // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
927      LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
928      HiBound = RangeSize;
929    } else if (CmpRHSV.isStrictlyPositive()) {   // (X / pos) op pos
930      LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
931      HiOverflow = LoOverflow = ProdOV;
932      if (!HiOverflow)
933        HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
934    } else {                       // (X / pos) op neg
935      // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
936      HiBound = AddOne(Prod);
937      LoOverflow = HiOverflow = ProdOV ? -1 : 0;
938      if (!LoOverflow) {
939        ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
940        LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
941      }
942    }
943  } else if (DivRHS->isNegative()) { // Divisor is < 0.
944    if (DivI->isExact())
945      RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
946    if (CmpRHSV == 0) {       // (X / neg) op 0
947      // e.g. X/-5 op 0  --> [-4, 5)
948      LoBound = AddOne(RangeSize);
949      HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
950      if (HiBound == DivRHS) {     // -INTMIN = INTMIN
951        HiOverflow = 1;            // [INTMIN+1, overflow)
952        HiBound = nullptr;         // e.g. X/INTMIN = 0 --> X > INTMIN
953      }
954    } else if (CmpRHSV.isStrictlyPositive()) {   // (X / neg) op pos
955      // e.g. X/-5 op 3  --> [-19, -14)
956      HiBound = AddOne(Prod);
957      HiOverflow = LoOverflow = ProdOV ? -1 : 0;
958      if (!LoOverflow)
959        LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
960    } else {                       // (X / neg) op neg
961      LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
962      LoOverflow = HiOverflow = ProdOV;
963      if (!HiOverflow)
964        HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
965    }
966
967    // Dividing by a negative swaps the condition.  LT <-> GT
968    Pred = ICmpInst::getSwappedPredicate(Pred);
969  }
970
971  Value *X = DivI->getOperand(0);
972  switch (Pred) {
973  default: llvm_unreachable("Unhandled icmp opcode!");
974  case ICmpInst::ICMP_EQ:
975    if (LoOverflow && HiOverflow)
976      return ReplaceInstUsesWith(ICI, Builder->getFalse());
977    if (HiOverflow)
978      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
979                          ICmpInst::ICMP_UGE, X, LoBound);
980    if (LoOverflow)
981      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
982                          ICmpInst::ICMP_ULT, X, HiBound);
983    return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
984                                                    DivIsSigned, true));
985  case ICmpInst::ICMP_NE:
986    if (LoOverflow && HiOverflow)
987      return ReplaceInstUsesWith(ICI, Builder->getTrue());
988    if (HiOverflow)
989      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
990                          ICmpInst::ICMP_ULT, X, LoBound);
991    if (LoOverflow)
992      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
993                          ICmpInst::ICMP_UGE, X, HiBound);
994    return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
995                                                    DivIsSigned, false));
996  case ICmpInst::ICMP_ULT:
997  case ICmpInst::ICMP_SLT:
998    if (LoOverflow == +1)   // Low bound is greater than input range.
999      return ReplaceInstUsesWith(ICI, Builder->getTrue());
1000    if (LoOverflow == -1)   // Low bound is less than input range.
1001      return ReplaceInstUsesWith(ICI, Builder->getFalse());
1002    return new ICmpInst(Pred, X, LoBound);
1003  case ICmpInst::ICMP_UGT:
1004  case ICmpInst::ICMP_SGT:
1005    if (HiOverflow == +1)       // High bound greater than input range.
1006      return ReplaceInstUsesWith(ICI, Builder->getFalse());
1007    if (HiOverflow == -1)       // High bound less than input range.
1008      return ReplaceInstUsesWith(ICI, Builder->getTrue());
1009    if (Pred == ICmpInst::ICMP_UGT)
1010      return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
1011    return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
1012  }
1013}
1014
1015/// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
1016Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
1017                                          ConstantInt *ShAmt) {
1018  const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
1019
1020  // Check that the shift amount is in range.  If not, don't perform
1021  // undefined shifts.  When the shift is visited it will be
1022  // simplified.
1023  uint32_t TypeBits = CmpRHSV.getBitWidth();
1024  uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
1025  if (ShAmtVal >= TypeBits || ShAmtVal == 0)
1026    return nullptr;
1027
1028  if (!ICI.isEquality()) {
1029    // If we have an unsigned comparison and an ashr, we can't simplify this.
1030    // Similarly for signed comparisons with lshr.
1031    if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
1032      return nullptr;
1033
1034    // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
1035    // by a power of 2.  Since we already have logic to simplify these,
1036    // transform to div and then simplify the resultant comparison.
1037    if (Shr->getOpcode() == Instruction::AShr &&
1038        (!Shr->isExact() || ShAmtVal == TypeBits - 1))
1039      return nullptr;
1040
1041    // Revisit the shift (to delete it).
1042    Worklist.Add(Shr);
1043
1044    Constant *DivCst =
1045      ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
1046
1047    Value *Tmp =
1048      Shr->getOpcode() == Instruction::AShr ?
1049      Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
1050      Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
1051
1052    ICI.setOperand(0, Tmp);
1053
1054    // If the builder folded the binop, just return it.
1055    BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
1056    if (!TheDiv)
1057      return &ICI;
1058
1059    // Otherwise, fold this div/compare.
1060    assert(TheDiv->getOpcode() == Instruction::SDiv ||
1061           TheDiv->getOpcode() == Instruction::UDiv);
1062
1063    Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
1064    assert(Res && "This div/cst should have folded!");
1065    return Res;
1066  }
1067
1068  // If we are comparing against bits always shifted out, the
1069  // comparison cannot succeed.
1070  APInt Comp = CmpRHSV << ShAmtVal;
1071  ConstantInt *ShiftedCmpRHS = Builder->getInt(Comp);
1072  if (Shr->getOpcode() == Instruction::LShr)
1073    Comp = Comp.lshr(ShAmtVal);
1074  else
1075    Comp = Comp.ashr(ShAmtVal);
1076
1077  if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
1078    bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1079    Constant *Cst = Builder->getInt1(IsICMP_NE);
1080    return ReplaceInstUsesWith(ICI, Cst);
1081  }
1082
1083  // Otherwise, check to see if the bits shifted out are known to be zero.
1084  // If so, we can compare against the unshifted value:
1085  //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
1086  if (Shr->hasOneUse() && Shr->isExact())
1087    return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
1088
1089  if (Shr->hasOneUse()) {
1090    // Otherwise strength reduce the shift into an and.
1091    APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
1092    Constant *Mask = Builder->getInt(Val);
1093
1094    Value *And = Builder->CreateAnd(Shr->getOperand(0),
1095                                    Mask, Shr->getName()+".mask");
1096    return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
1097  }
1098  return nullptr;
1099}
1100
1101/// FoldICmpCstShrCst - Handle "(icmp eq/ne (ashr/lshr const2, A), const1)" ->
1102/// (icmp eq/ne A, Log2(const2/const1)) ->
1103/// (icmp eq/ne A, Log2(const2) - Log2(const1)).
1104Instruction *InstCombiner::FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A,
1105                                             ConstantInt *CI1,
1106                                             ConstantInt *CI2) {
1107  assert(I.isEquality() && "Cannot fold icmp gt/lt");
1108
1109  auto getConstant = [&I, this](bool IsTrue) {
1110    if (I.getPredicate() == I.ICMP_NE)
1111      IsTrue = !IsTrue;
1112    return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue));
1113  };
1114
1115  auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1116    if (I.getPredicate() == I.ICMP_NE)
1117      Pred = CmpInst::getInversePredicate(Pred);
1118    return new ICmpInst(Pred, LHS, RHS);
1119  };
1120
1121  APInt AP1 = CI1->getValue();
1122  APInt AP2 = CI2->getValue();
1123
1124  // Don't bother doing any work for cases which InstSimplify handles.
1125  if (AP2 == 0)
1126    return nullptr;
1127  bool IsAShr = isa<AShrOperator>(Op);
1128  if (IsAShr) {
1129    if (AP2.isAllOnesValue())
1130      return nullptr;
1131    if (AP2.isNegative() != AP1.isNegative())
1132      return nullptr;
1133    if (AP2.sgt(AP1))
1134      return nullptr;
1135  }
1136
1137  if (!AP1)
1138    // 'A' must be large enough to shift out the highest set bit.
1139    return getICmp(I.ICMP_UGT, A,
1140                   ConstantInt::get(A->getType(), AP2.logBase2()));
1141
1142  if (AP1 == AP2)
1143    return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1144
1145  int Shift;
1146  if (IsAShr && AP1.isNegative())
1147    Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1148  else
1149    Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1150
1151  if (Shift > 0) {
1152    if (IsAShr && AP1 == AP2.ashr(Shift)) {
1153      // There are multiple solutions if we are comparing against -1 and the LHS
1154      // of the ashr is not a power of two.
1155      if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
1156        return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1157      return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1158    } else if (AP1 == AP2.lshr(Shift)) {
1159      return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1160    }
1161  }
1162  // Shifting const2 will never be equal to const1.
1163  return getConstant(false);
1164}
1165
1166/// FoldICmpCstShlCst - Handle "(icmp eq/ne (shl const2, A), const1)" ->
1167/// (icmp eq/ne A, TrailingZeros(const1) - TrailingZeros(const2)).
1168Instruction *InstCombiner::FoldICmpCstShlCst(ICmpInst &I, Value *Op, Value *A,
1169                                             ConstantInt *CI1,
1170                                             ConstantInt *CI2) {
1171  assert(I.isEquality() && "Cannot fold icmp gt/lt");
1172
1173  auto getConstant = [&I, this](bool IsTrue) {
1174    if (I.getPredicate() == I.ICMP_NE)
1175      IsTrue = !IsTrue;
1176    return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue));
1177  };
1178
1179  auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1180    if (I.getPredicate() == I.ICMP_NE)
1181      Pred = CmpInst::getInversePredicate(Pred);
1182    return new ICmpInst(Pred, LHS, RHS);
1183  };
1184
1185  APInt AP1 = CI1->getValue();
1186  APInt AP2 = CI2->getValue();
1187
1188  // Don't bother doing any work for cases which InstSimplify handles.
1189  if (AP2 == 0)
1190    return nullptr;
1191
1192  unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1193
1194  if (!AP1 && AP2TrailingZeros != 0)
1195    return getICmp(I.ICMP_UGE, A,
1196                   ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1197
1198  if (AP1 == AP2)
1199    return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1200
1201  // Get the distance between the lowest bits that are set.
1202  int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1203
1204  if (Shift > 0 && AP2.shl(Shift) == AP1)
1205    return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1206
1207  // Shifting const2 will never be equal to const1.
1208  return getConstant(false);
1209}
1210
1211/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
1212///
1213Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
1214                                                          Instruction *LHSI,
1215                                                          ConstantInt *RHS) {
1216  const APInt &RHSV = RHS->getValue();
1217
1218  switch (LHSI->getOpcode()) {
1219  case Instruction::Trunc:
1220    if (RHS->isOne() && RHSV.getBitWidth() > 1) {
1221      // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1222      Value *V = nullptr;
1223      if (ICI.getPredicate() == ICmpInst::ICMP_SLT &&
1224          match(LHSI->getOperand(0), m_Signum(m_Value(V))))
1225        return new ICmpInst(ICmpInst::ICMP_SLT, V,
1226                            ConstantInt::get(V->getType(), 1));
1227    }
1228    if (ICI.isEquality() && LHSI->hasOneUse()) {
1229      // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1230      // of the high bits truncated out of x are known.
1231      unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
1232             SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
1233      APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
1234      computeKnownBits(LHSI->getOperand(0), KnownZero, KnownOne, 0, &ICI);
1235
1236      // If all the high bits are known, we can do this xform.
1237      if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
1238        // Pull in the high bits from known-ones set.
1239        APInt NewRHS = RHS->getValue().zext(SrcBits);
1240        NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits-DstBits);
1241        return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1242                            Builder->getInt(NewRHS));
1243      }
1244    }
1245    break;
1246
1247  case Instruction::Xor:         // (icmp pred (xor X, XorCst), CI)
1248    if (ConstantInt *XorCst = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1249      // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1250      // fold the xor.
1251      if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
1252          (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
1253        Value *CompareVal = LHSI->getOperand(0);
1254
1255        // If the sign bit of the XorCst is not set, there is no change to
1256        // the operation, just stop using the Xor.
1257        if (!XorCst->isNegative()) {
1258          ICI.setOperand(0, CompareVal);
1259          Worklist.Add(LHSI);
1260          return &ICI;
1261        }
1262
1263        // Was the old condition true if the operand is positive?
1264        bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
1265
1266        // If so, the new one isn't.
1267        isTrueIfPositive ^= true;
1268
1269        if (isTrueIfPositive)
1270          return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
1271                              SubOne(RHS));
1272        else
1273          return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
1274                              AddOne(RHS));
1275      }
1276
1277      if (LHSI->hasOneUse()) {
1278        // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
1279        if (!ICI.isEquality() && XorCst->getValue().isSignBit()) {
1280          const APInt &SignBit = XorCst->getValue();
1281          ICmpInst::Predicate Pred = ICI.isSigned()
1282                                         ? ICI.getUnsignedPredicate()
1283                                         : ICI.getSignedPredicate();
1284          return new ICmpInst(Pred, LHSI->getOperand(0),
1285                              Builder->getInt(RHSV ^ SignBit));
1286        }
1287
1288        // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
1289        if (!ICI.isEquality() && XorCst->isMaxValue(true)) {
1290          const APInt &NotSignBit = XorCst->getValue();
1291          ICmpInst::Predicate Pred = ICI.isSigned()
1292                                         ? ICI.getUnsignedPredicate()
1293                                         : ICI.getSignedPredicate();
1294          Pred = ICI.getSwappedPredicate(Pred);
1295          return new ICmpInst(Pred, LHSI->getOperand(0),
1296                              Builder->getInt(RHSV ^ NotSignBit));
1297        }
1298      }
1299
1300      // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C)
1301      //   iff -C is a power of 2
1302      if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
1303          XorCst->getValue() == ~RHSV && (RHSV + 1).isPowerOf2())
1304        return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), XorCst);
1305
1306      // (icmp ult (xor X, C), -C) -> (icmp uge X, C)
1307      //   iff -C is a power of 2
1308      if (ICI.getPredicate() == ICmpInst::ICMP_ULT &&
1309          XorCst->getValue() == -RHSV && RHSV.isPowerOf2())
1310        return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), XorCst);
1311    }
1312    break;
1313  case Instruction::And:         // (icmp pred (and X, AndCst), RHS)
1314    if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
1315        LHSI->getOperand(0)->hasOneUse()) {
1316      ConstantInt *AndCst = cast<ConstantInt>(LHSI->getOperand(1));
1317
1318      // If the LHS is an AND of a truncating cast, we can widen the
1319      // and/compare to be the input width without changing the value
1320      // produced, eliminating a cast.
1321      if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
1322        // We can do this transformation if either the AND constant does not
1323        // have its sign bit set or if it is an equality comparison.
1324        // Extending a relational comparison when we're checking the sign
1325        // bit would not work.
1326        if (ICI.isEquality() ||
1327            (!AndCst->isNegative() && RHSV.isNonNegative())) {
1328          Value *NewAnd =
1329            Builder->CreateAnd(Cast->getOperand(0),
1330                               ConstantExpr::getZExt(AndCst, Cast->getSrcTy()));
1331          NewAnd->takeName(LHSI);
1332          return new ICmpInst(ICI.getPredicate(), NewAnd,
1333                              ConstantExpr::getZExt(RHS, Cast->getSrcTy()));
1334        }
1335      }
1336
1337      // If the LHS is an AND of a zext, and we have an equality compare, we can
1338      // shrink the and/compare to the smaller type, eliminating the cast.
1339      if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
1340        IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
1341        // Make sure we don't compare the upper bits, SimplifyDemandedBits
1342        // should fold the icmp to true/false in that case.
1343        if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
1344          Value *NewAnd =
1345            Builder->CreateAnd(Cast->getOperand(0),
1346                               ConstantExpr::getTrunc(AndCst, Ty));
1347          NewAnd->takeName(LHSI);
1348          return new ICmpInst(ICI.getPredicate(), NewAnd,
1349                              ConstantExpr::getTrunc(RHS, Ty));
1350        }
1351      }
1352
1353      // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
1354      // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
1355      // happens a LOT in code produced by the C front-end, for bitfield
1356      // access.
1357      BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
1358      if (Shift && !Shift->isShift())
1359        Shift = nullptr;
1360
1361      ConstantInt *ShAmt;
1362      ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : nullptr;
1363
1364      // This seemingly simple opportunity to fold away a shift turns out to
1365      // be rather complicated. See PR17827
1366      // ( http://llvm.org/bugs/show_bug.cgi?id=17827 ) for details.
1367      if (ShAmt) {
1368        bool CanFold = false;
1369        unsigned ShiftOpcode = Shift->getOpcode();
1370        if (ShiftOpcode == Instruction::AShr) {
1371          // There may be some constraints that make this possible,
1372          // but nothing simple has been discovered yet.
1373          CanFold = false;
1374        } else if (ShiftOpcode == Instruction::Shl) {
1375          // For a left shift, we can fold if the comparison is not signed.
1376          // We can also fold a signed comparison if the mask value and
1377          // comparison value are not negative. These constraints may not be
1378          // obvious, but we can prove that they are correct using an SMT
1379          // solver.
1380          if (!ICI.isSigned() || (!AndCst->isNegative() && !RHS->isNegative()))
1381            CanFold = true;
1382        } else if (ShiftOpcode == Instruction::LShr) {
1383          // For a logical right shift, we can fold if the comparison is not
1384          // signed. We can also fold a signed comparison if the shifted mask
1385          // value and the shifted comparison value are not negative.
1386          // These constraints may not be obvious, but we can prove that they
1387          // are correct using an SMT solver.
1388          if (!ICI.isSigned())
1389            CanFold = true;
1390          else {
1391            ConstantInt *ShiftedAndCst =
1392              cast<ConstantInt>(ConstantExpr::getShl(AndCst, ShAmt));
1393            ConstantInt *ShiftedRHSCst =
1394              cast<ConstantInt>(ConstantExpr::getShl(RHS, ShAmt));
1395
1396            if (!ShiftedAndCst->isNegative() && !ShiftedRHSCst->isNegative())
1397              CanFold = true;
1398          }
1399        }
1400
1401        if (CanFold) {
1402          Constant *NewCst;
1403          if (ShiftOpcode == Instruction::Shl)
1404            NewCst = ConstantExpr::getLShr(RHS, ShAmt);
1405          else
1406            NewCst = ConstantExpr::getShl(RHS, ShAmt);
1407
1408          // Check to see if we are shifting out any of the bits being
1409          // compared.
1410          if (ConstantExpr::get(ShiftOpcode, NewCst, ShAmt) != RHS) {
1411            // If we shifted bits out, the fold is not going to work out.
1412            // As a special case, check to see if this means that the
1413            // result is always true or false now.
1414            if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1415              return ReplaceInstUsesWith(ICI, Builder->getFalse());
1416            if (ICI.getPredicate() == ICmpInst::ICMP_NE)
1417              return ReplaceInstUsesWith(ICI, Builder->getTrue());
1418          } else {
1419            ICI.setOperand(1, NewCst);
1420            Constant *NewAndCst;
1421            if (ShiftOpcode == Instruction::Shl)
1422              NewAndCst = ConstantExpr::getLShr(AndCst, ShAmt);
1423            else
1424              NewAndCst = ConstantExpr::getShl(AndCst, ShAmt);
1425            LHSI->setOperand(1, NewAndCst);
1426            LHSI->setOperand(0, Shift->getOperand(0));
1427            Worklist.Add(Shift); // Shift is dead.
1428            return &ICI;
1429          }
1430        }
1431      }
1432
1433      // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is
1434      // preferable because it allows the C<<Y expression to be hoisted out
1435      // of a loop if Y is invariant and X is not.
1436      if (Shift && Shift->hasOneUse() && RHSV == 0 &&
1437          ICI.isEquality() && !Shift->isArithmeticShift() &&
1438          !isa<Constant>(Shift->getOperand(0))) {
1439        // Compute C << Y.
1440        Value *NS;
1441        if (Shift->getOpcode() == Instruction::LShr) {
1442          NS = Builder->CreateShl(AndCst, Shift->getOperand(1));
1443        } else {
1444          // Insert a logical shift.
1445          NS = Builder->CreateLShr(AndCst, Shift->getOperand(1));
1446        }
1447
1448        // Compute X & (C << Y).
1449        Value *NewAnd =
1450          Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
1451
1452        ICI.setOperand(0, NewAnd);
1453        return &ICI;
1454      }
1455
1456      // (icmp pred (and (or (lshr X, Y), X), 1), 0) -->
1457      //    (icmp pred (and X, (or (shl 1, Y), 1), 0))
1458      //
1459      // iff pred isn't signed
1460      {
1461        Value *X, *Y, *LShr;
1462        if (!ICI.isSigned() && RHSV == 0) {
1463          if (match(LHSI->getOperand(1), m_One())) {
1464            Constant *One = cast<Constant>(LHSI->getOperand(1));
1465            Value *Or = LHSI->getOperand(0);
1466            if (match(Or, m_Or(m_Value(LShr), m_Value(X))) &&
1467                match(LShr, m_LShr(m_Specific(X), m_Value(Y)))) {
1468              unsigned UsesRemoved = 0;
1469              if (LHSI->hasOneUse())
1470                ++UsesRemoved;
1471              if (Or->hasOneUse())
1472                ++UsesRemoved;
1473              if (LShr->hasOneUse())
1474                ++UsesRemoved;
1475              Value *NewOr = nullptr;
1476              // Compute X & ((1 << Y) | 1)
1477              if (auto *C = dyn_cast<Constant>(Y)) {
1478                if (UsesRemoved >= 1)
1479                  NewOr =
1480                      ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1481              } else {
1482                if (UsesRemoved >= 3)
1483                  NewOr = Builder->CreateOr(Builder->CreateShl(One, Y,
1484                                                               LShr->getName(),
1485                                                               /*HasNUW=*/true),
1486                                            One, Or->getName());
1487              }
1488              if (NewOr) {
1489                Value *NewAnd = Builder->CreateAnd(X, NewOr, LHSI->getName());
1490                ICI.setOperand(0, NewAnd);
1491                return &ICI;
1492              }
1493            }
1494          }
1495        }
1496      }
1497
1498      // Replace ((X & AndCst) > RHSV) with ((X & AndCst) != 0), if any
1499      // bit set in (X & AndCst) will produce a result greater than RHSV.
1500      if (ICI.getPredicate() == ICmpInst::ICMP_UGT) {
1501        unsigned NTZ = AndCst->getValue().countTrailingZeros();
1502        if ((NTZ < AndCst->getBitWidth()) &&
1503            APInt::getOneBitSet(AndCst->getBitWidth(), NTZ).ugt(RHSV))
1504          return new ICmpInst(ICmpInst::ICMP_NE, LHSI,
1505                              Constant::getNullValue(RHS->getType()));
1506      }
1507    }
1508
1509    // Try to optimize things like "A[i]&42 == 0" to index computations.
1510    if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
1511      if (GetElementPtrInst *GEP =
1512          dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1513        if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1514          if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1515              !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
1516            ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
1517            if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
1518              return Res;
1519          }
1520    }
1521
1522    // X & -C == -C -> X >  u ~C
1523    // X & -C != -C -> X <= u ~C
1524    //   iff C is a power of 2
1525    if (ICI.isEquality() && RHS == LHSI->getOperand(1) && (-RHSV).isPowerOf2())
1526      return new ICmpInst(
1527          ICI.getPredicate() == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_UGT
1528                                                  : ICmpInst::ICMP_ULE,
1529          LHSI->getOperand(0), SubOne(RHS));
1530
1531    // (icmp eq (and %A, C), 0) -> (icmp sgt (trunc %A), -1)
1532    //   iff C is a power of 2
1533    if (ICI.isEquality() && LHSI->hasOneUse() && match(RHS, m_Zero())) {
1534      if (auto *CI = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1535        const APInt &AI = CI->getValue();
1536        int32_t ExactLogBase2 = AI.exactLogBase2();
1537        if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
1538          Type *NTy = IntegerType::get(ICI.getContext(), ExactLogBase2 + 1);
1539          Value *Trunc = Builder->CreateTrunc(LHSI->getOperand(0), NTy);
1540          return new ICmpInst(ICI.getPredicate() == ICmpInst::ICMP_EQ
1541                                  ? ICmpInst::ICMP_SGE
1542                                  : ICmpInst::ICMP_SLT,
1543                              Trunc, Constant::getNullValue(NTy));
1544        }
1545      }
1546    }
1547    break;
1548
1549  case Instruction::Or: {
1550    if (RHS->isOne()) {
1551      // icmp slt signum(V) 1 --> icmp slt V, 1
1552      Value *V = nullptr;
1553      if (ICI.getPredicate() == ICmpInst::ICMP_SLT &&
1554          match(LHSI, m_Signum(m_Value(V))))
1555        return new ICmpInst(ICmpInst::ICMP_SLT, V,
1556                            ConstantInt::get(V->getType(), 1));
1557    }
1558
1559    if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
1560      break;
1561    Value *P, *Q;
1562    if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1563      // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1564      // -> and (icmp eq P, null), (icmp eq Q, null).
1565      Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
1566                                        Constant::getNullValue(P->getType()));
1567      Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
1568                                        Constant::getNullValue(Q->getType()));
1569      Instruction *Op;
1570      if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1571        Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
1572      else
1573        Op = BinaryOperator::CreateOr(ICIP, ICIQ);
1574      return Op;
1575    }
1576    break;
1577  }
1578
1579  case Instruction::Mul: {       // (icmp pred (mul X, Val), CI)
1580    ConstantInt *Val = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1581    if (!Val) break;
1582
1583    // If this is a signed comparison to 0 and the mul is sign preserving,
1584    // use the mul LHS operand instead.
1585    ICmpInst::Predicate pred = ICI.getPredicate();
1586    if (isSignTest(pred, RHS) && !Val->isZero() &&
1587        cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
1588      return new ICmpInst(Val->isNegative() ?
1589                          ICmpInst::getSwappedPredicate(pred) : pred,
1590                          LHSI->getOperand(0),
1591                          Constant::getNullValue(RHS->getType()));
1592
1593    break;
1594  }
1595
1596  case Instruction::Shl: {       // (icmp pred (shl X, ShAmt), CI)
1597    uint32_t TypeBits = RHSV.getBitWidth();
1598    ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1599    if (!ShAmt) {
1600      Value *X;
1601      // (1 << X) pred P2 -> X pred Log2(P2)
1602      if (match(LHSI, m_Shl(m_One(), m_Value(X)))) {
1603        bool RHSVIsPowerOf2 = RHSV.isPowerOf2();
1604        ICmpInst::Predicate Pred = ICI.getPredicate();
1605        if (ICI.isUnsigned()) {
1606          if (!RHSVIsPowerOf2) {
1607            // (1 << X) <  30 -> X <= 4
1608            // (1 << X) <= 30 -> X <= 4
1609            // (1 << X) >= 30 -> X >  4
1610            // (1 << X) >  30 -> X >  4
1611            if (Pred == ICmpInst::ICMP_ULT)
1612              Pred = ICmpInst::ICMP_ULE;
1613            else if (Pred == ICmpInst::ICMP_UGE)
1614              Pred = ICmpInst::ICMP_UGT;
1615          }
1616          unsigned RHSLog2 = RHSV.logBase2();
1617
1618          // (1 << X) >= 2147483648 -> X >= 31 -> X == 31
1619          // (1 << X) <  2147483648 -> X <  31 -> X != 31
1620          if (RHSLog2 == TypeBits-1) {
1621            if (Pred == ICmpInst::ICMP_UGE)
1622              Pred = ICmpInst::ICMP_EQ;
1623            else if (Pred == ICmpInst::ICMP_ULT)
1624              Pred = ICmpInst::ICMP_NE;
1625          }
1626
1627          return new ICmpInst(Pred, X,
1628                              ConstantInt::get(RHS->getType(), RHSLog2));
1629        } else if (ICI.isSigned()) {
1630          if (RHSV.isAllOnesValue()) {
1631            // (1 << X) <= -1 -> X == 31
1632            if (Pred == ICmpInst::ICMP_SLE)
1633              return new ICmpInst(ICmpInst::ICMP_EQ, X,
1634                                  ConstantInt::get(RHS->getType(), TypeBits-1));
1635
1636            // (1 << X) >  -1 -> X != 31
1637            if (Pred == ICmpInst::ICMP_SGT)
1638              return new ICmpInst(ICmpInst::ICMP_NE, X,
1639                                  ConstantInt::get(RHS->getType(), TypeBits-1));
1640          } else if (!RHSV) {
1641            // (1 << X) <  0 -> X == 31
1642            // (1 << X) <= 0 -> X == 31
1643            if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1644              return new ICmpInst(ICmpInst::ICMP_EQ, X,
1645                                  ConstantInt::get(RHS->getType(), TypeBits-1));
1646
1647            // (1 << X) >= 0 -> X != 31
1648            // (1 << X) >  0 -> X != 31
1649            if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
1650              return new ICmpInst(ICmpInst::ICMP_NE, X,
1651                                  ConstantInt::get(RHS->getType(), TypeBits-1));
1652          }
1653        } else if (ICI.isEquality()) {
1654          if (RHSVIsPowerOf2)
1655            return new ICmpInst(
1656                Pred, X, ConstantInt::get(RHS->getType(), RHSV.logBase2()));
1657        }
1658      }
1659      break;
1660    }
1661
1662    // Check that the shift amount is in range.  If not, don't perform
1663    // undefined shifts.  When the shift is visited it will be
1664    // simplified.
1665    if (ShAmt->uge(TypeBits))
1666      break;
1667
1668    if (ICI.isEquality()) {
1669      // If we are comparing against bits always shifted out, the
1670      // comparison cannot succeed.
1671      Constant *Comp =
1672        ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
1673                                                                 ShAmt);
1674      if (Comp != RHS) {// Comparing against a bit that we know is zero.
1675        bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1676        Constant *Cst = Builder->getInt1(IsICMP_NE);
1677        return ReplaceInstUsesWith(ICI, Cst);
1678      }
1679
1680      // If the shift is NUW, then it is just shifting out zeros, no need for an
1681      // AND.
1682      if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
1683        return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1684                            ConstantExpr::getLShr(RHS, ShAmt));
1685
1686      // If the shift is NSW and we compare to 0, then it is just shifting out
1687      // sign bits, no need for an AND either.
1688      if (cast<BinaryOperator>(LHSI)->hasNoSignedWrap() && RHSV == 0)
1689        return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1690                            ConstantExpr::getLShr(RHS, ShAmt));
1691
1692      if (LHSI->hasOneUse()) {
1693        // Otherwise strength reduce the shift into an and.
1694        uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
1695        Constant *Mask = Builder->getInt(APInt::getLowBitsSet(TypeBits,
1696                                                          TypeBits - ShAmtVal));
1697
1698        Value *And =
1699          Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
1700        return new ICmpInst(ICI.getPredicate(), And,
1701                            ConstantExpr::getLShr(RHS, ShAmt));
1702      }
1703    }
1704
1705    // If this is a signed comparison to 0 and the shift is sign preserving,
1706    // use the shift LHS operand instead.
1707    ICmpInst::Predicate pred = ICI.getPredicate();
1708    if (isSignTest(pred, RHS) &&
1709        cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
1710      return new ICmpInst(pred,
1711                          LHSI->getOperand(0),
1712                          Constant::getNullValue(RHS->getType()));
1713
1714    // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
1715    bool TrueIfSigned = false;
1716    if (LHSI->hasOneUse() &&
1717        isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
1718      // (X << 31) <s 0  --> (X&1) != 0
1719      Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
1720                                        APInt::getOneBitSet(TypeBits,
1721                                            TypeBits-ShAmt->getZExtValue()-1));
1722      Value *And =
1723        Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
1724      return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
1725                          And, Constant::getNullValue(And->getType()));
1726    }
1727
1728    // Transform (icmp pred iM (shl iM %v, N), CI)
1729    // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (CI>>N))
1730    // Transform the shl to a trunc if (trunc (CI>>N)) has no loss and M-N.
1731    // This enables to get rid of the shift in favor of a trunc which can be
1732    // free on the target. It has the additional benefit of comparing to a
1733    // smaller constant, which will be target friendly.
1734    unsigned Amt = ShAmt->getLimitedValue(TypeBits-1);
1735    if (LHSI->hasOneUse() &&
1736        Amt != 0 && RHSV.countTrailingZeros() >= Amt) {
1737      Type *NTy = IntegerType::get(ICI.getContext(), TypeBits - Amt);
1738      Constant *NCI = ConstantExpr::getTrunc(
1739                        ConstantExpr::getAShr(RHS,
1740                          ConstantInt::get(RHS->getType(), Amt)),
1741                        NTy);
1742      return new ICmpInst(ICI.getPredicate(),
1743                          Builder->CreateTrunc(LHSI->getOperand(0), NTy),
1744                          NCI);
1745    }
1746
1747    break;
1748  }
1749
1750  case Instruction::LShr:         // (icmp pred (shr X, ShAmt), CI)
1751  case Instruction::AShr: {
1752    // Handle equality comparisons of shift-by-constant.
1753    BinaryOperator *BO = cast<BinaryOperator>(LHSI);
1754    if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1755      if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt))
1756        return Res;
1757    }
1758
1759    // Handle exact shr's.
1760    if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) {
1761      if (RHSV.isMinValue())
1762        return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS);
1763    }
1764    break;
1765  }
1766
1767  case Instruction::SDiv:
1768  case Instruction::UDiv:
1769    // Fold: icmp pred ([us]div X, C1), C2 -> range test
1770    // Fold this div into the comparison, producing a range check.
1771    // Determine, based on the divide type, what the range is being
1772    // checked.  If there is an overflow on the low or high side, remember
1773    // it, otherwise compute the range [low, hi) bounding the new value.
1774    // See: InsertRangeTest above for the kinds of replacements possible.
1775    if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
1776      if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
1777                                          DivRHS))
1778        return R;
1779    break;
1780
1781  case Instruction::Sub: {
1782    ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(0));
1783    if (!LHSC) break;
1784    const APInt &LHSV = LHSC->getValue();
1785
1786    // C1-X <u C2 -> (X|(C2-1)) == C1
1787    //   iff C1 & (C2-1) == C2-1
1788    //       C2 is a power of 2
1789    if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
1790        RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == (RHSV - 1))
1791      return new ICmpInst(ICmpInst::ICMP_EQ,
1792                          Builder->CreateOr(LHSI->getOperand(1), RHSV - 1),
1793                          LHSC);
1794
1795    // C1-X >u C2 -> (X|C2) != C1
1796    //   iff C1 & C2 == C2
1797    //       C2+1 is a power of 2
1798    if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
1799        (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == RHSV)
1800      return new ICmpInst(ICmpInst::ICMP_NE,
1801                          Builder->CreateOr(LHSI->getOperand(1), RHSV), LHSC);
1802    break;
1803  }
1804
1805  case Instruction::Add:
1806    // Fold: icmp pred (add X, C1), C2
1807    if (!ICI.isEquality()) {
1808      ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1809      if (!LHSC) break;
1810      const APInt &LHSV = LHSC->getValue();
1811
1812      ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
1813                            .subtract(LHSV);
1814
1815      if (ICI.isSigned()) {
1816        if (CR.getLower().isSignBit()) {
1817          return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
1818                              Builder->getInt(CR.getUpper()));
1819        } else if (CR.getUpper().isSignBit()) {
1820          return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
1821                              Builder->getInt(CR.getLower()));
1822        }
1823      } else {
1824        if (CR.getLower().isMinValue()) {
1825          return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
1826                              Builder->getInt(CR.getUpper()));
1827        } else if (CR.getUpper().isMinValue()) {
1828          return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
1829                              Builder->getInt(CR.getLower()));
1830        }
1831      }
1832
1833      // X-C1 <u C2 -> (X & -C2) == C1
1834      //   iff C1 & (C2-1) == 0
1835      //       C2 is a power of 2
1836      if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
1837          RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == 0)
1838        return new ICmpInst(ICmpInst::ICMP_EQ,
1839                            Builder->CreateAnd(LHSI->getOperand(0), -RHSV),
1840                            ConstantExpr::getNeg(LHSC));
1841
1842      // X-C1 >u C2 -> (X & ~C2) != C1
1843      //   iff C1 & C2 == 0
1844      //       C2+1 is a power of 2
1845      if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
1846          (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == 0)
1847        return new ICmpInst(ICmpInst::ICMP_NE,
1848                            Builder->CreateAnd(LHSI->getOperand(0), ~RHSV),
1849                            ConstantExpr::getNeg(LHSC));
1850    }
1851    break;
1852  }
1853
1854  // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
1855  if (ICI.isEquality()) {
1856    bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1857
1858    // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
1859    // the second operand is a constant, simplify a bit.
1860    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
1861      switch (BO->getOpcode()) {
1862      case Instruction::SRem:
1863        // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
1864        if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
1865          const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
1866          if (V.sgt(1) && V.isPowerOf2()) {
1867            Value *NewRem =
1868              Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
1869                                  BO->getName());
1870            return new ICmpInst(ICI.getPredicate(), NewRem,
1871                                Constant::getNullValue(BO->getType()));
1872          }
1873        }
1874        break;
1875      case Instruction::Add:
1876        // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
1877        if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1878          if (BO->hasOneUse())
1879            return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1880                                ConstantExpr::getSub(RHS, BOp1C));
1881        } else if (RHSV == 0) {
1882          // Replace ((add A, B) != 0) with (A != -B) if A or B is
1883          // efficiently invertible, or if the add has just this one use.
1884          Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
1885
1886          if (Value *NegVal = dyn_castNegVal(BOp1))
1887            return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
1888          if (Value *NegVal = dyn_castNegVal(BOp0))
1889            return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
1890          if (BO->hasOneUse()) {
1891            Value *Neg = Builder->CreateNeg(BOp1);
1892            Neg->takeName(BO);
1893            return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
1894          }
1895        }
1896        break;
1897      case Instruction::Xor:
1898        // For the xor case, we can xor two constants together, eliminating
1899        // the explicit xor.
1900        if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
1901          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1902                              ConstantExpr::getXor(RHS, BOC));
1903        } else if (RHSV == 0) {
1904          // Replace ((xor A, B) != 0) with (A != B)
1905          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1906                              BO->getOperand(1));
1907        }
1908        break;
1909      case Instruction::Sub:
1910        // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
1911        if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
1912          if (BO->hasOneUse())
1913            return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
1914                                ConstantExpr::getSub(BOp0C, RHS));
1915        } else if (RHSV == 0) {
1916          // Replace ((sub A, B) != 0) with (A != B)
1917          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1918                              BO->getOperand(1));
1919        }
1920        break;
1921      case Instruction::Or:
1922        // If bits are being or'd in that are not present in the constant we
1923        // are comparing against, then the comparison could never succeed!
1924        if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1925          Constant *NotCI = ConstantExpr::getNot(RHS);
1926          if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
1927            return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
1928        }
1929        break;
1930
1931      case Instruction::And:
1932        if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1933          // If bits are being compared against that are and'd out, then the
1934          // comparison can never succeed!
1935          if ((RHSV & ~BOC->getValue()) != 0)
1936            return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
1937
1938          // If we have ((X & C) == C), turn it into ((X & C) != 0).
1939          if (RHS == BOC && RHSV.isPowerOf2())
1940            return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
1941                                ICmpInst::ICMP_NE, LHSI,
1942                                Constant::getNullValue(RHS->getType()));
1943
1944          // Don't perform the following transforms if the AND has multiple uses
1945          if (!BO->hasOneUse())
1946            break;
1947
1948          // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
1949          if (BOC->getValue().isSignBit()) {
1950            Value *X = BO->getOperand(0);
1951            Constant *Zero = Constant::getNullValue(X->getType());
1952            ICmpInst::Predicate pred = isICMP_NE ?
1953              ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1954            return new ICmpInst(pred, X, Zero);
1955          }
1956
1957          // ((X & ~7) == 0) --> X < 8
1958          if (RHSV == 0 && isHighOnes(BOC)) {
1959            Value *X = BO->getOperand(0);
1960            Constant *NegX = ConstantExpr::getNeg(BOC);
1961            ICmpInst::Predicate pred = isICMP_NE ?
1962              ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1963            return new ICmpInst(pred, X, NegX);
1964          }
1965        }
1966        break;
1967      case Instruction::Mul:
1968        if (RHSV == 0 && BO->hasNoSignedWrap()) {
1969          if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1970            // The trivial case (mul X, 0) is handled by InstSimplify
1971            // General case : (mul X, C) != 0 iff X != 0
1972            //                (mul X, C) == 0 iff X == 0
1973            if (!BOC->isZero())
1974              return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1975                                  Constant::getNullValue(RHS->getType()));
1976          }
1977        }
1978        break;
1979      default: break;
1980      }
1981    } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
1982      // Handle icmp {eq|ne} <intrinsic>, intcst.
1983      switch (II->getIntrinsicID()) {
1984      case Intrinsic::bswap:
1985        Worklist.Add(II);
1986        ICI.setOperand(0, II->getArgOperand(0));
1987        ICI.setOperand(1, Builder->getInt(RHSV.byteSwap()));
1988        return &ICI;
1989      case Intrinsic::ctlz:
1990      case Intrinsic::cttz:
1991        // ctz(A) == bitwidth(a)  ->  A == 0 and likewise for !=
1992        if (RHSV == RHS->getType()->getBitWidth()) {
1993          Worklist.Add(II);
1994          ICI.setOperand(0, II->getArgOperand(0));
1995          ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
1996          return &ICI;
1997        }
1998        break;
1999      case Intrinsic::ctpop:
2000        // popcount(A) == 0  ->  A == 0 and likewise for !=
2001        if (RHS->isZero()) {
2002          Worklist.Add(II);
2003          ICI.setOperand(0, II->getArgOperand(0));
2004          ICI.setOperand(1, RHS);
2005          return &ICI;
2006        }
2007        break;
2008      default:
2009        break;
2010      }
2011    }
2012  }
2013  return nullptr;
2014}
2015
2016/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
2017/// We only handle extending casts so far.
2018///
2019Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
2020  const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
2021  Value *LHSCIOp        = LHSCI->getOperand(0);
2022  Type *SrcTy     = LHSCIOp->getType();
2023  Type *DestTy    = LHSCI->getType();
2024  Value *RHSCIOp;
2025
2026  // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
2027  // integer type is the same size as the pointer type.
2028  if (LHSCI->getOpcode() == Instruction::PtrToInt &&
2029      DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) {
2030    Value *RHSOp = nullptr;
2031    if (PtrToIntOperator *RHSC = dyn_cast<PtrToIntOperator>(ICI.getOperand(1))) {
2032      Value *RHSCIOp = RHSC->getOperand(0);
2033      if (RHSCIOp->getType()->getPointerAddressSpace() ==
2034          LHSCIOp->getType()->getPointerAddressSpace()) {
2035        RHSOp = RHSC->getOperand(0);
2036        // If the pointer types don't match, insert a bitcast.
2037        if (LHSCIOp->getType() != RHSOp->getType())
2038          RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
2039      }
2040    } else if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1)))
2041      RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
2042
2043    if (RHSOp)
2044      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
2045  }
2046
2047  // The code below only handles extension cast instructions, so far.
2048  // Enforce this.
2049  if (LHSCI->getOpcode() != Instruction::ZExt &&
2050      LHSCI->getOpcode() != Instruction::SExt)
2051    return nullptr;
2052
2053  bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
2054  bool isSignedCmp = ICI.isSigned();
2055
2056  if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
2057    // Not an extension from the same type?
2058    RHSCIOp = CI->getOperand(0);
2059    if (RHSCIOp->getType() != LHSCIOp->getType())
2060      return nullptr;
2061
2062    // If the signedness of the two casts doesn't agree (i.e. one is a sext
2063    // and the other is a zext), then we can't handle this.
2064    if (CI->getOpcode() != LHSCI->getOpcode())
2065      return nullptr;
2066
2067    // Deal with equality cases early.
2068    if (ICI.isEquality())
2069      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
2070
2071    // A signed comparison of sign extended values simplifies into a
2072    // signed comparison.
2073    if (isSignedCmp && isSignedExt)
2074      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
2075
2076    // The other three cases all fold into an unsigned comparison.
2077    return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
2078  }
2079
2080  // If we aren't dealing with a constant on the RHS, exit early
2081  ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
2082  if (!CI)
2083    return nullptr;
2084
2085  // Compute the constant that would happen if we truncated to SrcTy then
2086  // reextended to DestTy.
2087  Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
2088  Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
2089                                                Res1, DestTy);
2090
2091  // If the re-extended constant didn't change...
2092  if (Res2 == CI) {
2093    // Deal with equality cases early.
2094    if (ICI.isEquality())
2095      return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
2096
2097    // A signed comparison of sign extended values simplifies into a
2098    // signed comparison.
2099    if (isSignedExt && isSignedCmp)
2100      return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
2101
2102    // The other three cases all fold into an unsigned comparison.
2103    return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
2104  }
2105
2106  // The re-extended constant changed so the constant cannot be represented
2107  // in the shorter type. Consequently, we cannot emit a simple comparison.
2108  // All the cases that fold to true or false will have already been handled
2109  // by SimplifyICmpInst, so only deal with the tricky case.
2110
2111  if (isSignedCmp || !isSignedExt)
2112    return nullptr;
2113
2114  // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
2115  // should have been folded away previously and not enter in here.
2116
2117  // We're performing an unsigned comp with a sign extended value.
2118  // This is true if the input is >= 0. [aka >s -1]
2119  Constant *NegOne = Constant::getAllOnesValue(SrcTy);
2120  Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
2121
2122  // Finally, return the value computed.
2123  if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
2124    return ReplaceInstUsesWith(ICI, Result);
2125
2126  assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
2127  return BinaryOperator::CreateNot(Result);
2128}
2129
2130/// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
2131///   I = icmp ugt (add (add A, B), CI2), CI1
2132/// If this is of the form:
2133///   sum = a + b
2134///   if (sum+128 >u 255)
2135/// Then replace it with llvm.sadd.with.overflow.i8.
2136///
2137static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
2138                                          ConstantInt *CI2, ConstantInt *CI1,
2139                                          InstCombiner &IC) {
2140  // The transformation we're trying to do here is to transform this into an
2141  // llvm.sadd.with.overflow.  To do this, we have to replace the original add
2142  // with a narrower add, and discard the add-with-constant that is part of the
2143  // range check (if we can't eliminate it, this isn't profitable).
2144
2145  // In order to eliminate the add-with-constant, the compare can be its only
2146  // use.
2147  Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
2148  if (!AddWithCst->hasOneUse()) return nullptr;
2149
2150  // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
2151  if (!CI2->getValue().isPowerOf2()) return nullptr;
2152  unsigned NewWidth = CI2->getValue().countTrailingZeros();
2153  if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return nullptr;
2154
2155  // The width of the new add formed is 1 more than the bias.
2156  ++NewWidth;
2157
2158  // Check to see that CI1 is an all-ones value with NewWidth bits.
2159  if (CI1->getBitWidth() == NewWidth ||
2160      CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
2161    return nullptr;
2162
2163  // This is only really a signed overflow check if the inputs have been
2164  // sign-extended; check for that condition. For example, if CI2 is 2^31 and
2165  // the operands of the add are 64 bits wide, we need at least 33 sign bits.
2166  unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
2167  if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
2168      IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
2169    return nullptr;
2170
2171  // In order to replace the original add with a narrower
2172  // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
2173  // and truncates that discard the high bits of the add.  Verify that this is
2174  // the case.
2175  Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
2176  for (User *U : OrigAdd->users()) {
2177    if (U == AddWithCst) continue;
2178
2179    // Only accept truncates for now.  We would really like a nice recursive
2180    // predicate like SimplifyDemandedBits, but which goes downwards the use-def
2181    // chain to see which bits of a value are actually demanded.  If the
2182    // original add had another add which was then immediately truncated, we
2183    // could still do the transformation.
2184    TruncInst *TI = dyn_cast<TruncInst>(U);
2185    if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
2186      return nullptr;
2187  }
2188
2189  // If the pattern matches, truncate the inputs to the narrower type and
2190  // use the sadd_with_overflow intrinsic to efficiently compute both the
2191  // result and the overflow bit.
2192  Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
2193  Value *F = Intrinsic::getDeclaration(I.getModule(),
2194                                       Intrinsic::sadd_with_overflow, NewType);
2195
2196  InstCombiner::BuilderTy *Builder = IC.Builder;
2197
2198  // Put the new code above the original add, in case there are any uses of the
2199  // add between the add and the compare.
2200  Builder->SetInsertPoint(OrigAdd);
2201
2202  Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
2203  Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
2204  CallInst *Call = Builder->CreateCall(F, {TruncA, TruncB}, "sadd");
2205  Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
2206  Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
2207
2208  // The inner add was the result of the narrow add, zero extended to the
2209  // wider type.  Replace it with the result computed by the intrinsic.
2210  IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
2211
2212  // The original icmp gets replaced with the overflow value.
2213  return ExtractValueInst::Create(Call, 1, "sadd.overflow");
2214}
2215
2216bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS,
2217                                         Value *RHS, Instruction &OrigI,
2218                                         Value *&Result, Constant *&Overflow) {
2219  if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
2220    std::swap(LHS, RHS);
2221
2222  auto SetResult = [&](Value *OpResult, Constant *OverflowVal, bool ReuseName) {
2223    Result = OpResult;
2224    Overflow = OverflowVal;
2225    if (ReuseName)
2226      Result->takeName(&OrigI);
2227    return true;
2228  };
2229
2230  // If the overflow check was an add followed by a compare, the insertion point
2231  // may be pointing to the compare.  We want to insert the new instructions
2232  // before the add in case there are uses of the add between the add and the
2233  // compare.
2234  Builder->SetInsertPoint(&OrigI);
2235
2236  switch (OCF) {
2237  case OCF_INVALID:
2238    llvm_unreachable("bad overflow check kind!");
2239
2240  case OCF_UNSIGNED_ADD: {
2241    OverflowResult OR = computeOverflowForUnsignedAdd(LHS, RHS, &OrigI);
2242    if (OR == OverflowResult::NeverOverflows)
2243      return SetResult(Builder->CreateNUWAdd(LHS, RHS), Builder->getFalse(),
2244                       true);
2245
2246    if (OR == OverflowResult::AlwaysOverflows)
2247      return SetResult(Builder->CreateAdd(LHS, RHS), Builder->getTrue(), true);
2248  }
2249  // FALL THROUGH uadd into sadd
2250  case OCF_SIGNED_ADD: {
2251    // X + 0 -> {X, false}
2252    if (match(RHS, m_Zero()))
2253      return SetResult(LHS, Builder->getFalse(), false);
2254
2255    // We can strength reduce this signed add into a regular add if we can prove
2256    // that it will never overflow.
2257    if (OCF == OCF_SIGNED_ADD)
2258      if (WillNotOverflowSignedAdd(LHS, RHS, OrigI))
2259        return SetResult(Builder->CreateNSWAdd(LHS, RHS), Builder->getFalse(),
2260                         true);
2261    break;
2262  }
2263
2264  case OCF_UNSIGNED_SUB:
2265  case OCF_SIGNED_SUB: {
2266    // X - 0 -> {X, false}
2267    if (match(RHS, m_Zero()))
2268      return SetResult(LHS, Builder->getFalse(), false);
2269
2270    if (OCF == OCF_SIGNED_SUB) {
2271      if (WillNotOverflowSignedSub(LHS, RHS, OrigI))
2272        return SetResult(Builder->CreateNSWSub(LHS, RHS), Builder->getFalse(),
2273                         true);
2274    } else {
2275      if (WillNotOverflowUnsignedSub(LHS, RHS, OrigI))
2276        return SetResult(Builder->CreateNUWSub(LHS, RHS), Builder->getFalse(),
2277                         true);
2278    }
2279    break;
2280  }
2281
2282  case OCF_UNSIGNED_MUL: {
2283    OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, &OrigI);
2284    if (OR == OverflowResult::NeverOverflows)
2285      return SetResult(Builder->CreateNUWMul(LHS, RHS), Builder->getFalse(),
2286                       true);
2287    if (OR == OverflowResult::AlwaysOverflows)
2288      return SetResult(Builder->CreateMul(LHS, RHS), Builder->getTrue(), true);
2289  } // FALL THROUGH
2290  case OCF_SIGNED_MUL:
2291    // X * undef -> undef
2292    if (isa<UndefValue>(RHS))
2293      return SetResult(RHS, UndefValue::get(Builder->getInt1Ty()), false);
2294
2295    // X * 0 -> {0, false}
2296    if (match(RHS, m_Zero()))
2297      return SetResult(RHS, Builder->getFalse(), false);
2298
2299    // X * 1 -> {X, false}
2300    if (match(RHS, m_One()))
2301      return SetResult(LHS, Builder->getFalse(), false);
2302
2303    if (OCF == OCF_SIGNED_MUL)
2304      if (WillNotOverflowSignedMul(LHS, RHS, OrigI))
2305        return SetResult(Builder->CreateNSWMul(LHS, RHS), Builder->getFalse(),
2306                         true);
2307    break;
2308  }
2309
2310  return false;
2311}
2312
2313/// \brief Recognize and process idiom involving test for multiplication
2314/// overflow.
2315///
2316/// The caller has matched a pattern of the form:
2317///   I = cmp u (mul(zext A, zext B), V
2318/// The function checks if this is a test for overflow and if so replaces
2319/// multiplication with call to 'mul.with.overflow' intrinsic.
2320///
2321/// \param I Compare instruction.
2322/// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
2323///               the compare instruction.  Must be of integer type.
2324/// \param OtherVal The other argument of compare instruction.
2325/// \returns Instruction which must replace the compare instruction, NULL if no
2326///          replacement required.
2327static Instruction *ProcessUMulZExtIdiom(ICmpInst &I, Value *MulVal,
2328                                         Value *OtherVal, InstCombiner &IC) {
2329  // Don't bother doing this transformation for pointers, don't do it for
2330  // vectors.
2331  if (!isa<IntegerType>(MulVal->getType()))
2332    return nullptr;
2333
2334  assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
2335  assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
2336  auto *MulInstr = dyn_cast<Instruction>(MulVal);
2337  if (!MulInstr)
2338    return nullptr;
2339  assert(MulInstr->getOpcode() == Instruction::Mul);
2340
2341  auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
2342       *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
2343  assert(LHS->getOpcode() == Instruction::ZExt);
2344  assert(RHS->getOpcode() == Instruction::ZExt);
2345  Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
2346
2347  // Calculate type and width of the result produced by mul.with.overflow.
2348  Type *TyA = A->getType(), *TyB = B->getType();
2349  unsigned WidthA = TyA->getPrimitiveSizeInBits(),
2350           WidthB = TyB->getPrimitiveSizeInBits();
2351  unsigned MulWidth;
2352  Type *MulType;
2353  if (WidthB > WidthA) {
2354    MulWidth = WidthB;
2355    MulType = TyB;
2356  } else {
2357    MulWidth = WidthA;
2358    MulType = TyA;
2359  }
2360
2361  // In order to replace the original mul with a narrower mul.with.overflow,
2362  // all uses must ignore upper bits of the product.  The number of used low
2363  // bits must be not greater than the width of mul.with.overflow.
2364  if (MulVal->hasNUsesOrMore(2))
2365    for (User *U : MulVal->users()) {
2366      if (U == &I)
2367        continue;
2368      if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
2369        // Check if truncation ignores bits above MulWidth.
2370        unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
2371        if (TruncWidth > MulWidth)
2372          return nullptr;
2373      } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
2374        // Check if AND ignores bits above MulWidth.
2375        if (BO->getOpcode() != Instruction::And)
2376          return nullptr;
2377        if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
2378          const APInt &CVal = CI->getValue();
2379          if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
2380            return nullptr;
2381        }
2382      } else {
2383        // Other uses prohibit this transformation.
2384        return nullptr;
2385      }
2386    }
2387
2388  // Recognize patterns
2389  switch (I.getPredicate()) {
2390  case ICmpInst::ICMP_EQ:
2391  case ICmpInst::ICMP_NE:
2392    // Recognize pattern:
2393    //   mulval = mul(zext A, zext B)
2394    //   cmp eq/neq mulval, zext trunc mulval
2395    if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal))
2396      if (Zext->hasOneUse()) {
2397        Value *ZextArg = Zext->getOperand(0);
2398        if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg))
2399          if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth)
2400            break; //Recognized
2401      }
2402
2403    // Recognize pattern:
2404    //   mulval = mul(zext A, zext B)
2405    //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
2406    ConstantInt *CI;
2407    Value *ValToMask;
2408    if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
2409      if (ValToMask != MulVal)
2410        return nullptr;
2411      const APInt &CVal = CI->getValue() + 1;
2412      if (CVal.isPowerOf2()) {
2413        unsigned MaskWidth = CVal.logBase2();
2414        if (MaskWidth == MulWidth)
2415          break; // Recognized
2416      }
2417    }
2418    return nullptr;
2419
2420  case ICmpInst::ICMP_UGT:
2421    // Recognize pattern:
2422    //   mulval = mul(zext A, zext B)
2423    //   cmp ugt mulval, max
2424    if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
2425      APInt MaxVal = APInt::getMaxValue(MulWidth);
2426      MaxVal = MaxVal.zext(CI->getBitWidth());
2427      if (MaxVal.eq(CI->getValue()))
2428        break; // Recognized
2429    }
2430    return nullptr;
2431
2432  case ICmpInst::ICMP_UGE:
2433    // Recognize pattern:
2434    //   mulval = mul(zext A, zext B)
2435    //   cmp uge mulval, max+1
2436    if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
2437      APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
2438      if (MaxVal.eq(CI->getValue()))
2439        break; // Recognized
2440    }
2441    return nullptr;
2442
2443  case ICmpInst::ICMP_ULE:
2444    // Recognize pattern:
2445    //   mulval = mul(zext A, zext B)
2446    //   cmp ule mulval, max
2447    if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
2448      APInt MaxVal = APInt::getMaxValue(MulWidth);
2449      MaxVal = MaxVal.zext(CI->getBitWidth());
2450      if (MaxVal.eq(CI->getValue()))
2451        break; // Recognized
2452    }
2453    return nullptr;
2454
2455  case ICmpInst::ICMP_ULT:
2456    // Recognize pattern:
2457    //   mulval = mul(zext A, zext B)
2458    //   cmp ule mulval, max + 1
2459    if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
2460      APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
2461      if (MaxVal.eq(CI->getValue()))
2462        break; // Recognized
2463    }
2464    return nullptr;
2465
2466  default:
2467    return nullptr;
2468  }
2469
2470  InstCombiner::BuilderTy *Builder = IC.Builder;
2471  Builder->SetInsertPoint(MulInstr);
2472
2473  // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
2474  Value *MulA = A, *MulB = B;
2475  if (WidthA < MulWidth)
2476    MulA = Builder->CreateZExt(A, MulType);
2477  if (WidthB < MulWidth)
2478    MulB = Builder->CreateZExt(B, MulType);
2479  Value *F = Intrinsic::getDeclaration(I.getModule(),
2480                                       Intrinsic::umul_with_overflow, MulType);
2481  CallInst *Call = Builder->CreateCall(F, {MulA, MulB}, "umul");
2482  IC.Worklist.Add(MulInstr);
2483
2484  // If there are uses of mul result other than the comparison, we know that
2485  // they are truncation or binary AND. Change them to use result of
2486  // mul.with.overflow and adjust properly mask/size.
2487  if (MulVal->hasNUsesOrMore(2)) {
2488    Value *Mul = Builder->CreateExtractValue(Call, 0, "umul.value");
2489    for (User *U : MulVal->users()) {
2490      if (U == &I || U == OtherVal)
2491        continue;
2492      if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
2493        if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
2494          IC.ReplaceInstUsesWith(*TI, Mul);
2495        else
2496          TI->setOperand(0, Mul);
2497      } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
2498        assert(BO->getOpcode() == Instruction::And);
2499        // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
2500        ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
2501        APInt ShortMask = CI->getValue().trunc(MulWidth);
2502        Value *ShortAnd = Builder->CreateAnd(Mul, ShortMask);
2503        Instruction *Zext =
2504            cast<Instruction>(Builder->CreateZExt(ShortAnd, BO->getType()));
2505        IC.Worklist.Add(Zext);
2506        IC.ReplaceInstUsesWith(*BO, Zext);
2507      } else {
2508        llvm_unreachable("Unexpected Binary operation");
2509      }
2510      IC.Worklist.Add(cast<Instruction>(U));
2511    }
2512  }
2513  if (isa<Instruction>(OtherVal))
2514    IC.Worklist.Add(cast<Instruction>(OtherVal));
2515
2516  // The original icmp gets replaced with the overflow value, maybe inverted
2517  // depending on predicate.
2518  bool Inverse = false;
2519  switch (I.getPredicate()) {
2520  case ICmpInst::ICMP_NE:
2521    break;
2522  case ICmpInst::ICMP_EQ:
2523    Inverse = true;
2524    break;
2525  case ICmpInst::ICMP_UGT:
2526  case ICmpInst::ICMP_UGE:
2527    if (I.getOperand(0) == MulVal)
2528      break;
2529    Inverse = true;
2530    break;
2531  case ICmpInst::ICMP_ULT:
2532  case ICmpInst::ICMP_ULE:
2533    if (I.getOperand(1) == MulVal)
2534      break;
2535    Inverse = true;
2536    break;
2537  default:
2538    llvm_unreachable("Unexpected predicate");
2539  }
2540  if (Inverse) {
2541    Value *Res = Builder->CreateExtractValue(Call, 1);
2542    return BinaryOperator::CreateNot(Res);
2543  }
2544
2545  return ExtractValueInst::Create(Call, 1);
2546}
2547
2548// DemandedBitsLHSMask - When performing a comparison against a constant,
2549// it is possible that not all the bits in the LHS are demanded.  This helper
2550// method computes the mask that IS demanded.
2551static APInt DemandedBitsLHSMask(ICmpInst &I,
2552                                 unsigned BitWidth, bool isSignCheck) {
2553  if (isSignCheck)
2554    return APInt::getSignBit(BitWidth);
2555
2556  ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
2557  if (!CI) return APInt::getAllOnesValue(BitWidth);
2558  const APInt &RHS = CI->getValue();
2559
2560  switch (I.getPredicate()) {
2561  // For a UGT comparison, we don't care about any bits that
2562  // correspond to the trailing ones of the comparand.  The value of these
2563  // bits doesn't impact the outcome of the comparison, because any value
2564  // greater than the RHS must differ in a bit higher than these due to carry.
2565  case ICmpInst::ICMP_UGT: {
2566    unsigned trailingOnes = RHS.countTrailingOnes();
2567    APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
2568    return ~lowBitsSet;
2569  }
2570
2571  // Similarly, for a ULT comparison, we don't care about the trailing zeros.
2572  // Any value less than the RHS must differ in a higher bit because of carries.
2573  case ICmpInst::ICMP_ULT: {
2574    unsigned trailingZeros = RHS.countTrailingZeros();
2575    APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
2576    return ~lowBitsSet;
2577  }
2578
2579  default:
2580    return APInt::getAllOnesValue(BitWidth);
2581  }
2582}
2583
2584/// \brief Check if the order of \p Op0 and \p Op1 as operand in an ICmpInst
2585/// should be swapped.
2586/// The decision is based on how many times these two operands are reused
2587/// as subtract operands and their positions in those instructions.
2588/// The rational is that several architectures use the same instruction for
2589/// both subtract and cmp, thus it is better if the order of those operands
2590/// match.
2591/// \return true if Op0 and Op1 should be swapped.
2592static bool swapMayExposeCSEOpportunities(const Value * Op0,
2593                                          const Value * Op1) {
2594  // Filter out pointer value as those cannot appears directly in subtract.
2595  // FIXME: we may want to go through inttoptrs or bitcasts.
2596  if (Op0->getType()->isPointerTy())
2597    return false;
2598  // Count every uses of both Op0 and Op1 in a subtract.
2599  // Each time Op0 is the first operand, count -1: swapping is bad, the
2600  // subtract has already the same layout as the compare.
2601  // Each time Op0 is the second operand, count +1: swapping is good, the
2602  // subtract has a different layout as the compare.
2603  // At the end, if the benefit is greater than 0, Op0 should come second to
2604  // expose more CSE opportunities.
2605  int GlobalSwapBenefits = 0;
2606  for (const User *U : Op0->users()) {
2607    const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(U);
2608    if (!BinOp || BinOp->getOpcode() != Instruction::Sub)
2609      continue;
2610    // If Op0 is the first argument, this is not beneficial to swap the
2611    // arguments.
2612    int LocalSwapBenefits = -1;
2613    unsigned Op1Idx = 1;
2614    if (BinOp->getOperand(Op1Idx) == Op0) {
2615      Op1Idx = 0;
2616      LocalSwapBenefits = 1;
2617    }
2618    if (BinOp->getOperand(Op1Idx) != Op1)
2619      continue;
2620    GlobalSwapBenefits += LocalSwapBenefits;
2621  }
2622  return GlobalSwapBenefits > 0;
2623}
2624
2625/// \brief Check that one use is in the same block as the definition and all
2626/// other uses are in blocks dominated by a given block
2627///
2628/// \param DI Definition
2629/// \param UI Use
2630/// \param DB Block that must dominate all uses of \p DI outside
2631///           the parent block
2632/// \return true when \p UI is the only use of \p DI in the parent block
2633/// and all other uses of \p DI are in blocks dominated by \p DB.
2634///
2635bool InstCombiner::dominatesAllUses(const Instruction *DI,
2636                                    const Instruction *UI,
2637                                    const BasicBlock *DB) const {
2638  assert(DI && UI && "Instruction not defined\n");
2639  // ignore incomplete definitions
2640  if (!DI->getParent())
2641    return false;
2642  // DI and UI must be in the same block
2643  if (DI->getParent() != UI->getParent())
2644    return false;
2645  // Protect from self-referencing blocks
2646  if (DI->getParent() == DB)
2647    return false;
2648  // DominatorTree available?
2649  if (!DT)
2650    return false;
2651  for (const User *U : DI->users()) {
2652    auto *Usr = cast<Instruction>(U);
2653    if (Usr != UI && !DT->dominates(DB, Usr->getParent()))
2654      return false;
2655  }
2656  return true;
2657}
2658
2659///
2660/// true when the instruction sequence within a block is select-cmp-br.
2661///
2662static bool isChainSelectCmpBranch(const SelectInst *SI) {
2663  const BasicBlock *BB = SI->getParent();
2664  if (!BB)
2665    return false;
2666  auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
2667  if (!BI || BI->getNumSuccessors() != 2)
2668    return false;
2669  auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
2670  if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
2671    return false;
2672  return true;
2673}
2674
2675///
2676/// \brief True when a select result is replaced by one of its operands
2677/// in select-icmp sequence. This will eventually result in the elimination
2678/// of the select.
2679///
2680/// \param SI    Select instruction
2681/// \param Icmp  Compare instruction
2682/// \param SIOpd Operand that replaces the select
2683///
2684/// Notes:
2685/// - The replacement is global and requires dominator information
2686/// - The caller is responsible for the actual replacement
2687///
2688/// Example:
2689///
2690/// entry:
2691///  %4 = select i1 %3, %C* %0, %C* null
2692///  %5 = icmp eq %C* %4, null
2693///  br i1 %5, label %9, label %7
2694///  ...
2695///  ; <label>:7                                       ; preds = %entry
2696///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
2697///  ...
2698///
2699/// can be transformed to
2700///
2701///  %5 = icmp eq %C* %0, null
2702///  %6 = select i1 %3, i1 %5, i1 true
2703///  br i1 %6, label %9, label %7
2704///  ...
2705///  ; <label>:7                                       ; preds = %entry
2706///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
2707///
2708/// Similar when the first operand of the select is a constant or/and
2709/// the compare is for not equal rather than equal.
2710///
2711/// NOTE: The function is only called when the select and compare constants
2712/// are equal, the optimization can work only for EQ predicates. This is not a
2713/// major restriction since a NE compare should be 'normalized' to an equal
2714/// compare, which usually happens in the combiner and test case
2715/// select-cmp-br.ll
2716/// checks for it.
2717bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
2718                                             const ICmpInst *Icmp,
2719                                             const unsigned SIOpd) {
2720  assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
2721  if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
2722    BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
2723    // The check for the unique predecessor is not the best that can be
2724    // done. But it protects efficiently against cases like  when SI's
2725    // home block has two successors, Succ and Succ1, and Succ1 predecessor
2726    // of Succ. Then SI can't be replaced by SIOpd because the use that gets
2727    // replaced can be reached on either path. So the uniqueness check
2728    // guarantees that the path all uses of SI (outside SI's parent) are on
2729    // is disjoint from all other paths out of SI. But that information
2730    // is more expensive to compute, and the trade-off here is in favor
2731    // of compile-time.
2732    if (Succ->getUniquePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
2733      NumSel++;
2734      SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
2735      return true;
2736    }
2737  }
2738  return false;
2739}
2740
2741Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
2742  bool Changed = false;
2743  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2744  unsigned Op0Cplxity = getComplexity(Op0);
2745  unsigned Op1Cplxity = getComplexity(Op1);
2746
2747  /// Orders the operands of the compare so that they are listed from most
2748  /// complex to least complex.  This puts constants before unary operators,
2749  /// before binary operators.
2750  if (Op0Cplxity < Op1Cplxity ||
2751        (Op0Cplxity == Op1Cplxity &&
2752         swapMayExposeCSEOpportunities(Op0, Op1))) {
2753    I.swapOperands();
2754    std::swap(Op0, Op1);
2755    Changed = true;
2756  }
2757
2758  if (Value *V =
2759          SimplifyICmpInst(I.getPredicate(), Op0, Op1, DL, TLI, DT, AC, &I))
2760    return ReplaceInstUsesWith(I, V);
2761
2762  // comparing -val or val with non-zero is the same as just comparing val
2763  // ie, abs(val) != 0 -> val != 0
2764  if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero()))
2765  {
2766    Value *Cond, *SelectTrue, *SelectFalse;
2767    if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
2768                            m_Value(SelectFalse)))) {
2769      if (Value *V = dyn_castNegVal(SelectTrue)) {
2770        if (V == SelectFalse)
2771          return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
2772      }
2773      else if (Value *V = dyn_castNegVal(SelectFalse)) {
2774        if (V == SelectTrue)
2775          return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
2776      }
2777    }
2778  }
2779
2780  Type *Ty = Op0->getType();
2781
2782  // icmp's with boolean values can always be turned into bitwise operations
2783  if (Ty->isIntegerTy(1)) {
2784    switch (I.getPredicate()) {
2785    default: llvm_unreachable("Invalid icmp instruction!");
2786    case ICmpInst::ICMP_EQ: {               // icmp eq i1 A, B -> ~(A^B)
2787      Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
2788      return BinaryOperator::CreateNot(Xor);
2789    }
2790    case ICmpInst::ICMP_NE:                  // icmp eq i1 A, B -> A^B
2791      return BinaryOperator::CreateXor(Op0, Op1);
2792
2793    case ICmpInst::ICMP_UGT:
2794      std::swap(Op0, Op1);                   // Change icmp ugt -> icmp ult
2795      // FALL THROUGH
2796    case ICmpInst::ICMP_ULT:{               // icmp ult i1 A, B -> ~A & B
2797      Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
2798      return BinaryOperator::CreateAnd(Not, Op1);
2799    }
2800    case ICmpInst::ICMP_SGT:
2801      std::swap(Op0, Op1);                   // Change icmp sgt -> icmp slt
2802      // FALL THROUGH
2803    case ICmpInst::ICMP_SLT: {               // icmp slt i1 A, B -> A & ~B
2804      Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
2805      return BinaryOperator::CreateAnd(Not, Op0);
2806    }
2807    case ICmpInst::ICMP_UGE:
2808      std::swap(Op0, Op1);                   // Change icmp uge -> icmp ule
2809      // FALL THROUGH
2810    case ICmpInst::ICMP_ULE: {               //  icmp ule i1 A, B -> ~A | B
2811      Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
2812      return BinaryOperator::CreateOr(Not, Op1);
2813    }
2814    case ICmpInst::ICMP_SGE:
2815      std::swap(Op0, Op1);                   // Change icmp sge -> icmp sle
2816      // FALL THROUGH
2817    case ICmpInst::ICMP_SLE: {               //  icmp sle i1 A, B -> A | ~B
2818      Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
2819      return BinaryOperator::CreateOr(Not, Op0);
2820    }
2821    }
2822  }
2823
2824  unsigned BitWidth = 0;
2825  if (Ty->isIntOrIntVectorTy())
2826    BitWidth = Ty->getScalarSizeInBits();
2827  else // Get pointer size.
2828    BitWidth = DL.getTypeSizeInBits(Ty->getScalarType());
2829
2830  bool isSignBit = false;
2831
2832  // See if we are doing a comparison with a constant.
2833  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2834    Value *A = nullptr, *B = nullptr;
2835
2836    // Match the following pattern, which is a common idiom when writing
2837    // overflow-safe integer arithmetic function.  The source performs an
2838    // addition in wider type, and explicitly checks for overflow using
2839    // comparisons against INT_MIN and INT_MAX.  Simplify this by using the
2840    // sadd_with_overflow intrinsic.
2841    //
2842    // TODO: This could probably be generalized to handle other overflow-safe
2843    // operations if we worked out the formulas to compute the appropriate
2844    // magic constants.
2845    //
2846    // sum = a + b
2847    // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
2848    {
2849    ConstantInt *CI2;    // I = icmp ugt (add (add A, B), CI2), CI
2850    if (I.getPredicate() == ICmpInst::ICMP_UGT &&
2851        match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
2852      if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
2853        return Res;
2854    }
2855
2856    // The following transforms are only 'worth it' if the only user of the
2857    // subtraction is the icmp.
2858    if (Op0->hasOneUse()) {
2859      // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
2860      if (I.isEquality() && CI->isZero() &&
2861          match(Op0, m_Sub(m_Value(A), m_Value(B))))
2862        return new ICmpInst(I.getPredicate(), A, B);
2863
2864      // (icmp sgt (sub nsw A B), -1) -> (icmp sge A, B)
2865      if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isAllOnesValue() &&
2866          match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
2867        return new ICmpInst(ICmpInst::ICMP_SGE, A, B);
2868
2869      // (icmp sgt (sub nsw A B), 0) -> (icmp sgt A, B)
2870      if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isZero() &&
2871          match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
2872        return new ICmpInst(ICmpInst::ICMP_SGT, A, B);
2873
2874      // (icmp slt (sub nsw A B), 0) -> (icmp slt A, B)
2875      if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isZero() &&
2876          match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
2877        return new ICmpInst(ICmpInst::ICMP_SLT, A, B);
2878
2879      // (icmp slt (sub nsw A B), 1) -> (icmp sle A, B)
2880      if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isOne() &&
2881          match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
2882        return new ICmpInst(ICmpInst::ICMP_SLE, A, B);
2883    }
2884
2885    // If we have an icmp le or icmp ge instruction, turn it into the
2886    // appropriate icmp lt or icmp gt instruction.  This allows us to rely on
2887    // them being folded in the code below.  The SimplifyICmpInst code has
2888    // already handled the edge cases for us, so we just assert on them.
2889    switch (I.getPredicate()) {
2890    default: break;
2891    case ICmpInst::ICMP_ULE:
2892      assert(!CI->isMaxValue(false));                 // A <=u MAX -> TRUE
2893      return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
2894                          Builder->getInt(CI->getValue()+1));
2895    case ICmpInst::ICMP_SLE:
2896      assert(!CI->isMaxValue(true));                  // A <=s MAX -> TRUE
2897      return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
2898                          Builder->getInt(CI->getValue()+1));
2899    case ICmpInst::ICMP_UGE:
2900      assert(!CI->isMinValue(false));                 // A >=u MIN -> TRUE
2901      return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
2902                          Builder->getInt(CI->getValue()-1));
2903    case ICmpInst::ICMP_SGE:
2904      assert(!CI->isMinValue(true));                  // A >=s MIN -> TRUE
2905      return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
2906                          Builder->getInt(CI->getValue()-1));
2907    }
2908
2909    if (I.isEquality()) {
2910      ConstantInt *CI2;
2911      if (match(Op0, m_AShr(m_ConstantInt(CI2), m_Value(A))) ||
2912          match(Op0, m_LShr(m_ConstantInt(CI2), m_Value(A)))) {
2913        // (icmp eq/ne (ashr/lshr const2, A), const1)
2914        if (Instruction *Inst = FoldICmpCstShrCst(I, Op0, A, CI, CI2))
2915          return Inst;
2916      }
2917      if (match(Op0, m_Shl(m_ConstantInt(CI2), m_Value(A)))) {
2918        // (icmp eq/ne (shl const2, A), const1)
2919        if (Instruction *Inst = FoldICmpCstShlCst(I, Op0, A, CI, CI2))
2920          return Inst;
2921      }
2922    }
2923
2924    // If this comparison is a normal comparison, it demands all
2925    // bits, if it is a sign bit comparison, it only demands the sign bit.
2926    bool UnusedBit;
2927    isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
2928  }
2929
2930  // See if we can fold the comparison based on range information we can get
2931  // by checking whether bits are known to be zero or one in the input.
2932  if (BitWidth != 0) {
2933    APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
2934    APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
2935
2936    if (SimplifyDemandedBits(I.getOperandUse(0),
2937                             DemandedBitsLHSMask(I, BitWidth, isSignBit),
2938                             Op0KnownZero, Op0KnownOne, 0))
2939      return &I;
2940    if (SimplifyDemandedBits(I.getOperandUse(1),
2941                             APInt::getAllOnesValue(BitWidth), Op1KnownZero,
2942                             Op1KnownOne, 0))
2943      return &I;
2944
2945    // Given the known and unknown bits, compute a range that the LHS could be
2946    // in.  Compute the Min, Max and RHS values based on the known bits. For the
2947    // EQ and NE we use unsigned values.
2948    APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
2949    APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
2950    if (I.isSigned()) {
2951      ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
2952                                             Op0Min, Op0Max);
2953      ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
2954                                             Op1Min, Op1Max);
2955    } else {
2956      ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
2957                                               Op0Min, Op0Max);
2958      ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
2959                                               Op1Min, Op1Max);
2960    }
2961
2962    // If Min and Max are known to be the same, then SimplifyDemandedBits
2963    // figured out that the LHS is a constant.  Just constant fold this now so
2964    // that code below can assume that Min != Max.
2965    if (!isa<Constant>(Op0) && Op0Min == Op0Max)
2966      return new ICmpInst(I.getPredicate(),
2967                          ConstantInt::get(Op0->getType(), Op0Min), Op1);
2968    if (!isa<Constant>(Op1) && Op1Min == Op1Max)
2969      return new ICmpInst(I.getPredicate(), Op0,
2970                          ConstantInt::get(Op1->getType(), Op1Min));
2971
2972    // Based on the range information we know about the LHS, see if we can
2973    // simplify this comparison.  For example, (x&4) < 8 is always true.
2974    switch (I.getPredicate()) {
2975    default: llvm_unreachable("Unknown icmp opcode!");
2976    case ICmpInst::ICMP_EQ: {
2977      if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
2978        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2979
2980      // If all bits are known zero except for one, then we know at most one
2981      // bit is set.   If the comparison is against zero, then this is a check
2982      // to see if *that* bit is set.
2983      APInt Op0KnownZeroInverted = ~Op0KnownZero;
2984      if (~Op1KnownZero == 0) {
2985        // If the LHS is an AND with the same constant, look through it.
2986        Value *LHS = nullptr;
2987        ConstantInt *LHSC = nullptr;
2988        if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
2989            LHSC->getValue() != Op0KnownZeroInverted)
2990          LHS = Op0;
2991
2992        // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
2993        // then turn "((1 << x)&8) == 0" into "x != 3".
2994        // or turn "((1 << x)&7) == 0" into "x > 2".
2995        Value *X = nullptr;
2996        if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
2997          APInt ValToCheck = Op0KnownZeroInverted;
2998          if (ValToCheck.isPowerOf2()) {
2999            unsigned CmpVal = ValToCheck.countTrailingZeros();
3000            return new ICmpInst(ICmpInst::ICMP_NE, X,
3001                                ConstantInt::get(X->getType(), CmpVal));
3002          } else if ((++ValToCheck).isPowerOf2()) {
3003            unsigned CmpVal = ValToCheck.countTrailingZeros() - 1;
3004            return new ICmpInst(ICmpInst::ICMP_UGT, X,
3005                                ConstantInt::get(X->getType(), CmpVal));
3006          }
3007        }
3008
3009        // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
3010        // then turn "((8 >>u x)&1) == 0" into "x != 3".
3011        const APInt *CI;
3012        if (Op0KnownZeroInverted == 1 &&
3013            match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
3014          return new ICmpInst(ICmpInst::ICMP_NE, X,
3015                              ConstantInt::get(X->getType(),
3016                                               CI->countTrailingZeros()));
3017      }
3018      break;
3019    }
3020    case ICmpInst::ICMP_NE: {
3021      if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
3022        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3023
3024      // If all bits are known zero except for one, then we know at most one
3025      // bit is set.   If the comparison is against zero, then this is a check
3026      // to see if *that* bit is set.
3027      APInt Op0KnownZeroInverted = ~Op0KnownZero;
3028      if (~Op1KnownZero == 0) {
3029        // If the LHS is an AND with the same constant, look through it.
3030        Value *LHS = nullptr;
3031        ConstantInt *LHSC = nullptr;
3032        if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
3033            LHSC->getValue() != Op0KnownZeroInverted)
3034          LHS = Op0;
3035
3036        // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
3037        // then turn "((1 << x)&8) != 0" into "x == 3".
3038        // or turn "((1 << x)&7) != 0" into "x < 3".
3039        Value *X = nullptr;
3040        if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
3041          APInt ValToCheck = Op0KnownZeroInverted;
3042          if (ValToCheck.isPowerOf2()) {
3043            unsigned CmpVal = ValToCheck.countTrailingZeros();
3044            return new ICmpInst(ICmpInst::ICMP_EQ, X,
3045                                ConstantInt::get(X->getType(), CmpVal));
3046          } else if ((++ValToCheck).isPowerOf2()) {
3047            unsigned CmpVal = ValToCheck.countTrailingZeros();
3048            return new ICmpInst(ICmpInst::ICMP_ULT, X,
3049                                ConstantInt::get(X->getType(), CmpVal));
3050          }
3051        }
3052
3053        // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
3054        // then turn "((8 >>u x)&1) != 0" into "x == 3".
3055        const APInt *CI;
3056        if (Op0KnownZeroInverted == 1 &&
3057            match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
3058          return new ICmpInst(ICmpInst::ICMP_EQ, X,
3059                              ConstantInt::get(X->getType(),
3060                                               CI->countTrailingZeros()));
3061      }
3062      break;
3063    }
3064    case ICmpInst::ICMP_ULT:
3065      if (Op0Max.ult(Op1Min))          // A <u B -> true if max(A) < min(B)
3066        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3067      if (Op0Min.uge(Op1Max))          // A <u B -> false if min(A) >= max(B)
3068        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3069      if (Op1Min == Op0Max)            // A <u B -> A != B if max(A) == min(B)
3070        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
3071      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
3072        if (Op1Max == Op0Min+1)        // A <u C -> A == C-1 if min(A)+1 == C
3073          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
3074                              Builder->getInt(CI->getValue()-1));
3075
3076        // (x <u 2147483648) -> (x >s -1)  -> true if sign bit clear
3077        if (CI->isMinValue(true))
3078          return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
3079                           Constant::getAllOnesValue(Op0->getType()));
3080      }
3081      break;
3082    case ICmpInst::ICMP_UGT:
3083      if (Op0Min.ugt(Op1Max))          // A >u B -> true if min(A) > max(B)
3084        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3085      if (Op0Max.ule(Op1Min))          // A >u B -> false if max(A) <= max(B)
3086        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3087
3088      if (Op1Max == Op0Min)            // A >u B -> A != B if min(A) == max(B)
3089        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
3090      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
3091        if (Op1Min == Op0Max-1)        // A >u C -> A == C+1 if max(a)-1 == C
3092          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
3093                              Builder->getInt(CI->getValue()+1));
3094
3095        // (x >u 2147483647) -> (x <s 0)  -> true if sign bit set
3096        if (CI->isMaxValue(true))
3097          return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
3098                              Constant::getNullValue(Op0->getType()));
3099      }
3100      break;
3101    case ICmpInst::ICMP_SLT:
3102      if (Op0Max.slt(Op1Min))          // A <s B -> true if max(A) < min(C)
3103        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3104      if (Op0Min.sge(Op1Max))          // A <s B -> false if min(A) >= max(C)
3105        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3106      if (Op1Min == Op0Max)            // A <s B -> A != B if max(A) == min(B)
3107        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
3108      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
3109        if (Op1Max == Op0Min+1)        // A <s C -> A == C-1 if min(A)+1 == C
3110          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
3111                              Builder->getInt(CI->getValue()-1));
3112      }
3113      break;
3114    case ICmpInst::ICMP_SGT:
3115      if (Op0Min.sgt(Op1Max))          // A >s B -> true if min(A) > max(B)
3116        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3117      if (Op0Max.sle(Op1Min))          // A >s B -> false if max(A) <= min(B)
3118        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3119
3120      if (Op1Max == Op0Min)            // A >s B -> A != B if min(A) == max(B)
3121        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
3122      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
3123        if (Op1Min == Op0Max-1)        // A >s C -> A == C+1 if max(A)-1 == C
3124          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
3125                              Builder->getInt(CI->getValue()+1));
3126      }
3127      break;
3128    case ICmpInst::ICMP_SGE:
3129      assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
3130      if (Op0Min.sge(Op1Max))          // A >=s B -> true if min(A) >= max(B)
3131        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3132      if (Op0Max.slt(Op1Min))          // A >=s B -> false if max(A) < min(B)
3133        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3134      break;
3135    case ICmpInst::ICMP_SLE:
3136      assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
3137      if (Op0Max.sle(Op1Min))          // A <=s B -> true if max(A) <= min(B)
3138        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3139      if (Op0Min.sgt(Op1Max))          // A <=s B -> false if min(A) > max(B)
3140        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3141      break;
3142    case ICmpInst::ICMP_UGE:
3143      assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
3144      if (Op0Min.uge(Op1Max))          // A >=u B -> true if min(A) >= max(B)
3145        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3146      if (Op0Max.ult(Op1Min))          // A >=u B -> false if max(A) < min(B)
3147        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3148      break;
3149    case ICmpInst::ICMP_ULE:
3150      assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
3151      if (Op0Max.ule(Op1Min))          // A <=u B -> true if max(A) <= min(B)
3152        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3153      if (Op0Min.ugt(Op1Max))          // A <=u B -> false if min(A) > max(B)
3154        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3155      break;
3156    }
3157
3158    // Turn a signed comparison into an unsigned one if both operands
3159    // are known to have the same sign.
3160    if (I.isSigned() &&
3161        ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
3162         (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
3163      return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
3164  }
3165
3166  // Test if the ICmpInst instruction is used exclusively by a select as
3167  // part of a minimum or maximum operation. If so, refrain from doing
3168  // any other folding. This helps out other analyses which understand
3169  // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
3170  // and CodeGen. And in this case, at least one of the comparison
3171  // operands has at least one user besides the compare (the select),
3172  // which would often largely negate the benefit of folding anyway.
3173  if (I.hasOneUse())
3174    if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
3175      if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
3176          (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
3177        return nullptr;
3178
3179  // See if we are doing a comparison between a constant and an instruction that
3180  // can be folded into the comparison.
3181  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
3182    // Since the RHS is a ConstantInt (CI), if the left hand side is an
3183    // instruction, see if that instruction also has constants so that the
3184    // instruction can be folded into the icmp
3185    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
3186      if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
3187        return Res;
3188  }
3189
3190  // Handle icmp with constant (but not simple integer constant) RHS
3191  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
3192    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
3193      switch (LHSI->getOpcode()) {
3194      case Instruction::GetElementPtr:
3195          // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3196        if (RHSC->isNullValue() &&
3197            cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3198          return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
3199                  Constant::getNullValue(LHSI->getOperand(0)->getType()));
3200        break;
3201      case Instruction::PHI:
3202        // Only fold icmp into the PHI if the phi and icmp are in the same
3203        // block.  If in the same block, we're encouraging jump threading.  If
3204        // not, we are just pessimizing the code by making an i1 phi.
3205        if (LHSI->getParent() == I.getParent())
3206          if (Instruction *NV = FoldOpIntoPhi(I))
3207            return NV;
3208        break;
3209      case Instruction::Select: {
3210        // If either operand of the select is a constant, we can fold the
3211        // comparison into the select arms, which will cause one to be
3212        // constant folded and the select turned into a bitwise or.
3213        Value *Op1 = nullptr, *Op2 = nullptr;
3214        ConstantInt *CI = nullptr;
3215        if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
3216          Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3217          CI = dyn_cast<ConstantInt>(Op1);
3218        }
3219        if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
3220          Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3221          CI = dyn_cast<ConstantInt>(Op2);
3222        }
3223
3224        // We only want to perform this transformation if it will not lead to
3225        // additional code. This is true if either both sides of the select
3226        // fold to a constant (in which case the icmp is replaced with a select
3227        // which will usually simplify) or this is the only user of the
3228        // select (in which case we are trading a select+icmp for a simpler
3229        // select+icmp) or all uses of the select can be replaced based on
3230        // dominance information ("Global cases").
3231        bool Transform = false;
3232        if (Op1 && Op2)
3233          Transform = true;
3234        else if (Op1 || Op2) {
3235          // Local case
3236          if (LHSI->hasOneUse())
3237            Transform = true;
3238          // Global cases
3239          else if (CI && !CI->isZero())
3240            // When Op1 is constant try replacing select with second operand.
3241            // Otherwise Op2 is constant and try replacing select with first
3242            // operand.
3243            Transform = replacedSelectWithOperand(cast<SelectInst>(LHSI), &I,
3244                                                  Op1 ? 2 : 1);
3245        }
3246        if (Transform) {
3247          if (!Op1)
3248            Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
3249                                      RHSC, I.getName());
3250          if (!Op2)
3251            Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
3252                                      RHSC, I.getName());
3253          return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3254        }
3255        break;
3256      }
3257      case Instruction::IntToPtr:
3258        // icmp pred inttoptr(X), null -> icmp pred X, 0
3259        if (RHSC->isNullValue() &&
3260            DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3261          return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
3262                        Constant::getNullValue(LHSI->getOperand(0)->getType()));
3263        break;
3264
3265      case Instruction::Load:
3266        // Try to optimize things like "A[i] > 4" to index computations.
3267        if (GetElementPtrInst *GEP =
3268              dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3269          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3270            if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3271                !cast<LoadInst>(LHSI)->isVolatile())
3272              if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
3273                return Res;
3274        }
3275        break;
3276      }
3277  }
3278
3279  // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
3280  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
3281    if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
3282      return NI;
3283  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
3284    if (Instruction *NI = FoldGEPICmp(GEP, Op0,
3285                           ICmpInst::getSwappedPredicate(I.getPredicate()), I))
3286      return NI;
3287
3288  // Try to optimize equality comparisons against alloca-based pointers.
3289  if (Op0->getType()->isPointerTy() && I.isEquality()) {
3290    assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
3291    if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL)))
3292      if (Instruction *New = FoldAllocaCmp(I, Alloca, Op1))
3293        return New;
3294    if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL)))
3295      if (Instruction *New = FoldAllocaCmp(I, Alloca, Op0))
3296        return New;
3297  }
3298
3299  // Test to see if the operands of the icmp are casted versions of other
3300  // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
3301  // now.
3302  if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
3303    if (Op0->getType()->isPointerTy() &&
3304        (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
3305      // We keep moving the cast from the left operand over to the right
3306      // operand, where it can often be eliminated completely.
3307      Op0 = CI->getOperand(0);
3308
3309      // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
3310      // so eliminate it as well.
3311      if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
3312        Op1 = CI2->getOperand(0);
3313
3314      // If Op1 is a constant, we can fold the cast into the constant.
3315      if (Op0->getType() != Op1->getType()) {
3316        if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
3317          Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
3318        } else {
3319          // Otherwise, cast the RHS right before the icmp
3320          Op1 = Builder->CreateBitCast(Op1, Op0->getType());
3321        }
3322      }
3323      return new ICmpInst(I.getPredicate(), Op0, Op1);
3324    }
3325  }
3326
3327  if (isa<CastInst>(Op0)) {
3328    // Handle the special case of: icmp (cast bool to X), <cst>
3329    // This comes up when you have code like
3330    //   int X = A < B;
3331    //   if (X) ...
3332    // For generality, we handle any zero-extension of any operand comparison
3333    // with a constant or another cast from the same type.
3334    if (isa<Constant>(Op1) || isa<CastInst>(Op1))
3335      if (Instruction *R = visitICmpInstWithCastAndCast(I))
3336        return R;
3337  }
3338
3339  // Special logic for binary operators.
3340  BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3341  BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3342  if (BO0 || BO1) {
3343    CmpInst::Predicate Pred = I.getPredicate();
3344    bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3345    if (BO0 && isa<OverflowingBinaryOperator>(BO0))
3346      NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
3347        (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3348        (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3349    if (BO1 && isa<OverflowingBinaryOperator>(BO1))
3350      NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
3351        (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3352        (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3353
3354    // Analyze the case when either Op0 or Op1 is an add instruction.
3355    // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3356    Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3357    if (BO0 && BO0->getOpcode() == Instruction::Add)
3358      A = BO0->getOperand(0), B = BO0->getOperand(1);
3359    if (BO1 && BO1->getOpcode() == Instruction::Add)
3360      C = BO1->getOperand(0), D = BO1->getOperand(1);
3361
3362    // icmp (X+cst) < 0 --> X < -cst
3363    if (NoOp0WrapProblem && ICmpInst::isSigned(Pred) && match(Op1, m_Zero()))
3364      if (ConstantInt *RHSC = dyn_cast_or_null<ConstantInt>(B))
3365        if (!RHSC->isMinValue(/*isSigned=*/true))
3366          return new ICmpInst(Pred, A, ConstantExpr::getNeg(RHSC));
3367
3368    // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
3369    if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
3370      return new ICmpInst(Pred, A == Op1 ? B : A,
3371                          Constant::getNullValue(Op1->getType()));
3372
3373    // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
3374    if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
3375      return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
3376                          C == Op0 ? D : C);
3377
3378    // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
3379    if (A && C && (A == C || A == D || B == C || B == D) &&
3380        NoOp0WrapProblem && NoOp1WrapProblem &&
3381        // Try not to increase register pressure.
3382        BO0->hasOneUse() && BO1->hasOneUse()) {
3383      // Determine Y and Z in the form icmp (X+Y), (X+Z).
3384      Value *Y, *Z;
3385      if (A == C) {
3386        // C + B == C + D  ->  B == D
3387        Y = B;
3388        Z = D;
3389      } else if (A == D) {
3390        // D + B == C + D  ->  B == C
3391        Y = B;
3392        Z = C;
3393      } else if (B == C) {
3394        // A + C == C + D  ->  A == D
3395        Y = A;
3396        Z = D;
3397      } else {
3398        assert(B == D);
3399        // A + D == C + D  ->  A == C
3400        Y = A;
3401        Z = C;
3402      }
3403      return new ICmpInst(Pred, Y, Z);
3404    }
3405
3406    // icmp slt (X + -1), Y -> icmp sle X, Y
3407    if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
3408        match(B, m_AllOnes()))
3409      return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
3410
3411    // icmp sge (X + -1), Y -> icmp sgt X, Y
3412    if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
3413        match(B, m_AllOnes()))
3414      return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
3415
3416    // icmp sle (X + 1), Y -> icmp slt X, Y
3417    if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE &&
3418        match(B, m_One()))
3419      return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
3420
3421    // icmp sgt (X + 1), Y -> icmp sge X, Y
3422    if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT &&
3423        match(B, m_One()))
3424      return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
3425
3426    // icmp sgt X, (Y + -1) -> icmp sge X, Y
3427    if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
3428        match(D, m_AllOnes()))
3429      return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
3430
3431    // icmp sle X, (Y + -1) -> icmp slt X, Y
3432    if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
3433        match(D, m_AllOnes()))
3434      return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
3435
3436    // icmp sge X, (Y + 1) -> icmp sgt X, Y
3437    if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE &&
3438        match(D, m_One()))
3439      return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
3440
3441    // icmp slt X, (Y + 1) -> icmp sle X, Y
3442    if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT &&
3443        match(D, m_One()))
3444      return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
3445
3446    // if C1 has greater magnitude than C2:
3447    //  icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
3448    //  s.t. C3 = C1 - C2
3449    //
3450    // if C2 has greater magnitude than C1:
3451    //  icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
3452    //  s.t. C3 = C2 - C1
3453    if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
3454        (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
3455      if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
3456        if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
3457          const APInt &AP1 = C1->getValue();
3458          const APInt &AP2 = C2->getValue();
3459          if (AP1.isNegative() == AP2.isNegative()) {
3460            APInt AP1Abs = C1->getValue().abs();
3461            APInt AP2Abs = C2->getValue().abs();
3462            if (AP1Abs.uge(AP2Abs)) {
3463              ConstantInt *C3 = Builder->getInt(AP1 - AP2);
3464              Value *NewAdd = Builder->CreateNSWAdd(A, C3);
3465              return new ICmpInst(Pred, NewAdd, C);
3466            } else {
3467              ConstantInt *C3 = Builder->getInt(AP2 - AP1);
3468              Value *NewAdd = Builder->CreateNSWAdd(C, C3);
3469              return new ICmpInst(Pred, A, NewAdd);
3470            }
3471          }
3472        }
3473
3474
3475    // Analyze the case when either Op0 or Op1 is a sub instruction.
3476    // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
3477    A = nullptr; B = nullptr; C = nullptr; D = nullptr;
3478    if (BO0 && BO0->getOpcode() == Instruction::Sub)
3479      A = BO0->getOperand(0), B = BO0->getOperand(1);
3480    if (BO1 && BO1->getOpcode() == Instruction::Sub)
3481      C = BO1->getOperand(0), D = BO1->getOperand(1);
3482
3483    // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
3484    if (A == Op1 && NoOp0WrapProblem)
3485      return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
3486
3487    // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
3488    if (C == Op0 && NoOp1WrapProblem)
3489      return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
3490
3491    // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
3492    if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
3493        // Try not to increase register pressure.
3494        BO0->hasOneUse() && BO1->hasOneUse())
3495      return new ICmpInst(Pred, A, C);
3496
3497    // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
3498    if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
3499        // Try not to increase register pressure.
3500        BO0->hasOneUse() && BO1->hasOneUse())
3501      return new ICmpInst(Pred, D, B);
3502
3503    // icmp (0-X) < cst --> x > -cst
3504    if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
3505      Value *X;
3506      if (match(BO0, m_Neg(m_Value(X))))
3507        if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
3508          if (!RHSC->isMinValue(/*isSigned=*/true))
3509            return new ICmpInst(I.getSwappedPredicate(), X,
3510                                ConstantExpr::getNeg(RHSC));
3511    }
3512
3513    BinaryOperator *SRem = nullptr;
3514    // icmp (srem X, Y), Y
3515    if (BO0 && BO0->getOpcode() == Instruction::SRem &&
3516        Op1 == BO0->getOperand(1))
3517      SRem = BO0;
3518    // icmp Y, (srem X, Y)
3519    else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
3520             Op0 == BO1->getOperand(1))
3521      SRem = BO1;
3522    if (SRem) {
3523      // We don't check hasOneUse to avoid increasing register pressure because
3524      // the value we use is the same value this instruction was already using.
3525      switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
3526        default: break;
3527        case ICmpInst::ICMP_EQ:
3528          return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3529        case ICmpInst::ICMP_NE:
3530          return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3531        case ICmpInst::ICMP_SGT:
3532        case ICmpInst::ICMP_SGE:
3533          return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
3534                              Constant::getAllOnesValue(SRem->getType()));
3535        case ICmpInst::ICMP_SLT:
3536        case ICmpInst::ICMP_SLE:
3537          return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
3538                              Constant::getNullValue(SRem->getType()));
3539      }
3540    }
3541
3542    if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
3543        BO0->hasOneUse() && BO1->hasOneUse() &&
3544        BO0->getOperand(1) == BO1->getOperand(1)) {
3545      switch (BO0->getOpcode()) {
3546      default: break;
3547      case Instruction::Add:
3548      case Instruction::Sub:
3549      case Instruction::Xor:
3550        if (I.isEquality())    // a+x icmp eq/ne b+x --> a icmp b
3551          return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
3552                              BO1->getOperand(0));
3553        // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
3554        if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
3555          if (CI->getValue().isSignBit()) {
3556            ICmpInst::Predicate Pred = I.isSigned()
3557                                           ? I.getUnsignedPredicate()
3558                                           : I.getSignedPredicate();
3559            return new ICmpInst(Pred, BO0->getOperand(0),
3560                                BO1->getOperand(0));
3561          }
3562
3563          if (BO0->getOpcode() == Instruction::Xor && CI->isMaxValue(true)) {
3564            ICmpInst::Predicate Pred = I.isSigned()
3565                                           ? I.getUnsignedPredicate()
3566                                           : I.getSignedPredicate();
3567            Pred = I.getSwappedPredicate(Pred);
3568            return new ICmpInst(Pred, BO0->getOperand(0),
3569                                BO1->getOperand(0));
3570          }
3571        }
3572        break;
3573      case Instruction::Mul:
3574        if (!I.isEquality())
3575          break;
3576
3577        if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
3578          // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
3579          // Mask = -1 >> count-trailing-zeros(Cst).
3580          if (!CI->isZero() && !CI->isOne()) {
3581            const APInt &AP = CI->getValue();
3582            ConstantInt *Mask = ConstantInt::get(I.getContext(),
3583                                    APInt::getLowBitsSet(AP.getBitWidth(),
3584                                                         AP.getBitWidth() -
3585                                                    AP.countTrailingZeros()));
3586            Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
3587            Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
3588            return new ICmpInst(I.getPredicate(), And1, And2);
3589          }
3590        }
3591        break;
3592      case Instruction::UDiv:
3593      case Instruction::LShr:
3594        if (I.isSigned())
3595          break;
3596        // fall-through
3597      case Instruction::SDiv:
3598      case Instruction::AShr:
3599        if (!BO0->isExact() || !BO1->isExact())
3600          break;
3601        return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
3602                            BO1->getOperand(0));
3603      case Instruction::Shl: {
3604        bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
3605        bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
3606        if (!NUW && !NSW)
3607          break;
3608        if (!NSW && I.isSigned())
3609          break;
3610        return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
3611                            BO1->getOperand(0));
3612      }
3613      }
3614    }
3615
3616    if (BO0) {
3617      // Transform  A & (L - 1) `ult` L --> L != 0
3618      auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
3619      auto BitwiseAnd =
3620          m_CombineOr(m_And(m_Value(), LSubOne), m_And(LSubOne, m_Value()));
3621
3622      if (match(BO0, BitwiseAnd) && I.getPredicate() == ICmpInst::ICMP_ULT) {
3623        auto *Zero = Constant::getNullValue(BO0->getType());
3624        return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
3625      }
3626    }
3627  }
3628
3629  { Value *A, *B;
3630    // Transform (A & ~B) == 0 --> (A & B) != 0
3631    // and       (A & ~B) != 0 --> (A & B) == 0
3632    // if A is a power of 2.
3633    if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
3634        match(Op1, m_Zero()) &&
3635        isKnownToBeAPowerOfTwo(A, DL, false, 0, AC, &I, DT) && I.isEquality())
3636      return new ICmpInst(I.getInversePredicate(),
3637                          Builder->CreateAnd(A, B),
3638                          Op1);
3639
3640    // ~x < ~y --> y < x
3641    // ~x < cst --> ~cst < x
3642    if (match(Op0, m_Not(m_Value(A)))) {
3643      if (match(Op1, m_Not(m_Value(B))))
3644        return new ICmpInst(I.getPredicate(), B, A);
3645      if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
3646        return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
3647    }
3648
3649    Instruction *AddI = nullptr;
3650    if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
3651                                     m_Instruction(AddI))) &&
3652        isa<IntegerType>(A->getType())) {
3653      Value *Result;
3654      Constant *Overflow;
3655      if (OptimizeOverflowCheck(OCF_UNSIGNED_ADD, A, B, *AddI, Result,
3656                                Overflow)) {
3657        ReplaceInstUsesWith(*AddI, Result);
3658        return ReplaceInstUsesWith(I, Overflow);
3659      }
3660    }
3661
3662    // (zext a) * (zext b)  --> llvm.umul.with.overflow.
3663    if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
3664      if (Instruction *R = ProcessUMulZExtIdiom(I, Op0, Op1, *this))
3665        return R;
3666    }
3667    if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
3668      if (Instruction *R = ProcessUMulZExtIdiom(I, Op1, Op0, *this))
3669        return R;
3670    }
3671  }
3672
3673  if (I.isEquality()) {
3674    Value *A, *B, *C, *D;
3675
3676    if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3677      if (A == Op1 || B == Op1) {    // (A^B) == A  ->  B == 0
3678        Value *OtherVal = A == Op1 ? B : A;
3679        return new ICmpInst(I.getPredicate(), OtherVal,
3680                            Constant::getNullValue(A->getType()));
3681      }
3682
3683      if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
3684        // A^c1 == C^c2 --> A == C^(c1^c2)
3685        ConstantInt *C1, *C2;
3686        if (match(B, m_ConstantInt(C1)) &&
3687            match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
3688          Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue());
3689          Value *Xor = Builder->CreateXor(C, NC);
3690          return new ICmpInst(I.getPredicate(), A, Xor);
3691        }
3692
3693        // A^B == A^D -> B == D
3694        if (A == C) return new ICmpInst(I.getPredicate(), B, D);
3695        if (A == D) return new ICmpInst(I.getPredicate(), B, C);
3696        if (B == C) return new ICmpInst(I.getPredicate(), A, D);
3697        if (B == D) return new ICmpInst(I.getPredicate(), A, C);
3698      }
3699    }
3700
3701    if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
3702        (A == Op0 || B == Op0)) {
3703      // A == (A^B)  ->  B == 0
3704      Value *OtherVal = A == Op0 ? B : A;
3705      return new ICmpInst(I.getPredicate(), OtherVal,
3706                          Constant::getNullValue(A->getType()));
3707    }
3708
3709    // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
3710    if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
3711        match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
3712      Value *X = nullptr, *Y = nullptr, *Z = nullptr;
3713
3714      if (A == C) {
3715        X = B; Y = D; Z = A;
3716      } else if (A == D) {
3717        X = B; Y = C; Z = A;
3718      } else if (B == C) {
3719        X = A; Y = D; Z = B;
3720      } else if (B == D) {
3721        X = A; Y = C; Z = B;
3722      }
3723
3724      if (X) {   // Build (X^Y) & Z
3725        Op1 = Builder->CreateXor(X, Y);
3726        Op1 = Builder->CreateAnd(Op1, Z);
3727        I.setOperand(0, Op1);
3728        I.setOperand(1, Constant::getNullValue(Op1->getType()));
3729        return &I;
3730      }
3731    }
3732
3733    // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
3734    // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
3735    ConstantInt *Cst1;
3736    if ((Op0->hasOneUse() &&
3737         match(Op0, m_ZExt(m_Value(A))) &&
3738         match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
3739        (Op1->hasOneUse() &&
3740         match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
3741         match(Op1, m_ZExt(m_Value(A))))) {
3742      APInt Pow2 = Cst1->getValue() + 1;
3743      if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
3744          Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
3745        return new ICmpInst(I.getPredicate(), A,
3746                            Builder->CreateTrunc(B, A->getType()));
3747    }
3748
3749    // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
3750    // For lshr and ashr pairs.
3751    if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
3752         match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
3753        (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
3754         match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
3755      unsigned TypeBits = Cst1->getBitWidth();
3756      unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
3757      if (ShAmt < TypeBits && ShAmt != 0) {
3758        ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_NE
3759                                       ? ICmpInst::ICMP_UGE
3760                                       : ICmpInst::ICMP_ULT;
3761        Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
3762        APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
3763        return new ICmpInst(Pred, Xor, Builder->getInt(CmpVal));
3764      }
3765    }
3766
3767    // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
3768    if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
3769        match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
3770      unsigned TypeBits = Cst1->getBitWidth();
3771      unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
3772      if (ShAmt < TypeBits && ShAmt != 0) {
3773        Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
3774        APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
3775        Value *And = Builder->CreateAnd(Xor, Builder->getInt(AndVal),
3776                                        I.getName() + ".mask");
3777        return new ICmpInst(I.getPredicate(), And,
3778                            Constant::getNullValue(Cst1->getType()));
3779      }
3780    }
3781
3782    // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
3783    // "icmp (and X, mask), cst"
3784    uint64_t ShAmt = 0;
3785    if (Op0->hasOneUse() &&
3786        match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A),
3787                                           m_ConstantInt(ShAmt))))) &&
3788        match(Op1, m_ConstantInt(Cst1)) &&
3789        // Only do this when A has multiple uses.  This is most important to do
3790        // when it exposes other optimizations.
3791        !A->hasOneUse()) {
3792      unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
3793
3794      if (ShAmt < ASize) {
3795        APInt MaskV =
3796          APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
3797        MaskV <<= ShAmt;
3798
3799        APInt CmpV = Cst1->getValue().zext(ASize);
3800        CmpV <<= ShAmt;
3801
3802        Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
3803        return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
3804      }
3805    }
3806  }
3807
3808  // The 'cmpxchg' instruction returns an aggregate containing the old value and
3809  // an i1 which indicates whether or not we successfully did the swap.
3810  //
3811  // Replace comparisons between the old value and the expected value with the
3812  // indicator that 'cmpxchg' returns.
3813  //
3814  // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
3815  // spuriously fail.  In those cases, the old value may equal the expected
3816  // value but it is possible for the swap to not occur.
3817  if (I.getPredicate() == ICmpInst::ICMP_EQ)
3818    if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
3819      if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
3820        if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
3821            !ACXI->isWeak())
3822          return ExtractValueInst::Create(ACXI, 1);
3823
3824  {
3825    Value *X; ConstantInt *Cst;
3826    // icmp X+Cst, X
3827    if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
3828      return FoldICmpAddOpCst(I, X, Cst, I.getPredicate());
3829
3830    // icmp X, X+Cst
3831    if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
3832      return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate());
3833  }
3834  return Changed ? &I : nullptr;
3835}
3836
3837/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
3838Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
3839                                                Instruction *LHSI,
3840                                                Constant *RHSC) {
3841  if (!isa<ConstantFP>(RHSC)) return nullptr;
3842  const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
3843
3844  // Get the width of the mantissa.  We don't want to hack on conversions that
3845  // might lose information from the integer, e.g. "i64 -> float"
3846  int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
3847  if (MantissaWidth == -1) return nullptr;  // Unknown.
3848
3849  IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
3850
3851  bool LHSUnsigned = isa<UIToFPInst>(LHSI);
3852
3853  if (I.isEquality()) {
3854    FCmpInst::Predicate P = I.getPredicate();
3855    bool IsExact = false;
3856    APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
3857    RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
3858
3859    // If the floating point constant isn't an integer value, we know if we will
3860    // ever compare equal / not equal to it.
3861    if (!IsExact) {
3862      // TODO: Can never be -0.0 and other non-representable values
3863      APFloat RHSRoundInt(RHS);
3864      RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
3865      if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) {
3866        if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
3867          return ReplaceInstUsesWith(I, Builder->getFalse());
3868
3869        assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
3870        return ReplaceInstUsesWith(I, Builder->getTrue());
3871      }
3872    }
3873
3874    // TODO: If the constant is exactly representable, is it always OK to do
3875    // equality compares as integer?
3876  }
3877
3878  // Check to see that the input is converted from an integer type that is small
3879  // enough that preserves all bits.  TODO: check here for "known" sign bits.
3880  // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
3881  unsigned InputSize = IntTy->getScalarSizeInBits();
3882
3883  // Following test does NOT adjust InputSize downwards for signed inputs,
3884  // because the most negative value still requires all the mantissa bits
3885  // to distinguish it from one less than that value.
3886  if ((int)InputSize > MantissaWidth) {
3887    // Conversion would lose accuracy. Check if loss can impact comparison.
3888    int Exp = ilogb(RHS);
3889    if (Exp == APFloat::IEK_Inf) {
3890      int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
3891      if (MaxExponent < (int)InputSize - !LHSUnsigned)
3892        // Conversion could create infinity.
3893        return nullptr;
3894    } else {
3895      // Note that if RHS is zero or NaN, then Exp is negative
3896      // and first condition is trivially false.
3897      if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
3898        // Conversion could affect comparison.
3899        return nullptr;
3900    }
3901  }
3902
3903  // Otherwise, we can potentially simplify the comparison.  We know that it
3904  // will always come through as an integer value and we know the constant is
3905  // not a NAN (it would have been previously simplified).
3906  assert(!RHS.isNaN() && "NaN comparison not already folded!");
3907
3908  ICmpInst::Predicate Pred;
3909  switch (I.getPredicate()) {
3910  default: llvm_unreachable("Unexpected predicate!");
3911  case FCmpInst::FCMP_UEQ:
3912  case FCmpInst::FCMP_OEQ:
3913    Pred = ICmpInst::ICMP_EQ;
3914    break;
3915  case FCmpInst::FCMP_UGT:
3916  case FCmpInst::FCMP_OGT:
3917    Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
3918    break;
3919  case FCmpInst::FCMP_UGE:
3920  case FCmpInst::FCMP_OGE:
3921    Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
3922    break;
3923  case FCmpInst::FCMP_ULT:
3924  case FCmpInst::FCMP_OLT:
3925    Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
3926    break;
3927  case FCmpInst::FCMP_ULE:
3928  case FCmpInst::FCMP_OLE:
3929    Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
3930    break;
3931  case FCmpInst::FCMP_UNE:
3932  case FCmpInst::FCMP_ONE:
3933    Pred = ICmpInst::ICMP_NE;
3934    break;
3935  case FCmpInst::FCMP_ORD:
3936    return ReplaceInstUsesWith(I, Builder->getTrue());
3937  case FCmpInst::FCMP_UNO:
3938    return ReplaceInstUsesWith(I, Builder->getFalse());
3939  }
3940
3941  // Now we know that the APFloat is a normal number, zero or inf.
3942
3943  // See if the FP constant is too large for the integer.  For example,
3944  // comparing an i8 to 300.0.
3945  unsigned IntWidth = IntTy->getScalarSizeInBits();
3946
3947  if (!LHSUnsigned) {
3948    // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
3949    // and large values.
3950    APFloat SMax(RHS.getSemantics());
3951    SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
3952                          APFloat::rmNearestTiesToEven);
3953    if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
3954      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
3955          Pred == ICmpInst::ICMP_SLE)
3956        return ReplaceInstUsesWith(I, Builder->getTrue());
3957      return ReplaceInstUsesWith(I, Builder->getFalse());
3958    }
3959  } else {
3960    // If the RHS value is > UnsignedMax, fold the comparison. This handles
3961    // +INF and large values.
3962    APFloat UMax(RHS.getSemantics());
3963    UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
3964                          APFloat::rmNearestTiesToEven);
3965    if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
3966      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
3967          Pred == ICmpInst::ICMP_ULE)
3968        return ReplaceInstUsesWith(I, Builder->getTrue());
3969      return ReplaceInstUsesWith(I, Builder->getFalse());
3970    }
3971  }
3972
3973  if (!LHSUnsigned) {
3974    // See if the RHS value is < SignedMin.
3975    APFloat SMin(RHS.getSemantics());
3976    SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
3977                          APFloat::rmNearestTiesToEven);
3978    if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
3979      if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
3980          Pred == ICmpInst::ICMP_SGE)
3981        return ReplaceInstUsesWith(I, Builder->getTrue());
3982      return ReplaceInstUsesWith(I, Builder->getFalse());
3983    }
3984  } else {
3985    // See if the RHS value is < UnsignedMin.
3986    APFloat SMin(RHS.getSemantics());
3987    SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
3988                          APFloat::rmNearestTiesToEven);
3989    if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
3990      if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
3991          Pred == ICmpInst::ICMP_UGE)
3992        return ReplaceInstUsesWith(I, Builder->getTrue());
3993      return ReplaceInstUsesWith(I, Builder->getFalse());
3994    }
3995  }
3996
3997  // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
3998  // [0, UMAX], but it may still be fractional.  See if it is fractional by
3999  // casting the FP value to the integer value and back, checking for equality.
4000  // Don't do this for zero, because -0.0 is not fractional.
4001  Constant *RHSInt = LHSUnsigned
4002    ? ConstantExpr::getFPToUI(RHSC, IntTy)
4003    : ConstantExpr::getFPToSI(RHSC, IntTy);
4004  if (!RHS.isZero()) {
4005    bool Equal = LHSUnsigned
4006      ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
4007      : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
4008    if (!Equal) {
4009      // If we had a comparison against a fractional value, we have to adjust
4010      // the compare predicate and sometimes the value.  RHSC is rounded towards
4011      // zero at this point.
4012      switch (Pred) {
4013      default: llvm_unreachable("Unexpected integer comparison!");
4014      case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
4015        return ReplaceInstUsesWith(I, Builder->getTrue());
4016      case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
4017        return ReplaceInstUsesWith(I, Builder->getFalse());
4018      case ICmpInst::ICMP_ULE:
4019        // (float)int <= 4.4   --> int <= 4
4020        // (float)int <= -4.4  --> false
4021        if (RHS.isNegative())
4022          return ReplaceInstUsesWith(I, Builder->getFalse());
4023        break;
4024      case ICmpInst::ICMP_SLE:
4025        // (float)int <= 4.4   --> int <= 4
4026        // (float)int <= -4.4  --> int < -4
4027        if (RHS.isNegative())
4028          Pred = ICmpInst::ICMP_SLT;
4029        break;
4030      case ICmpInst::ICMP_ULT:
4031        // (float)int < -4.4   --> false
4032        // (float)int < 4.4    --> int <= 4
4033        if (RHS.isNegative())
4034          return ReplaceInstUsesWith(I, Builder->getFalse());
4035        Pred = ICmpInst::ICMP_ULE;
4036        break;
4037      case ICmpInst::ICMP_SLT:
4038        // (float)int < -4.4   --> int < -4
4039        // (float)int < 4.4    --> int <= 4
4040        if (!RHS.isNegative())
4041          Pred = ICmpInst::ICMP_SLE;
4042        break;
4043      case ICmpInst::ICMP_UGT:
4044        // (float)int > 4.4    --> int > 4
4045        // (float)int > -4.4   --> true
4046        if (RHS.isNegative())
4047          return ReplaceInstUsesWith(I, Builder->getTrue());
4048        break;
4049      case ICmpInst::ICMP_SGT:
4050        // (float)int > 4.4    --> int > 4
4051        // (float)int > -4.4   --> int >= -4
4052        if (RHS.isNegative())
4053          Pred = ICmpInst::ICMP_SGE;
4054        break;
4055      case ICmpInst::ICMP_UGE:
4056        // (float)int >= -4.4   --> true
4057        // (float)int >= 4.4    --> int > 4
4058        if (RHS.isNegative())
4059          return ReplaceInstUsesWith(I, Builder->getTrue());
4060        Pred = ICmpInst::ICMP_UGT;
4061        break;
4062      case ICmpInst::ICMP_SGE:
4063        // (float)int >= -4.4   --> int >= -4
4064        // (float)int >= 4.4    --> int > 4
4065        if (!RHS.isNegative())
4066          Pred = ICmpInst::ICMP_SGT;
4067        break;
4068      }
4069    }
4070  }
4071
4072  // Lower this FP comparison into an appropriate integer version of the
4073  // comparison.
4074  return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
4075}
4076
4077Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
4078  bool Changed = false;
4079
4080  /// Orders the operands of the compare so that they are listed from most
4081  /// complex to least complex.  This puts constants before unary operators,
4082  /// before binary operators.
4083  if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
4084    I.swapOperands();
4085    Changed = true;
4086  }
4087
4088  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4089
4090  if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1,
4091                                  I.getFastMathFlags(), DL, TLI, DT, AC, &I))
4092    return ReplaceInstUsesWith(I, V);
4093
4094  // Simplify 'fcmp pred X, X'
4095  if (Op0 == Op1) {
4096    switch (I.getPredicate()) {
4097    default: llvm_unreachable("Unknown predicate!");
4098    case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
4099    case FCmpInst::FCMP_ULT:    // True if unordered or less than
4100    case FCmpInst::FCMP_UGT:    // True if unordered or greater than
4101    case FCmpInst::FCMP_UNE:    // True if unordered or not equal
4102      // Canonicalize these to be 'fcmp uno %X, 0.0'.
4103      I.setPredicate(FCmpInst::FCMP_UNO);
4104      I.setOperand(1, Constant::getNullValue(Op0->getType()));
4105      return &I;
4106
4107    case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
4108    case FCmpInst::FCMP_OEQ:    // True if ordered and equal
4109    case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
4110    case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
4111      // Canonicalize these to be 'fcmp ord %X, 0.0'.
4112      I.setPredicate(FCmpInst::FCMP_ORD);
4113      I.setOperand(1, Constant::getNullValue(Op0->getType()));
4114      return &I;
4115    }
4116  }
4117
4118  // Test if the FCmpInst instruction is used exclusively by a select as
4119  // part of a minimum or maximum operation. If so, refrain from doing
4120  // any other folding. This helps out other analyses which understand
4121  // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
4122  // and CodeGen. And in this case, at least one of the comparison
4123  // operands has at least one user besides the compare (the select),
4124  // which would often largely negate the benefit of folding anyway.
4125  if (I.hasOneUse())
4126    if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
4127      if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
4128          (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
4129        return nullptr;
4130
4131  // Handle fcmp with constant RHS
4132  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
4133    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
4134      switch (LHSI->getOpcode()) {
4135      case Instruction::FPExt: {
4136        // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
4137        FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
4138        ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
4139        if (!RHSF)
4140          break;
4141
4142        const fltSemantics *Sem;
4143        // FIXME: This shouldn't be here.
4144        if (LHSExt->getSrcTy()->isHalfTy())
4145          Sem = &APFloat::IEEEhalf;
4146        else if (LHSExt->getSrcTy()->isFloatTy())
4147          Sem = &APFloat::IEEEsingle;
4148        else if (LHSExt->getSrcTy()->isDoubleTy())
4149          Sem = &APFloat::IEEEdouble;
4150        else if (LHSExt->getSrcTy()->isFP128Ty())
4151          Sem = &APFloat::IEEEquad;
4152        else if (LHSExt->getSrcTy()->isX86_FP80Ty())
4153          Sem = &APFloat::x87DoubleExtended;
4154        else if (LHSExt->getSrcTy()->isPPC_FP128Ty())
4155          Sem = &APFloat::PPCDoubleDouble;
4156        else
4157          break;
4158
4159        bool Lossy;
4160        APFloat F = RHSF->getValueAPF();
4161        F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
4162
4163        // Avoid lossy conversions and denormals. Zero is a special case
4164        // that's OK to convert.
4165        APFloat Fabs = F;
4166        Fabs.clearSign();
4167        if (!Lossy &&
4168            ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
4169                 APFloat::cmpLessThan) || Fabs.isZero()))
4170
4171          return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
4172                              ConstantFP::get(RHSC->getContext(), F));
4173        break;
4174      }
4175      case Instruction::PHI:
4176        // Only fold fcmp into the PHI if the phi and fcmp are in the same
4177        // block.  If in the same block, we're encouraging jump threading.  If
4178        // not, we are just pessimizing the code by making an i1 phi.
4179        if (LHSI->getParent() == I.getParent())
4180          if (Instruction *NV = FoldOpIntoPhi(I))
4181            return NV;
4182        break;
4183      case Instruction::SIToFP:
4184      case Instruction::UIToFP:
4185        if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
4186          return NV;
4187        break;
4188      case Instruction::FSub: {
4189        // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
4190        Value *Op;
4191        if (match(LHSI, m_FNeg(m_Value(Op))))
4192          return new FCmpInst(I.getSwappedPredicate(), Op,
4193                              ConstantExpr::getFNeg(RHSC));
4194        break;
4195      }
4196      case Instruction::Load:
4197        if (GetElementPtrInst *GEP =
4198            dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
4199          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
4200            if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
4201                !cast<LoadInst>(LHSI)->isVolatile())
4202              if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
4203                return Res;
4204        }
4205        break;
4206      case Instruction::Call: {
4207        if (!RHSC->isNullValue())
4208          break;
4209
4210        CallInst *CI = cast<CallInst>(LHSI);
4211        const Function *F = CI->getCalledFunction();
4212        if (!F)
4213          break;
4214
4215        // Various optimization for fabs compared with zero.
4216        LibFunc::Func Func;
4217        if (F->getIntrinsicID() == Intrinsic::fabs ||
4218            (TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
4219             (Func == LibFunc::fabs || Func == LibFunc::fabsf ||
4220              Func == LibFunc::fabsl))) {
4221          switch (I.getPredicate()) {
4222          default:
4223            break;
4224            // fabs(x) < 0 --> false
4225          case FCmpInst::FCMP_OLT:
4226            return ReplaceInstUsesWith(I, Builder->getFalse());
4227            // fabs(x) > 0 --> x != 0
4228          case FCmpInst::FCMP_OGT:
4229            return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0), RHSC);
4230            // fabs(x) <= 0 --> x == 0
4231          case FCmpInst::FCMP_OLE:
4232            return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0), RHSC);
4233            // fabs(x) >= 0 --> !isnan(x)
4234          case FCmpInst::FCMP_OGE:
4235            return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0), RHSC);
4236            // fabs(x) == 0 --> x == 0
4237            // fabs(x) != 0 --> x != 0
4238          case FCmpInst::FCMP_OEQ:
4239          case FCmpInst::FCMP_UEQ:
4240          case FCmpInst::FCMP_ONE:
4241          case FCmpInst::FCMP_UNE:
4242            return new FCmpInst(I.getPredicate(), CI->getArgOperand(0), RHSC);
4243          }
4244        }
4245      }
4246      }
4247  }
4248
4249  // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
4250  Value *X, *Y;
4251  if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
4252    return new FCmpInst(I.getSwappedPredicate(), X, Y);
4253
4254  // fcmp (fpext x), (fpext y) -> fcmp x, y
4255  if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
4256    if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
4257      if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
4258        return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
4259                            RHSExt->getOperand(0));
4260
4261  return Changed ? &I : nullptr;
4262}
4263