X86InstrCompiler.td revision 296417
1//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the various pseudo instructions used by the compiler,
11// as well as Pat patterns used during instruction selection.
12//
13//===----------------------------------------------------------------------===//
14
15//===----------------------------------------------------------------------===//
16// Pattern Matching Support
17
18def GetLo32XForm : SDNodeXForm<imm, [{
19  // Transformation function: get the low 32 bits.
20  return getI32Imm((unsigned)N->getZExtValue(), SDLoc(N));
21}]>;
22
23def GetLo8XForm : SDNodeXForm<imm, [{
24  // Transformation function: get the low 8 bits.
25  return getI8Imm((uint8_t)N->getZExtValue(), SDLoc(N));
26}]>;
27
28
29//===----------------------------------------------------------------------===//
30// Random Pseudo Instructions.
31
32// PIC base construction.  This expands to code that looks like this:
33//     call  $next_inst
34//     popl %destreg"
35let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP] in
36  def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
37                      "", []>;
38
39
40// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
41// a stack adjustment and the codegen must know that they may modify the stack
42// pointer before prolog-epilog rewriting occurs.
43// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
44// sub / add which can clobber EFLAGS.
45let Defs = [ESP, EFLAGS], Uses = [ESP] in {
46def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
47                           "#ADJCALLSTACKDOWN",
48                           []>,
49                          Requires<[NotLP64]>;
50def ADJCALLSTACKUP32   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
51                           "#ADJCALLSTACKUP",
52                           [(X86callseq_end timm:$amt1, timm:$amt2)]>,
53                          Requires<[NotLP64]>;
54}
55def : Pat<(X86callseq_start timm:$amt1),
56          (ADJCALLSTACKDOWN32 i32imm:$amt1, 0)>, Requires<[NotLP64]>;
57
58
59// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
60// a stack adjustment and the codegen must know that they may modify the stack
61// pointer before prolog-epilog rewriting occurs.
62// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
63// sub / add which can clobber EFLAGS.
64let Defs = [RSP, EFLAGS], Uses = [RSP] in {
65def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
66                           "#ADJCALLSTACKDOWN",
67                           []>,
68                          Requires<[IsLP64]>;
69def ADJCALLSTACKUP64   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
70                           "#ADJCALLSTACKUP",
71                           [(X86callseq_end timm:$amt1, timm:$amt2)]>,
72                          Requires<[IsLP64]>;
73}
74def : Pat<(X86callseq_start timm:$amt1),
75          (ADJCALLSTACKDOWN64 i32imm:$amt1, 0)>, Requires<[IsLP64]>;
76
77
78// x86-64 va_start lowering magic.
79let usesCustomInserter = 1, Defs = [EFLAGS] in {
80def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
81                              (outs),
82                              (ins GR8:$al,
83                                   i64imm:$regsavefi, i64imm:$offset,
84                                   variable_ops),
85                              "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
86                              [(X86vastart_save_xmm_regs GR8:$al,
87                                                         imm:$regsavefi,
88                                                         imm:$offset),
89                               (implicit EFLAGS)]>;
90
91// The VAARG_64 pseudo-instruction takes the address of the va_list,
92// and places the address of the next argument into a register.
93let Defs = [EFLAGS] in
94def VAARG_64 : I<0, Pseudo,
95                 (outs GR64:$dst),
96                 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
97                 "#VAARG_64 $dst, $ap, $size, $mode, $align",
98                 [(set GR64:$dst,
99                    (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
100                  (implicit EFLAGS)]>;
101
102// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
103// targets.  These calls are needed to probe the stack when allocating more than
104// 4k bytes in one go. Touching the stack at 4K increments is necessary to
105// ensure that the guard pages used by the OS virtual memory manager are
106// allocated in correct sequence.
107// The main point of having separate instruction are extra unmodelled effects
108// (compared to ordinary calls) like stack pointer change.
109
110let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
111  def WIN_ALLOCA : I<0, Pseudo, (outs), (ins),
112                     "# dynamic stack allocation",
113                     [(X86WinAlloca)]>;
114
115// When using segmented stacks these are lowered into instructions which first
116// check if the current stacklet has enough free memory. If it does, memory is
117// allocated by bumping the stack pointer. Otherwise memory is allocated from
118// the heap.
119
120let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
121def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
122                      "# variable sized alloca for segmented stacks",
123                      [(set GR32:$dst,
124                         (X86SegAlloca GR32:$size))]>,
125                    Requires<[NotLP64]>;
126
127let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
128def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
129                      "# variable sized alloca for segmented stacks",
130                      [(set GR64:$dst,
131                         (X86SegAlloca GR64:$size))]>,
132                    Requires<[In64BitMode]>;
133}
134
135//===----------------------------------------------------------------------===//
136// EH Pseudo Instructions
137//
138let SchedRW = [WriteSystem] in {
139let isTerminator = 1, isReturn = 1, isBarrier = 1,
140    hasCtrlDep = 1, isCodeGenOnly = 1 in {
141def EH_RETURN   : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
142                    "ret\t#eh_return, addr: $addr",
143                    [(X86ehret GR32:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
144
145}
146
147let isTerminator = 1, isReturn = 1, isBarrier = 1,
148    hasCtrlDep = 1, isCodeGenOnly = 1 in {
149def EH_RETURN64   : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
150                     "ret\t#eh_return, addr: $addr",
151                     [(X86ehret GR64:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
152
153}
154
155let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1,
156    isCodeGenOnly = 1, isReturn = 1 in {
157  def CLEANUPRET : I<0, Pseudo, (outs), (ins), "# CLEANUPRET", [(cleanupret)]>;
158
159  // CATCHRET needs a custom inserter for SEH.
160  let usesCustomInserter = 1 in
161    def CATCHRET : I<0, Pseudo, (outs), (ins brtarget32:$dst, brtarget32:$from),
162                     "# CATCHRET",
163                     [(catchret bb:$dst, bb:$from)]>;
164}
165
166let hasSideEffects = 1, hasCtrlDep = 1, isCodeGenOnly = 1,
167    usesCustomInserter = 1 in
168def CATCHPAD : I<0, Pseudo, (outs), (ins), "# CATCHPAD", [(catchpad)]>;
169
170// This instruction is responsible for re-establishing stack pointers after an
171// exception has been caught and we are rejoining normal control flow in the
172// parent function or funclet. It generally sets ESP and EBP, and optionally
173// ESI. It is only needed for 32-bit WinEH, as the runtime restores CSRs for us
174// elsewhere.
175let hasSideEffects = 1, hasCtrlDep = 1, isCodeGenOnly = 1 in
176def EH_RESTORE : I<0, Pseudo, (outs), (ins), "# EH_RESTORE", []>;
177
178let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
179    usesCustomInserter = 1 in {
180  def EH_SjLj_SetJmp32  : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
181                            "#EH_SJLJ_SETJMP32",
182                            [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
183                          Requires<[Not64BitMode]>;
184  def EH_SjLj_SetJmp64  : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
185                            "#EH_SJLJ_SETJMP64",
186                            [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
187                          Requires<[In64BitMode]>;
188  let isTerminator = 1 in {
189  def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
190                            "#EH_SJLJ_LONGJMP32",
191                            [(X86eh_sjlj_longjmp addr:$buf)]>,
192                          Requires<[Not64BitMode]>;
193  def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
194                            "#EH_SJLJ_LONGJMP64",
195                            [(X86eh_sjlj_longjmp addr:$buf)]>,
196                          Requires<[In64BitMode]>;
197  }
198}
199} // SchedRW
200
201let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
202  def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
203                        "#EH_SjLj_Setup\t$dst", []>;
204}
205
206//===----------------------------------------------------------------------===//
207// Pseudo instructions used by unwind info.
208//
209let isPseudo = 1 in {
210  def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg),
211                            "#SEH_PushReg $reg", []>;
212  def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
213                            "#SEH_SaveReg $reg, $dst", []>;
214  def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
215                            "#SEH_SaveXMM $reg, $dst", []>;
216  def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size),
217                            "#SEH_StackAlloc $size", []>;
218  def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset),
219                            "#SEH_SetFrame $reg, $offset", []>;
220  def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode),
221                            "#SEH_PushFrame $mode", []>;
222  def SEH_EndPrologue : I<0, Pseudo, (outs), (ins),
223                            "#SEH_EndPrologue", []>;
224  def SEH_Epilogue : I<0, Pseudo, (outs), (ins),
225                            "#SEH_Epilogue", []>;
226}
227
228//===----------------------------------------------------------------------===//
229// Pseudo instructions used by segmented stacks.
230//
231
232// This is lowered into a RET instruction by MCInstLower.  We need
233// this so that we don't have to have a MachineBasicBlock which ends
234// with a RET and also has successors.
235let isPseudo = 1 in {
236def MORESTACK_RET: I<0, Pseudo, (outs), (ins),
237                          "", []>;
238
239// This instruction is lowered to a RET followed by a MOV.  The two
240// instructions are not generated on a higher level since then the
241// verifier sees a MachineBasicBlock ending with a non-terminator.
242def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins),
243                                  "", []>;
244}
245
246//===----------------------------------------------------------------------===//
247// Alias Instructions
248//===----------------------------------------------------------------------===//
249
250// Alias instruction mapping movr0 to xor.
251// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
252let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
253    isPseudo = 1 in
254def MOV32r0  : I<0, Pseudo, (outs GR32:$dst), (ins), "",
255                 [(set GR32:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>;
256
257// Other widths can also make use of the 32-bit xor, which may have a smaller
258// encoding and avoid partial register updates.
259def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
260def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
261def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)> {
262  let AddedComplexity = 20;
263}
264
265let Predicates = [OptForSize, NotSlowIncDec, Not64BitMode],
266    AddedComplexity = 1 in {
267  // Pseudo instructions for materializing 1 and -1 using XOR+INC/DEC,
268  // which only require 3 bytes compared to MOV32ri which requires 5.
269  let Defs = [EFLAGS], isReMaterializable = 1, isPseudo = 1 in {
270    def MOV32r1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
271                        [(set GR32:$dst, 1)]>;
272    def MOV32r_1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
273                        [(set GR32:$dst, -1)]>;
274  }
275
276  // MOV16ri is 4 bytes, so the instructions above are smaller.
277  def : Pat<(i16 1), (EXTRACT_SUBREG (MOV32r1), sub_16bit)>;
278  def : Pat<(i16 -1), (EXTRACT_SUBREG (MOV32r_1), sub_16bit)>;
279}
280
281// Materialize i64 constant where top 32-bits are zero. This could theoretically
282// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
283// that would make it more difficult to rematerialize.
284let isReMaterializable = 1, isAsCheapAsAMove = 1,
285    isPseudo = 1, hasSideEffects = 0 in
286def MOV32ri64 : I<0, Pseudo, (outs GR32:$dst), (ins i64i32imm:$src), "", []>;
287
288// This 64-bit pseudo-move can be used for both a 64-bit constant that is
289// actually the zero-extension of a 32-bit constant and for labels in the
290// x86-64 small code model.
291def mov64imm32 : ComplexPattern<i64, 1, "selectMOV64Imm32", [imm, X86Wrapper]>;
292
293let AddedComplexity = 1 in
294def : Pat<(i64 mov64imm32:$src),
295          (SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>;
296
297// Use sbb to materialize carry bit.
298let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in {
299// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
300// However, Pat<> can't replicate the destination reg into the inputs of the
301// result.
302def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "",
303                 [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
304def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "",
305                 [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
306def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "",
307                 [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
308def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "",
309                 [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
310} // isCodeGenOnly
311
312
313def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
314          (SETB_C16r)>;
315def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
316          (SETB_C32r)>;
317def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
318          (SETB_C64r)>;
319
320def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
321          (SETB_C16r)>;
322def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
323          (SETB_C32r)>;
324def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
325          (SETB_C64r)>;
326
327// We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and
328// will be eliminated and that the sbb can be extended up to a wider type.  When
329// this happens, it is great.  However, if we are left with an 8-bit sbb and an
330// and, we might as well just match it as a setb.
331def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1),
332          (SETBr)>;
333
334// (add OP, SETB) -> (adc OP, 0)
335def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op),
336          (ADC8ri GR8:$op, 0)>;
337def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op),
338          (ADC32ri8 GR32:$op, 0)>;
339def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op),
340          (ADC64ri8 GR64:$op, 0)>;
341
342// (sub OP, SETB) -> (sbb OP, 0)
343def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
344          (SBB8ri GR8:$op, 0)>;
345def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
346          (SBB32ri8 GR32:$op, 0)>;
347def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
348          (SBB64ri8 GR64:$op, 0)>;
349
350// (sub OP, SETCC_CARRY) -> (adc OP, 0)
351def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))),
352          (ADC8ri GR8:$op, 0)>;
353def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))),
354          (ADC32ri8 GR32:$op, 0)>;
355def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))),
356          (ADC64ri8 GR64:$op, 0)>;
357
358//===----------------------------------------------------------------------===//
359// String Pseudo Instructions
360//
361let SchedRW = [WriteMicrocoded] in {
362let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
363def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
364                    [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
365                   Requires<[Not64BitMode]>;
366def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
367                    [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
368                   Requires<[Not64BitMode]>;
369def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
370                    [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
371                   Requires<[Not64BitMode]>;
372}
373
374let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
375def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
376                    [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
377                   Requires<[In64BitMode]>;
378def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
379                    [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
380                   Requires<[In64BitMode]>;
381def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
382                    [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
383                   Requires<[In64BitMode]>;
384def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
385                    [(X86rep_movs i64)], IIC_REP_MOVS>, REP,
386                   Requires<[In64BitMode]>;
387}
388
389// FIXME: Should use "(X86rep_stos AL)" as the pattern.
390let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
391  let Uses = [AL,ECX,EDI] in
392  def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
393                      [(X86rep_stos i8)], IIC_REP_STOS>, REP,
394                     Requires<[Not64BitMode]>;
395  let Uses = [AX,ECX,EDI] in
396  def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
397                      [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
398                     Requires<[Not64BitMode]>;
399  let Uses = [EAX,ECX,EDI] in
400  def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
401                      [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
402                     Requires<[Not64BitMode]>;
403}
404
405let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
406  let Uses = [AL,RCX,RDI] in
407  def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
408                      [(X86rep_stos i8)], IIC_REP_STOS>, REP,
409                     Requires<[In64BitMode]>;
410  let Uses = [AX,RCX,RDI] in
411  def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
412                      [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
413                     Requires<[In64BitMode]>;
414  let Uses = [RAX,RCX,RDI] in
415  def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
416                      [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
417                     Requires<[In64BitMode]>;
418
419  let Uses = [RAX,RCX,RDI] in
420  def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
421                      [(X86rep_stos i64)], IIC_REP_STOS>, REP,
422                     Requires<[In64BitMode]>;
423}
424} // SchedRW
425
426//===----------------------------------------------------------------------===//
427// Thread Local Storage Instructions
428//
429
430// ELF TLS Support
431// All calls clobber the non-callee saved registers. ESP is marked as
432// a use to prevent stack-pointer assignments that appear immediately
433// before calls from potentially appearing dead.
434let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
435            ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
436            MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
437            XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
438            XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
439    usesCustomInserter = 1, Uses = [ESP] in {
440def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
441                  "# TLS_addr32",
442                  [(X86tlsaddr tls32addr:$sym)]>,
443                  Requires<[Not64BitMode]>;
444def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
445                  "# TLS_base_addr32",
446                  [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
447                  Requires<[Not64BitMode]>;
448}
449
450// All calls clobber the non-callee saved registers. RSP is marked as
451// a use to prevent stack-pointer assignments that appear immediately
452// before calls from potentially appearing dead.
453let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
454            FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
455            ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
456            MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
457            XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
458            XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
459    usesCustomInserter = 1, Uses = [RSP] in {
460def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
461                   "# TLS_addr64",
462                  [(X86tlsaddr tls64addr:$sym)]>,
463                  Requires<[In64BitMode]>;
464def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
465                   "# TLS_base_addr64",
466                  [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
467                  Requires<[In64BitMode]>;
468}
469
470// Darwin TLS Support
471// For i386, the address of the thunk is passed on the stack, on return the
472// address of the variable is in %eax.  %ecx is trashed during the function
473// call.  All other registers are preserved.
474let Defs = [EAX, ECX, EFLAGS],
475    Uses = [ESP],
476    usesCustomInserter = 1 in
477def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
478                "# TLSCall_32",
479                [(X86TLSCall addr:$sym)]>,
480                Requires<[Not64BitMode]>;
481
482// For x86_64, the address of the thunk is passed in %rdi, on return
483// the address of the variable is in %rax.  All other registers are preserved.
484let Defs = [RAX, EFLAGS],
485    Uses = [RSP, RDI],
486    usesCustomInserter = 1 in
487def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
488                  "# TLSCall_64",
489                  [(X86TLSCall addr:$sym)]>,
490                  Requires<[In64BitMode]>;
491
492
493//===----------------------------------------------------------------------===//
494// Conditional Move Pseudo Instructions
495
496// CMOV* - Used to implement the SELECT DAG operation.  Expanded after
497// instruction selection into a branch sequence.
498multiclass CMOVrr_PSEUDO<RegisterClass RC, ValueType VT> {
499  def CMOV#NAME  : I<0, Pseudo,
500                    (outs RC:$dst), (ins RC:$t, RC:$f, i8imm:$cond),
501                    "#CMOV_"#NAME#" PSEUDO!",
502                    [(set RC:$dst, (VT (X86cmov RC:$t, RC:$f, imm:$cond,
503                                                EFLAGS)))]>;
504}
505
506let usesCustomInserter = 1, Uses = [EFLAGS] in {
507  // X86 doesn't have 8-bit conditional moves. Use a customInserter to
508  // emit control flow. An alternative to this is to mark i8 SELECT as Promote,
509  // however that requires promoting the operands, and can induce additional
510  // i8 register pressure.
511  defm _GR8 : CMOVrr_PSEUDO<GR8, i8>;
512
513  let Predicates = [NoCMov] in {
514    defm _GR32 : CMOVrr_PSEUDO<GR32, i32>;
515    defm _GR16 : CMOVrr_PSEUDO<GR16, i16>;
516  } // Predicates = [NoCMov]
517
518  // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
519  // SSE1/SSE2.
520  let Predicates = [FPStackf32] in
521    defm _RFP32 : CMOVrr_PSEUDO<RFP32, f32>;
522
523  let Predicates = [FPStackf64] in
524    defm _RFP64 : CMOVrr_PSEUDO<RFP64, f64>;
525
526  defm _RFP80 : CMOVrr_PSEUDO<RFP80, f80>;
527
528  defm _FR32   : CMOVrr_PSEUDO<FR32, f32>;
529  defm _FR64   : CMOVrr_PSEUDO<FR64, f64>;
530  defm _FR128  : CMOVrr_PSEUDO<FR128, f128>;
531  defm _V4F32  : CMOVrr_PSEUDO<VR128, v4f32>;
532  defm _V2F64  : CMOVrr_PSEUDO<VR128, v2f64>;
533  defm _V2I64  : CMOVrr_PSEUDO<VR128, v2i64>;
534  defm _V8F32  : CMOVrr_PSEUDO<VR256, v8f32>;
535  defm _V4F64  : CMOVrr_PSEUDO<VR256, v4f64>;
536  defm _V4I64  : CMOVrr_PSEUDO<VR256, v4i64>;
537  defm _V8I64  : CMOVrr_PSEUDO<VR512, v8i64>;
538  defm _V8F64  : CMOVrr_PSEUDO<VR512, v8f64>;
539  defm _V16F32 : CMOVrr_PSEUDO<VR512, v16f32>;
540  defm _V8I1   : CMOVrr_PSEUDO<VK8,  v8i1>;
541  defm _V16I1  : CMOVrr_PSEUDO<VK16, v16i1>;
542  defm _V32I1  : CMOVrr_PSEUDO<VK32, v32i1>;
543  defm _V64I1  : CMOVrr_PSEUDO<VK64, v64i1>;
544} // usesCustomInserter = 1, Uses = [EFLAGS]
545
546//===----------------------------------------------------------------------===//
547// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
548//===----------------------------------------------------------------------===//
549
550// FIXME: Use normal instructions and add lock prefix dynamically.
551
552// Memory barriers
553
554// TODO: Get this to fold the constant into the instruction.
555let isCodeGenOnly = 1, Defs = [EFLAGS] in
556def OR32mrLocked  : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
557                      "or{l}\t{$zero, $dst|$dst, $zero}", [],
558                      IIC_ALU_MEM>, Requires<[Not64BitMode]>, OpSize32, LOCK,
559                    Sched<[WriteALULd, WriteRMW]>;
560
561let hasSideEffects = 1 in
562def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
563                     "#MEMBARRIER",
564                     [(X86MemBarrier)]>, Sched<[WriteLoad]>;
565
566// RegOpc corresponds to the mr version of the instruction
567// ImmOpc corresponds to the mi version of the instruction
568// ImmOpc8 corresponds to the mi8 version of the instruction
569// ImmMod corresponds to the instruction format of the mi and mi8 versions
570multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
571                           Format ImmMod, string mnemonic> {
572let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
573    SchedRW = [WriteALULd, WriteRMW] in {
574
575def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
576                  RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
577                  MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
578                  !strconcat(mnemonic, "{b}\t",
579                             "{$src2, $dst|$dst, $src2}"),
580                  [], IIC_ALU_NONMEM>, LOCK;
581def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
582                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
583                   MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
584                   !strconcat(mnemonic, "{w}\t",
585                              "{$src2, $dst|$dst, $src2}"),
586                   [], IIC_ALU_NONMEM>, OpSize16, LOCK;
587def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
588                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
589                   MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
590                   !strconcat(mnemonic, "{l}\t",
591                              "{$src2, $dst|$dst, $src2}"),
592                   [], IIC_ALU_NONMEM>, OpSize32, LOCK;
593def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
594                    RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
595                    MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
596                    !strconcat(mnemonic, "{q}\t",
597                               "{$src2, $dst|$dst, $src2}"),
598                    [], IIC_ALU_NONMEM>, LOCK;
599
600def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
601                    ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
602                    ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
603                    !strconcat(mnemonic, "{b}\t",
604                               "{$src2, $dst|$dst, $src2}"),
605                    [], IIC_ALU_MEM>, LOCK;
606
607def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
608                      ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
609                      ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
610                      !strconcat(mnemonic, "{w}\t",
611                                 "{$src2, $dst|$dst, $src2}"),
612                      [], IIC_ALU_MEM>, OpSize16, LOCK;
613
614def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
615                      ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
616                      ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
617                      !strconcat(mnemonic, "{l}\t",
618                                 "{$src2, $dst|$dst, $src2}"),
619                      [], IIC_ALU_MEM>, OpSize32, LOCK;
620
621def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
622                          ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
623                          ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
624                          !strconcat(mnemonic, "{q}\t",
625                                     "{$src2, $dst|$dst, $src2}"),
626                          [], IIC_ALU_MEM>, LOCK;
627
628def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
629                      ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
630                      ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
631                      !strconcat(mnemonic, "{w}\t",
632                                 "{$src2, $dst|$dst, $src2}"),
633                      [], IIC_ALU_MEM>, OpSize16, LOCK;
634def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
635                      ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
636                      ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
637                      !strconcat(mnemonic, "{l}\t",
638                                 "{$src2, $dst|$dst, $src2}"),
639                      [], IIC_ALU_MEM>, OpSize32, LOCK;
640def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
641                       ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
642                       ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
643                       !strconcat(mnemonic, "{q}\t",
644                                  "{$src2, $dst|$dst, $src2}"),
645                       [], IIC_ALU_MEM>, LOCK;
646
647}
648
649}
650
651defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, "add">;
652defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, "sub">;
653defm LOCK_OR  : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, "or">;
654defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, "and">;
655defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, "xor">;
656
657// Optimized codegen when the non-memory output is not used.
658multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form,
659                          string mnemonic> {
660let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
661    SchedRW = [WriteALULd, WriteRMW] in {
662
663def NAME#8m  : I<Opc8, Form, (outs), (ins i8mem :$dst),
664                 !strconcat(mnemonic, "{b}\t$dst"),
665                 [], IIC_UNARY_MEM>, LOCK;
666def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst),
667                 !strconcat(mnemonic, "{w}\t$dst"),
668                 [], IIC_UNARY_MEM>, OpSize16, LOCK;
669def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst),
670                 !strconcat(mnemonic, "{l}\t$dst"),
671                 [], IIC_UNARY_MEM>, OpSize32, LOCK;
672def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst),
673                  !strconcat(mnemonic, "{q}\t$dst"),
674                  [], IIC_UNARY_MEM>, LOCK;
675}
676}
677
678defm LOCK_INC    : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, "inc">;
679defm LOCK_DEC    : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, "dec">;
680
681// Atomic compare and swap.
682multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic,
683                         SDPatternOperator frag, X86MemOperand x86memop,
684                         InstrItinClass itin> {
685let isCodeGenOnly = 1 in {
686  def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr),
687               !strconcat(mnemonic, "\t$ptr"),
688               [(frag addr:$ptr)], itin>, TB, LOCK;
689}
690}
691
692multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
693                          string mnemonic, SDPatternOperator frag,
694                          InstrItinClass itin8, InstrItinClass itin> {
695let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in {
696  let Defs = [AL, EFLAGS], Uses = [AL] in
697  def NAME#8  : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
698                  !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
699                  [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK;
700  let Defs = [AX, EFLAGS], Uses = [AX] in
701  def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
702                  !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
703                  [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize16, LOCK;
704  let Defs = [EAX, EFLAGS], Uses = [EAX] in
705  def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
706                  !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
707                  [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, OpSize32, LOCK;
708  let Defs = [RAX, EFLAGS], Uses = [RAX] in
709  def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
710                   !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
711                   [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK;
712}
713}
714
715let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
716    SchedRW = [WriteALULd, WriteRMW] in {
717defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b",
718                                X86cas8, i64mem,
719                                IIC_CMPX_LOCK_8B>;
720}
721
722let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
723    Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in {
724defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b",
725                                 X86cas16, i128mem,
726                                 IIC_CMPX_LOCK_16B>, REX_W;
727}
728
729defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg",
730                               X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>;
731
732// Atomic exchange and add
733multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
734                             string frag,
735                             InstrItinClass itin8, InstrItinClass itin> {
736  let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1,
737      SchedRW = [WriteALULd, WriteRMW] in {
738    def NAME#8  : I<opc8, MRMSrcMem, (outs GR8:$dst),
739                    (ins GR8:$val, i8mem:$ptr),
740                    !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
741                    [(set GR8:$dst,
742                          (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))],
743                    itin8>;
744    def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
745                    (ins GR16:$val, i16mem:$ptr),
746                    !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
747                    [(set
748                       GR16:$dst,
749                       (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))],
750                    itin>, OpSize16;
751    def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
752                    (ins GR32:$val, i32mem:$ptr),
753                    !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
754                    [(set
755                       GR32:$dst,
756                       (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))],
757                    itin>, OpSize32;
758    def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
759                     (ins GR64:$val, i64mem:$ptr),
760                     !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
761                     [(set
762                        GR64:$dst,
763                        (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))],
764                     itin>;
765  }
766}
767
768defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add",
769                               IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>,
770             TB, LOCK;
771
772/* The following multiclass tries to make sure that in code like
773 *    x.store (immediate op x.load(acquire), release)
774 * and
775 *    x.store (register op x.load(acquire), release)
776 * an operation directly on memory is generated instead of wasting a register.
777 * It is not automatic as atomic_store/load are only lowered to MOV instructions
778 * extremely late to prevent them from being accidentally reordered in the backend
779 * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions)
780 */
781multiclass RELEASE_BINOP_MI<SDNode op> {
782    def NAME#8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
783        "#BINOP "#NAME#"8mi PSEUDO!",
784        [(atomic_store_8 addr:$dst, (op
785            (atomic_load_8 addr:$dst), (i8 imm:$src)))]>;
786    def NAME#8mr : I<0, Pseudo, (outs), (ins i8mem:$dst, GR8:$src),
787        "#BINOP "#NAME#"8mr PSEUDO!",
788        [(atomic_store_8 addr:$dst, (op
789            (atomic_load_8 addr:$dst), GR8:$src))]>;
790    // NAME#16 is not generated as 16-bit arithmetic instructions are considered
791    // costly and avoided as far as possible by this backend anyway
792    def NAME#32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
793        "#BINOP "#NAME#"32mi PSEUDO!",
794        [(atomic_store_32 addr:$dst, (op
795            (atomic_load_32 addr:$dst), (i32 imm:$src)))]>;
796    def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
797        "#BINOP "#NAME#"32mr PSEUDO!",
798        [(atomic_store_32 addr:$dst, (op
799            (atomic_load_32 addr:$dst), GR32:$src))]>;
800    def NAME#64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
801        "#BINOP "#NAME#"64mi32 PSEUDO!",
802        [(atomic_store_64 addr:$dst, (op
803            (atomic_load_64 addr:$dst), (i64immSExt32:$src)))]>;
804    def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
805        "#BINOP "#NAME#"64mr PSEUDO!",
806        [(atomic_store_64 addr:$dst, (op
807            (atomic_load_64 addr:$dst), GR64:$src))]>;
808}
809let Defs = [EFLAGS] in {
810  defm RELEASE_ADD : RELEASE_BINOP_MI<add>;
811  defm RELEASE_AND : RELEASE_BINOP_MI<and>;
812  defm RELEASE_OR  : RELEASE_BINOP_MI<or>;
813  defm RELEASE_XOR : RELEASE_BINOP_MI<xor>;
814  // Note: we don't deal with sub, because substractions of constants are
815  //       optimized into additions before this code can run.
816}
817
818// Same as above, but for floating-point.
819// FIXME: imm version.
820// FIXME: Version that doesn't clobber $src, using AVX's VADDSS.
821// FIXME: This could also handle SIMD operations with *ps and *pd instructions.
822let usesCustomInserter = 1 in {
823multiclass RELEASE_FP_BINOP_MI<SDNode op> {
824    def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, FR32:$src),
825        "#BINOP "#NAME#"32mr PSEUDO!",
826        [(atomic_store_32 addr:$dst,
827	   (i32 (bitconvert (op
828             (f32 (bitconvert (i32 (atomic_load_32 addr:$dst)))),
829	      FR32:$src))))]>, Requires<[HasSSE1]>;
830    def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, FR64:$src),
831        "#BINOP "#NAME#"64mr PSEUDO!",
832        [(atomic_store_64 addr:$dst,
833	   (i64 (bitconvert (op
834             (f64 (bitconvert (i64 (atomic_load_64 addr:$dst)))),
835	      FR64:$src))))]>, Requires<[HasSSE2]>;
836}
837defm RELEASE_FADD : RELEASE_FP_BINOP_MI<fadd>;
838// FIXME: Add fsub, fmul, fdiv, ...
839}
840
841multiclass RELEASE_UNOP<dag dag8, dag dag16, dag dag32, dag dag64> {
842    def NAME#8m : I<0, Pseudo, (outs), (ins i8mem:$dst),
843        "#UNOP "#NAME#"8m PSEUDO!",
844        [(atomic_store_8 addr:$dst, dag8)]>;
845    def NAME#16m : I<0, Pseudo, (outs), (ins i16mem:$dst),
846        "#UNOP "#NAME#"16m PSEUDO!",
847        [(atomic_store_16 addr:$dst, dag16)]>;
848    def NAME#32m : I<0, Pseudo, (outs), (ins i32mem:$dst),
849        "#UNOP "#NAME#"32m PSEUDO!",
850        [(atomic_store_32 addr:$dst, dag32)]>;
851    def NAME#64m : I<0, Pseudo, (outs), (ins i64mem:$dst),
852        "#UNOP "#NAME#"64m PSEUDO!",
853        [(atomic_store_64 addr:$dst, dag64)]>;
854}
855
856let Defs = [EFLAGS] in {
857  defm RELEASE_INC : RELEASE_UNOP<
858      (add (atomic_load_8  addr:$dst), (i8 1)),
859      (add (atomic_load_16 addr:$dst), (i16 1)),
860      (add (atomic_load_32 addr:$dst), (i32 1)),
861      (add (atomic_load_64 addr:$dst), (i64 1))>, Requires<[NotSlowIncDec]>;
862  defm RELEASE_DEC : RELEASE_UNOP<
863      (add (atomic_load_8  addr:$dst), (i8 -1)),
864      (add (atomic_load_16 addr:$dst), (i16 -1)),
865      (add (atomic_load_32 addr:$dst), (i32 -1)),
866      (add (atomic_load_64 addr:$dst), (i64 -1))>, Requires<[NotSlowIncDec]>;
867}
868/*
869TODO: These don't work because the type inference of TableGen fails.
870TODO: find a way to fix it.
871let Defs = [EFLAGS] in {
872  defm RELEASE_NEG : RELEASE_UNOP<
873      (ineg (atomic_load_8  addr:$dst)),
874      (ineg (atomic_load_16 addr:$dst)),
875      (ineg (atomic_load_32 addr:$dst)),
876      (ineg (atomic_load_64 addr:$dst))>;
877}
878// NOT doesn't set flags.
879defm RELEASE_NOT : RELEASE_UNOP<
880    (not (atomic_load_8  addr:$dst)),
881    (not (atomic_load_16 addr:$dst)),
882    (not (atomic_load_32 addr:$dst)),
883    (not (atomic_load_64 addr:$dst))>;
884*/
885
886def RELEASE_MOV8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
887			"#RELEASE_MOV8mi PSEUDO!",
888			[(atomic_store_8 addr:$dst, (i8 imm:$src))]>;
889def RELEASE_MOV16mi : I<0, Pseudo, (outs), (ins i16mem:$dst, i16imm:$src),
890			"#RELEASE_MOV16mi PSEUDO!",
891			[(atomic_store_16 addr:$dst, (i16 imm:$src))]>;
892def RELEASE_MOV32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
893			"#RELEASE_MOV32mi PSEUDO!",
894			[(atomic_store_32 addr:$dst, (i32 imm:$src))]>;
895def RELEASE_MOV64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
896			"#RELEASE_MOV64mi32 PSEUDO!",
897			[(atomic_store_64 addr:$dst, i64immSExt32:$src)]>;
898
899def RELEASE_MOV8mr  : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src),
900                        "#RELEASE_MOV8mr PSEUDO!",
901                        [(atomic_store_8  addr:$dst, GR8 :$src)]>;
902def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src),
903                        "#RELEASE_MOV16mr PSEUDO!",
904                        [(atomic_store_16 addr:$dst, GR16:$src)]>;
905def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
906                        "#RELEASE_MOV32mr PSEUDO!",
907                        [(atomic_store_32 addr:$dst, GR32:$src)]>;
908def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
909                        "#RELEASE_MOV64mr PSEUDO!",
910                        [(atomic_store_64 addr:$dst, GR64:$src)]>;
911
912def ACQUIRE_MOV8rm  : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
913                      "#ACQUIRE_MOV8rm PSEUDO!",
914                      [(set GR8:$dst,  (atomic_load_8  addr:$src))]>;
915def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
916                      "#ACQUIRE_MOV16rm PSEUDO!",
917                      [(set GR16:$dst, (atomic_load_16 addr:$src))]>;
918def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
919                      "#ACQUIRE_MOV32rm PSEUDO!",
920                      [(set GR32:$dst, (atomic_load_32 addr:$src))]>;
921def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
922                      "#ACQUIRE_MOV64rm PSEUDO!",
923                      [(set GR64:$dst, (atomic_load_64 addr:$src))]>;
924
925//===----------------------------------------------------------------------===//
926// DAG Pattern Matching Rules
927//===----------------------------------------------------------------------===//
928
929// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
930def : Pat<(i32 (X86Wrapper tconstpool  :$dst)), (MOV32ri tconstpool  :$dst)>;
931def : Pat<(i32 (X86Wrapper tjumptable  :$dst)), (MOV32ri tjumptable  :$dst)>;
932def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
933def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
934def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
935def : Pat<(i32 (X86Wrapper mcsym:$dst)), (MOV32ri mcsym:$dst)>;
936def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
937
938def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
939          (ADD32ri GR32:$src1, tconstpool:$src2)>;
940def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
941          (ADD32ri GR32:$src1, tjumptable:$src2)>;
942def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
943          (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
944def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
945          (ADD32ri GR32:$src1, texternalsym:$src2)>;
946def : Pat<(add GR32:$src1, (X86Wrapper mcsym:$src2)),
947          (ADD32ri GR32:$src1, mcsym:$src2)>;
948def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
949          (ADD32ri GR32:$src1, tblockaddress:$src2)>;
950
951def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
952          (MOV32mi addr:$dst, tglobaladdr:$src)>;
953def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
954          (MOV32mi addr:$dst, texternalsym:$src)>;
955def : Pat<(store (i32 (X86Wrapper mcsym:$src)), addr:$dst),
956          (MOV32mi addr:$dst, mcsym:$src)>;
957def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
958          (MOV32mi addr:$dst, tblockaddress:$src)>;
959
960// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
961// code model mode, should use 'movabs'.  FIXME: This is really a hack, the
962//  'movabs' predicate should handle this sort of thing.
963def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
964          (MOV64ri tconstpool  :$dst)>, Requires<[FarData]>;
965def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
966          (MOV64ri tjumptable  :$dst)>, Requires<[FarData]>;
967def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
968          (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
969def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
970          (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
971def : Pat<(i64 (X86Wrapper mcsym:$dst)),
972          (MOV64ri mcsym:$dst)>, Requires<[FarData]>;
973def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
974          (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
975
976// In kernel code model, we can get the address of a label
977// into a register with 'movq'.  FIXME: This is a hack, the 'imm' predicate of
978// the MOV64ri32 should accept these.
979def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
980          (MOV64ri32 tconstpool  :$dst)>, Requires<[KernelCode]>;
981def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
982          (MOV64ri32 tjumptable  :$dst)>, Requires<[KernelCode]>;
983def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
984          (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
985def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
986          (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
987def : Pat<(i64 (X86Wrapper mcsym:$dst)),
988          (MOV64ri32 mcsym:$dst)>, Requires<[KernelCode]>;
989def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
990          (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
991
992// If we have small model and -static mode, it is safe to store global addresses
993// directly as immediates.  FIXME: This is really a hack, the 'imm' predicate
994// for MOV64mi32 should handle this sort of thing.
995def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
996          (MOV64mi32 addr:$dst, tconstpool:$src)>,
997          Requires<[NearData, IsStatic]>;
998def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
999          (MOV64mi32 addr:$dst, tjumptable:$src)>,
1000          Requires<[NearData, IsStatic]>;
1001def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
1002          (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
1003          Requires<[NearData, IsStatic]>;
1004def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
1005          (MOV64mi32 addr:$dst, texternalsym:$src)>,
1006          Requires<[NearData, IsStatic]>;
1007def : Pat<(store (i64 (X86Wrapper mcsym:$src)), addr:$dst),
1008          (MOV64mi32 addr:$dst, mcsym:$src)>,
1009          Requires<[NearData, IsStatic]>;
1010def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
1011          (MOV64mi32 addr:$dst, tblockaddress:$src)>,
1012          Requires<[NearData, IsStatic]>;
1013
1014def : Pat<(i32 (X86RecoverFrameAlloc mcsym:$dst)), (MOV32ri mcsym:$dst)>;
1015def : Pat<(i64 (X86RecoverFrameAlloc mcsym:$dst)), (MOV64ri mcsym:$dst)>;
1016
1017// Calls
1018
1019// tls has some funny stuff here...
1020// This corresponds to movabs $foo@tpoff, %rax
1021def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
1022          (MOV64ri32 tglobaltlsaddr :$dst)>;
1023// This corresponds to add $foo@tpoff, %rax
1024def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
1025          (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
1026
1027
1028// Direct PC relative function call for small code model. 32-bit displacement
1029// sign extended to 64-bit.
1030def : Pat<(X86call (i64 tglobaladdr:$dst)),
1031          (CALL64pcrel32 tglobaladdr:$dst)>;
1032def : Pat<(X86call (i64 texternalsym:$dst)),
1033          (CALL64pcrel32 texternalsym:$dst)>;
1034
1035// Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
1036// can never use callee-saved registers. That is the purpose of the GR64_TC
1037// register classes.
1038//
1039// The only volatile register that is never used by the calling convention is
1040// %r11. This happens when calling a vararg function with 6 arguments.
1041//
1042// Match an X86tcret that uses less than 7 volatile registers.
1043def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
1044                             (X86tcret node:$ptr, node:$off), [{
1045  // X86tcret args: (*chain, ptr, imm, regs..., glue)
1046  unsigned NumRegs = 0;
1047  for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
1048    if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
1049      return false;
1050  return true;
1051}]>;
1052
1053def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1054          (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>,
1055          Requires<[Not64BitMode]>;
1056
1057// FIXME: This is disabled for 32-bit PIC mode because the global base
1058// register which is part of the address mode may be assigned a
1059// callee-saved register.
1060def : Pat<(X86tcret (load addr:$dst), imm:$off),
1061          (TCRETURNmi addr:$dst, imm:$off)>,
1062          Requires<[Not64BitMode, IsNotPIC]>;
1063
1064def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
1065          (TCRETURNdi tglobaladdr:$dst, imm:$off)>,
1066          Requires<[NotLP64]>;
1067
1068def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
1069          (TCRETURNdi texternalsym:$dst, imm:$off)>,
1070          Requires<[NotLP64]>;
1071
1072def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1073          (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
1074          Requires<[In64BitMode]>;
1075
1076// Don't fold loads into X86tcret requiring more than 6 regs.
1077// There wouldn't be enough scratch registers for base+index.
1078def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off),
1079          (TCRETURNmi64 addr:$dst, imm:$off)>,
1080          Requires<[In64BitMode]>;
1081
1082def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
1083          (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
1084          Requires<[IsLP64]>;
1085
1086def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
1087          (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
1088          Requires<[IsLP64]>;
1089
1090// Normal calls, with various flavors of addresses.
1091def : Pat<(X86call (i32 tglobaladdr:$dst)),
1092          (CALLpcrel32 tglobaladdr:$dst)>;
1093def : Pat<(X86call (i32 texternalsym:$dst)),
1094          (CALLpcrel32 texternalsym:$dst)>;
1095def : Pat<(X86call (i32 imm:$dst)),
1096          (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
1097
1098// Comparisons.
1099
1100// TEST R,R is smaller than CMP R,0
1101def : Pat<(X86cmp GR8:$src1, 0),
1102          (TEST8rr GR8:$src1, GR8:$src1)>;
1103def : Pat<(X86cmp GR16:$src1, 0),
1104          (TEST16rr GR16:$src1, GR16:$src1)>;
1105def : Pat<(X86cmp GR32:$src1, 0),
1106          (TEST32rr GR32:$src1, GR32:$src1)>;
1107def : Pat<(X86cmp GR64:$src1, 0),
1108          (TEST64rr GR64:$src1, GR64:$src1)>;
1109
1110// Conditional moves with folded loads with operands swapped and conditions
1111// inverted.
1112multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
1113                  Instruction Inst64> {
1114  let Predicates = [HasCMov] in {
1115    def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
1116              (Inst16 GR16:$src2, addr:$src1)>;
1117    def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
1118              (Inst32 GR32:$src2, addr:$src1)>;
1119    def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
1120              (Inst64 GR64:$src2, addr:$src1)>;
1121  }
1122}
1123
1124defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
1125defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
1126defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
1127defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
1128defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
1129defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
1130defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
1131defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
1132defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
1133defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
1134defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
1135defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
1136defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
1137defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
1138defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
1139defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
1140
1141// zextload bool -> zextload byte
1142def : Pat<(zextloadi8i1  addr:$src), (AND8ri (MOV8rm addr:$src), (i8 1))>;
1143def : Pat<(zextloadi16i1 addr:$src), (AND16ri8 (MOVZX16rm8 addr:$src), (i16 1))>;
1144def : Pat<(zextloadi32i1 addr:$src), (AND32ri8 (MOVZX32rm8 addr:$src), (i32 1))>;
1145def : Pat<(zextloadi64i1 addr:$src),
1146          (SUBREG_TO_REG (i64 0),
1147           (AND32ri8 (MOVZX32rm8 addr:$src), (i32 1)), sub_32bit)>;
1148
1149// extload bool -> extload byte
1150// When extloading from 16-bit and smaller memory locations into 64-bit
1151// registers, use zero-extending loads so that the entire 64-bit register is
1152// defined, avoiding partial-register updates.
1153
1154def : Pat<(extloadi8i1 addr:$src),   (MOV8rm      addr:$src)>;
1155def : Pat<(extloadi16i1 addr:$src),  (MOVZX16rm8  addr:$src)>;
1156def : Pat<(extloadi32i1 addr:$src),  (MOVZX32rm8  addr:$src)>;
1157def : Pat<(extloadi16i8 addr:$src),  (MOVZX16rm8  addr:$src)>;
1158def : Pat<(extloadi32i8 addr:$src),  (MOVZX32rm8  addr:$src)>;
1159def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
1160
1161// For other extloads, use subregs, since the high contents of the register are
1162// defined after an extload.
1163def : Pat<(extloadi64i1 addr:$src),
1164          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1165def : Pat<(extloadi64i8 addr:$src),
1166          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1167def : Pat<(extloadi64i16 addr:$src),
1168          (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
1169def : Pat<(extloadi64i32 addr:$src),
1170          (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
1171
1172// anyext. Define these to do an explicit zero-extend to
1173// avoid partial-register updates.
1174def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
1175                                     (MOVZX32rr8 GR8 :$src), sub_16bit)>;
1176def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8  GR8 :$src)>;
1177
1178// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
1179def : Pat<(i32 (anyext GR16:$src)),
1180          (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
1181
1182def : Pat<(i64 (anyext GR8 :$src)),
1183          (SUBREG_TO_REG (i64 0), (MOVZX32rr8  GR8  :$src), sub_32bit)>;
1184def : Pat<(i64 (anyext GR16:$src)),
1185          (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
1186def : Pat<(i64 (anyext GR32:$src)),
1187          (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1188
1189
1190// Any instruction that defines a 32-bit result leaves the high half of the
1191// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
1192// be copying from a truncate. And x86's cmov doesn't do anything if the
1193// condition is false. But any other 32-bit operation will zero-extend
1194// up to 64 bits.
1195def def32 : PatLeaf<(i32 GR32:$src), [{
1196  return N->getOpcode() != ISD::TRUNCATE &&
1197         N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
1198         N->getOpcode() != ISD::CopyFromReg &&
1199         N->getOpcode() != ISD::AssertSext &&
1200         N->getOpcode() != X86ISD::CMOV;
1201}]>;
1202
1203// In the case of a 32-bit def that is known to implicitly zero-extend,
1204// we can use a SUBREG_TO_REG.
1205def : Pat<(i64 (zext def32:$src)),
1206          (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1207
1208//===----------------------------------------------------------------------===//
1209// Pattern match OR as ADD
1210//===----------------------------------------------------------------------===//
1211
1212// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
1213// 3-addressified into an LEA instruction to avoid copies.  However, we also
1214// want to finally emit these instructions as an or at the end of the code
1215// generator to make the generated code easier to read.  To do this, we select
1216// into "disjoint bits" pseudo ops.
1217
1218// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
1219def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
1220  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1221    return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
1222
1223  APInt KnownZero0, KnownOne0;
1224  CurDAG->computeKnownBits(N->getOperand(0), KnownZero0, KnownOne0, 0);
1225  APInt KnownZero1, KnownOne1;
1226  CurDAG->computeKnownBits(N->getOperand(1), KnownZero1, KnownOne1, 0);
1227  return (~KnownZero0 & ~KnownZero1) == 0;
1228}]>;
1229
1230
1231// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
1232// Try this before the selecting to OR.
1233let AddedComplexity = 5, SchedRW = [WriteALU] in {
1234
1235let isConvertibleToThreeAddress = 1,
1236    Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
1237let isCommutable = 1 in {
1238def ADD16rr_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
1239                    "", // orw/addw REG, REG
1240                    [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
1241def ADD32rr_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
1242                    "", // orl/addl REG, REG
1243                    [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
1244def ADD64rr_DB  : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1245                    "", // orq/addq REG, REG
1246                    [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
1247} // isCommutable
1248
1249// NOTE: These are order specific, we want the ri8 forms to be listed
1250// first so that they are slightly preferred to the ri forms.
1251
1252def ADD16ri8_DB : I<0, Pseudo,
1253                    (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
1254                    "", // orw/addw REG, imm8
1255                    [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
1256def ADD16ri_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
1257                    "", // orw/addw REG, imm
1258                    [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
1259
1260def ADD32ri8_DB : I<0, Pseudo,
1261                    (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
1262                    "", // orl/addl REG, imm8
1263                    [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
1264def ADD32ri_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
1265                    "", // orl/addl REG, imm
1266                    [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
1267
1268
1269def ADD64ri8_DB : I<0, Pseudo,
1270                    (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
1271                    "", // orq/addq REG, imm8
1272                    [(set GR64:$dst, (or_is_add GR64:$src1,
1273                                                i64immSExt8:$src2))]>;
1274def ADD64ri32_DB : I<0, Pseudo,
1275                     (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
1276                      "", // orq/addq REG, imm
1277                      [(set GR64:$dst, (or_is_add GR64:$src1,
1278                                                  i64immSExt32:$src2))]>;
1279}
1280} // AddedComplexity, SchedRW
1281
1282
1283//===----------------------------------------------------------------------===//
1284// Some peepholes
1285//===----------------------------------------------------------------------===//
1286
1287// Odd encoding trick: -128 fits into an 8-bit immediate field while
1288// +128 doesn't, so in this special case use a sub instead of an add.
1289def : Pat<(add GR16:$src1, 128),
1290          (SUB16ri8 GR16:$src1, -128)>;
1291def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
1292          (SUB16mi8 addr:$dst, -128)>;
1293
1294def : Pat<(add GR32:$src1, 128),
1295          (SUB32ri8 GR32:$src1, -128)>;
1296def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
1297          (SUB32mi8 addr:$dst, -128)>;
1298
1299def : Pat<(add GR64:$src1, 128),
1300          (SUB64ri8 GR64:$src1, -128)>;
1301def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
1302          (SUB64mi8 addr:$dst, -128)>;
1303
1304// The same trick applies for 32-bit immediate fields in 64-bit
1305// instructions.
1306def : Pat<(add GR64:$src1, 0x0000000080000000),
1307          (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
1308def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
1309          (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
1310
1311// To avoid needing to materialize an immediate in a register, use a 32-bit and
1312// with implicit zero-extension instead of a 64-bit and if the immediate has at
1313// least 32 bits of leading zeros. If in addition the last 32 bits can be
1314// represented with a sign extension of a 8 bit constant, use that.
1315// This can also reduce instruction size by eliminating the need for the REX
1316// prefix.
1317
1318// AddedComplexity is needed to give priority over i64immSExt8 and i64immSExt32.
1319let AddedComplexity = 1 in {
1320def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
1321          (SUBREG_TO_REG
1322            (i64 0),
1323            (AND32ri8
1324              (EXTRACT_SUBREG GR64:$src, sub_32bit),
1325              (i32 (GetLo8XForm imm:$imm))),
1326            sub_32bit)>;
1327
1328def : Pat<(and GR64:$src, i64immZExt32:$imm),
1329          (SUBREG_TO_REG
1330            (i64 0),
1331            (AND32ri
1332              (EXTRACT_SUBREG GR64:$src, sub_32bit),
1333              (i32 (GetLo32XForm imm:$imm))),
1334            sub_32bit)>;
1335} // AddedComplexity = 1
1336
1337
1338// AddedComplexity is needed due to the increased complexity on the
1339// i64immZExt32SExt8 and i64immZExt32 patterns above. Applying this to all
1340// the MOVZX patterns keeps thems together in DAGIsel tables.
1341let AddedComplexity = 1 in {
1342// r & (2^16-1) ==> movz
1343def : Pat<(and GR32:$src1, 0xffff),
1344          (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
1345// r & (2^8-1) ==> movz
1346def : Pat<(and GR32:$src1, 0xff),
1347          (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
1348                                                             GR32_ABCD)),
1349                                      sub_8bit))>,
1350      Requires<[Not64BitMode]>;
1351// r & (2^8-1) ==> movz
1352def : Pat<(and GR16:$src1, 0xff),
1353           (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG
1354            (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)),
1355             sub_16bit)>,
1356      Requires<[Not64BitMode]>;
1357
1358// r & (2^32-1) ==> movz
1359def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
1360          (SUBREG_TO_REG (i64 0),
1361                         (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
1362                         sub_32bit)>;
1363// r & (2^16-1) ==> movz
1364def : Pat<(and GR64:$src, 0xffff),
1365          (SUBREG_TO_REG (i64 0),
1366                      (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
1367                      sub_32bit)>;
1368// r & (2^8-1) ==> movz
1369def : Pat<(and GR64:$src, 0xff),
1370          (SUBREG_TO_REG (i64 0),
1371                         (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
1372                         sub_32bit)>;
1373// r & (2^8-1) ==> movz
1374def : Pat<(and GR32:$src1, 0xff),
1375           (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
1376      Requires<[In64BitMode]>;
1377// r & (2^8-1) ==> movz
1378def : Pat<(and GR16:$src1, 0xff),
1379           (EXTRACT_SUBREG (MOVZX32rr8 (i8
1380            (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>,
1381      Requires<[In64BitMode]>;
1382} // AddedComplexity = 1
1383
1384
1385// sext_inreg patterns
1386def : Pat<(sext_inreg GR32:$src, i16),
1387          (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
1388def : Pat<(sext_inreg GR32:$src, i8),
1389          (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1390                                                             GR32_ABCD)),
1391                                      sub_8bit))>,
1392      Requires<[Not64BitMode]>;
1393
1394def : Pat<(sext_inreg GR16:$src, i8),
1395           (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG
1396            (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))),
1397             sub_16bit)>,
1398      Requires<[Not64BitMode]>;
1399
1400def : Pat<(sext_inreg GR64:$src, i32),
1401          (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1402def : Pat<(sext_inreg GR64:$src, i16),
1403          (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
1404def : Pat<(sext_inreg GR64:$src, i8),
1405          (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
1406def : Pat<(sext_inreg GR32:$src, i8),
1407          (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
1408      Requires<[In64BitMode]>;
1409def : Pat<(sext_inreg GR16:$src, i8),
1410           (EXTRACT_SUBREG (MOVSX32rr8
1411            (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>,
1412      Requires<[In64BitMode]>;
1413
1414// sext, sext_load, zext, zext_load
1415def: Pat<(i16 (sext GR8:$src)),
1416          (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
1417def: Pat<(sextloadi16i8 addr:$src),
1418          (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
1419def: Pat<(i16 (zext GR8:$src)),
1420          (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
1421def: Pat<(zextloadi16i8 addr:$src),
1422          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1423
1424// trunc patterns
1425def : Pat<(i16 (trunc GR32:$src)),
1426          (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
1427def : Pat<(i8 (trunc GR32:$src)),
1428          (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1429                          sub_8bit)>,
1430      Requires<[Not64BitMode]>;
1431def : Pat<(i8 (trunc GR16:$src)),
1432          (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1433                          sub_8bit)>,
1434      Requires<[Not64BitMode]>;
1435def : Pat<(i32 (trunc GR64:$src)),
1436          (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
1437def : Pat<(i16 (trunc GR64:$src)),
1438          (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
1439def : Pat<(i8 (trunc GR64:$src)),
1440          (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
1441def : Pat<(i8 (trunc GR32:$src)),
1442          (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
1443      Requires<[In64BitMode]>;
1444def : Pat<(i8 (trunc GR16:$src)),
1445          (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
1446      Requires<[In64BitMode]>;
1447
1448// h-register tricks
1449def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
1450          (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1451                          sub_8bit_hi)>,
1452      Requires<[Not64BitMode]>;
1453def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
1454          (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1455                          sub_8bit_hi)>,
1456      Requires<[Not64BitMode]>;
1457def : Pat<(srl GR16:$src, (i8 8)),
1458          (EXTRACT_SUBREG
1459            (MOVZX32rr8
1460              (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1461                              sub_8bit_hi)),
1462            sub_16bit)>,
1463      Requires<[Not64BitMode]>;
1464def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1465          (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1466                                                             GR16_ABCD)),
1467                                      sub_8bit_hi))>,
1468      Requires<[Not64BitMode]>;
1469def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1470          (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1471                                                             GR16_ABCD)),
1472                                      sub_8bit_hi))>,
1473      Requires<[Not64BitMode]>;
1474def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1475          (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1476                                                             GR32_ABCD)),
1477                                      sub_8bit_hi))>,
1478      Requires<[Not64BitMode]>;
1479def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1480          (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1481                                                             GR32_ABCD)),
1482                                      sub_8bit_hi))>,
1483      Requires<[Not64BitMode]>;
1484
1485// h-register tricks.
1486// For now, be conservative on x86-64 and use an h-register extract only if the
1487// value is immediately zero-extended or stored, which are somewhat common
1488// cases. This uses a bunch of code to prevent a register requiring a REX prefix
1489// from being allocated in the same instruction as the h register, as there's
1490// currently no way to describe this requirement to the register allocator.
1491
1492// h-register extract and zero-extend.
1493def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
1494          (SUBREG_TO_REG
1495            (i64 0),
1496            (MOVZX32_NOREXrr8
1497              (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1498                              sub_8bit_hi)),
1499            sub_32bit)>;
1500def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1501          (MOVZX32_NOREXrr8
1502            (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1503                            sub_8bit_hi))>,
1504      Requires<[In64BitMode]>;
1505def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1506          (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1507                                                                   GR32_ABCD)),
1508                                             sub_8bit_hi))>,
1509      Requires<[In64BitMode]>;
1510def : Pat<(srl GR16:$src, (i8 8)),
1511          (EXTRACT_SUBREG
1512            (MOVZX32_NOREXrr8
1513              (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1514                              sub_8bit_hi)),
1515            sub_16bit)>,
1516      Requires<[In64BitMode]>;
1517def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1518          (MOVZX32_NOREXrr8
1519            (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1520                            sub_8bit_hi))>,
1521      Requires<[In64BitMode]>;
1522def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1523          (MOVZX32_NOREXrr8
1524            (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1525                            sub_8bit_hi))>,
1526      Requires<[In64BitMode]>;
1527def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
1528          (SUBREG_TO_REG
1529            (i64 0),
1530            (MOVZX32_NOREXrr8
1531              (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1532                              sub_8bit_hi)),
1533            sub_32bit)>;
1534def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
1535          (SUBREG_TO_REG
1536            (i64 0),
1537            (MOVZX32_NOREXrr8
1538              (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1539                              sub_8bit_hi)),
1540            sub_32bit)>;
1541
1542// h-register extract and store.
1543def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
1544          (MOV8mr_NOREX
1545            addr:$dst,
1546            (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1547                            sub_8bit_hi))>;
1548def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
1549          (MOV8mr_NOREX
1550            addr:$dst,
1551            (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1552                            sub_8bit_hi))>,
1553      Requires<[In64BitMode]>;
1554def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
1555          (MOV8mr_NOREX
1556            addr:$dst,
1557            (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1558                            sub_8bit_hi))>,
1559      Requires<[In64BitMode]>;
1560
1561
1562// (shl x, 1) ==> (add x, x)
1563// Note that if x is undef (immediate or otherwise), we could theoretically
1564// end up with the two uses of x getting different values, producing a result
1565// where the least significant bit is not 0. However, the probability of this
1566// happening is considered low enough that this is officially not a
1567// "real problem".
1568def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr  GR8 :$src1, GR8 :$src1)>;
1569def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
1570def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
1571def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
1572
1573// Helper imms that check if a mask doesn't change significant shift bits.
1574def immShift32 : ImmLeaf<i8, [{
1575  return countTrailingOnes<uint64_t>(Imm) >= 5;
1576}]>;
1577def immShift64 : ImmLeaf<i8, [{
1578  return countTrailingOnes<uint64_t>(Imm) >= 6;
1579}]>;
1580
1581// Shift amount is implicitly masked.
1582multiclass MaskedShiftAmountPats<SDNode frag, string name> {
1583  // (shift x (and y, 31)) ==> (shift x, y)
1584  def : Pat<(frag GR8:$src1, (and CL, immShift32)),
1585            (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
1586  def : Pat<(frag GR16:$src1, (and CL, immShift32)),
1587            (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
1588  def : Pat<(frag GR32:$src1, (and CL, immShift32)),
1589            (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
1590  def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1591            (!cast<Instruction>(name # "8mCL") addr:$dst)>;
1592  def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1593            (!cast<Instruction>(name # "16mCL") addr:$dst)>;
1594  def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1595            (!cast<Instruction>(name # "32mCL") addr:$dst)>;
1596
1597  // (shift x (and y, 63)) ==> (shift x, y)
1598  def : Pat<(frag GR64:$src1, (and CL, immShift64)),
1599            (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
1600  def : Pat<(store (frag (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1601            (!cast<Instruction>(name # "64mCL") addr:$dst)>;
1602}
1603
1604defm : MaskedShiftAmountPats<shl, "SHL">;
1605defm : MaskedShiftAmountPats<srl, "SHR">;
1606defm : MaskedShiftAmountPats<sra, "SAR">;
1607defm : MaskedShiftAmountPats<rotl, "ROL">;
1608defm : MaskedShiftAmountPats<rotr, "ROR">;
1609
1610// (anyext (setcc_carry)) -> (setcc_carry)
1611def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1612          (SETB_C16r)>;
1613def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1614          (SETB_C32r)>;
1615def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
1616          (SETB_C32r)>;
1617
1618
1619
1620
1621//===----------------------------------------------------------------------===//
1622// EFLAGS-defining Patterns
1623//===----------------------------------------------------------------------===//
1624
1625// add reg, reg
1626def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr  GR8 :$src1, GR8 :$src2)>;
1627def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
1628def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
1629
1630// add reg, mem
1631def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
1632          (ADD8rm GR8:$src1, addr:$src2)>;
1633def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
1634          (ADD16rm GR16:$src1, addr:$src2)>;
1635def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
1636          (ADD32rm GR32:$src1, addr:$src2)>;
1637
1638// add reg, imm
1639def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri  GR8:$src1 , imm:$src2)>;
1640def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
1641def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
1642def : Pat<(add GR16:$src1, i16immSExt8:$src2),
1643          (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1644def : Pat<(add GR32:$src1, i32immSExt8:$src2),
1645          (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1646
1647// sub reg, reg
1648def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr  GR8 :$src1, GR8 :$src2)>;
1649def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
1650def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
1651
1652// sub reg, mem
1653def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
1654          (SUB8rm GR8:$src1, addr:$src2)>;
1655def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
1656          (SUB16rm GR16:$src1, addr:$src2)>;
1657def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
1658          (SUB32rm GR32:$src1, addr:$src2)>;
1659
1660// sub reg, imm
1661def : Pat<(sub GR8:$src1, imm:$src2),
1662          (SUB8ri GR8:$src1, imm:$src2)>;
1663def : Pat<(sub GR16:$src1, imm:$src2),
1664          (SUB16ri GR16:$src1, imm:$src2)>;
1665def : Pat<(sub GR32:$src1, imm:$src2),
1666          (SUB32ri GR32:$src1, imm:$src2)>;
1667def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
1668          (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
1669def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
1670          (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
1671
1672// sub 0, reg
1673def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r  GR8 :$src)>;
1674def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
1675def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
1676def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;
1677
1678// mul reg, reg
1679def : Pat<(mul GR16:$src1, GR16:$src2),
1680          (IMUL16rr GR16:$src1, GR16:$src2)>;
1681def : Pat<(mul GR32:$src1, GR32:$src2),
1682          (IMUL32rr GR32:$src1, GR32:$src2)>;
1683
1684// mul reg, mem
1685def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
1686          (IMUL16rm GR16:$src1, addr:$src2)>;
1687def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
1688          (IMUL32rm GR32:$src1, addr:$src2)>;
1689
1690// mul reg, imm
1691def : Pat<(mul GR16:$src1, imm:$src2),
1692          (IMUL16rri GR16:$src1, imm:$src2)>;
1693def : Pat<(mul GR32:$src1, imm:$src2),
1694          (IMUL32rri GR32:$src1, imm:$src2)>;
1695def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
1696          (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
1697def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
1698          (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
1699
1700// reg = mul mem, imm
1701def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
1702          (IMUL16rmi addr:$src1, imm:$src2)>;
1703def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
1704          (IMUL32rmi addr:$src1, imm:$src2)>;
1705def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
1706          (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
1707def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
1708          (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
1709
1710// Patterns for nodes that do not produce flags, for instructions that do.
1711
1712// addition
1713def : Pat<(add GR64:$src1, GR64:$src2),
1714          (ADD64rr GR64:$src1, GR64:$src2)>;
1715def : Pat<(add GR64:$src1, i64immSExt8:$src2),
1716          (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1717def : Pat<(add GR64:$src1, i64immSExt32:$src2),
1718          (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1719def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
1720          (ADD64rm GR64:$src1, addr:$src2)>;
1721
1722// subtraction
1723def : Pat<(sub GR64:$src1, GR64:$src2),
1724          (SUB64rr GR64:$src1, GR64:$src2)>;
1725def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
1726          (SUB64rm GR64:$src1, addr:$src2)>;
1727def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
1728          (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
1729def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
1730          (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
1731
1732// Multiply
1733def : Pat<(mul GR64:$src1, GR64:$src2),
1734          (IMUL64rr GR64:$src1, GR64:$src2)>;
1735def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
1736          (IMUL64rm GR64:$src1, addr:$src2)>;
1737def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
1738          (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
1739def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
1740          (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
1741def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
1742          (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
1743def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
1744          (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
1745
1746// Increment/Decrement reg.
1747// Do not make INC/DEC if it is slow
1748let Predicates = [NotSlowIncDec] in {
1749  def : Pat<(add GR8:$src, 1),   (INC8r GR8:$src)>;
1750  def : Pat<(add GR16:$src, 1),  (INC16r GR16:$src)>;
1751  def : Pat<(add GR32:$src, 1),  (INC32r GR32:$src)>;
1752  def : Pat<(add GR64:$src, 1),  (INC64r GR64:$src)>;
1753  def : Pat<(add GR8:$src, -1),  (DEC8r GR8:$src)>;
1754  def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>;
1755  def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>;
1756  def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
1757}
1758
1759// or reg/reg.
1760def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr  GR8 :$src1, GR8 :$src2)>;
1761def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
1762def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
1763def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
1764
1765// or reg/mem
1766def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
1767          (OR8rm GR8:$src1, addr:$src2)>;
1768def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
1769          (OR16rm GR16:$src1, addr:$src2)>;
1770def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
1771          (OR32rm GR32:$src1, addr:$src2)>;
1772def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
1773          (OR64rm GR64:$src1, addr:$src2)>;
1774
1775// or reg/imm
1776def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri  GR8 :$src1, imm:$src2)>;
1777def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
1778def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
1779def : Pat<(or GR16:$src1, i16immSExt8:$src2),
1780          (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1781def : Pat<(or GR32:$src1, i32immSExt8:$src2),
1782          (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1783def : Pat<(or GR64:$src1, i64immSExt8:$src2),
1784          (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1785def : Pat<(or GR64:$src1, i64immSExt32:$src2),
1786          (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1787
1788// xor reg/reg
1789def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr  GR8 :$src1, GR8 :$src2)>;
1790def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
1791def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
1792def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
1793
1794// xor reg/mem
1795def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
1796          (XOR8rm GR8:$src1, addr:$src2)>;
1797def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
1798          (XOR16rm GR16:$src1, addr:$src2)>;
1799def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
1800          (XOR32rm GR32:$src1, addr:$src2)>;
1801def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
1802          (XOR64rm GR64:$src1, addr:$src2)>;
1803
1804// xor reg/imm
1805def : Pat<(xor GR8:$src1, imm:$src2),
1806          (XOR8ri GR8:$src1, imm:$src2)>;
1807def : Pat<(xor GR16:$src1, imm:$src2),
1808          (XOR16ri GR16:$src1, imm:$src2)>;
1809def : Pat<(xor GR32:$src1, imm:$src2),
1810          (XOR32ri GR32:$src1, imm:$src2)>;
1811def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
1812          (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1813def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
1814          (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1815def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
1816          (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1817def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
1818          (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1819
1820// and reg/reg
1821def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr  GR8 :$src1, GR8 :$src2)>;
1822def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
1823def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
1824def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
1825
1826// and reg/mem
1827def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
1828          (AND8rm GR8:$src1, addr:$src2)>;
1829def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
1830          (AND16rm GR16:$src1, addr:$src2)>;
1831def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
1832          (AND32rm GR32:$src1, addr:$src2)>;
1833def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
1834          (AND64rm GR64:$src1, addr:$src2)>;
1835
1836// and reg/imm
1837def : Pat<(and GR8:$src1, imm:$src2),
1838          (AND8ri GR8:$src1, imm:$src2)>;
1839def : Pat<(and GR16:$src1, imm:$src2),
1840          (AND16ri GR16:$src1, imm:$src2)>;
1841def : Pat<(and GR32:$src1, imm:$src2),
1842          (AND32ri GR32:$src1, imm:$src2)>;
1843def : Pat<(and GR16:$src1, i16immSExt8:$src2),
1844          (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
1845def : Pat<(and GR32:$src1, i32immSExt8:$src2),
1846          (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
1847def : Pat<(and GR64:$src1, i64immSExt8:$src2),
1848          (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
1849def : Pat<(and GR64:$src1, i64immSExt32:$src2),
1850          (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
1851
1852// Bit scan instruction patterns to match explicit zero-undef behavior.
1853def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
1854def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
1855def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
1856def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
1857def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
1858def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;
1859
1860// When HasMOVBE is enabled it is possible to get a non-legalized
1861// register-register 16 bit bswap. This maps it to a ROL instruction.
1862let Predicates = [HasMOVBE] in {
1863 def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>;
1864}
1865