X86InstrCompiler.td revision 234353
187866Ssheldonh//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
287866Ssheldonh//
387866Ssheldonh//                     The LLVM Compiler Infrastructure
487866Ssheldonh//
587866Ssheldonh// This file is distributed under the University of Illinois Open Source
687866Ssheldonh// License. See LICENSE.TXT for details.
787866Ssheldonh//
887866Ssheldonh//===----------------------------------------------------------------------===//
987866Ssheldonh//
1087866Ssheldonh// This file describes the various pseudo instructions used by the compiler,
1187866Ssheldonh// as well as Pat patterns used during instruction selection.
1287866Ssheldonh//
1387866Ssheldonh//===----------------------------------------------------------------------===//
1487866Ssheldonh
1587866Ssheldonh//===----------------------------------------------------------------------===//
1687866Ssheldonh// Pattern Matching Support
1787866Ssheldonh
1887866Ssheldonhdef GetLo32XForm : SDNodeXForm<imm, [{
1987866Ssheldonh  // Transformation function: get the low 32 bits.
2087866Ssheldonh  return getI32Imm((unsigned)N->getZExtValue());
2187866Ssheldonh}]>;
2287866Ssheldonh
2387866Ssheldonhdef GetLo8XForm : SDNodeXForm<imm, [{
2487866Ssheldonh  // Transformation function: get the low 8 bits.
2587866Ssheldonh  return getI8Imm((uint8_t)N->getZExtValue());
2687866Ssheldonh}]>;
2787866Ssheldonh
2887866Ssheldonh
2987866Ssheldonh//===----------------------------------------------------------------------===//
3087866Ssheldonh// Random Pseudo Instructions.
3187866Ssheldonh
3287866Ssheldonh// PIC base construction.  This expands to code that looks like this:
3387866Ssheldonh//     call  $next_inst
3487866Ssheldonh//     popl %destreg"
3587866Ssheldonhlet neverHasSideEffects = 1, isNotDuplicable = 1, Uses = [ESP] in
3687866Ssheldonh  def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
3787866Ssheldonh                      "", []>;
38
39
40// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
41// a stack adjustment and the codegen must know that they may modify the stack
42// pointer before prolog-epilog rewriting occurs.
43// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
44// sub / add which can clobber EFLAGS.
45let Defs = [ESP, EFLAGS], Uses = [ESP] in {
46def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt),
47                           "#ADJCALLSTACKDOWN",
48                           [(X86callseq_start timm:$amt)]>,
49                          Requires<[In32BitMode]>;
50def ADJCALLSTACKUP32   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
51                           "#ADJCALLSTACKUP",
52                           [(X86callseq_end timm:$amt1, timm:$amt2)]>,
53                          Requires<[In32BitMode]>;
54}
55
56// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
57// a stack adjustment and the codegen must know that they may modify the stack
58// pointer before prolog-epilog rewriting occurs.
59// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
60// sub / add which can clobber EFLAGS.
61let Defs = [RSP, EFLAGS], Uses = [RSP] in {
62def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt),
63                           "#ADJCALLSTACKDOWN",
64                           [(X86callseq_start timm:$amt)]>,
65                          Requires<[In64BitMode]>;
66def ADJCALLSTACKUP64   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
67                           "#ADJCALLSTACKUP",
68                           [(X86callseq_end timm:$amt1, timm:$amt2)]>,
69                          Requires<[In64BitMode]>;
70}
71
72
73
74// x86-64 va_start lowering magic.
75let usesCustomInserter = 1 in {
76def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
77                              (outs),
78                              (ins GR8:$al,
79                                   i64imm:$regsavefi, i64imm:$offset,
80                                   variable_ops),
81                              "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
82                              [(X86vastart_save_xmm_regs GR8:$al,
83                                                         imm:$regsavefi,
84                                                         imm:$offset)]>;
85
86// The VAARG_64 pseudo-instruction takes the address of the va_list,
87// and places the address of the next argument into a register.
88let Defs = [EFLAGS] in
89def VAARG_64 : I<0, Pseudo,
90                 (outs GR64:$dst),
91                 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
92                 "#VAARG_64 $dst, $ap, $size, $mode, $align",
93                 [(set GR64:$dst,
94                    (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
95                  (implicit EFLAGS)]>;
96
97// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
98// targets.  These calls are needed to probe the stack when allocating more than
99// 4k bytes in one go. Touching the stack at 4K increments is necessary to
100// ensure that the guard pages used by the OS virtual memory manager are
101// allocated in correct sequence.
102// The main point of having separate instruction are extra unmodelled effects
103// (compared to ordinary calls) like stack pointer change.
104
105let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
106  def WIN_ALLOCA : I<0, Pseudo, (outs), (ins),
107                     "# dynamic stack allocation",
108                     [(X86WinAlloca)]>;
109
110// When using segmented stacks these are lowered into instructions which first
111// check if the current stacklet has enough free memory. If it does, memory is
112// allocated by bumping the stack pointer. Otherwise memory is allocated from 
113// the heap.
114
115let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
116def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
117                      "# variable sized alloca for segmented stacks",
118                      [(set GR32:$dst,
119                         (X86SegAlloca GR32:$size))]>,
120                    Requires<[In32BitMode]>;
121
122let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
123def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
124                      "# variable sized alloca for segmented stacks",
125                      [(set GR64:$dst,
126                         (X86SegAlloca GR64:$size))]>,
127                    Requires<[In64BitMode]>;
128}
129
130// The MSVC runtime contains an _ftol2 routine for converting floating-point
131// to integer values. It has a strange calling convention: the input is
132// popped from the x87 stack, and the return value is given in EDX:EAX. No
133// other registers (aside from flags) are touched.
134// Microsoft toolchains do not support 80-bit precision, so a WIN_FTOL_80
135// variant is unnecessary.
136
137let Defs = [EAX, EDX, EFLAGS], FPForm = SpecialFP in {
138  def WIN_FTOL_32 : I<0, Pseudo, (outs), (ins RFP32:$src),
139                      "# win32 fptoui",
140                      [(X86WinFTOL RFP32:$src)]>,
141                    Requires<[In32BitMode]>;
142
143  def WIN_FTOL_64 : I<0, Pseudo, (outs), (ins RFP64:$src),
144                      "# win32 fptoui",
145                      [(X86WinFTOL RFP64:$src)]>,
146                    Requires<[In32BitMode]>;
147}
148
149//===----------------------------------------------------------------------===//
150// EH Pseudo Instructions
151//
152let isTerminator = 1, isReturn = 1, isBarrier = 1,
153    hasCtrlDep = 1, isCodeGenOnly = 1 in {
154def EH_RETURN   : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
155                    "ret\t#eh_return, addr: $addr",
156                    [(X86ehret GR32:$addr)], IIC_RET>;
157
158}
159
160let isTerminator = 1, isReturn = 1, isBarrier = 1,
161    hasCtrlDep = 1, isCodeGenOnly = 1 in {
162def EH_RETURN64   : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
163                     "ret\t#eh_return, addr: $addr",
164                     [(X86ehret GR64:$addr)], IIC_RET>;
165
166}
167
168//===----------------------------------------------------------------------===//
169// Pseudo instructions used by segmented stacks.
170//
171
172// This is lowered into a RET instruction by MCInstLower.  We need
173// this so that we don't have to have a MachineBasicBlock which ends
174// with a RET and also has successors.
175let isPseudo = 1 in {
176def MORESTACK_RET: I<0, Pseudo, (outs), (ins),
177                          "", []>;
178
179// This instruction is lowered to a RET followed by a MOV.  The two
180// instructions are not generated on a higher level since then the
181// verifier sees a MachineBasicBlock ending with a non-terminator.
182def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins),
183                                  "", []>;
184}
185
186//===----------------------------------------------------------------------===//
187// Alias Instructions
188//===----------------------------------------------------------------------===//
189
190// Alias instructions that map movr0 to xor.
191// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
192// FIXME: Set encoding to pseudo.
193let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
194    isCodeGenOnly = 1 in {
195def MOV8r0   : I<0x30, MRMInitReg, (outs GR8 :$dst), (ins), "",
196                 [(set GR8:$dst, 0)], IIC_ALU_NONMEM>;
197
198// We want to rewrite MOV16r0 in terms of MOV32r0, because it's a smaller
199// encoding and avoids a partial-register update sometimes, but doing so
200// at isel time interferes with rematerialization in the current register
201// allocator. For now, this is rewritten when the instruction is lowered
202// to an MCInst.
203def MOV16r0   : I<0x31, MRMInitReg, (outs GR16:$dst), (ins),
204                 "",
205                 [(set GR16:$dst, 0)], IIC_ALU_NONMEM>, OpSize;
206
207// FIXME: Set encoding to pseudo.
208def MOV32r0  : I<0x31, MRMInitReg, (outs GR32:$dst), (ins), "",
209                 [(set GR32:$dst, 0)], IIC_ALU_NONMEM>;
210}
211
212// We want to rewrite MOV64r0 in terms of MOV32r0, because it's sometimes a
213// smaller encoding, but doing so at isel time interferes with rematerialization
214// in the current register allocator. For now, this is rewritten when the
215// instruction is lowered to an MCInst.
216// FIXME: AddedComplexity gives this a higher priority than MOV64ri32. Remove
217// when we have a better way to specify isel priority.
218let Defs = [EFLAGS], isCodeGenOnly=1,
219    AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in
220def MOV64r0   : I<0x31, MRMInitReg, (outs GR64:$dst), (ins), "",
221                 [(set GR64:$dst, 0)], IIC_ALU_NONMEM>;
222
223// Materialize i64 constant where top 32-bits are zero. This could theoretically
224// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
225// that would make it more difficult to rematerialize.
226let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1,
227    isCodeGenOnly = 1 in
228def MOV64ri64i32 : Ii32<0xB8, AddRegFrm, (outs GR64:$dst), (ins i64i32imm:$src),
229                        "", [(set GR64:$dst, i64immZExt32:$src)],
230                        IIC_ALU_NONMEM>;
231
232// Use sbb to materialize carry bit.
233let Uses = [EFLAGS], Defs = [EFLAGS], isCodeGenOnly = 1 in {
234// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
235// However, Pat<> can't replicate the destination reg into the inputs of the
236// result.
237// FIXME: Change these to have encoding Pseudo when X86MCCodeEmitter replaces
238// X86CodeEmitter.
239def SETB_C8r : I<0x18, MRMInitReg, (outs GR8:$dst), (ins), "",
240                 [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))],
241                 IIC_ALU_NONMEM>;
242def SETB_C16r : I<0x19, MRMInitReg, (outs GR16:$dst), (ins), "",
243                 [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))],
244                 IIC_ALU_NONMEM>,
245                OpSize;
246def SETB_C32r : I<0x19, MRMInitReg, (outs GR32:$dst), (ins), "",
247                 [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))],
248                 IIC_ALU_NONMEM>;
249def SETB_C64r : RI<0x19, MRMInitReg, (outs GR64:$dst), (ins), "",
250                 [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))],
251                 IIC_ALU_NONMEM>;
252} // isCodeGenOnly
253
254
255def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
256          (SETB_C16r)>;
257def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
258          (SETB_C32r)>;
259def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
260          (SETB_C64r)>;
261
262def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
263          (SETB_C16r)>;
264def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
265          (SETB_C32r)>;
266def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
267          (SETB_C64r)>;
268
269// We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and
270// will be eliminated and that the sbb can be extended up to a wider type.  When
271// this happens, it is great.  However, if we are left with an 8-bit sbb and an
272// and, we might as well just match it as a setb.
273def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1),
274          (SETBr)>;
275
276// (add OP, SETB) -> (adc OP, 0)
277def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op),
278          (ADC8ri GR8:$op, 0)>;
279def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op),
280          (ADC32ri8 GR32:$op, 0)>;
281def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op),
282          (ADC64ri8 GR64:$op, 0)>;
283
284// (sub OP, SETB) -> (sbb OP, 0)
285def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
286          (SBB8ri GR8:$op, 0)>;
287def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
288          (SBB32ri8 GR32:$op, 0)>;
289def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
290          (SBB64ri8 GR64:$op, 0)>;
291
292// (sub OP, SETCC_CARRY) -> (adc OP, 0)
293def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))),
294          (ADC8ri GR8:$op, 0)>;
295def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))),
296          (ADC32ri8 GR32:$op, 0)>;
297def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))),
298          (ADC64ri8 GR64:$op, 0)>;
299
300//===----------------------------------------------------------------------===//
301// String Pseudo Instructions
302//
303let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
304def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
305                    [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
306                   Requires<[In32BitMode]>;
307def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
308                    [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize,
309                   Requires<[In32BitMode]>;
310def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
311                    [(X86rep_movs i32)], IIC_REP_MOVS>, REP,
312                   Requires<[In32BitMode]>;
313}
314
315let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
316def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
317                    [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
318                   Requires<[In64BitMode]>;
319def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
320                    [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize,
321                   Requires<[In64BitMode]>;
322def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
323                    [(X86rep_movs i32)], IIC_REP_MOVS>, REP,
324                   Requires<[In64BitMode]>;
325def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
326                    [(X86rep_movs i64)], IIC_REP_MOVS>, REP,
327                   Requires<[In64BitMode]>;
328}
329
330// FIXME: Should use "(X86rep_stos AL)" as the pattern.
331let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
332  let Uses = [AL,ECX,EDI] in
333  def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
334                      [(X86rep_stos i8)], IIC_REP_STOS>, REP,
335                     Requires<[In32BitMode]>;
336  let Uses = [AX,ECX,EDI] in
337  def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
338                      [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize,
339                     Requires<[In32BitMode]>;
340  let Uses = [EAX,ECX,EDI] in
341  def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
342                      [(X86rep_stos i32)], IIC_REP_STOS>, REP,
343                     Requires<[In32BitMode]>;
344}
345
346let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
347  let Uses = [AL,RCX,RDI] in
348  def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
349                      [(X86rep_stos i8)], IIC_REP_STOS>, REP,
350                     Requires<[In64BitMode]>;
351  let Uses = [AX,RCX,RDI] in
352  def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
353                      [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize,
354                     Requires<[In64BitMode]>;
355  let Uses = [RAX,RCX,RDI] in
356  def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
357                      [(X86rep_stos i32)], IIC_REP_STOS>, REP,
358                     Requires<[In64BitMode]>;
359 
360  let Uses = [RAX,RCX,RDI] in
361  def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
362                      [(X86rep_stos i64)], IIC_REP_STOS>, REP,
363                     Requires<[In64BitMode]>;
364}
365
366//===----------------------------------------------------------------------===//
367// Thread Local Storage Instructions
368//
369
370// ELF TLS Support
371// All calls clobber the non-callee saved registers. ESP is marked as
372// a use to prevent stack-pointer assignments that appear immediately
373// before calls from potentially appearing dead.
374let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
375            MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
376            XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
377            XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
378    Uses = [ESP] in
379def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
380                  "# TLS_addr32",
381                  [(X86tlsaddr tls32addr:$sym)]>,
382                  Requires<[In32BitMode]>;
383
384// All calls clobber the non-callee saved registers. RSP is marked as
385// a use to prevent stack-pointer assignments that appear immediately
386// before calls from potentially appearing dead.
387let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
388            FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1,
389            MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
390            XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
391            XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
392    Uses = [RSP] in
393def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
394                   "# TLS_addr64",
395                  [(X86tlsaddr tls64addr:$sym)]>,
396                  Requires<[In64BitMode]>;
397
398// Darwin TLS Support
399// For i386, the address of the thunk is passed on the stack, on return the
400// address of the variable is in %eax.  %ecx is trashed during the function
401// call.  All other registers are preserved.
402let Defs = [EAX, ECX, EFLAGS],
403    Uses = [ESP],
404    usesCustomInserter = 1 in
405def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
406                "# TLSCall_32",
407                [(X86TLSCall addr:$sym)]>,
408                Requires<[In32BitMode]>;
409
410// For x86_64, the address of the thunk is passed in %rdi, on return
411// the address of the variable is in %rax.  All other registers are preserved.
412let Defs = [RAX, EFLAGS],
413    Uses = [RSP, RDI],
414    usesCustomInserter = 1 in
415def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
416                  "# TLSCall_64",
417                  [(X86TLSCall addr:$sym)]>,
418                  Requires<[In64BitMode]>;
419
420
421//===----------------------------------------------------------------------===//
422// Conditional Move Pseudo Instructions
423
424// X86 doesn't have 8-bit conditional moves. Use a customInserter to
425// emit control flow. An alternative to this is to mark i8 SELECT as Promote,
426// however that requires promoting the operands, and can induce additional
427// i8 register pressure.
428let usesCustomInserter = 1, Uses = [EFLAGS] in {
429def CMOV_GR8 : I<0, Pseudo,
430                 (outs GR8:$dst), (ins GR8:$src1, GR8:$src2, i8imm:$cond),
431                 "#CMOV_GR8 PSEUDO!",
432                 [(set GR8:$dst, (X86cmov GR8:$src1, GR8:$src2,
433                                          imm:$cond, EFLAGS))]>;
434
435let Predicates = [NoCMov] in {
436def CMOV_GR32 : I<0, Pseudo,
437                    (outs GR32:$dst), (ins GR32:$src1, GR32:$src2, i8imm:$cond),
438                    "#CMOV_GR32* PSEUDO!",
439                    [(set GR32:$dst,
440                      (X86cmov GR32:$src1, GR32:$src2, imm:$cond, EFLAGS))]>;
441def CMOV_GR16 : I<0, Pseudo,
442                    (outs GR16:$dst), (ins GR16:$src1, GR16:$src2, i8imm:$cond),
443                    "#CMOV_GR16* PSEUDO!",
444                    [(set GR16:$dst,
445                      (X86cmov GR16:$src1, GR16:$src2, imm:$cond, EFLAGS))]>;
446def CMOV_RFP32 : I<0, Pseudo,
447                    (outs RFP32:$dst),
448                    (ins RFP32:$src1, RFP32:$src2, i8imm:$cond),
449                    "#CMOV_RFP32 PSEUDO!",
450                    [(set RFP32:$dst,
451                      (X86cmov RFP32:$src1, RFP32:$src2, imm:$cond,
452                                                  EFLAGS))]>;
453def CMOV_RFP64 : I<0, Pseudo,
454                    (outs RFP64:$dst),
455                    (ins RFP64:$src1, RFP64:$src2, i8imm:$cond),
456                    "#CMOV_RFP64 PSEUDO!",
457                    [(set RFP64:$dst,
458                      (X86cmov RFP64:$src1, RFP64:$src2, imm:$cond,
459                                                  EFLAGS))]>;
460def CMOV_RFP80 : I<0, Pseudo,
461                    (outs RFP80:$dst),
462                    (ins RFP80:$src1, RFP80:$src2, i8imm:$cond),
463                    "#CMOV_RFP80 PSEUDO!",
464                    [(set RFP80:$dst,
465                      (X86cmov RFP80:$src1, RFP80:$src2, imm:$cond,
466                                                  EFLAGS))]>;
467} // Predicates = [NoCMov]
468} // UsesCustomInserter = 1, Uses = [EFLAGS]
469
470
471//===----------------------------------------------------------------------===//
472// Atomic Instruction Pseudo Instructions
473//===----------------------------------------------------------------------===//
474
475// Atomic exchange, and, or, xor
476let Constraints = "$val = $dst", Defs = [EFLAGS],
477                  usesCustomInserter = 1 in {
478
479def ATOMAND8 : I<0, Pseudo, (outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
480               "#ATOMAND8 PSEUDO!",
481               [(set GR8:$dst, (atomic_load_and_8 addr:$ptr, GR8:$val))]>;
482def ATOMOR8 : I<0, Pseudo, (outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
483               "#ATOMOR8 PSEUDO!",
484               [(set GR8:$dst, (atomic_load_or_8 addr:$ptr, GR8:$val))]>;
485def ATOMXOR8 : I<0, Pseudo,(outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
486               "#ATOMXOR8 PSEUDO!",
487               [(set GR8:$dst, (atomic_load_xor_8 addr:$ptr, GR8:$val))]>;
488def ATOMNAND8 : I<0, Pseudo,(outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
489               "#ATOMNAND8 PSEUDO!",
490               [(set GR8:$dst, (atomic_load_nand_8 addr:$ptr, GR8:$val))]>;
491
492def ATOMAND16 : I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
493               "#ATOMAND16 PSEUDO!",
494               [(set GR16:$dst, (atomic_load_and_16 addr:$ptr, GR16:$val))]>;
495def ATOMOR16 : I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
496               "#ATOMOR16 PSEUDO!",
497               [(set GR16:$dst, (atomic_load_or_16 addr:$ptr, GR16:$val))]>;
498def ATOMXOR16 : I<0, Pseudo,(outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
499               "#ATOMXOR16 PSEUDO!",
500               [(set GR16:$dst, (atomic_load_xor_16 addr:$ptr, GR16:$val))]>;
501def ATOMNAND16 : I<0, Pseudo,(outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
502               "#ATOMNAND16 PSEUDO!",
503               [(set GR16:$dst, (atomic_load_nand_16 addr:$ptr, GR16:$val))]>;
504def ATOMMIN16: I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$ptr, GR16:$val),
505               "#ATOMMIN16 PSEUDO!",
506               [(set GR16:$dst, (atomic_load_min_16 addr:$ptr, GR16:$val))]>;
507def ATOMMAX16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
508               "#ATOMMAX16 PSEUDO!",
509               [(set GR16:$dst, (atomic_load_max_16 addr:$ptr, GR16:$val))]>;
510def ATOMUMIN16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
511               "#ATOMUMIN16 PSEUDO!",
512               [(set GR16:$dst, (atomic_load_umin_16 addr:$ptr, GR16:$val))]>;
513def ATOMUMAX16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
514               "#ATOMUMAX16 PSEUDO!",
515               [(set GR16:$dst, (atomic_load_umax_16 addr:$ptr, GR16:$val))]>;
516
517
518def ATOMAND32 : I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
519               "#ATOMAND32 PSEUDO!",
520               [(set GR32:$dst, (atomic_load_and_32 addr:$ptr, GR32:$val))]>;
521def ATOMOR32 : I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
522               "#ATOMOR32 PSEUDO!",
523               [(set GR32:$dst, (atomic_load_or_32 addr:$ptr, GR32:$val))]>;
524def ATOMXOR32 : I<0, Pseudo,(outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
525               "#ATOMXOR32 PSEUDO!",
526               [(set GR32:$dst, (atomic_load_xor_32 addr:$ptr, GR32:$val))]>;
527def ATOMNAND32 : I<0, Pseudo,(outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
528               "#ATOMNAND32 PSEUDO!",
529               [(set GR32:$dst, (atomic_load_nand_32 addr:$ptr, GR32:$val))]>;
530def ATOMMIN32: I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$ptr, GR32:$val),
531               "#ATOMMIN32 PSEUDO!",
532               [(set GR32:$dst, (atomic_load_min_32 addr:$ptr, GR32:$val))]>;
533def ATOMMAX32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
534               "#ATOMMAX32 PSEUDO!",
535               [(set GR32:$dst, (atomic_load_max_32 addr:$ptr, GR32:$val))]>;
536def ATOMUMIN32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
537               "#ATOMUMIN32 PSEUDO!",
538               [(set GR32:$dst, (atomic_load_umin_32 addr:$ptr, GR32:$val))]>;
539def ATOMUMAX32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
540               "#ATOMUMAX32 PSEUDO!",
541               [(set GR32:$dst, (atomic_load_umax_32 addr:$ptr, GR32:$val))]>;
542
543
544
545def ATOMAND64 : I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
546               "#ATOMAND64 PSEUDO!",
547               [(set GR64:$dst, (atomic_load_and_64 addr:$ptr, GR64:$val))]>;
548def ATOMOR64 : I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
549               "#ATOMOR64 PSEUDO!",
550               [(set GR64:$dst, (atomic_load_or_64 addr:$ptr, GR64:$val))]>;
551def ATOMXOR64 : I<0, Pseudo,(outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
552               "#ATOMXOR64 PSEUDO!",
553               [(set GR64:$dst, (atomic_load_xor_64 addr:$ptr, GR64:$val))]>;
554def ATOMNAND64 : I<0, Pseudo,(outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
555               "#ATOMNAND64 PSEUDO!",
556               [(set GR64:$dst, (atomic_load_nand_64 addr:$ptr, GR64:$val))]>;
557def ATOMMIN64: I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$ptr, GR64:$val),
558               "#ATOMMIN64 PSEUDO!",
559               [(set GR64:$dst, (atomic_load_min_64 addr:$ptr, GR64:$val))]>;
560def ATOMMAX64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
561               "#ATOMMAX64 PSEUDO!",
562               [(set GR64:$dst, (atomic_load_max_64 addr:$ptr, GR64:$val))]>;
563def ATOMUMIN64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
564               "#ATOMUMIN64 PSEUDO!",
565               [(set GR64:$dst, (atomic_load_umin_64 addr:$ptr, GR64:$val))]>;
566def ATOMUMAX64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
567               "#ATOMUMAX64 PSEUDO!",
568               [(set GR64:$dst, (atomic_load_umax_64 addr:$ptr, GR64:$val))]>;
569}
570
571let Constraints = "$val1 = $dst1, $val2 = $dst2",
572                  Defs = [EFLAGS, EAX, EBX, ECX, EDX],
573                  Uses = [EAX, EBX, ECX, EDX],
574                  mayLoad = 1, mayStore = 1,
575                  usesCustomInserter = 1 in {
576def ATOMAND6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
577                               (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
578               "#ATOMAND6432 PSEUDO!", []>;
579def ATOMOR6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
580                               (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
581               "#ATOMOR6432 PSEUDO!", []>;
582def ATOMXOR6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
583                               (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
584               "#ATOMXOR6432 PSEUDO!", []>;
585def ATOMNAND6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
586                               (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
587               "#ATOMNAND6432 PSEUDO!", []>;
588def ATOMADD6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
589                               (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
590               "#ATOMADD6432 PSEUDO!", []>;
591def ATOMSUB6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
592                               (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
593               "#ATOMSUB6432 PSEUDO!", []>;
594def ATOMSWAP6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
595                               (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
596               "#ATOMSWAP6432 PSEUDO!", []>;
597}
598
599//===----------------------------------------------------------------------===//
600// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
601//===----------------------------------------------------------------------===//
602
603// FIXME: Use normal instructions and add lock prefix dynamically.
604
605// Memory barriers
606
607// TODO: Get this to fold the constant into the instruction.
608let isCodeGenOnly = 1, Defs = [EFLAGS] in
609def OR32mrLocked  : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
610                      "lock\n\t"
611                      "or{l}\t{$zero, $dst|$dst, $zero}",
612                      [], IIC_ALU_MEM>, Requires<[In32BitMode]>, LOCK;
613
614let hasSideEffects = 1 in
615def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
616                     "#MEMBARRIER",
617                     [(X86MemBarrier)]>;
618
619// RegOpc corresponds to the mr version of the instruction
620// ImmOpc corresponds to the mi version of the instruction
621// ImmOpc8 corresponds to the mi8 version of the instruction
622// ImmMod corresponds to the instruction format of the mi and mi8 versions
623multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
624                           Format ImmMod, string mnemonic> {
625let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1 in {
626
627def #NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
628                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
629                   MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
630                   !strconcat("lock\n\t", mnemonic, "{b}\t",
631                              "{$src2, $dst|$dst, $src2}"),
632                   [], IIC_ALU_NONMEM>, LOCK;
633def #NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
634                    RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
635                    MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
636                    !strconcat("lock\n\t", mnemonic, "{w}\t",
637                               "{$src2, $dst|$dst, $src2}"),
638                    [], IIC_ALU_NONMEM>, OpSize, LOCK;
639def #NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
640                    RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
641                    MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
642                    !strconcat("lock\n\t", mnemonic, "{l}\t",
643                               "{$src2, $dst|$dst, $src2}"),
644                    [], IIC_ALU_NONMEM>, LOCK;
645def #NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
646                     RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
647                     MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
648                     !strconcat("lock\n\t", mnemonic, "{q}\t",
649                                "{$src2, $dst|$dst, $src2}"),
650                     [], IIC_ALU_NONMEM>, LOCK;
651
652def #NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
653                     ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
654                     ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
655                     !strconcat("lock\n\t", mnemonic, "{b}\t",
656                                "{$src2, $dst|$dst, $src2}"),
657                     [], IIC_ALU_MEM>, LOCK;
658
659def #NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
660                       ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
661                       ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
662                       !strconcat("lock\n\t", mnemonic, "{w}\t",
663                                  "{$src2, $dst|$dst, $src2}"),
664                       [], IIC_ALU_MEM>, LOCK;
665
666def #NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
667                       ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
668                       ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
669                       !strconcat("lock\n\t", mnemonic, "{l}\t",
670                                  "{$src2, $dst|$dst, $src2}"),
671                       [], IIC_ALU_MEM>, LOCK;
672
673def #NAME#64mi32 : RIi32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
674                          ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
675                          ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
676                          !strconcat("lock\n\t", mnemonic, "{q}\t",
677                                     "{$src2, $dst|$dst, $src2}"),
678                          [], IIC_ALU_MEM>, LOCK;
679
680def #NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
681                       ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
682                       ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
683                       !strconcat("lock\n\t", mnemonic, "{w}\t",
684                                  "{$src2, $dst|$dst, $src2}"),
685                       [], IIC_ALU_MEM>, LOCK;
686def #NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
687                       ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
688                       ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
689                       !strconcat("lock\n\t", mnemonic, "{l}\t",
690                                  "{$src2, $dst|$dst, $src2}"),
691                       [], IIC_ALU_MEM>, LOCK;
692def #NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
693                        ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
694                        ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
695                        !strconcat("lock\n\t", mnemonic, "{q}\t",
696                                   "{$src2, $dst|$dst, $src2}"),
697                        [], IIC_ALU_MEM>, LOCK;
698
699}
700
701}
702
703defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, "add">;
704defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, "sub">;
705defm LOCK_OR  : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, "or">;
706defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, "and">;
707defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, "xor">;
708
709// Optimized codegen when the non-memory output is not used.
710let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1 in {
711
712def LOCK_INC8m  : I<0xFE, MRM0m, (outs), (ins i8mem :$dst),
713                    "lock\n\t"
714                    "inc{b}\t$dst", [], IIC_UNARY_MEM>, LOCK;
715def LOCK_INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst),
716                    "lock\n\t"
717                    "inc{w}\t$dst", [], IIC_UNARY_MEM>, OpSize, LOCK;
718def LOCK_INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst),
719                    "lock\n\t"
720                    "inc{l}\t$dst", [], IIC_UNARY_MEM>, LOCK;
721def LOCK_INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst),
722                     "lock\n\t"
723                     "inc{q}\t$dst", [], IIC_UNARY_MEM>, LOCK;
724
725def LOCK_DEC8m  : I<0xFE, MRM1m, (outs), (ins i8mem :$dst),
726                    "lock\n\t"
727                    "dec{b}\t$dst", [], IIC_UNARY_MEM>, LOCK;
728def LOCK_DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst),
729                    "lock\n\t"
730                    "dec{w}\t$dst", [], IIC_UNARY_MEM>, OpSize, LOCK;
731def LOCK_DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst),
732                    "lock\n\t"
733                    "dec{l}\t$dst", [], IIC_UNARY_MEM>, LOCK;
734def LOCK_DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst),
735                      "lock\n\t"
736                      "dec{q}\t$dst", [], IIC_UNARY_MEM>, LOCK;
737}
738
739// Atomic compare and swap.
740let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
741    isCodeGenOnly = 1 in
742def LCMPXCHG8B : I<0xC7, MRM1m, (outs), (ins i64mem:$ptr),
743               "lock\n\t"
744               "cmpxchg8b\t$ptr",
745               [(X86cas8 addr:$ptr)], IIC_CMPX_LOCK_8B>, TB, LOCK;
746
747let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
748    isCodeGenOnly = 1 in
749def LCMPXCHG16B : RI<0xC7, MRM1m, (outs), (ins i128mem:$ptr),
750                    "lock\n\t"
751                    "cmpxchg16b\t$ptr",
752                    [(X86cas16 addr:$ptr)], IIC_CMPX_LOCK_16B>, TB, LOCK,
753                    Requires<[HasCmpxchg16b]>;
754
755let Defs = [AL, EFLAGS], Uses = [AL], isCodeGenOnly = 1 in {
756def LCMPXCHG8 : I<0xB0, MRMDestMem, (outs), (ins i8mem:$ptr, GR8:$swap),
757               "lock\n\t"
758               "cmpxchg{b}\t{$swap, $ptr|$ptr, $swap}",
759               [(X86cas addr:$ptr, GR8:$swap, 1)], IIC_CMPX_LOCK_8>, TB, LOCK;
760}
761
762let Defs = [AX, EFLAGS], Uses = [AX], isCodeGenOnly = 1 in {
763def LCMPXCHG16 : I<0xB1, MRMDestMem, (outs), (ins i16mem:$ptr, GR16:$swap),
764               "lock\n\t"
765               "cmpxchg{w}\t{$swap, $ptr|$ptr, $swap}",
766               [(X86cas addr:$ptr, GR16:$swap, 2)], IIC_CMPX_LOCK>, TB, OpSize, LOCK;
767}
768
769let Defs = [EAX, EFLAGS], Uses = [EAX], isCodeGenOnly = 1 in {
770def LCMPXCHG32 : I<0xB1, MRMDestMem, (outs), (ins i32mem:$ptr, GR32:$swap),
771               "lock\n\t"
772               "cmpxchg{l}\t{$swap, $ptr|$ptr, $swap}",
773               [(X86cas addr:$ptr, GR32:$swap, 4)], IIC_CMPX_LOCK>, TB, LOCK;
774}
775
776let Defs = [RAX, EFLAGS], Uses = [RAX], isCodeGenOnly = 1 in {
777def LCMPXCHG64 : RI<0xB1, MRMDestMem, (outs), (ins i64mem:$ptr, GR64:$swap),
778               "lock\n\t"
779               "cmpxchg{q}\t{$swap, $ptr|$ptr, $swap}",
780               [(X86cas addr:$ptr, GR64:$swap, 8)], IIC_CMPX_LOCK>, TB, LOCK;
781}
782
783// Atomic exchange and add
784let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1 in {
785def LXADD8  : I<0xC0, MRMSrcMem, (outs GR8:$dst), (ins GR8:$val, i8mem:$ptr),
786               "lock\n\t"
787               "xadd{b}\t{$val, $ptr|$ptr, $val}",
788               [(set GR8:$dst, (atomic_load_add_8 addr:$ptr, GR8:$val))],
789                IIC_XADD_LOCK_MEM8>,
790                TB, LOCK;
791def LXADD16 : I<0xC1, MRMSrcMem, (outs GR16:$dst), (ins GR16:$val, i16mem:$ptr),
792               "lock\n\t"
793               "xadd{w}\t{$val, $ptr|$ptr, $val}",
794               [(set GR16:$dst, (atomic_load_add_16 addr:$ptr, GR16:$val))],
795                IIC_XADD_LOCK_MEM>,
796                TB, OpSize, LOCK;
797def LXADD32 : I<0xC1, MRMSrcMem, (outs GR32:$dst), (ins GR32:$val, i32mem:$ptr),
798               "lock\n\t"
799               "xadd{l}\t{$val, $ptr|$ptr, $val}",
800               [(set GR32:$dst, (atomic_load_add_32 addr:$ptr, GR32:$val))],
801                IIC_XADD_LOCK_MEM>,
802                TB, LOCK;
803def LXADD64 : RI<0xC1, MRMSrcMem, (outs GR64:$dst), (ins GR64:$val,i64mem:$ptr),
804               "lock\n\t"
805               "xadd{q}\t{$val, $ptr|$ptr, $val}",
806               [(set GR64:$dst, (atomic_load_add_64 addr:$ptr, GR64:$val))],
807                IIC_XADD_LOCK_MEM>,
808                TB, LOCK;
809}
810
811def ACQUIRE_MOV8rm  : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
812                      "#ACQUIRE_MOV PSEUDO!",
813                      [(set GR8:$dst,  (atomic_load_8  addr:$src))]>;
814def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
815                      "#ACQUIRE_MOV PSEUDO!",
816                      [(set GR16:$dst, (atomic_load_16 addr:$src))]>;
817def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
818                      "#ACQUIRE_MOV PSEUDO!",
819                      [(set GR32:$dst, (atomic_load_32 addr:$src))]>;
820def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
821                      "#ACQUIRE_MOV PSEUDO!",
822                      [(set GR64:$dst, (atomic_load_64 addr:$src))]>;
823
824def RELEASE_MOV8mr  : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src),
825                        "#RELEASE_MOV PSEUDO!",
826                        [(atomic_store_8  addr:$dst, GR8 :$src)]>;
827def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src),
828                        "#RELEASE_MOV PSEUDO!",
829                        [(atomic_store_16 addr:$dst, GR16:$src)]>;
830def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
831                        "#RELEASE_MOV PSEUDO!",
832                        [(atomic_store_32 addr:$dst, GR32:$src)]>;
833def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
834                        "#RELEASE_MOV PSEUDO!",
835                        [(atomic_store_64 addr:$dst, GR64:$src)]>;
836
837//===----------------------------------------------------------------------===//
838// Conditional Move Pseudo Instructions.
839//===----------------------------------------------------------------------===//
840
841
842// CMOV* - Used to implement the SSE SELECT DAG operation.  Expanded after
843// instruction selection into a branch sequence.
844let Uses = [EFLAGS], usesCustomInserter = 1 in {
845  def CMOV_FR32 : I<0, Pseudo,
846                    (outs FR32:$dst), (ins FR32:$t, FR32:$f, i8imm:$cond),
847                    "#CMOV_FR32 PSEUDO!",
848                    [(set FR32:$dst, (X86cmov FR32:$t, FR32:$f, imm:$cond,
849                                                  EFLAGS))]>;
850  def CMOV_FR64 : I<0, Pseudo,
851                    (outs FR64:$dst), (ins FR64:$t, FR64:$f, i8imm:$cond),
852                    "#CMOV_FR64 PSEUDO!",
853                    [(set FR64:$dst, (X86cmov FR64:$t, FR64:$f, imm:$cond,
854                                                  EFLAGS))]>;
855  def CMOV_V4F32 : I<0, Pseudo,
856                    (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
857                    "#CMOV_V4F32 PSEUDO!",
858                    [(set VR128:$dst,
859                      (v4f32 (X86cmov VR128:$t, VR128:$f, imm:$cond,
860                                          EFLAGS)))]>;
861  def CMOV_V2F64 : I<0, Pseudo,
862                    (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
863                    "#CMOV_V2F64 PSEUDO!",
864                    [(set VR128:$dst,
865                      (v2f64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
866                                          EFLAGS)))]>;
867  def CMOV_V2I64 : I<0, Pseudo,
868                    (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
869                    "#CMOV_V2I64 PSEUDO!",
870                    [(set VR128:$dst,
871                      (v2i64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
872                                          EFLAGS)))]>;
873  def CMOV_V8F32 : I<0, Pseudo,
874                    (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
875                    "#CMOV_V8F32 PSEUDO!",
876                    [(set VR256:$dst,
877                      (v8f32 (X86cmov VR256:$t, VR256:$f, imm:$cond,
878                                          EFLAGS)))]>;
879  def CMOV_V4F64 : I<0, Pseudo,
880                    (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
881                    "#CMOV_V4F64 PSEUDO!",
882                    [(set VR256:$dst,
883                      (v4f64 (X86cmov VR256:$t, VR256:$f, imm:$cond,
884                                          EFLAGS)))]>;
885  def CMOV_V4I64 : I<0, Pseudo,
886                    (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
887                    "#CMOV_V4I64 PSEUDO!",
888                    [(set VR256:$dst,
889                      (v4i64 (X86cmov VR256:$t, VR256:$f, imm:$cond,
890                                          EFLAGS)))]>;
891}
892
893
894//===----------------------------------------------------------------------===//
895// DAG Pattern Matching Rules
896//===----------------------------------------------------------------------===//
897
898// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
899def : Pat<(i32 (X86Wrapper tconstpool  :$dst)), (MOV32ri tconstpool  :$dst)>;
900def : Pat<(i32 (X86Wrapper tjumptable  :$dst)), (MOV32ri tjumptable  :$dst)>;
901def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
902def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
903def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
904def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
905
906def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
907          (ADD32ri GR32:$src1, tconstpool:$src2)>;
908def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
909          (ADD32ri GR32:$src1, tjumptable:$src2)>;
910def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
911          (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
912def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
913          (ADD32ri GR32:$src1, texternalsym:$src2)>;
914def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
915          (ADD32ri GR32:$src1, tblockaddress:$src2)>;
916
917def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
918          (MOV32mi addr:$dst, tglobaladdr:$src)>;
919def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
920          (MOV32mi addr:$dst, texternalsym:$src)>;
921def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
922          (MOV32mi addr:$dst, tblockaddress:$src)>;
923
924
925
926// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
927// code model mode, should use 'movabs'.  FIXME: This is really a hack, the
928//  'movabs' predicate should handle this sort of thing.
929def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
930          (MOV64ri tconstpool  :$dst)>, Requires<[FarData]>;
931def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
932          (MOV64ri tjumptable  :$dst)>, Requires<[FarData]>;
933def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
934          (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
935def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
936          (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
937def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
938          (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
939
940// In static codegen with small code model, we can get the address of a label
941// into a register with 'movl'.  FIXME: This is a hack, the 'imm' predicate of
942// the MOV64ri64i32 should accept these.
943def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
944          (MOV64ri64i32 tconstpool  :$dst)>, Requires<[SmallCode]>;
945def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
946          (MOV64ri64i32 tjumptable  :$dst)>, Requires<[SmallCode]>;
947def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
948          (MOV64ri64i32 tglobaladdr :$dst)>, Requires<[SmallCode]>;
949def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
950          (MOV64ri64i32 texternalsym:$dst)>, Requires<[SmallCode]>;
951def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
952          (MOV64ri64i32 tblockaddress:$dst)>, Requires<[SmallCode]>;
953
954// In kernel code model, we can get the address of a label
955// into a register with 'movq'.  FIXME: This is a hack, the 'imm' predicate of
956// the MOV64ri32 should accept these.
957def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
958          (MOV64ri32 tconstpool  :$dst)>, Requires<[KernelCode]>;
959def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
960          (MOV64ri32 tjumptable  :$dst)>, Requires<[KernelCode]>;
961def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
962          (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
963def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
964          (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
965def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
966          (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
967
968// If we have small model and -static mode, it is safe to store global addresses
969// directly as immediates.  FIXME: This is really a hack, the 'imm' predicate
970// for MOV64mi32 should handle this sort of thing.
971def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
972          (MOV64mi32 addr:$dst, tconstpool:$src)>,
973          Requires<[NearData, IsStatic]>;
974def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
975          (MOV64mi32 addr:$dst, tjumptable:$src)>,
976          Requires<[NearData, IsStatic]>;
977def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
978          (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
979          Requires<[NearData, IsStatic]>;
980def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
981          (MOV64mi32 addr:$dst, texternalsym:$src)>,
982          Requires<[NearData, IsStatic]>;
983def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
984          (MOV64mi32 addr:$dst, tblockaddress:$src)>,
985          Requires<[NearData, IsStatic]>;
986
987
988
989// Calls
990
991// tls has some funny stuff here...
992// This corresponds to movabs $foo@tpoff, %rax
993def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
994          (MOV64ri tglobaltlsaddr :$dst)>;
995// This corresponds to add $foo@tpoff, %rax
996def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
997          (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
998// This corresponds to mov foo@tpoff(%rbx), %eax
999def : Pat<(load (i64 (X86Wrapper tglobaltlsaddr :$dst))),
1000          (MOV64rm tglobaltlsaddr :$dst)>;
1001
1002
1003// Direct PC relative function call for small code model. 32-bit displacement
1004// sign extended to 64-bit.
1005def : Pat<(X86call (i64 tglobaladdr:$dst)),
1006          (CALL64pcrel32 tglobaladdr:$dst)>;
1007def : Pat<(X86call (i64 texternalsym:$dst)),
1008          (CALL64pcrel32 texternalsym:$dst)>;
1009
1010// tailcall stuff
1011def : Pat<(X86tcret GR32_TC:$dst, imm:$off),
1012          (TCRETURNri GR32_TC:$dst, imm:$off)>,
1013          Requires<[In32BitMode]>;
1014
1015// FIXME: This is disabled for 32-bit PIC mode because the global base
1016// register which is part of the address mode may be assigned a
1017// callee-saved register.
1018def : Pat<(X86tcret (load addr:$dst), imm:$off),
1019          (TCRETURNmi addr:$dst, imm:$off)>,
1020          Requires<[In32BitMode, IsNotPIC]>;
1021
1022def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
1023          (TCRETURNdi texternalsym:$dst, imm:$off)>,
1024          Requires<[In32BitMode]>;
1025
1026def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
1027          (TCRETURNdi texternalsym:$dst, imm:$off)>,
1028          Requires<[In32BitMode]>;
1029
1030def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1031          (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
1032          Requires<[In64BitMode]>;
1033
1034def : Pat<(X86tcret (load addr:$dst), imm:$off),
1035          (TCRETURNmi64 addr:$dst, imm:$off)>,
1036          Requires<[In64BitMode]>;
1037
1038def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
1039          (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
1040          Requires<[In64BitMode]>;
1041
1042def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
1043          (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
1044          Requires<[In64BitMode]>;
1045
1046// Normal calls, with various flavors of addresses.
1047def : Pat<(X86call (i32 tglobaladdr:$dst)),
1048          (CALLpcrel32 tglobaladdr:$dst)>;
1049def : Pat<(X86call (i32 texternalsym:$dst)),
1050          (CALLpcrel32 texternalsym:$dst)>;
1051def : Pat<(X86call (i32 imm:$dst)),
1052          (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
1053
1054// Comparisons.
1055
1056// TEST R,R is smaller than CMP R,0
1057def : Pat<(X86cmp GR8:$src1, 0),
1058          (TEST8rr GR8:$src1, GR8:$src1)>;
1059def : Pat<(X86cmp GR16:$src1, 0),
1060          (TEST16rr GR16:$src1, GR16:$src1)>;
1061def : Pat<(X86cmp GR32:$src1, 0),
1062          (TEST32rr GR32:$src1, GR32:$src1)>;
1063def : Pat<(X86cmp GR64:$src1, 0),
1064          (TEST64rr GR64:$src1, GR64:$src1)>;
1065
1066// Conditional moves with folded loads with operands swapped and conditions
1067// inverted.
1068multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
1069                  Instruction Inst64> {
1070  def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
1071            (Inst16 GR16:$src2, addr:$src1)>;
1072  def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
1073            (Inst32 GR32:$src2, addr:$src1)>;
1074  def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
1075            (Inst64 GR64:$src2, addr:$src1)>;
1076}
1077
1078defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
1079defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
1080defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
1081defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
1082defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
1083defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
1084defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
1085defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
1086defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
1087defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
1088defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
1089defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
1090defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
1091defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
1092defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
1093defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
1094
1095// zextload bool -> zextload byte
1096def : Pat<(zextloadi8i1  addr:$src), (MOV8rm     addr:$src)>;
1097def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
1098def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
1099def : Pat<(zextloadi64i1 addr:$src), (MOVZX64rm8 addr:$src)>;
1100
1101// extload bool -> extload byte
1102// When extloading from 16-bit and smaller memory locations into 64-bit
1103// registers, use zero-extending loads so that the entire 64-bit register is
1104// defined, avoiding partial-register updates.
1105
1106def : Pat<(extloadi8i1 addr:$src),   (MOV8rm      addr:$src)>;
1107def : Pat<(extloadi16i1 addr:$src),  (MOVZX16rm8  addr:$src)>;
1108def : Pat<(extloadi32i1 addr:$src),  (MOVZX32rm8  addr:$src)>;
1109def : Pat<(extloadi16i8 addr:$src),  (MOVZX16rm8  addr:$src)>;
1110def : Pat<(extloadi32i8 addr:$src),  (MOVZX32rm8  addr:$src)>;
1111def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
1112
1113def : Pat<(extloadi64i1 addr:$src),  (MOVZX64rm8  addr:$src)>;
1114def : Pat<(extloadi64i8 addr:$src),  (MOVZX64rm8  addr:$src)>;
1115def : Pat<(extloadi64i16 addr:$src), (MOVZX64rm16 addr:$src)>;
1116// For other extloads, use subregs, since the high contents of the register are
1117// defined after an extload.
1118def : Pat<(extloadi64i32 addr:$src),
1119          (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src),
1120                         sub_32bit)>;
1121
1122// anyext. Define these to do an explicit zero-extend to
1123// avoid partial-register updates.
1124def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
1125                                     (MOVZX32rr8 GR8 :$src), sub_16bit)>;
1126def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8  GR8 :$src)>;
1127
1128// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
1129def : Pat<(i32 (anyext GR16:$src)),
1130          (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
1131
1132def : Pat<(i64 (anyext GR8 :$src)), (MOVZX64rr8  GR8  :$src)>;
1133def : Pat<(i64 (anyext GR16:$src)), (MOVZX64rr16 GR16 :$src)>;
1134def : Pat<(i64 (anyext GR32:$src)),
1135          (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1136
1137
1138// Any instruction that defines a 32-bit result leaves the high half of the
1139// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
1140// be copying from a truncate. And x86's cmov doesn't do anything if the
1141// condition is false. But any other 32-bit operation will zero-extend
1142// up to 64 bits.
1143def def32 : PatLeaf<(i32 GR32:$src), [{
1144  return N->getOpcode() != ISD::TRUNCATE &&
1145         N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
1146         N->getOpcode() != ISD::CopyFromReg &&
1147         N->getOpcode() != X86ISD::CMOV;
1148}]>;
1149
1150// In the case of a 32-bit def that is known to implicitly zero-extend,
1151// we can use a SUBREG_TO_REG.
1152def : Pat<(i64 (zext def32:$src)),
1153          (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1154
1155//===----------------------------------------------------------------------===//
1156// Pattern match OR as ADD
1157//===----------------------------------------------------------------------===//
1158
1159// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
1160// 3-addressified into an LEA instruction to avoid copies.  However, we also
1161// want to finally emit these instructions as an or at the end of the code
1162// generator to make the generated code easier to read.  To do this, we select
1163// into "disjoint bits" pseudo ops.
1164
1165// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
1166def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
1167  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1168    return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
1169
1170  APInt KnownZero0, KnownOne0;
1171  CurDAG->ComputeMaskedBits(N->getOperand(0), KnownZero0, KnownOne0, 0);
1172  APInt KnownZero1, KnownOne1;
1173  CurDAG->ComputeMaskedBits(N->getOperand(1), KnownZero1, KnownOne1, 0);
1174  return (~KnownZero0 & ~KnownZero1) == 0;
1175}]>;
1176
1177
1178// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
1179let AddedComplexity = 5 in { // Try this before the selecting to OR
1180
1181let isConvertibleToThreeAddress = 1,
1182    Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
1183let isCommutable = 1 in {
1184def ADD16rr_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
1185                    "", // orw/addw REG, REG
1186                    [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
1187def ADD32rr_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
1188                    "", // orl/addl REG, REG
1189                    [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
1190def ADD64rr_DB  : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1191                    "", // orq/addq REG, REG
1192                    [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
1193} // isCommutable
1194
1195// NOTE: These are order specific, we want the ri8 forms to be listed
1196// first so that they are slightly preferred to the ri forms.
1197
1198def ADD16ri8_DB : I<0, Pseudo,
1199                    (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
1200                    "", // orw/addw REG, imm8
1201                    [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
1202def ADD16ri_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
1203                    "", // orw/addw REG, imm
1204                    [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
1205
1206def ADD32ri8_DB : I<0, Pseudo,
1207                    (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
1208                    "", // orl/addl REG, imm8
1209                    [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
1210def ADD32ri_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
1211                    "", // orl/addl REG, imm
1212                    [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
1213
1214
1215def ADD64ri8_DB : I<0, Pseudo,
1216                    (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
1217                    "", // orq/addq REG, imm8
1218                    [(set GR64:$dst, (or_is_add GR64:$src1,
1219                                                i64immSExt8:$src2))]>;
1220def ADD64ri32_DB : I<0, Pseudo,
1221                     (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
1222                      "", // orq/addq REG, imm
1223                      [(set GR64:$dst, (or_is_add GR64:$src1,
1224                                                  i64immSExt32:$src2))]>;
1225}
1226} // AddedComplexity
1227
1228
1229//===----------------------------------------------------------------------===//
1230// Some peepholes
1231//===----------------------------------------------------------------------===//
1232
1233// Odd encoding trick: -128 fits into an 8-bit immediate field while
1234// +128 doesn't, so in this special case use a sub instead of an add.
1235def : Pat<(add GR16:$src1, 128),
1236          (SUB16ri8 GR16:$src1, -128)>;
1237def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
1238          (SUB16mi8 addr:$dst, -128)>;
1239
1240def : Pat<(add GR32:$src1, 128),
1241          (SUB32ri8 GR32:$src1, -128)>;
1242def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
1243          (SUB32mi8 addr:$dst, -128)>;
1244
1245def : Pat<(add GR64:$src1, 128),
1246          (SUB64ri8 GR64:$src1, -128)>;
1247def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
1248          (SUB64mi8 addr:$dst, -128)>;
1249
1250// The same trick applies for 32-bit immediate fields in 64-bit
1251// instructions.
1252def : Pat<(add GR64:$src1, 0x0000000080000000),
1253          (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
1254def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
1255          (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
1256
1257// To avoid needing to materialize an immediate in a register, use a 32-bit and
1258// with implicit zero-extension instead of a 64-bit and if the immediate has at
1259// least 32 bits of leading zeros. If in addition the last 32 bits can be
1260// represented with a sign extension of a 8 bit constant, use that.
1261
1262def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
1263          (SUBREG_TO_REG
1264            (i64 0),
1265            (AND32ri8
1266              (EXTRACT_SUBREG GR64:$src, sub_32bit),
1267              (i32 (GetLo8XForm imm:$imm))),
1268            sub_32bit)>;
1269
1270def : Pat<(and GR64:$src, i64immZExt32:$imm),
1271          (SUBREG_TO_REG
1272            (i64 0),
1273            (AND32ri
1274              (EXTRACT_SUBREG GR64:$src, sub_32bit),
1275              (i32 (GetLo32XForm imm:$imm))),
1276            sub_32bit)>;
1277
1278
1279// r & (2^16-1) ==> movz
1280def : Pat<(and GR32:$src1, 0xffff),
1281          (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
1282// r & (2^8-1) ==> movz
1283def : Pat<(and GR32:$src1, 0xff),
1284          (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
1285                                                             GR32_ABCD)),
1286                                      sub_8bit))>,
1287      Requires<[In32BitMode]>;
1288// r & (2^8-1) ==> movz
1289def : Pat<(and GR16:$src1, 0xff),
1290           (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG
1291            (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)),
1292             sub_16bit)>,
1293      Requires<[In32BitMode]>;
1294
1295// r & (2^32-1) ==> movz
1296def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
1297          (MOVZX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1298// r & (2^16-1) ==> movz
1299def : Pat<(and GR64:$src, 0xffff),
1300          (MOVZX64rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit)))>;
1301// r & (2^8-1) ==> movz
1302def : Pat<(and GR64:$src, 0xff),
1303          (MOVZX64rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit)))>;
1304// r & (2^8-1) ==> movz
1305def : Pat<(and GR32:$src1, 0xff),
1306           (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
1307      Requires<[In64BitMode]>;
1308// r & (2^8-1) ==> movz
1309def : Pat<(and GR16:$src1, 0xff),
1310           (EXTRACT_SUBREG (MOVZX32rr8 (i8
1311            (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>,
1312      Requires<[In64BitMode]>;
1313
1314
1315// sext_inreg patterns
1316def : Pat<(sext_inreg GR32:$src, i16),
1317          (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
1318def : Pat<(sext_inreg GR32:$src, i8),
1319          (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1320                                                             GR32_ABCD)),
1321                                      sub_8bit))>,
1322      Requires<[In32BitMode]>;
1323
1324def : Pat<(sext_inreg GR16:$src, i8),
1325           (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG
1326            (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))),
1327             sub_16bit)>,
1328      Requires<[In32BitMode]>;
1329
1330def : Pat<(sext_inreg GR64:$src, i32),
1331          (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1332def : Pat<(sext_inreg GR64:$src, i16),
1333          (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
1334def : Pat<(sext_inreg GR64:$src, i8),
1335          (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
1336def : Pat<(sext_inreg GR32:$src, i8),
1337          (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
1338      Requires<[In64BitMode]>;
1339def : Pat<(sext_inreg GR16:$src, i8),
1340           (EXTRACT_SUBREG (MOVSX32rr8
1341            (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>,
1342      Requires<[In64BitMode]>;
1343
1344// sext, sext_load, zext, zext_load
1345def: Pat<(i16 (sext GR8:$src)),
1346          (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
1347def: Pat<(sextloadi16i8 addr:$src),
1348          (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
1349def: Pat<(i16 (zext GR8:$src)),
1350          (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
1351def: Pat<(zextloadi16i8 addr:$src),
1352          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1353
1354// trunc patterns
1355def : Pat<(i16 (trunc GR32:$src)),
1356          (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
1357def : Pat<(i8 (trunc GR32:$src)),
1358          (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1359                          sub_8bit)>,
1360      Requires<[In32BitMode]>;
1361def : Pat<(i8 (trunc GR16:$src)),
1362          (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1363                          sub_8bit)>,
1364      Requires<[In32BitMode]>;
1365def : Pat<(i32 (trunc GR64:$src)),
1366          (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
1367def : Pat<(i16 (trunc GR64:$src)),
1368          (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
1369def : Pat<(i8 (trunc GR64:$src)),
1370          (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
1371def : Pat<(i8 (trunc GR32:$src)),
1372          (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
1373      Requires<[In64BitMode]>;
1374def : Pat<(i8 (trunc GR16:$src)),
1375          (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
1376      Requires<[In64BitMode]>;
1377
1378// h-register tricks
1379def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
1380          (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1381                          sub_8bit_hi)>,
1382      Requires<[In32BitMode]>;
1383def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
1384          (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1385                          sub_8bit_hi)>,
1386      Requires<[In32BitMode]>;
1387def : Pat<(srl GR16:$src, (i8 8)),
1388          (EXTRACT_SUBREG
1389            (MOVZX32rr8
1390              (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1391                              sub_8bit_hi)),
1392            sub_16bit)>,
1393      Requires<[In32BitMode]>;
1394def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1395          (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1396                                                             GR16_ABCD)),
1397                                      sub_8bit_hi))>,
1398      Requires<[In32BitMode]>;
1399def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1400          (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1401                                                             GR16_ABCD)),
1402                                      sub_8bit_hi))>,
1403      Requires<[In32BitMode]>;
1404def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1405          (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1406                                                             GR32_ABCD)),
1407                                      sub_8bit_hi))>,
1408      Requires<[In32BitMode]>;
1409def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1410          (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1411                                                             GR32_ABCD)),
1412                                      sub_8bit_hi))>,
1413      Requires<[In32BitMode]>;
1414
1415// h-register tricks.
1416// For now, be conservative on x86-64 and use an h-register extract only if the
1417// value is immediately zero-extended or stored, which are somewhat common
1418// cases. This uses a bunch of code to prevent a register requiring a REX prefix
1419// from being allocated in the same instruction as the h register, as there's
1420// currently no way to describe this requirement to the register allocator.
1421
1422// h-register extract and zero-extend.
1423def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
1424          (SUBREG_TO_REG
1425            (i64 0),
1426            (MOVZX32_NOREXrr8
1427              (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1428                              sub_8bit_hi)),
1429            sub_32bit)>;
1430def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1431          (MOVZX32_NOREXrr8
1432            (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1433                            sub_8bit_hi))>,
1434      Requires<[In64BitMode]>;
1435def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1436          (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1437                                                                   GR32_ABCD)),
1438                                             sub_8bit_hi))>,
1439      Requires<[In64BitMode]>;
1440def : Pat<(srl GR16:$src, (i8 8)),
1441          (EXTRACT_SUBREG
1442            (MOVZX32_NOREXrr8
1443              (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1444                              sub_8bit_hi)),
1445            sub_16bit)>,
1446      Requires<[In64BitMode]>;
1447def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1448          (MOVZX32_NOREXrr8
1449            (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1450                            sub_8bit_hi))>,
1451      Requires<[In64BitMode]>;
1452def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1453          (MOVZX32_NOREXrr8
1454            (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1455                            sub_8bit_hi))>,
1456      Requires<[In64BitMode]>;
1457def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
1458          (SUBREG_TO_REG
1459            (i64 0),
1460            (MOVZX32_NOREXrr8
1461              (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1462                              sub_8bit_hi)),
1463            sub_32bit)>;
1464def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
1465          (SUBREG_TO_REG
1466            (i64 0),
1467            (MOVZX32_NOREXrr8
1468              (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1469                              sub_8bit_hi)),
1470            sub_32bit)>;
1471
1472// h-register extract and store.
1473def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
1474          (MOV8mr_NOREX
1475            addr:$dst,
1476            (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1477                            sub_8bit_hi))>;
1478def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
1479          (MOV8mr_NOREX
1480            addr:$dst,
1481            (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1482                            sub_8bit_hi))>,
1483      Requires<[In64BitMode]>;
1484def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
1485          (MOV8mr_NOREX
1486            addr:$dst,
1487            (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1488                            sub_8bit_hi))>,
1489      Requires<[In64BitMode]>;
1490
1491
1492// (shl x, 1) ==> (add x, x)
1493// Note that if x is undef (immediate or otherwise), we could theoretically
1494// end up with the two uses of x getting different values, producing a result
1495// where the least significant bit is not 0. However, the probability of this
1496// happening is considered low enough that this is officially not a
1497// "real problem".
1498def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr  GR8 :$src1, GR8 :$src1)>;
1499def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
1500def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
1501def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
1502
1503// Helper imms that check if a mask doesn't change significant shift bits.
1504def immShift32 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 5; }]>;
1505def immShift64 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 6; }]>;
1506
1507// (shl x (and y, 31)) ==> (shl x, y)
1508def : Pat<(shl GR8:$src1, (and CL, immShift32)),
1509          (SHL8rCL GR8:$src1)>;
1510def : Pat<(shl GR16:$src1, (and CL, immShift32)),
1511          (SHL16rCL GR16:$src1)>;
1512def : Pat<(shl GR32:$src1, (and CL, immShift32)),
1513          (SHL32rCL GR32:$src1)>;
1514def : Pat<(store (shl (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1515          (SHL8mCL addr:$dst)>;
1516def : Pat<(store (shl (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1517          (SHL16mCL addr:$dst)>;
1518def : Pat<(store (shl (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1519          (SHL32mCL addr:$dst)>;
1520
1521def : Pat<(srl GR8:$src1, (and CL, immShift32)),
1522          (SHR8rCL GR8:$src1)>;
1523def : Pat<(srl GR16:$src1, (and CL, immShift32)),
1524          (SHR16rCL GR16:$src1)>;
1525def : Pat<(srl GR32:$src1, (and CL, immShift32)),
1526          (SHR32rCL GR32:$src1)>;
1527def : Pat<(store (srl (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1528          (SHR8mCL addr:$dst)>;
1529def : Pat<(store (srl (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1530          (SHR16mCL addr:$dst)>;
1531def : Pat<(store (srl (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1532          (SHR32mCL addr:$dst)>;
1533
1534def : Pat<(sra GR8:$src1, (and CL, immShift32)),
1535          (SAR8rCL GR8:$src1)>;
1536def : Pat<(sra GR16:$src1, (and CL, immShift32)),
1537          (SAR16rCL GR16:$src1)>;
1538def : Pat<(sra GR32:$src1, (and CL, immShift32)),
1539          (SAR32rCL GR32:$src1)>;
1540def : Pat<(store (sra (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1541          (SAR8mCL addr:$dst)>;
1542def : Pat<(store (sra (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1543          (SAR16mCL addr:$dst)>;
1544def : Pat<(store (sra (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1545          (SAR32mCL addr:$dst)>;
1546
1547// (shl x (and y, 63)) ==> (shl x, y)
1548def : Pat<(shl GR64:$src1, (and CL, immShift64)),
1549          (SHL64rCL GR64:$src1)>;
1550def : Pat<(store (shl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1551          (SHL64mCL addr:$dst)>;
1552
1553def : Pat<(srl GR64:$src1, (and CL, immShift64)),
1554          (SHR64rCL GR64:$src1)>;
1555def : Pat<(store (srl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1556          (SHR64mCL addr:$dst)>;
1557
1558def : Pat<(sra GR64:$src1, (and CL, immShift64)),
1559          (SAR64rCL GR64:$src1)>;
1560def : Pat<(store (sra (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1561          (SAR64mCL addr:$dst)>;
1562
1563
1564// (anyext (setcc_carry)) -> (setcc_carry)
1565def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1566          (SETB_C16r)>;
1567def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1568          (SETB_C32r)>;
1569def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
1570          (SETB_C32r)>;
1571
1572
1573
1574
1575//===----------------------------------------------------------------------===//
1576// EFLAGS-defining Patterns
1577//===----------------------------------------------------------------------===//
1578
1579// add reg, reg
1580def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr  GR8 :$src1, GR8 :$src2)>;
1581def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
1582def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
1583
1584// add reg, mem
1585def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
1586          (ADD8rm GR8:$src1, addr:$src2)>;
1587def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
1588          (ADD16rm GR16:$src1, addr:$src2)>;
1589def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
1590          (ADD32rm GR32:$src1, addr:$src2)>;
1591
1592// add reg, imm
1593def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri  GR8:$src1 , imm:$src2)>;
1594def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
1595def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
1596def : Pat<(add GR16:$src1, i16immSExt8:$src2),
1597          (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1598def : Pat<(add GR32:$src1, i32immSExt8:$src2),
1599          (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1600
1601// sub reg, reg
1602def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr  GR8 :$src1, GR8 :$src2)>;
1603def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
1604def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
1605
1606// sub reg, mem
1607def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
1608          (SUB8rm GR8:$src1, addr:$src2)>;
1609def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
1610          (SUB16rm GR16:$src1, addr:$src2)>;
1611def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
1612          (SUB32rm GR32:$src1, addr:$src2)>;
1613
1614// sub reg, imm
1615def : Pat<(sub GR8:$src1, imm:$src2),
1616          (SUB8ri GR8:$src1, imm:$src2)>;
1617def : Pat<(sub GR16:$src1, imm:$src2),
1618          (SUB16ri GR16:$src1, imm:$src2)>;
1619def : Pat<(sub GR32:$src1, imm:$src2),
1620          (SUB32ri GR32:$src1, imm:$src2)>;
1621def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
1622          (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
1623def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
1624          (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
1625
1626// mul reg, reg
1627def : Pat<(mul GR16:$src1, GR16:$src2),
1628          (IMUL16rr GR16:$src1, GR16:$src2)>;
1629def : Pat<(mul GR32:$src1, GR32:$src2),
1630          (IMUL32rr GR32:$src1, GR32:$src2)>;
1631
1632// mul reg, mem
1633def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
1634          (IMUL16rm GR16:$src1, addr:$src2)>;
1635def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
1636          (IMUL32rm GR32:$src1, addr:$src2)>;
1637
1638// mul reg, imm
1639def : Pat<(mul GR16:$src1, imm:$src2),
1640          (IMUL16rri GR16:$src1, imm:$src2)>;
1641def : Pat<(mul GR32:$src1, imm:$src2),
1642          (IMUL32rri GR32:$src1, imm:$src2)>;
1643def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
1644          (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
1645def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
1646          (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
1647
1648// reg = mul mem, imm
1649def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
1650          (IMUL16rmi addr:$src1, imm:$src2)>;
1651def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
1652          (IMUL32rmi addr:$src1, imm:$src2)>;
1653def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
1654          (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
1655def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
1656          (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
1657
1658// Patterns for nodes that do not produce flags, for instructions that do.
1659
1660// addition
1661def : Pat<(add GR64:$src1, GR64:$src2),
1662          (ADD64rr GR64:$src1, GR64:$src2)>;
1663def : Pat<(add GR64:$src1, i64immSExt8:$src2),
1664          (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1665def : Pat<(add GR64:$src1, i64immSExt32:$src2),
1666          (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1667def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
1668          (ADD64rm GR64:$src1, addr:$src2)>;
1669
1670// subtraction
1671def : Pat<(sub GR64:$src1, GR64:$src2),
1672          (SUB64rr GR64:$src1, GR64:$src2)>;
1673def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
1674          (SUB64rm GR64:$src1, addr:$src2)>;
1675def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
1676          (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
1677def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
1678          (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
1679
1680// Multiply
1681def : Pat<(mul GR64:$src1, GR64:$src2),
1682          (IMUL64rr GR64:$src1, GR64:$src2)>;
1683def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
1684          (IMUL64rm GR64:$src1, addr:$src2)>;
1685def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
1686          (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
1687def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
1688          (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
1689def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
1690          (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
1691def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
1692          (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
1693
1694// Increment reg.
1695def : Pat<(add GR8 :$src, 1), (INC8r     GR8 :$src)>;
1696def : Pat<(add GR16:$src, 1), (INC16r    GR16:$src)>, Requires<[In32BitMode]>;
1697def : Pat<(add GR16:$src, 1), (INC64_16r GR16:$src)>, Requires<[In64BitMode]>;
1698def : Pat<(add GR32:$src, 1), (INC32r    GR32:$src)>, Requires<[In32BitMode]>;
1699def : Pat<(add GR32:$src, 1), (INC64_32r GR32:$src)>, Requires<[In64BitMode]>;
1700def : Pat<(add GR64:$src, 1), (INC64r    GR64:$src)>;
1701
1702// Decrement reg.
1703def : Pat<(add GR8 :$src, -1), (DEC8r     GR8 :$src)>;
1704def : Pat<(add GR16:$src, -1), (DEC16r    GR16:$src)>, Requires<[In32BitMode]>;
1705def : Pat<(add GR16:$src, -1), (DEC64_16r GR16:$src)>, Requires<[In64BitMode]>;
1706def : Pat<(add GR32:$src, -1), (DEC32r    GR32:$src)>, Requires<[In32BitMode]>;
1707def : Pat<(add GR32:$src, -1), (DEC64_32r GR32:$src)>, Requires<[In64BitMode]>;
1708def : Pat<(add GR64:$src, -1), (DEC64r    GR64:$src)>;
1709
1710// or reg/reg.
1711def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr  GR8 :$src1, GR8 :$src2)>;
1712def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
1713def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
1714def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
1715
1716// or reg/mem
1717def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
1718          (OR8rm GR8:$src1, addr:$src2)>;
1719def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
1720          (OR16rm GR16:$src1, addr:$src2)>;
1721def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
1722          (OR32rm GR32:$src1, addr:$src2)>;
1723def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
1724          (OR64rm GR64:$src1, addr:$src2)>;
1725
1726// or reg/imm
1727def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri  GR8 :$src1, imm:$src2)>;
1728def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
1729def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
1730def : Pat<(or GR16:$src1, i16immSExt8:$src2),
1731          (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1732def : Pat<(or GR32:$src1, i32immSExt8:$src2),
1733          (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1734def : Pat<(or GR64:$src1, i64immSExt8:$src2),
1735          (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1736def : Pat<(or GR64:$src1, i64immSExt32:$src2),
1737          (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1738
1739// xor reg/reg
1740def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr  GR8 :$src1, GR8 :$src2)>;
1741def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
1742def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
1743def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
1744
1745// xor reg/mem
1746def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
1747          (XOR8rm GR8:$src1, addr:$src2)>;
1748def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
1749          (XOR16rm GR16:$src1, addr:$src2)>;
1750def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
1751          (XOR32rm GR32:$src1, addr:$src2)>;
1752def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
1753          (XOR64rm GR64:$src1, addr:$src2)>;
1754
1755// xor reg/imm
1756def : Pat<(xor GR8:$src1, imm:$src2),
1757          (XOR8ri GR8:$src1, imm:$src2)>;
1758def : Pat<(xor GR16:$src1, imm:$src2),
1759          (XOR16ri GR16:$src1, imm:$src2)>;
1760def : Pat<(xor GR32:$src1, imm:$src2),
1761          (XOR32ri GR32:$src1, imm:$src2)>;
1762def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
1763          (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1764def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
1765          (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1766def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
1767          (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1768def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
1769          (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1770
1771// and reg/reg
1772def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr  GR8 :$src1, GR8 :$src2)>;
1773def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
1774def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
1775def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
1776
1777// and reg/mem
1778def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
1779          (AND8rm GR8:$src1, addr:$src2)>;
1780def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
1781          (AND16rm GR16:$src1, addr:$src2)>;
1782def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
1783          (AND32rm GR32:$src1, addr:$src2)>;
1784def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
1785          (AND64rm GR64:$src1, addr:$src2)>;
1786
1787// and reg/imm
1788def : Pat<(and GR8:$src1, imm:$src2),
1789          (AND8ri GR8:$src1, imm:$src2)>;
1790def : Pat<(and GR16:$src1, imm:$src2),
1791          (AND16ri GR16:$src1, imm:$src2)>;
1792def : Pat<(and GR32:$src1, imm:$src2),
1793          (AND32ri GR32:$src1, imm:$src2)>;
1794def : Pat<(and GR16:$src1, i16immSExt8:$src2),
1795          (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
1796def : Pat<(and GR32:$src1, i32immSExt8:$src2),
1797          (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
1798def : Pat<(and GR64:$src1, i64immSExt8:$src2),
1799          (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
1800def : Pat<(and GR64:$src1, i64immSExt32:$src2),
1801          (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
1802
1803// Bit scan instruction patterns to match explicit zero-undef behavior.
1804def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
1805def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
1806def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
1807def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
1808def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
1809def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;
1810