X86ISelLowering.h revision 243830
1//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef X86ISELLOWERING_H
16#define X86ISELLOWERING_H
17
18#include "X86Subtarget.h"
19#include "X86RegisterInfo.h"
20#include "X86MachineFunctionInfo.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/Target/TargetTransformImpl.h"
23#include "llvm/Target/TargetOptions.h"
24#include "llvm/CodeGen/FastISel.h"
25#include "llvm/CodeGen/SelectionDAG.h"
26#include "llvm/CodeGen/CallingConvLower.h"
27
28namespace llvm {
29  namespace X86ISD {
30    // X86 Specific DAG Nodes
31    enum NodeType {
32      // Start the numbering where the builtin ops leave off.
33      FIRST_NUMBER = ISD::BUILTIN_OP_END,
34
35      /// BSF - Bit scan forward.
36      /// BSR - Bit scan reverse.
37      BSF,
38      BSR,
39
40      /// SHLD, SHRD - Double shift instructions. These correspond to
41      /// X86::SHLDxx and X86::SHRDxx instructions.
42      SHLD,
43      SHRD,
44
45      /// FAND - Bitwise logical AND of floating point values. This corresponds
46      /// to X86::ANDPS or X86::ANDPD.
47      FAND,
48
49      /// FOR - Bitwise logical OR of floating point values. This corresponds
50      /// to X86::ORPS or X86::ORPD.
51      FOR,
52
53      /// FXOR - Bitwise logical XOR of floating point values. This corresponds
54      /// to X86::XORPS or X86::XORPD.
55      FXOR,
56
57      /// FSRL - Bitwise logical right shift of floating point values. These
58      /// corresponds to X86::PSRLDQ.
59      FSRL,
60
61      /// CALL - These operations represent an abstract X86 call
62      /// instruction, which includes a bunch of information.  In particular the
63      /// operands of these node are:
64      ///
65      ///     #0 - The incoming token chain
66      ///     #1 - The callee
67      ///     #2 - The number of arg bytes the caller pushes on the stack.
68      ///     #3 - The number of arg bytes the callee pops off the stack.
69      ///     #4 - The value to pass in AL/AX/EAX (optional)
70      ///     #5 - The value to pass in DL/DX/EDX (optional)
71      ///
72      /// The result values of these nodes are:
73      ///
74      ///     #0 - The outgoing token chain
75      ///     #1 - The first register result value (optional)
76      ///     #2 - The second register result value (optional)
77      ///
78      CALL,
79
80      /// RDTSC_DAG - This operation implements the lowering for
81      /// readcyclecounter
82      RDTSC_DAG,
83
84      /// X86 compare and logical compare instructions.
85      CMP, COMI, UCOMI,
86
87      /// X86 bit-test instructions.
88      BT,
89
90      /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
91      /// operand, usually produced by a CMP instruction.
92      SETCC,
93
94      // Same as SETCC except it's materialized with a sbb and the value is all
95      // one's or all zero's.
96      SETCC_CARRY,  // R = carry_bit ? ~0 : 0
97
98      /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
99      /// Operands are two FP values to compare; result is a mask of
100      /// 0s or 1s.  Generally DTRT for C/C++ with NaNs.
101      FSETCCss, FSETCCsd,
102
103      /// X86 MOVMSK{pd|ps}, extracts sign bits of two or four FP values,
104      /// result in an integer GPR.  Needs masking for scalar result.
105      FGETSIGNx86,
106
107      /// X86 conditional moves. Operand 0 and operand 1 are the two values
108      /// to select from. Operand 2 is the condition code, and operand 3 is the
109      /// flag operand produced by a CMP or TEST instruction. It also writes a
110      /// flag result.
111      CMOV,
112
113      /// X86 conditional branches. Operand 0 is the chain operand, operand 1
114      /// is the block to branch if condition is true, operand 2 is the
115      /// condition code, and operand 3 is the flag operand produced by a CMP
116      /// or TEST instruction.
117      BRCOND,
118
119      /// Return with a flag operand. Operand 0 is the chain operand, operand
120      /// 1 is the number of bytes of stack to pop.
121      RET_FLAG,
122
123      /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
124      REP_STOS,
125
126      /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
127      REP_MOVS,
128
129      /// GlobalBaseReg - On Darwin, this node represents the result of the popl
130      /// at function entry, used for PIC code.
131      GlobalBaseReg,
132
133      /// Wrapper - A wrapper node for TargetConstantPool,
134      /// TargetExternalSymbol, and TargetGlobalAddress.
135      Wrapper,
136
137      /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
138      /// relative displacements.
139      WrapperRIP,
140
141      /// MOVDQ2Q - Copies a 64-bit value from the low word of an XMM vector
142      /// to an MMX vector.  If you think this is too close to the previous
143      /// mnemonic, so do I; blame Intel.
144      MOVDQ2Q,
145
146      /// MMX_MOVD2W - Copies a 32-bit value from the low word of a MMX
147      /// vector to a GPR.
148      MMX_MOVD2W,
149
150      /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to
151      /// i32, corresponds to X86::PEXTRB.
152      PEXTRB,
153
154      /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
155      /// i32, corresponds to X86::PEXTRW.
156      PEXTRW,
157
158      /// INSERTPS - Insert any element of a 4 x float vector into any element
159      /// of a destination 4 x floatvector.
160      INSERTPS,
161
162      /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector,
163      /// corresponds to X86::PINSRB.
164      PINSRB,
165
166      /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
167      /// corresponds to X86::PINSRW.
168      PINSRW, MMX_PINSRW,
169
170      /// PSHUFB - Shuffle 16 8-bit values within a vector.
171      PSHUFB,
172
173      /// ANDNP - Bitwise Logical AND NOT of Packed FP values.
174      ANDNP,
175
176      /// PSIGN - Copy integer sign.
177      PSIGN,
178
179      /// BLENDV - Blend where the selector is an XMM.
180      BLENDV,
181
182      /// BLENDxx - Blend where the selector is an immediate.
183      BLENDPW,
184      BLENDPS,
185      BLENDPD,
186
187      /// HADD - Integer horizontal add.
188      HADD,
189
190      /// HSUB - Integer horizontal sub.
191      HSUB,
192
193      /// FHADD - Floating point horizontal add.
194      FHADD,
195
196      /// FHSUB - Floating point horizontal sub.
197      FHSUB,
198
199      /// FMAX, FMIN - Floating point max and min.
200      ///
201      FMAX, FMIN,
202
203      /// FMAXC, FMINC - Commutative FMIN and FMAX.
204      FMAXC, FMINC,
205
206      /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
207      /// approximation.  Note that these typically require refinement
208      /// in order to obtain suitable precision.
209      FRSQRT, FRCP,
210
211      // TLSADDR - Thread Local Storage.
212      TLSADDR,
213
214      // TLSBASEADDR - Thread Local Storage. A call to get the start address
215      // of the TLS block for the current module.
216      TLSBASEADDR,
217
218      // TLSCALL - Thread Local Storage.  When calling to an OS provided
219      // thunk at the address from an earlier relocation.
220      TLSCALL,
221
222      // EH_RETURN - Exception Handling helpers.
223      EH_RETURN,
224
225      // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
226      EH_SJLJ_SETJMP,
227
228      // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
229      EH_SJLJ_LONGJMP,
230
231      /// TC_RETURN - Tail call return.
232      ///   operand #0 chain
233      ///   operand #1 callee (register or absolute)
234      ///   operand #2 stack adjustment
235      ///   operand #3 optional in flag
236      TC_RETURN,
237
238      // VZEXT_MOVL - Vector move low and zero extend.
239      VZEXT_MOVL,
240
241      // VSEXT_MOVL - Vector move low and sign extend.
242      VSEXT_MOVL,
243
244      // VZEXT - Vector integer zero-extend.
245      VZEXT,
246
247      // VSEXT - Vector integer signed-extend.
248      VSEXT,
249
250      // VFPEXT - Vector FP extend.
251      VFPEXT,
252
253      // VFPROUND - Vector FP round.
254      VFPROUND,
255
256      // VSHL, VSRL - 128-bit vector logical left / right shift
257      VSHLDQ, VSRLDQ,
258
259      // VSHL, VSRL, VSRA - Vector shift elements
260      VSHL, VSRL, VSRA,
261
262      // VSHLI, VSRLI, VSRAI - Vector shift elements by immediate
263      VSHLI, VSRLI, VSRAI,
264
265      // CMPP - Vector packed double/float comparison.
266      CMPP,
267
268      // PCMP* - Vector integer comparisons.
269      PCMPEQ, PCMPGT,
270
271      // ADD, SUB, SMUL, etc. - Arithmetic operations with FLAGS results.
272      ADD, SUB, ADC, SBB, SMUL,
273      INC, DEC, OR, XOR, AND,
274
275      ANDN, // ANDN - Bitwise AND NOT with FLAGS results.
276
277      BLSI,   // BLSI - Extract lowest set isolated bit
278      BLSMSK, // BLSMSK - Get mask up to lowest set bit
279      BLSR,   // BLSR - Reset lowest set bit
280
281      UMUL, // LOW, HI, FLAGS = umul LHS, RHS
282
283      // MUL_IMM - X86 specific multiply by immediate.
284      MUL_IMM,
285
286      // PTEST - Vector bitwise comparisons
287      PTEST,
288
289      // TESTP - Vector packed fp sign bitwise comparisons
290      TESTP,
291
292      // Several flavors of instructions with vector shuffle behaviors.
293      PALIGN,
294      PSHUFD,
295      PSHUFHW,
296      PSHUFLW,
297      SHUFP,
298      MOVDDUP,
299      MOVSHDUP,
300      MOVSLDUP,
301      MOVLHPS,
302      MOVLHPD,
303      MOVHLPS,
304      MOVLPS,
305      MOVLPD,
306      MOVSD,
307      MOVSS,
308      UNPCKL,
309      UNPCKH,
310      VPERMILP,
311      VPERMV,
312      VPERMI,
313      VPERM2X128,
314      VBROADCAST,
315
316      // PMULUDQ - Vector multiply packed unsigned doubleword integers
317      PMULUDQ,
318
319      // FMA nodes
320      FMADD,
321      FNMADD,
322      FMSUB,
323      FNMSUB,
324      FMADDSUB,
325      FMSUBADD,
326
327      // VASTART_SAVE_XMM_REGS - Save xmm argument registers to the stack,
328      // according to %al. An operator is needed so that this can be expanded
329      // with control flow.
330      VASTART_SAVE_XMM_REGS,
331
332      // WIN_ALLOCA - Windows's _chkstk call to do stack probing.
333      WIN_ALLOCA,
334
335      // SEG_ALLOCA - For allocating variable amounts of stack space when using
336      // segmented stacks. Check if the current stacklet has enough space, and
337      // falls back to heap allocation if not.
338      SEG_ALLOCA,
339
340      // WIN_FTOL - Windows's _ftol2 runtime routine to do fptoui.
341      WIN_FTOL,
342
343      // Memory barrier
344      MEMBARRIER,
345      MFENCE,
346      SFENCE,
347      LFENCE,
348
349      // FNSTSW16r - Store FP status word into i16 register.
350      FNSTSW16r,
351
352      // SAHF - Store contents of %ah into %eflags.
353      SAHF,
354
355      // RDRAND - Get a random integer and indicate whether it is valid in CF.
356      RDRAND,
357
358      // PCMP*STRI
359      PCMPISTRI,
360      PCMPESTRI,
361
362      // ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG,
363      // ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG -
364      // Atomic 64-bit binary operations.
365      ATOMADD64_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
366      ATOMSUB64_DAG,
367      ATOMOR64_DAG,
368      ATOMXOR64_DAG,
369      ATOMAND64_DAG,
370      ATOMNAND64_DAG,
371      ATOMMAX64_DAG,
372      ATOMMIN64_DAG,
373      ATOMUMAX64_DAG,
374      ATOMUMIN64_DAG,
375      ATOMSWAP64_DAG,
376
377      // LCMPXCHG_DAG, LCMPXCHG8_DAG, LCMPXCHG16_DAG - Compare and swap.
378      LCMPXCHG_DAG,
379      LCMPXCHG8_DAG,
380      LCMPXCHG16_DAG,
381
382      // VZEXT_LOAD - Load, scalar_to_vector, and zero extend.
383      VZEXT_LOAD,
384
385      // FNSTCW16m - Store FP control world into i16 memory.
386      FNSTCW16m,
387
388      /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
389      /// integer destination in memory and a FP reg source.  This corresponds
390      /// to the X86::FIST*m instructions and the rounding mode change stuff. It
391      /// has two inputs (token chain and address) and two outputs (int value
392      /// and token chain).
393      FP_TO_INT16_IN_MEM,
394      FP_TO_INT32_IN_MEM,
395      FP_TO_INT64_IN_MEM,
396
397      /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
398      /// integer source in memory and FP reg result.  This corresponds to the
399      /// X86::FILD*m instructions. It has three inputs (token chain, address,
400      /// and source type) and two outputs (FP value and token chain). FILD_FLAG
401      /// also produces a flag).
402      FILD,
403      FILD_FLAG,
404
405      /// FLD - This instruction implements an extending load to FP stack slots.
406      /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
407      /// operand, ptr to load from, and a ValueType node indicating the type
408      /// to load to.
409      FLD,
410
411      /// FST - This instruction implements a truncating store to FP stack
412      /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
413      /// chain operand, value to store, address, and a ValueType to store it
414      /// as.
415      FST,
416
417      /// VAARG_64 - This instruction grabs the address of the next argument
418      /// from a va_list. (reads and modifies the va_list in memory)
419      VAARG_64
420
421      // WARNING: Do not add anything in the end unless you want the node to
422      // have memop! In fact, starting from ATOMADD64_DAG all opcodes will be
423      // thought as target memory ops!
424    };
425  }
426
427  /// Define some predicates that are used for node matching.
428  namespace X86 {
429    /// isVEXTRACTF128Index - Return true if the specified
430    /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
431    /// suitable for input to VEXTRACTF128.
432    bool isVEXTRACTF128Index(SDNode *N);
433
434    /// isVINSERTF128Index - Return true if the specified
435    /// INSERT_SUBVECTOR operand specifies a subvector insert that is
436    /// suitable for input to VINSERTF128.
437    bool isVINSERTF128Index(SDNode *N);
438
439    /// getExtractVEXTRACTF128Immediate - Return the appropriate
440    /// immediate to extract the specified EXTRACT_SUBVECTOR index
441    /// with VEXTRACTF128 instructions.
442    unsigned getExtractVEXTRACTF128Immediate(SDNode *N);
443
444    /// getInsertVINSERTF128Immediate - Return the appropriate
445    /// immediate to insert at the specified INSERT_SUBVECTOR index
446    /// with VINSERTF128 instructions.
447    unsigned getInsertVINSERTF128Immediate(SDNode *N);
448
449    /// isZeroNode - Returns true if Elt is a constant zero or a floating point
450    /// constant +0.0.
451    bool isZeroNode(SDValue Elt);
452
453    /// isOffsetSuitableForCodeModel - Returns true of the given offset can be
454    /// fit into displacement field of the instruction.
455    bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
456                                      bool hasSymbolicDisplacement = true);
457
458
459    /// isCalleePop - Determines whether the callee is required to pop its
460    /// own arguments. Callee pop is necessary to support tail calls.
461    bool isCalleePop(CallingConv::ID CallingConv,
462                     bool is64Bit, bool IsVarArg, bool TailCallOpt);
463  }
464
465  //===--------------------------------------------------------------------===//
466  //  X86TargetLowering - X86 Implementation of the TargetLowering interface
467  class X86TargetLowering : public TargetLowering {
468  public:
469    explicit X86TargetLowering(X86TargetMachine &TM);
470
471    virtual unsigned getJumpTableEncoding() const;
472
473    virtual MVT getShiftAmountTy(EVT LHSTy) const { return MVT::i8; }
474
475    virtual const MCExpr *
476    LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
477                              const MachineBasicBlock *MBB, unsigned uid,
478                              MCContext &Ctx) const;
479
480    /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
481    /// jumptable.
482    virtual SDValue getPICJumpTableRelocBase(SDValue Table,
483                                             SelectionDAG &DAG) const;
484    virtual const MCExpr *
485    getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
486                                 unsigned JTI, MCContext &Ctx) const;
487
488    /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
489    /// function arguments in the caller parameter area. For X86, aggregates
490    /// that contains are placed at 16-byte boundaries while the rest are at
491    /// 4-byte boundaries.
492    virtual unsigned getByValTypeAlignment(Type *Ty) const;
493
494    /// getOptimalMemOpType - Returns the target specific optimal type for load
495    /// and store operations as a result of memset, memcpy, and memmove
496    /// lowering. If DstAlign is zero that means it's safe to destination
497    /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
498    /// means there isn't a need to check it against alignment requirement,
499    /// probably because the source does not need to be loaded. If
500    /// 'IsZeroVal' is true, that means it's safe to return a
501    /// non-scalar-integer type, e.g. empty string source, constant, or loaded
502    /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
503    /// constant so it does not need to be loaded.
504    /// It returns EVT::Other if the type should be determined using generic
505    /// target-independent logic.
506    virtual EVT
507    getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
508                        bool IsZeroVal, bool MemcpyStrSrc,
509                        MachineFunction &MF) const;
510
511    /// allowsUnalignedMemoryAccesses - Returns true if the target allows
512    /// unaligned memory accesses. of the specified type.
513    virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
514      return true;
515    }
516
517    /// LowerOperation - Provide custom lowering hooks for some operations.
518    ///
519    virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
520
521    /// ReplaceNodeResults - Replace the results of node with an illegal result
522    /// type with new values built out of custom code.
523    ///
524    virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
525                                    SelectionDAG &DAG) const;
526
527
528    virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
529
530    /// isTypeDesirableForOp - Return true if the target has native support for
531    /// the specified value type and it is 'desirable' to use the type for the
532    /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
533    /// instruction encodings are longer and some i16 instructions are slow.
534    virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const;
535
536    /// isTypeDesirable - Return true if the target has native support for the
537    /// specified value type and it is 'desirable' to use the type. e.g. On x86
538    /// i16 is legal, but undesirable since i16 instruction encodings are longer
539    /// and some i16 instructions are slow.
540    virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const;
541
542    virtual MachineBasicBlock *
543      EmitInstrWithCustomInserter(MachineInstr *MI,
544                                  MachineBasicBlock *MBB) const;
545
546
547    /// getTargetNodeName - This method returns the name of a target specific
548    /// DAG node.
549    virtual const char *getTargetNodeName(unsigned Opcode) const;
550
551    /// getSetCCResultType - Return the value type to use for ISD::SETCC.
552    virtual EVT getSetCCResultType(EVT VT) const;
553
554    /// computeMaskedBitsForTargetNode - Determine which of the bits specified
555    /// in Mask are known to be either zero or one and return them in the
556    /// KnownZero/KnownOne bitsets.
557    virtual void computeMaskedBitsForTargetNode(const SDValue Op,
558                                                APInt &KnownZero,
559                                                APInt &KnownOne,
560                                                const SelectionDAG &DAG,
561                                                unsigned Depth = 0) const;
562
563    // ComputeNumSignBitsForTargetNode - Determine the number of bits in the
564    // operation that are sign bits.
565    virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
566                                                     unsigned Depth) const;
567
568    virtual bool
569    isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
570
571    SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;
572
573    virtual bool ExpandInlineAsm(CallInst *CI) const;
574
575    ConstraintType getConstraintType(const std::string &Constraint) const;
576
577    /// Examine constraint string and operand type and determine a weight value.
578    /// The operand object must already have been set up with the operand type.
579    virtual ConstraintWeight getSingleConstraintMatchWeight(
580      AsmOperandInfo &info, const char *constraint) const;
581
582    virtual const char *LowerXConstraint(EVT ConstraintVT) const;
583
584    /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
585    /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is
586    /// true it means one of the asm constraint of the inline asm instruction
587    /// being processed is 'm'.
588    virtual void LowerAsmOperandForConstraint(SDValue Op,
589                                              std::string &Constraint,
590                                              std::vector<SDValue> &Ops,
591                                              SelectionDAG &DAG) const;
592
593    /// getRegForInlineAsmConstraint - Given a physical register constraint
594    /// (e.g. {edx}), return the register number and the register class for the
595    /// register.  This should only be used for C_Register constraints.  On
596    /// error, this returns a register number of 0.
597    std::pair<unsigned, const TargetRegisterClass*>
598      getRegForInlineAsmConstraint(const std::string &Constraint,
599                                   EVT VT) const;
600
601    /// isLegalAddressingMode - Return true if the addressing mode represented
602    /// by AM is legal for this target, for a load/store of the specified type.
603    virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty)const;
604
605    /// isLegalICmpImmediate - Return true if the specified immediate is legal
606    /// icmp immediate, that is the target has icmp instructions which can
607    /// compare a register against the immediate without having to materialize
608    /// the immediate into a register.
609    virtual bool isLegalICmpImmediate(int64_t Imm) const;
610
611    /// isLegalAddImmediate - Return true if the specified immediate is legal
612    /// add immediate, that is the target has add instructions which can
613    /// add a register and the immediate without having to materialize
614    /// the immediate into a register.
615    virtual bool isLegalAddImmediate(int64_t Imm) const;
616
617    /// isTruncateFree - Return true if it's free to truncate a value of
618    /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
619    /// register EAX to i16 by referencing its sub-register AX.
620    virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const;
621    virtual bool isTruncateFree(EVT VT1, EVT VT2) const;
622
623    /// isZExtFree - Return true if any actual instruction that defines a
624    /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
625    /// register. This does not necessarily include registers defined in
626    /// unknown ways, such as incoming arguments, or copies from unknown
627    /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
628    /// does not necessarily apply to truncate instructions. e.g. on x86-64,
629    /// all instructions that define 32-bit values implicit zero-extend the
630    /// result out to 64 bits.
631    virtual bool isZExtFree(Type *Ty1, Type *Ty2) const;
632    virtual bool isZExtFree(EVT VT1, EVT VT2) const;
633
634    /// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
635    /// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
636    /// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
637    /// is expanded to mul + add.
638    virtual bool isFMAFasterThanMulAndAdd(EVT) const { return true; }
639
640    /// isNarrowingProfitable - Return true if it's profitable to narrow
641    /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
642    /// from i32 to i8 but not from i32 to i16.
643    virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const;
644
645    /// isFPImmLegal - Returns true if the target can instruction select the
646    /// specified FP immediate natively. If false, the legalizer will
647    /// materialize the FP immediate as a load from a constant pool.
648    virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const;
649
650    /// isShuffleMaskLegal - Targets can use this to indicate that they only
651    /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
652    /// By default, if a target supports the VECTOR_SHUFFLE node, all mask
653    /// values are assumed to be legal.
654    virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
655                                    EVT VT) const;
656
657    /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
658    /// used by Targets can use this to indicate if there is a suitable
659    /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
660    /// pool entry.
661    virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
662                                        EVT VT) const;
663
664    /// ShouldShrinkFPConstant - If true, then instruction selection should
665    /// seek to shrink the FP constant of the specified type to a smaller type
666    /// in order to save space and / or reduce runtime.
667    virtual bool ShouldShrinkFPConstant(EVT VT) const {
668      // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
669      // expensive than a straight movsd. On the other hand, it's important to
670      // shrink long double fp constant since fldt is very slow.
671      return !X86ScalarSSEf64 || VT == MVT::f80;
672    }
673
674    const X86Subtarget* getSubtarget() const {
675      return Subtarget;
676    }
677
678    /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
679    /// computed in an SSE register, not on the X87 floating point stack.
680    bool isScalarFPTypeInSSEReg(EVT VT) const {
681      return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
682      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
683    }
684
685    /// isTargetFTOL - Return true if the target uses the MSVC _ftol2 routine
686    /// for fptoui.
687    bool isTargetFTOL() const {
688      return Subtarget->isTargetWindows() && !Subtarget->is64Bit();
689    }
690
691    /// isIntegerTypeFTOL - Return true if the MSVC _ftol2 routine should be
692    /// used for fptoui to the given type.
693    bool isIntegerTypeFTOL(EVT VT) const {
694      return isTargetFTOL() && VT == MVT::i64;
695    }
696
697    /// createFastISel - This method returns a target specific FastISel object,
698    /// or null if the target does not support "fast" ISel.
699    virtual FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
700                                     const TargetLibraryInfo *libInfo) const;
701
702    /// getStackCookieLocation - Return true if the target stores stack
703    /// protector cookies at a fixed offset in some non-standard address
704    /// space, and populates the address space and offset as
705    /// appropriate.
706    virtual bool getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const;
707
708    SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
709                      SelectionDAG &DAG) const;
710
711  protected:
712    std::pair<const TargetRegisterClass*, uint8_t>
713    findRepresentativeClass(EVT VT) const;
714
715  private:
716    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
717    /// make the right decision when generating code for different targets.
718    const X86Subtarget *Subtarget;
719    const X86RegisterInfo *RegInfo;
720    const DataLayout *TD;
721
722    /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
723    /// floating point ops.
724    /// When SSE is available, use it for f32 operations.
725    /// When SSE2 is available, use it for f64 operations.
726    bool X86ScalarSSEf32;
727    bool X86ScalarSSEf64;
728
729    /// LegalFPImmediates - A list of legal fp immediates.
730    std::vector<APFloat> LegalFPImmediates;
731
732    /// addLegalFPImmediate - Indicate that this x86 target can instruction
733    /// select the specified FP immediate natively.
734    void addLegalFPImmediate(const APFloat& Imm) {
735      LegalFPImmediates.push_back(Imm);
736    }
737
738    SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
739                            CallingConv::ID CallConv, bool isVarArg,
740                            const SmallVectorImpl<ISD::InputArg> &Ins,
741                            DebugLoc dl, SelectionDAG &DAG,
742                            SmallVectorImpl<SDValue> &InVals) const;
743    SDValue LowerMemArgument(SDValue Chain,
744                             CallingConv::ID CallConv,
745                             const SmallVectorImpl<ISD::InputArg> &ArgInfo,
746                             DebugLoc dl, SelectionDAG &DAG,
747                             const CCValAssign &VA,  MachineFrameInfo *MFI,
748                              unsigned i) const;
749    SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
750                             DebugLoc dl, SelectionDAG &DAG,
751                             const CCValAssign &VA,
752                             ISD::ArgFlagsTy Flags) const;
753
754    // Call lowering helpers.
755
756    /// IsEligibleForTailCallOptimization - Check whether the call is eligible
757    /// for tail call optimization. Targets which want to do tail call
758    /// optimization should implement this function.
759    bool IsEligibleForTailCallOptimization(SDValue Callee,
760                                           CallingConv::ID CalleeCC,
761                                           bool isVarArg,
762                                           bool isCalleeStructRet,
763                                           bool isCallerStructRet,
764                                           Type *RetTy,
765                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
766                                    const SmallVectorImpl<SDValue> &OutVals,
767                                    const SmallVectorImpl<ISD::InputArg> &Ins,
768                                           SelectionDAG& DAG) const;
769    bool IsCalleePop(bool isVarArg, CallingConv::ID CallConv) const;
770    SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
771                                SDValue Chain, bool IsTailCall, bool Is64Bit,
772                                int FPDiff, DebugLoc dl) const;
773
774    unsigned GetAlignedArgumentStackSize(unsigned StackSize,
775                                         SelectionDAG &DAG) const;
776
777    std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
778                                               bool isSigned,
779                                               bool isReplace) const;
780
781    SDValue LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
782                                   SelectionDAG &DAG) const;
783    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
784    SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
785    SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
786    SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const;
787    SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
788    SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const;
789    SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
790    SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
791    SDValue LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
792                               int64_t Offset, SelectionDAG &DAG) const;
793    SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
794    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
795    SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
796    SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) const;
797    SDValue LowerBITCAST(SDValue op, SelectionDAG &DAG) const;
798    SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
799    SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
800    SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const;
801    SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const;
802    SDValue lowerUINT_TO_FP_vec(SDValue Op, SelectionDAG &DAG) const;
803    SDValue lowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
804    SDValue lowerZERO_EXTEND(SDValue Op, SelectionDAG &DAG) const;
805    SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const;
806    SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const;
807    SDValue lowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const;
808    SDValue LowerFABS(SDValue Op, SelectionDAG &DAG) const;
809    SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG) const;
810    SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const;
811    SDValue LowerToBT(SDValue And, ISD::CondCode CC,
812                      DebugLoc dl, SelectionDAG &DAG) const;
813    SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
814    SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) const;
815    SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
816    SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
817    SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG) const;
818    SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
819    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
820    SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
821    SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
822    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
823    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
824    SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
825    SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
826    SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
827    SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
828    SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
829    SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
830    SDValue LowerShift(SDValue Op, SelectionDAG &DAG) const;
831
832    SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
833
834    // Utility functions to help LowerVECTOR_SHUFFLE & LowerBUILD_VECTOR
835    SDValue LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const;
836    SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const;
837    SDValue buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) const;
838
839    SDValue LowerVectorAllZeroTest(SDValue Op, SelectionDAG &DAG) const;
840
841    SDValue lowerVectorIntExtend(SDValue Op, SelectionDAG &DAG) const;
842
843    virtual SDValue
844      LowerFormalArguments(SDValue Chain,
845                           CallingConv::ID CallConv, bool isVarArg,
846                           const SmallVectorImpl<ISD::InputArg> &Ins,
847                           DebugLoc dl, SelectionDAG &DAG,
848                           SmallVectorImpl<SDValue> &InVals) const;
849    virtual SDValue
850      LowerCall(CallLoweringInfo &CLI,
851                SmallVectorImpl<SDValue> &InVals) const;
852
853    virtual SDValue
854      LowerReturn(SDValue Chain,
855                  CallingConv::ID CallConv, bool isVarArg,
856                  const SmallVectorImpl<ISD::OutputArg> &Outs,
857                  const SmallVectorImpl<SDValue> &OutVals,
858                  DebugLoc dl, SelectionDAG &DAG) const;
859
860    virtual bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const;
861
862    virtual bool mayBeEmittedAsTailCall(CallInst *CI) const;
863
864    virtual EVT
865    getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
866                             ISD::NodeType ExtendKind) const;
867
868    virtual bool
869    CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
870                   bool isVarArg,
871                   const SmallVectorImpl<ISD::OutputArg> &Outs,
872                   LLVMContext &Context) const;
873
874    /// Utility function to emit atomic-load-arith operations (and, or, xor,
875    /// nand, max, min, umax, umin). It takes the corresponding instruction to
876    /// expand, the associated machine basic block, and the associated X86
877    /// opcodes for reg/reg.
878    MachineBasicBlock *EmitAtomicLoadArith(MachineInstr *MI,
879                                           MachineBasicBlock *MBB) const;
880
881    /// Utility function to emit atomic-load-arith operations (and, or, xor,
882    /// nand, add, sub, swap) for 64-bit operands on 32-bit target.
883    MachineBasicBlock *EmitAtomicLoadArith6432(MachineInstr *MI,
884                                               MachineBasicBlock *MBB) const;
885
886    // Utility function to emit the low-level va_arg code for X86-64.
887    MachineBasicBlock *EmitVAARG64WithCustomInserter(
888                       MachineInstr *MI,
889                       MachineBasicBlock *MBB) const;
890
891    /// Utility function to emit the xmm reg save portion of va_start.
892    MachineBasicBlock *EmitVAStartSaveXMMRegsWithCustomInserter(
893                                                   MachineInstr *BInstr,
894                                                   MachineBasicBlock *BB) const;
895
896    MachineBasicBlock *EmitLoweredSelect(MachineInstr *I,
897                                         MachineBasicBlock *BB) const;
898
899    MachineBasicBlock *EmitLoweredWinAlloca(MachineInstr *MI,
900                                              MachineBasicBlock *BB) const;
901
902    MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr *MI,
903                                            MachineBasicBlock *BB,
904                                            bool Is64Bit) const;
905
906    MachineBasicBlock *EmitLoweredTLSCall(MachineInstr *MI,
907                                          MachineBasicBlock *BB) const;
908
909    MachineBasicBlock *emitLoweredTLSAddr(MachineInstr *MI,
910                                          MachineBasicBlock *BB) const;
911
912    MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr *MI,
913                                        MachineBasicBlock *MBB) const;
914
915    MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr *MI,
916                                         MachineBasicBlock *MBB) const;
917
918    /// Emit nodes that will be selected as "test Op0,Op0", or something
919    /// equivalent, for use with the given x86 condition code.
920    SDValue EmitTest(SDValue Op0, unsigned X86CC, SelectionDAG &DAG) const;
921
922    /// Emit nodes that will be selected as "cmp Op0,Op1", or something
923    /// equivalent, for use with the given x86 condition code.
924    SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
925                    SelectionDAG &DAG) const;
926
927    /// Convert a comparison if required by the subtarget.
928    SDValue ConvertCmpIfNecessary(SDValue Cmp, SelectionDAG &DAG) const;
929  };
930
931  namespace X86 {
932    FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
933                             const TargetLibraryInfo *libInfo);
934  }
935
936  class X86VectorTargetTransformInfo : public VectorTargetTransformImpl {
937  public:
938    explicit X86VectorTargetTransformInfo(const TargetLowering *TL) :
939    VectorTargetTransformImpl(TL) {}
940
941    virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty) const;
942
943    virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
944                                        unsigned Index) const;
945
946    unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
947                                Type *CondTy) const;
948
949    virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
950                                      Type *Src) const;
951  };
952}
953
954#endif    // X86ISELLOWERING_H
955