X86ISelLowering.h revision 221345
1//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef X86ISELLOWERING_H
16#define X86ISELLOWERING_H
17
18#include "X86Subtarget.h"
19#include "X86RegisterInfo.h"
20#include "X86MachineFunctionInfo.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/Target/TargetOptions.h"
23#include "llvm/CodeGen/FastISel.h"
24#include "llvm/CodeGen/SelectionDAG.h"
25#include "llvm/CodeGen/CallingConvLower.h"
26
27namespace llvm {
28  namespace X86ISD {
29    // X86 Specific DAG Nodes
30    enum NodeType {
31      // Start the numbering where the builtin ops leave off.
32      FIRST_NUMBER = ISD::BUILTIN_OP_END,
33
34      /// BSF - Bit scan forward.
35      /// BSR - Bit scan reverse.
36      BSF,
37      BSR,
38
39      /// SHLD, SHRD - Double shift instructions. These correspond to
40      /// X86::SHLDxx and X86::SHRDxx instructions.
41      SHLD,
42      SHRD,
43
44      /// FAND - Bitwise logical AND of floating point values. This corresponds
45      /// to X86::ANDPS or X86::ANDPD.
46      FAND,
47
48      /// FOR - Bitwise logical OR of floating point values. This corresponds
49      /// to X86::ORPS or X86::ORPD.
50      FOR,
51
52      /// FXOR - Bitwise logical XOR of floating point values. This corresponds
53      /// to X86::XORPS or X86::XORPD.
54      FXOR,
55
56      /// FSRL - Bitwise logical right shift of floating point values. These
57      /// corresponds to X86::PSRLDQ.
58      FSRL,
59
60      /// CALL - These operations represent an abstract X86 call
61      /// instruction, which includes a bunch of information.  In particular the
62      /// operands of these node are:
63      ///
64      ///     #0 - The incoming token chain
65      ///     #1 - The callee
66      ///     #2 - The number of arg bytes the caller pushes on the stack.
67      ///     #3 - The number of arg bytes the callee pops off the stack.
68      ///     #4 - The value to pass in AL/AX/EAX (optional)
69      ///     #5 - The value to pass in DL/DX/EDX (optional)
70      ///
71      /// The result values of these nodes are:
72      ///
73      ///     #0 - The outgoing token chain
74      ///     #1 - The first register result value (optional)
75      ///     #2 - The second register result value (optional)
76      ///
77      CALL,
78
79      /// RDTSC_DAG - This operation implements the lowering for
80      /// readcyclecounter
81      RDTSC_DAG,
82
83      /// X86 compare and logical compare instructions.
84      CMP, COMI, UCOMI,
85
86      /// X86 bit-test instructions.
87      BT,
88
89      /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
90      /// operand, usually produced by a CMP instruction.
91      SETCC,
92
93      // Same as SETCC except it's materialized with a sbb and the value is all
94      // one's or all zero's.
95      SETCC_CARRY,  // R = carry_bit ? ~0 : 0
96
97      /// X86 conditional moves. Operand 0 and operand 1 are the two values
98      /// to select from. Operand 2 is the condition code, and operand 3 is the
99      /// flag operand produced by a CMP or TEST instruction. It also writes a
100      /// flag result.
101      CMOV,
102
103      /// X86 conditional branches. Operand 0 is the chain operand, operand 1
104      /// is the block to branch if condition is true, operand 2 is the
105      /// condition code, and operand 3 is the flag operand produced by a CMP
106      /// or TEST instruction.
107      BRCOND,
108
109      /// Return with a flag operand. Operand 0 is the chain operand, operand
110      /// 1 is the number of bytes of stack to pop.
111      RET_FLAG,
112
113      /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
114      REP_STOS,
115
116      /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
117      REP_MOVS,
118
119      /// GlobalBaseReg - On Darwin, this node represents the result of the popl
120      /// at function entry, used for PIC code.
121      GlobalBaseReg,
122
123      /// Wrapper - A wrapper node for TargetConstantPool,
124      /// TargetExternalSymbol, and TargetGlobalAddress.
125      Wrapper,
126
127      /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
128      /// relative displacements.
129      WrapperRIP,
130
131      /// MOVQ2DQ - Copies a 64-bit value from an MMX vector to the low word
132      /// of an XMM vector, with the high word zero filled.
133      MOVQ2DQ,
134
135      /// MOVDQ2Q - Copies a 64-bit value from the low word of an XMM vector
136      /// to an MMX vector.  If you think this is too close to the previous
137      /// mnemonic, so do I; blame Intel.
138      MOVDQ2Q,
139
140      /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to
141      /// i32, corresponds to X86::PEXTRB.
142      PEXTRB,
143
144      /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
145      /// i32, corresponds to X86::PEXTRW.
146      PEXTRW,
147
148      /// INSERTPS - Insert any element of a 4 x float vector into any element
149      /// of a destination 4 x floatvector.
150      INSERTPS,
151
152      /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector,
153      /// corresponds to X86::PINSRB.
154      PINSRB,
155
156      /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
157      /// corresponds to X86::PINSRW.
158      PINSRW, MMX_PINSRW,
159
160      /// PSHUFB - Shuffle 16 8-bit values within a vector.
161      PSHUFB,
162
163      /// PANDN - and with not'd value.
164      PANDN,
165
166      /// PSIGNB/W/D - Copy integer sign.
167      PSIGNB, PSIGNW, PSIGND,
168
169      /// PBLENDVB - Variable blend
170      PBLENDVB,
171
172      /// FMAX, FMIN - Floating point max and min.
173      ///
174      FMAX, FMIN,
175
176      /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
177      /// approximation.  Note that these typically require refinement
178      /// in order to obtain suitable precision.
179      FRSQRT, FRCP,
180
181      // TLSADDR - Thread Local Storage.
182      TLSADDR,
183
184      // TLSCALL - Thread Local Storage.  When calling to an OS provided
185      // thunk at the address from an earlier relocation.
186      TLSCALL,
187
188      // EH_RETURN - Exception Handling helpers.
189      EH_RETURN,
190
191      /// TC_RETURN - Tail call return.
192      ///   operand #0 chain
193      ///   operand #1 callee (register or absolute)
194      ///   operand #2 stack adjustment
195      ///   operand #3 optional in flag
196      TC_RETURN,
197
198      // VZEXT_MOVL - Vector move low and zero extend.
199      VZEXT_MOVL,
200
201      // VSHL, VSRL - Vector logical left / right shift.
202      VSHL, VSRL,
203
204      // CMPPD, CMPPS - Vector double/float comparison.
205      // CMPPD, CMPPS - Vector double/float comparison.
206      CMPPD, CMPPS,
207
208      // PCMP* - Vector integer comparisons.
209      PCMPEQB, PCMPEQW, PCMPEQD, PCMPEQQ,
210      PCMPGTB, PCMPGTW, PCMPGTD, PCMPGTQ,
211
212      // ADD, SUB, SMUL, etc. - Arithmetic operations with FLAGS results.
213      ADD, SUB, ADC, SBB, SMUL,
214      INC, DEC, OR, XOR, AND,
215
216      UMUL, // LOW, HI, FLAGS = umul LHS, RHS
217
218      // MUL_IMM - X86 specific multiply by immediate.
219      MUL_IMM,
220
221      // PTEST - Vector bitwise comparisons
222      PTEST,
223
224      // TESTP - Vector packed fp sign bitwise comparisons
225      TESTP,
226
227      // Several flavors of instructions with vector shuffle behaviors.
228      PALIGN,
229      PSHUFD,
230      PSHUFHW,
231      PSHUFLW,
232      PSHUFHW_LD,
233      PSHUFLW_LD,
234      SHUFPD,
235      SHUFPS,
236      MOVDDUP,
237      MOVSHDUP,
238      MOVSLDUP,
239      MOVSHDUP_LD,
240      MOVSLDUP_LD,
241      MOVLHPS,
242      MOVLHPD,
243      MOVHLPS,
244      MOVHLPD,
245      MOVLPS,
246      MOVLPD,
247      MOVSD,
248      MOVSS,
249      UNPCKLPS,
250      UNPCKLPD,
251      VUNPCKLPS,
252      VUNPCKLPD,
253      VUNPCKLPSY,
254      VUNPCKLPDY,
255      UNPCKHPS,
256      UNPCKHPD,
257      PUNPCKLBW,
258      PUNPCKLWD,
259      PUNPCKLDQ,
260      PUNPCKLQDQ,
261      PUNPCKHBW,
262      PUNPCKHWD,
263      PUNPCKHDQ,
264      PUNPCKHQDQ,
265
266      // VASTART_SAVE_XMM_REGS - Save xmm argument registers to the stack,
267      // according to %al. An operator is needed so that this can be expanded
268      // with control flow.
269      VASTART_SAVE_XMM_REGS,
270
271      // WIN_ALLOCA - Windows's _chkstk call to do stack probing.
272      WIN_ALLOCA,
273
274      // Memory barrier
275      MEMBARRIER,
276      MFENCE,
277      SFENCE,
278      LFENCE,
279
280      // ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG,
281      // ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG -
282      // Atomic 64-bit binary operations.
283      ATOMADD64_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
284      ATOMSUB64_DAG,
285      ATOMOR64_DAG,
286      ATOMXOR64_DAG,
287      ATOMAND64_DAG,
288      ATOMNAND64_DAG,
289      ATOMSWAP64_DAG,
290
291      // LCMPXCHG_DAG, LCMPXCHG8_DAG - Compare and swap.
292      LCMPXCHG_DAG,
293      LCMPXCHG8_DAG,
294
295      // VZEXT_LOAD - Load, scalar_to_vector, and zero extend.
296      VZEXT_LOAD,
297
298      // FNSTCW16m - Store FP control world into i16 memory.
299      FNSTCW16m,
300
301      /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
302      /// integer destination in memory and a FP reg source.  This corresponds
303      /// to the X86::FIST*m instructions and the rounding mode change stuff. It
304      /// has two inputs (token chain and address) and two outputs (int value
305      /// and token chain).
306      FP_TO_INT16_IN_MEM,
307      FP_TO_INT32_IN_MEM,
308      FP_TO_INT64_IN_MEM,
309
310      /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
311      /// integer source in memory and FP reg result.  This corresponds to the
312      /// X86::FILD*m instructions. It has three inputs (token chain, address,
313      /// and source type) and two outputs (FP value and token chain). FILD_FLAG
314      /// also produces a flag).
315      FILD,
316      FILD_FLAG,
317
318      /// FLD - This instruction implements an extending load to FP stack slots.
319      /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
320      /// operand, ptr to load from, and a ValueType node indicating the type
321      /// to load to.
322      FLD,
323
324      /// FST - This instruction implements a truncating store to FP stack
325      /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
326      /// chain operand, value to store, address, and a ValueType to store it
327      /// as.
328      FST,
329
330      /// VAARG_64 - This instruction grabs the address of the next argument
331      /// from a va_list. (reads and modifies the va_list in memory)
332      VAARG_64
333
334      // WARNING: Do not add anything in the end unless you want the node to
335      // have memop! In fact, starting from ATOMADD64_DAG all opcodes will be
336      // thought as target memory ops!
337    };
338  }
339
340  /// Define some predicates that are used for node matching.
341  namespace X86 {
342    /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
343    /// specifies a shuffle of elements that is suitable for input to PSHUFD.
344    bool isPSHUFDMask(ShuffleVectorSDNode *N);
345
346    /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
347    /// specifies a shuffle of elements that is suitable for input to PSHUFD.
348    bool isPSHUFHWMask(ShuffleVectorSDNode *N);
349
350    /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
351    /// specifies a shuffle of elements that is suitable for input to PSHUFD.
352    bool isPSHUFLWMask(ShuffleVectorSDNode *N);
353
354    /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
355    /// specifies a shuffle of elements that is suitable for input to SHUFP*.
356    bool isSHUFPMask(ShuffleVectorSDNode *N);
357
358    /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
359    /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
360    bool isMOVHLPSMask(ShuffleVectorSDNode *N);
361
362    /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
363    /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
364    /// <2, 3, 2, 3>
365    bool isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N);
366
367    /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
368    /// specifies a shuffle of elements that is suitable for MOVLP{S|D}.
369    bool isMOVLPMask(ShuffleVectorSDNode *N);
370
371    /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
372    /// specifies a shuffle of elements that is suitable for MOVHP{S|D}.
373    /// as well as MOVLHPS.
374    bool isMOVLHPSMask(ShuffleVectorSDNode *N);
375
376    /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
377    /// specifies a shuffle of elements that is suitable for input to UNPCKL.
378    bool isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat = false);
379
380    /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
381    /// specifies a shuffle of elements that is suitable for input to UNPCKH.
382    bool isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat = false);
383
384    /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
385    /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
386    /// <0, 0, 1, 1>
387    bool isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N);
388
389    /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
390    /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
391    /// <2, 2, 3, 3>
392    bool isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N);
393
394    /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
395    /// specifies a shuffle of elements that is suitable for input to MOVSS,
396    /// MOVSD, and MOVD, i.e. setting the lowest element.
397    bool isMOVLMask(ShuffleVectorSDNode *N);
398
399    /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
400    /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
401    bool isMOVSHDUPMask(ShuffleVectorSDNode *N);
402
403    /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
404    /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
405    bool isMOVSLDUPMask(ShuffleVectorSDNode *N);
406
407    /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
408    /// specifies a shuffle of elements that is suitable for input to MOVDDUP.
409    bool isMOVDDUPMask(ShuffleVectorSDNode *N);
410
411    /// isPALIGNRMask - Return true if the specified VECTOR_SHUFFLE operand
412    /// specifies a shuffle of elements that is suitable for input to PALIGNR.
413    bool isPALIGNRMask(ShuffleVectorSDNode *N);
414
415    /// isVEXTRACTF128Index - Return true if the specified
416    /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
417    /// suitable for input to VEXTRACTF128.
418    bool isVEXTRACTF128Index(SDNode *N);
419
420    /// isVINSERTF128Index - Return true if the specified
421    /// INSERT_SUBVECTOR operand specifies a subvector insert that is
422    /// suitable for input to VINSERTF128.
423    bool isVINSERTF128Index(SDNode *N);
424
425    /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
426    /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
427    /// instructions.
428    unsigned getShuffleSHUFImmediate(SDNode *N);
429
430    /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
431    /// the specified VECTOR_SHUFFLE mask with PSHUFHW instruction.
432    unsigned getShufflePSHUFHWImmediate(SDNode *N);
433
434    /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
435    /// the specified VECTOR_SHUFFLE mask with PSHUFLW instruction.
436    unsigned getShufflePSHUFLWImmediate(SDNode *N);
437
438    /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
439    /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
440    unsigned getShufflePALIGNRImmediate(SDNode *N);
441
442    /// getExtractVEXTRACTF128Immediate - Return the appropriate
443    /// immediate to extract the specified EXTRACT_SUBVECTOR index
444    /// with VEXTRACTF128 instructions.
445    unsigned getExtractVEXTRACTF128Immediate(SDNode *N);
446
447    /// getInsertVINSERTF128Immediate - Return the appropriate
448    /// immediate to insert at the specified INSERT_SUBVECTOR index
449    /// with VINSERTF128 instructions.
450    unsigned getInsertVINSERTF128Immediate(SDNode *N);
451
452    /// isZeroNode - Returns true if Elt is a constant zero or a floating point
453    /// constant +0.0.
454    bool isZeroNode(SDValue Elt);
455
456    /// isOffsetSuitableForCodeModel - Returns true of the given offset can be
457    /// fit into displacement field of the instruction.
458    bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
459                                      bool hasSymbolicDisplacement = true);
460  }
461
462  //===--------------------------------------------------------------------===//
463  //  X86TargetLowering - X86 Implementation of the TargetLowering interface
464  class X86TargetLowering : public TargetLowering {
465  public:
466    explicit X86TargetLowering(X86TargetMachine &TM);
467
468    virtual unsigned getJumpTableEncoding() const;
469
470    virtual MVT getShiftAmountTy(EVT LHSTy) const { return MVT::i8; }
471
472    virtual const MCExpr *
473    LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
474                              const MachineBasicBlock *MBB, unsigned uid,
475                              MCContext &Ctx) const;
476
477    /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
478    /// jumptable.
479    virtual SDValue getPICJumpTableRelocBase(SDValue Table,
480                                             SelectionDAG &DAG) const;
481    virtual const MCExpr *
482    getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
483                                 unsigned JTI, MCContext &Ctx) const;
484
485    /// getStackPtrReg - Return the stack pointer register we are using: either
486    /// ESP or RSP.
487    unsigned getStackPtrReg() const { return X86StackPtr; }
488
489    /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
490    /// function arguments in the caller parameter area. For X86, aggregates
491    /// that contains are placed at 16-byte boundaries while the rest are at
492    /// 4-byte boundaries.
493    virtual unsigned getByValTypeAlignment(const Type *Ty) const;
494
495    /// getOptimalMemOpType - Returns the target specific optimal type for load
496    /// and store operations as a result of memset, memcpy, and memmove
497    /// lowering. If DstAlign is zero that means it's safe to destination
498    /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
499    /// means there isn't a need to check it against alignment requirement,
500    /// probably because the source does not need to be loaded. If
501    /// 'NonScalarIntSafe' is true, that means it's safe to return a
502    /// non-scalar-integer type, e.g. empty string source, constant, or loaded
503    /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
504    /// constant so it does not need to be loaded.
505    /// It returns EVT::Other if the type should be determined using generic
506    /// target-independent logic.
507    virtual EVT
508    getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
509                        bool NonScalarIntSafe, bool MemcpyStrSrc,
510                        MachineFunction &MF) const;
511
512    /// allowsUnalignedMemoryAccesses - Returns true if the target allows
513    /// unaligned memory accesses. of the specified type.
514    virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
515      return true;
516    }
517
518    /// LowerOperation - Provide custom lowering hooks for some operations.
519    ///
520    virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
521
522    /// ReplaceNodeResults - Replace the results of node with an illegal result
523    /// type with new values built out of custom code.
524    ///
525    virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
526                                    SelectionDAG &DAG) const;
527
528
529    virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
530
531    /// isTypeDesirableForOp - Return true if the target has native support for
532    /// the specified value type and it is 'desirable' to use the type for the
533    /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
534    /// instruction encodings are longer and some i16 instructions are slow.
535    virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const;
536
537    /// isTypeDesirable - Return true if the target has native support for the
538    /// specified value type and it is 'desirable' to use the type. e.g. On x86
539    /// i16 is legal, but undesirable since i16 instruction encodings are longer
540    /// and some i16 instructions are slow.
541    virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const;
542
543    virtual MachineBasicBlock *
544      EmitInstrWithCustomInserter(MachineInstr *MI,
545                                  MachineBasicBlock *MBB) const;
546
547
548    /// getTargetNodeName - This method returns the name of a target specific
549    /// DAG node.
550    virtual const char *getTargetNodeName(unsigned Opcode) const;
551
552    /// getSetCCResultType - Return the ISD::SETCC ValueType
553    virtual MVT::SimpleValueType getSetCCResultType(EVT VT) const;
554
555    /// computeMaskedBitsForTargetNode - Determine which of the bits specified
556    /// in Mask are known to be either zero or one and return them in the
557    /// KnownZero/KnownOne bitsets.
558    virtual void computeMaskedBitsForTargetNode(const SDValue Op,
559                                                const APInt &Mask,
560                                                APInt &KnownZero,
561                                                APInt &KnownOne,
562                                                const SelectionDAG &DAG,
563                                                unsigned Depth = 0) const;
564
565    // ComputeNumSignBitsForTargetNode - Determine the number of bits in the
566    // operation that are sign bits.
567    virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
568                                                     unsigned Depth) const;
569
570    virtual bool
571    isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
572
573    SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;
574
575    virtual bool ExpandInlineAsm(CallInst *CI) const;
576
577    ConstraintType getConstraintType(const std::string &Constraint) const;
578
579    /// Examine constraint string and operand type and determine a weight value.
580    /// The operand object must already have been set up with the operand type.
581    virtual ConstraintWeight getSingleConstraintMatchWeight(
582      AsmOperandInfo &info, const char *constraint) const;
583
584    std::vector<unsigned>
585      getRegClassForInlineAsmConstraint(const std::string &Constraint,
586                                        EVT VT) const;
587
588    virtual const char *LowerXConstraint(EVT ConstraintVT) const;
589
590    /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
591    /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is
592    /// true it means one of the asm constraint of the inline asm instruction
593    /// being processed is 'm'.
594    virtual void LowerAsmOperandForConstraint(SDValue Op,
595                                              char ConstraintLetter,
596                                              std::vector<SDValue> &Ops,
597                                              SelectionDAG &DAG) const;
598
599    /// getRegForInlineAsmConstraint - Given a physical register constraint
600    /// (e.g. {edx}), return the register number and the register class for the
601    /// register.  This should only be used for C_Register constraints.  On
602    /// error, this returns a register number of 0.
603    std::pair<unsigned, const TargetRegisterClass*>
604      getRegForInlineAsmConstraint(const std::string &Constraint,
605                                   EVT VT) const;
606
607    /// isLegalAddressingMode - Return true if the addressing mode represented
608    /// by AM is legal for this target, for a load/store of the specified type.
609    virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty)const;
610
611    /// isTruncateFree - Return true if it's free to truncate a value of
612    /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
613    /// register EAX to i16 by referencing its sub-register AX.
614    virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const;
615    virtual bool isTruncateFree(EVT VT1, EVT VT2) const;
616
617    /// isZExtFree - Return true if any actual instruction that defines a
618    /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
619    /// register. This does not necessarily include registers defined in
620    /// unknown ways, such as incoming arguments, or copies from unknown
621    /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
622    /// does not necessarily apply to truncate instructions. e.g. on x86-64,
623    /// all instructions that define 32-bit values implicit zero-extend the
624    /// result out to 64 bits.
625    virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const;
626    virtual bool isZExtFree(EVT VT1, EVT VT2) const;
627
628    /// isNarrowingProfitable - Return true if it's profitable to narrow
629    /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
630    /// from i32 to i8 but not from i32 to i16.
631    virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const;
632
633    /// isFPImmLegal - Returns true if the target can instruction select the
634    /// specified FP immediate natively. If false, the legalizer will
635    /// materialize the FP immediate as a load from a constant pool.
636    virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const;
637
638    /// isShuffleMaskLegal - Targets can use this to indicate that they only
639    /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
640    /// By default, if a target supports the VECTOR_SHUFFLE node, all mask
641    /// values are assumed to be legal.
642    virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
643                                    EVT VT) const;
644
645    /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
646    /// used by Targets can use this to indicate if there is a suitable
647    /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
648    /// pool entry.
649    virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
650                                        EVT VT) const;
651
652    /// ShouldShrinkFPConstant - If true, then instruction selection should
653    /// seek to shrink the FP constant of the specified type to a smaller type
654    /// in order to save space and / or reduce runtime.
655    virtual bool ShouldShrinkFPConstant(EVT VT) const {
656      // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
657      // expensive than a straight movsd. On the other hand, it's important to
658      // shrink long double fp constant since fldt is very slow.
659      return !X86ScalarSSEf64 || VT == MVT::f80;
660    }
661
662    const X86Subtarget* getSubtarget() const {
663      return Subtarget;
664    }
665
666    /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
667    /// computed in an SSE register, not on the X87 floating point stack.
668    bool isScalarFPTypeInSSEReg(EVT VT) const {
669      return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
670      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
671    }
672
673    /// createFastISel - This method returns a target specific FastISel object,
674    /// or null if the target does not support "fast" ISel.
675    virtual FastISel *createFastISel(FunctionLoweringInfo &funcInfo) const;
676
677    /// getFunctionAlignment - Return the Log2 alignment of this function.
678    virtual unsigned getFunctionAlignment(const Function *F) const;
679
680    /// getStackCookieLocation - Return true if the target stores stack
681    /// protector cookies at a fixed offset in some non-standard address
682    /// space, and populates the address space and offset as
683    /// appropriate.
684    virtual bool getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const;
685
686  protected:
687    std::pair<const TargetRegisterClass*, uint8_t>
688    findRepresentativeClass(EVT VT) const;
689
690  private:
691    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
692    /// make the right decision when generating code for different targets.
693    const X86Subtarget *Subtarget;
694    const X86RegisterInfo *RegInfo;
695    const TargetData *TD;
696
697    /// X86StackPtr - X86 physical register used as stack ptr.
698    unsigned X86StackPtr;
699
700    /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
701    /// floating point ops.
702    /// When SSE is available, use it for f32 operations.
703    /// When SSE2 is available, use it for f64 operations.
704    bool X86ScalarSSEf32;
705    bool X86ScalarSSEf64;
706
707    /// LegalFPImmediates - A list of legal fp immediates.
708    std::vector<APFloat> LegalFPImmediates;
709
710    /// addLegalFPImmediate - Indicate that this x86 target can instruction
711    /// select the specified FP immediate natively.
712    void addLegalFPImmediate(const APFloat& Imm) {
713      LegalFPImmediates.push_back(Imm);
714    }
715
716    SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
717                            CallingConv::ID CallConv, bool isVarArg,
718                            const SmallVectorImpl<ISD::InputArg> &Ins,
719                            DebugLoc dl, SelectionDAG &DAG,
720                            SmallVectorImpl<SDValue> &InVals) const;
721    SDValue LowerMemArgument(SDValue Chain,
722                             CallingConv::ID CallConv,
723                             const SmallVectorImpl<ISD::InputArg> &ArgInfo,
724                             DebugLoc dl, SelectionDAG &DAG,
725                             const CCValAssign &VA,  MachineFrameInfo *MFI,
726                              unsigned i) const;
727    SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
728                             DebugLoc dl, SelectionDAG &DAG,
729                             const CCValAssign &VA,
730                             ISD::ArgFlagsTy Flags) const;
731
732    // Call lowering helpers.
733
734    /// IsEligibleForTailCallOptimization - Check whether the call is eligible
735    /// for tail call optimization. Targets which want to do tail call
736    /// optimization should implement this function.
737    bool IsEligibleForTailCallOptimization(SDValue Callee,
738                                           CallingConv::ID CalleeCC,
739                                           bool isVarArg,
740                                           bool isCalleeStructRet,
741                                           bool isCallerStructRet,
742                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
743                                    const SmallVectorImpl<SDValue> &OutVals,
744                                    const SmallVectorImpl<ISD::InputArg> &Ins,
745                                           SelectionDAG& DAG) const;
746    bool IsCalleePop(bool isVarArg, CallingConv::ID CallConv) const;
747    SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
748                                SDValue Chain, bool IsTailCall, bool Is64Bit,
749                                int FPDiff, DebugLoc dl) const;
750
751    unsigned GetAlignedArgumentStackSize(unsigned StackSize,
752                                         SelectionDAG &DAG) const;
753
754    std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
755                                               bool isSigned) const;
756
757    SDValue LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
758                                   SelectionDAG &DAG) const;
759    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
760    SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const;
761    SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
762    SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
763    SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const;
764    SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
765    SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const;
766    SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
767    SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
768    SDValue LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
769    SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
770    SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
771    SDValue LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
772                               int64_t Offset, SelectionDAG &DAG) const;
773    SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
774    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
775    SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
776    SDValue LowerShift(SDValue Op, SelectionDAG &DAG) const;
777    SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
778                      SelectionDAG &DAG) const;
779    SDValue LowerBITCAST(SDValue op, SelectionDAG &DAG) const;
780    SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
781    SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
782    SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const;
783    SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const;
784    SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const;
785    SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const;
786    SDValue LowerFABS(SDValue Op, SelectionDAG &DAG) const;
787    SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG) const;
788    SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const;
789    SDValue LowerToBT(SDValue And, ISD::CondCode CC,
790                      DebugLoc dl, SelectionDAG &DAG) const;
791    SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
792    SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) const;
793    SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
794    SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
795    SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG) const;
796    SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
797    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
798    SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
799    SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
800    SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
801    SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
802    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
803    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
804    SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
805    SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
806    SDValue LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
807    SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
808    SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) const;
809    SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) const;
810    SDValue LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const;
811    SDValue LowerSHL(SDValue Op, SelectionDAG &DAG) const;
812    SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) const;
813
814    SDValue LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
815    SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const;
816    SDValue LowerREADCYCLECOUNTER(SDValue Op, SelectionDAG &DAG) const;
817    SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const;
818
819    // Utility functions to help LowerVECTOR_SHUFFLE
820    SDValue LowerVECTOR_SHUFFLEv8i16(SDValue Op, SelectionDAG &DAG) const;
821
822    virtual SDValue
823      LowerFormalArguments(SDValue Chain,
824                           CallingConv::ID CallConv, bool isVarArg,
825                           const SmallVectorImpl<ISD::InputArg> &Ins,
826                           DebugLoc dl, SelectionDAG &DAG,
827                           SmallVectorImpl<SDValue> &InVals) const;
828    virtual SDValue
829      LowerCall(SDValue Chain, SDValue Callee,
830                CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
831                const SmallVectorImpl<ISD::OutputArg> &Outs,
832                const SmallVectorImpl<SDValue> &OutVals,
833                const SmallVectorImpl<ISD::InputArg> &Ins,
834                DebugLoc dl, SelectionDAG &DAG,
835                SmallVectorImpl<SDValue> &InVals) const;
836
837    virtual SDValue
838      LowerReturn(SDValue Chain,
839                  CallingConv::ID CallConv, bool isVarArg,
840                  const SmallVectorImpl<ISD::OutputArg> &Outs,
841                  const SmallVectorImpl<SDValue> &OutVals,
842                  DebugLoc dl, SelectionDAG &DAG) const;
843
844    virtual bool isUsedByReturnOnly(SDNode *N) const;
845
846    virtual bool mayBeEmittedAsTailCall(CallInst *CI) const;
847
848    virtual EVT
849    getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
850                             ISD::NodeType ExtendKind) const;
851
852    virtual bool
853      CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
854                     const SmallVectorImpl<ISD::OutputArg> &Outs,
855                     LLVMContext &Context) const;
856
857    void ReplaceATOMIC_BINARY_64(SDNode *N, SmallVectorImpl<SDValue> &Results,
858                                 SelectionDAG &DAG, unsigned NewOp) const;
859
860    /// Utility function to emit string processing sse4.2 instructions
861    /// that return in xmm0.
862    /// This takes the instruction to expand, the associated machine basic
863    /// block, the number of args, and whether or not the second arg is
864    /// in memory or not.
865    MachineBasicBlock *EmitPCMP(MachineInstr *BInstr, MachineBasicBlock *BB,
866                                unsigned argNum, bool inMem) const;
867
868    /// Utility functions to emit monitor and mwait instructions. These
869    /// need to make sure that the arguments to the intrinsic are in the
870    /// correct registers.
871    MachineBasicBlock *EmitMonitor(MachineInstr *MI,
872                                   MachineBasicBlock *BB) const;
873    MachineBasicBlock *EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const;
874
875    /// Utility function to emit atomic bitwise operations (and, or, xor).
876    /// It takes the bitwise instruction to expand, the associated machine basic
877    /// block, and the associated X86 opcodes for reg/reg and reg/imm.
878    MachineBasicBlock *EmitAtomicBitwiseWithCustomInserter(
879                                                    MachineInstr *BInstr,
880                                                    MachineBasicBlock *BB,
881                                                    unsigned regOpc,
882                                                    unsigned immOpc,
883                                                    unsigned loadOpc,
884                                                    unsigned cxchgOpc,
885                                                    unsigned notOpc,
886                                                    unsigned EAXreg,
887                                                    TargetRegisterClass *RC,
888                                                    bool invSrc = false) const;
889
890    MachineBasicBlock *EmitAtomicBit6432WithCustomInserter(
891                                                    MachineInstr *BInstr,
892                                                    MachineBasicBlock *BB,
893                                                    unsigned regOpcL,
894                                                    unsigned regOpcH,
895                                                    unsigned immOpcL,
896                                                    unsigned immOpcH,
897                                                    bool invSrc = false) const;
898
899    /// Utility function to emit atomic min and max.  It takes the min/max
900    /// instruction to expand, the associated basic block, and the associated
901    /// cmov opcode for moving the min or max value.
902    MachineBasicBlock *EmitAtomicMinMaxWithCustomInserter(MachineInstr *BInstr,
903                                                          MachineBasicBlock *BB,
904                                                        unsigned cmovOpc) const;
905
906    // Utility function to emit the low-level va_arg code for X86-64.
907    MachineBasicBlock *EmitVAARG64WithCustomInserter(
908                       MachineInstr *MI,
909                       MachineBasicBlock *MBB) const;
910
911    /// Utility function to emit the xmm reg save portion of va_start.
912    MachineBasicBlock *EmitVAStartSaveXMMRegsWithCustomInserter(
913                                                   MachineInstr *BInstr,
914                                                   MachineBasicBlock *BB) const;
915
916    MachineBasicBlock *EmitLoweredSelect(MachineInstr *I,
917                                         MachineBasicBlock *BB) const;
918
919    MachineBasicBlock *EmitLoweredWinAlloca(MachineInstr *MI,
920                                              MachineBasicBlock *BB) const;
921
922    MachineBasicBlock *EmitLoweredTLSCall(MachineInstr *MI,
923                                          MachineBasicBlock *BB) const;
924
925    MachineBasicBlock *emitLoweredTLSAddr(MachineInstr *MI,
926                                          MachineBasicBlock *BB) const;
927
928    /// Emit nodes that will be selected as "test Op0,Op0", or something
929    /// equivalent, for use with the given x86 condition code.
930    SDValue EmitTest(SDValue Op0, unsigned X86CC, SelectionDAG &DAG) const;
931
932    /// Emit nodes that will be selected as "cmp Op0,Op1", or something
933    /// equivalent, for use with the given x86 condition code.
934    SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
935                    SelectionDAG &DAG) const;
936  };
937
938  namespace X86 {
939    FastISel *createFastISel(FunctionLoweringInfo &funcInfo);
940  }
941}
942
943#endif    // X86ISELLOWERING_H
944