X86ISelLowering.h revision 206124
1//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef X86ISELLOWERING_H
16#define X86ISELLOWERING_H
17
18#include "X86Subtarget.h"
19#include "X86RegisterInfo.h"
20#include "X86MachineFunctionInfo.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/Target/TargetOptions.h"
23#include "llvm/CodeGen/FastISel.h"
24#include "llvm/CodeGen/SelectionDAG.h"
25#include "llvm/CodeGen/CallingConvLower.h"
26
27namespace llvm {
28  namespace X86ISD {
29    // X86 Specific DAG Nodes
30    enum NodeType {
31      // Start the numbering where the builtin ops leave off.
32      FIRST_NUMBER = ISD::BUILTIN_OP_END,
33
34      /// BSF - Bit scan forward.
35      /// BSR - Bit scan reverse.
36      BSF,
37      BSR,
38
39      /// SHLD, SHRD - Double shift instructions. These correspond to
40      /// X86::SHLDxx and X86::SHRDxx instructions.
41      SHLD,
42      SHRD,
43
44      /// FAND - Bitwise logical AND of floating point values. This corresponds
45      /// to X86::ANDPS or X86::ANDPD.
46      FAND,
47
48      /// FOR - Bitwise logical OR of floating point values. This corresponds
49      /// to X86::ORPS or X86::ORPD.
50      FOR,
51
52      /// FXOR - Bitwise logical XOR of floating point values. This corresponds
53      /// to X86::XORPS or X86::XORPD.
54      FXOR,
55
56      /// FSRL - Bitwise logical right shift of floating point values. These
57      /// corresponds to X86::PSRLDQ.
58      FSRL,
59
60      /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
61      /// integer source in memory and FP reg result.  This corresponds to the
62      /// X86::FILD*m instructions. It has three inputs (token chain, address,
63      /// and source type) and two outputs (FP value and token chain). FILD_FLAG
64      /// also produces a flag).
65      FILD,
66      FILD_FLAG,
67
68      /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
69      /// integer destination in memory and a FP reg source.  This corresponds
70      /// to the X86::FIST*m instructions and the rounding mode change stuff. It
71      /// has two inputs (token chain and address) and two outputs (int value
72      /// and token chain).
73      FP_TO_INT16_IN_MEM,
74      FP_TO_INT32_IN_MEM,
75      FP_TO_INT64_IN_MEM,
76
77      /// FLD - This instruction implements an extending load to FP stack slots.
78      /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
79      /// operand, ptr to load from, and a ValueType node indicating the type
80      /// to load to.
81      FLD,
82
83      /// FST - This instruction implements a truncating store to FP stack
84      /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
85      /// chain operand, value to store, address, and a ValueType to store it
86      /// as.
87      FST,
88
89      /// CALL - These operations represent an abstract X86 call
90      /// instruction, which includes a bunch of information.  In particular the
91      /// operands of these node are:
92      ///
93      ///     #0 - The incoming token chain
94      ///     #1 - The callee
95      ///     #2 - The number of arg bytes the caller pushes on the stack.
96      ///     #3 - The number of arg bytes the callee pops off the stack.
97      ///     #4 - The value to pass in AL/AX/EAX (optional)
98      ///     #5 - The value to pass in DL/DX/EDX (optional)
99      ///
100      /// The result values of these nodes are:
101      ///
102      ///     #0 - The outgoing token chain
103      ///     #1 - The first register result value (optional)
104      ///     #2 - The second register result value (optional)
105      ///
106      CALL,
107
108      /// RDTSC_DAG - This operation implements the lowering for
109      /// readcyclecounter
110      RDTSC_DAG,
111
112      /// X86 compare and logical compare instructions.
113      CMP, COMI, UCOMI,
114
115      /// X86 bit-test instructions.
116      BT,
117
118      /// X86 SetCC. Operand 0 is condition code, and operand 1 is the flag
119      /// operand produced by a CMP instruction.
120      SETCC,
121
122      // Same as SETCC except it's materialized with a sbb and the value is all
123      // one's or all zero's.
124      SETCC_CARRY,
125
126      /// X86 conditional moves. Operand 0 and operand 1 are the two values
127      /// to select from. Operand 2 is the condition code, and operand 3 is the
128      /// flag operand produced by a CMP or TEST instruction. It also writes a
129      /// flag result.
130      CMOV,
131
132      /// X86 conditional branches. Operand 0 is the chain operand, operand 1
133      /// is the block to branch if condition is true, operand 2 is the
134      /// condition code, and operand 3 is the flag operand produced by a CMP
135      /// or TEST instruction.
136      BRCOND,
137
138      /// Return with a flag operand. Operand 0 is the chain operand, operand
139      /// 1 is the number of bytes of stack to pop.
140      RET_FLAG,
141
142      /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
143      REP_STOS,
144
145      /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
146      REP_MOVS,
147
148      /// GlobalBaseReg - On Darwin, this node represents the result of the popl
149      /// at function entry, used for PIC code.
150      GlobalBaseReg,
151
152      /// Wrapper - A wrapper node for TargetConstantPool,
153      /// TargetExternalSymbol, and TargetGlobalAddress.
154      Wrapper,
155
156      /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
157      /// relative displacements.
158      WrapperRIP,
159
160      /// MOVQ2DQ - Copies a 64-bit value from a vector to another vector.
161      /// Can be used to move a vector value from a MMX register to a XMM
162      /// register.
163      MOVQ2DQ,
164
165      /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to
166      /// i32, corresponds to X86::PEXTRB.
167      PEXTRB,
168
169      /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
170      /// i32, corresponds to X86::PEXTRW.
171      PEXTRW,
172
173      /// INSERTPS - Insert any element of a 4 x float vector into any element
174      /// of a destination 4 x floatvector.
175      INSERTPS,
176
177      /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector,
178      /// corresponds to X86::PINSRB.
179      PINSRB,
180
181      /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
182      /// corresponds to X86::PINSRW.
183      PINSRW, MMX_PINSRW,
184
185      /// PSHUFB - Shuffle 16 8-bit values within a vector.
186      PSHUFB,
187
188      /// FMAX, FMIN - Floating point max and min.
189      ///
190      FMAX, FMIN,
191
192      /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
193      /// approximation.  Note that these typically require refinement
194      /// in order to obtain suitable precision.
195      FRSQRT, FRCP,
196
197      // TLSADDR - Thread Local Storage.
198      TLSADDR,
199
200      // SegmentBaseAddress - The address segment:0
201      SegmentBaseAddress,
202
203      // EH_RETURN - Exception Handling helpers.
204      EH_RETURN,
205
206      /// TC_RETURN - Tail call return.
207      ///   operand #0 chain
208      ///   operand #1 callee (register or absolute)
209      ///   operand #2 stack adjustment
210      ///   operand #3 optional in flag
211      TC_RETURN,
212
213      // LCMPXCHG_DAG, LCMPXCHG8_DAG - Compare and swap.
214      LCMPXCHG_DAG,
215      LCMPXCHG8_DAG,
216
217      // FNSTCW16m - Store FP control world into i16 memory.
218      FNSTCW16m,
219
220      // VZEXT_MOVL - Vector move low and zero extend.
221      VZEXT_MOVL,
222
223      // VZEXT_LOAD - Load, scalar_to_vector, and zero extend.
224      VZEXT_LOAD,
225
226      // VSHL, VSRL - Vector logical left / right shift.
227      VSHL, VSRL,
228
229      // CMPPD, CMPPS - Vector double/float comparison.
230      // CMPPD, CMPPS - Vector double/float comparison.
231      CMPPD, CMPPS,
232
233      // PCMP* - Vector integer comparisons.
234      PCMPEQB, PCMPEQW, PCMPEQD, PCMPEQQ,
235      PCMPGTB, PCMPGTW, PCMPGTD, PCMPGTQ,
236
237      // ADD, SUB, SMUL, UMUL, etc. - Arithmetic operations with FLAGS results.
238      ADD, SUB, SMUL, UMUL,
239      INC, DEC, OR, XOR, AND,
240
241      // MUL_IMM - X86 specific multiply by immediate.
242      MUL_IMM,
243
244      // PTEST - Vector bitwise comparisons
245      PTEST,
246
247      // VASTART_SAVE_XMM_REGS - Save xmm argument registers to the stack,
248      // according to %al. An operator is needed so that this can be expanded
249      // with control flow.
250      VASTART_SAVE_XMM_REGS,
251
252      // MINGW_ALLOCA - MingW's __alloca call to do stack probing.
253      MINGW_ALLOCA,
254
255      // ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG,
256      // ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG -
257      // Atomic 64-bit binary operations.
258      ATOMADD64_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
259      ATOMSUB64_DAG,
260      ATOMOR64_DAG,
261      ATOMXOR64_DAG,
262      ATOMAND64_DAG,
263      ATOMNAND64_DAG,
264      ATOMSWAP64_DAG
265
266      // WARNING: Do not add anything in the end unless you want the node to
267      // have memop! In fact, starting from ATOMADD64_DAG all opcodes will be
268      // thought as target memory ops!
269    };
270  }
271
272  /// Define some predicates that are used for node matching.
273  namespace X86 {
274    /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
275    /// specifies a shuffle of elements that is suitable for input to PSHUFD.
276    bool isPSHUFDMask(ShuffleVectorSDNode *N);
277
278    /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
279    /// specifies a shuffle of elements that is suitable for input to PSHUFD.
280    bool isPSHUFHWMask(ShuffleVectorSDNode *N);
281
282    /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
283    /// specifies a shuffle of elements that is suitable for input to PSHUFD.
284    bool isPSHUFLWMask(ShuffleVectorSDNode *N);
285
286    /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
287    /// specifies a shuffle of elements that is suitable for input to SHUFP*.
288    bool isSHUFPMask(ShuffleVectorSDNode *N);
289
290    /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
291    /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
292    bool isMOVHLPSMask(ShuffleVectorSDNode *N);
293
294    /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
295    /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
296    /// <2, 3, 2, 3>
297    bool isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N);
298
299    /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
300    /// specifies a shuffle of elements that is suitable for MOVLP{S|D}.
301    bool isMOVLPMask(ShuffleVectorSDNode *N);
302
303    /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
304    /// specifies a shuffle of elements that is suitable for MOVHP{S|D}.
305    /// as well as MOVLHPS.
306    bool isMOVLHPSMask(ShuffleVectorSDNode *N);
307
308    /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
309    /// specifies a shuffle of elements that is suitable for input to UNPCKL.
310    bool isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat = false);
311
312    /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
313    /// specifies a shuffle of elements that is suitable for input to UNPCKH.
314    bool isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat = false);
315
316    /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
317    /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
318    /// <0, 0, 1, 1>
319    bool isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N);
320
321    /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
322    /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
323    /// <2, 2, 3, 3>
324    bool isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N);
325
326    /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
327    /// specifies a shuffle of elements that is suitable for input to MOVSS,
328    /// MOVSD, and MOVD, i.e. setting the lowest element.
329    bool isMOVLMask(ShuffleVectorSDNode *N);
330
331    /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
332    /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
333    bool isMOVSHDUPMask(ShuffleVectorSDNode *N);
334
335    /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
336    /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
337    bool isMOVSLDUPMask(ShuffleVectorSDNode *N);
338
339    /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
340    /// specifies a shuffle of elements that is suitable for input to MOVDDUP.
341    bool isMOVDDUPMask(ShuffleVectorSDNode *N);
342
343    /// isPALIGNRMask - Return true if the specified VECTOR_SHUFFLE operand
344    /// specifies a shuffle of elements that is suitable for input to PALIGNR.
345    bool isPALIGNRMask(ShuffleVectorSDNode *N);
346
347    /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
348    /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
349    /// instructions.
350    unsigned getShuffleSHUFImmediate(SDNode *N);
351
352    /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
353    /// the specified VECTOR_SHUFFLE mask with PSHUFHW instruction.
354    unsigned getShufflePSHUFHWImmediate(SDNode *N);
355
356    /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
357    /// the specified VECTOR_SHUFFLE mask with PSHUFLW instruction.
358    unsigned getShufflePSHUFLWImmediate(SDNode *N);
359
360    /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
361    /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
362    unsigned getShufflePALIGNRImmediate(SDNode *N);
363
364    /// isZeroNode - Returns true if Elt is a constant zero or a floating point
365    /// constant +0.0.
366    bool isZeroNode(SDValue Elt);
367
368    /// isOffsetSuitableForCodeModel - Returns true of the given offset can be
369    /// fit into displacement field of the instruction.
370    bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
371                                      bool hasSymbolicDisplacement = true);
372  }
373
374  //===--------------------------------------------------------------------===//
375  //  X86TargetLowering - X86 Implementation of the TargetLowering interface
376  class X86TargetLowering : public TargetLowering {
377    int VarArgsFrameIndex;            // FrameIndex for start of varargs area.
378    int RegSaveFrameIndex;            // X86-64 vararg func register save area.
379    unsigned VarArgsGPOffset;         // X86-64 vararg func int reg offset.
380    unsigned VarArgsFPOffset;         // X86-64 vararg func fp reg offset.
381    int BytesToPopOnReturn;           // Number of arg bytes ret should pop.
382
383  public:
384    explicit X86TargetLowering(X86TargetMachine &TM);
385
386    /// getPICBaseSymbol - Return the X86-32 PIC base.
387    MCSymbol *getPICBaseSymbol(const MachineFunction *MF, MCContext &Ctx) const;
388
389    virtual unsigned getJumpTableEncoding() const;
390
391    virtual const MCExpr *
392    LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
393                              const MachineBasicBlock *MBB, unsigned uid,
394                              MCContext &Ctx) const;
395
396    /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
397    /// jumptable.
398    virtual SDValue getPICJumpTableRelocBase(SDValue Table,
399                                             SelectionDAG &DAG) const;
400    virtual const MCExpr *
401    getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
402                                 unsigned JTI, MCContext &Ctx) const;
403
404    // Return the number of bytes that a function should pop when it returns (in
405    // addition to the space used by the return address).
406    //
407    unsigned getBytesToPopOnReturn() const { return BytesToPopOnReturn; }
408
409    /// getStackPtrReg - Return the stack pointer register we are using: either
410    /// ESP or RSP.
411    unsigned getStackPtrReg() const { return X86StackPtr; }
412
413    /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
414    /// function arguments in the caller parameter area. For X86, aggregates
415    /// that contains are placed at 16-byte boundaries while the rest are at
416    /// 4-byte boundaries.
417    virtual unsigned getByValTypeAlignment(const Type *Ty) const;
418
419    /// getOptimalMemOpType - Returns the target specific optimal type for load
420    /// and store operations as a result of memset, memcpy, and memmove
421    /// lowering. If DstAlign is zero that means it's safe to destination
422    /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
423    /// means there isn't a need to check it against alignment requirement,
424    /// probably because the source does not need to be loaded. If
425    /// 'NonScalarIntSafe' is true, that means it's safe to return a
426    /// non-scalar-integer type, e.g. empty string source, constant, or loaded
427    /// from memory. It returns EVT::Other if SelectionDAG should be responsible
428    /// for determining it.
429    virtual EVT
430    getOptimalMemOpType(uint64_t Size,
431                        unsigned DstAlign, unsigned SrcAlign,
432                        bool NonScalarIntSafe, SelectionDAG &DAG) const;
433
434    /// allowsUnalignedMemoryAccesses - Returns true if the target allows
435    /// unaligned memory accesses. of the specified type.
436    virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
437      return true;
438    }
439
440    /// LowerOperation - Provide custom lowering hooks for some operations.
441    ///
442    virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);
443
444    /// ReplaceNodeResults - Replace the results of node with an illegal result
445    /// type with new values built out of custom code.
446    ///
447    virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
448                                    SelectionDAG &DAG);
449
450
451    virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
452
453    virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
454                                                         MachineBasicBlock *MBB,
455                    DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const;
456
457
458    /// getTargetNodeName - This method returns the name of a target specific
459    /// DAG node.
460    virtual const char *getTargetNodeName(unsigned Opcode) const;
461
462    /// getSetCCResultType - Return the ISD::SETCC ValueType
463    virtual MVT::SimpleValueType getSetCCResultType(EVT VT) const;
464
465    /// computeMaskedBitsForTargetNode - Determine which of the bits specified
466    /// in Mask are known to be either zero or one and return them in the
467    /// KnownZero/KnownOne bitsets.
468    virtual void computeMaskedBitsForTargetNode(const SDValue Op,
469                                                const APInt &Mask,
470                                                APInt &KnownZero,
471                                                APInt &KnownOne,
472                                                const SelectionDAG &DAG,
473                                                unsigned Depth = 0) const;
474
475    virtual bool
476    isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) const;
477
478    SDValue getReturnAddressFrameIndex(SelectionDAG &DAG);
479
480    virtual bool ExpandInlineAsm(CallInst *CI) const;
481
482    ConstraintType getConstraintType(const std::string &Constraint) const;
483
484    std::vector<unsigned>
485      getRegClassForInlineAsmConstraint(const std::string &Constraint,
486                                        EVT VT) const;
487
488    virtual const char *LowerXConstraint(EVT ConstraintVT) const;
489
490    /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
491    /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is
492    /// true it means one of the asm constraint of the inline asm instruction
493    /// being processed is 'm'.
494    virtual void LowerAsmOperandForConstraint(SDValue Op,
495                                              char ConstraintLetter,
496                                              bool hasMemory,
497                                              std::vector<SDValue> &Ops,
498                                              SelectionDAG &DAG) const;
499
500    /// getRegForInlineAsmConstraint - Given a physical register constraint
501    /// (e.g. {edx}), return the register number and the register class for the
502    /// register.  This should only be used for C_Register constraints.  On
503    /// error, this returns a register number of 0.
504    std::pair<unsigned, const TargetRegisterClass*>
505      getRegForInlineAsmConstraint(const std::string &Constraint,
506                                   EVT VT) const;
507
508    /// isLegalAddressingMode - Return true if the addressing mode represented
509    /// by AM is legal for this target, for a load/store of the specified type.
510    virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty)const;
511
512    /// isTruncateFree - Return true if it's free to truncate a value of
513    /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
514    /// register EAX to i16 by referencing its sub-register AX.
515    virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const;
516    virtual bool isTruncateFree(EVT VT1, EVT VT2) const;
517
518    /// isZExtFree - Return true if any actual instruction that defines a
519    /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
520    /// register. This does not necessarily include registers defined in
521    /// unknown ways, such as incoming arguments, or copies from unknown
522    /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
523    /// does not necessarily apply to truncate instructions. e.g. on x86-64,
524    /// all instructions that define 32-bit values implicit zero-extend the
525    /// result out to 64 bits.
526    virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const;
527    virtual bool isZExtFree(EVT VT1, EVT VT2) const;
528
529    /// isNarrowingProfitable - Return true if it's profitable to narrow
530    /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
531    /// from i32 to i8 but not from i32 to i16.
532    virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const;
533
534    /// isFPImmLegal - Returns true if the target can instruction select the
535    /// specified FP immediate natively. If false, the legalizer will
536    /// materialize the FP immediate as a load from a constant pool.
537    virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const;
538
539    /// isShuffleMaskLegal - Targets can use this to indicate that they only
540    /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
541    /// By default, if a target supports the VECTOR_SHUFFLE node, all mask
542    /// values are assumed to be legal.
543    virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
544                                    EVT VT) const;
545
546    /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
547    /// used by Targets can use this to indicate if there is a suitable
548    /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
549    /// pool entry.
550    virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
551                                        EVT VT) const;
552
553    /// ShouldShrinkFPConstant - If true, then instruction selection should
554    /// seek to shrink the FP constant of the specified type to a smaller type
555    /// in order to save space and / or reduce runtime.
556    virtual bool ShouldShrinkFPConstant(EVT VT) const {
557      // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
558      // expensive than a straight movsd. On the other hand, it's important to
559      // shrink long double fp constant since fldt is very slow.
560      return !X86ScalarSSEf64 || VT == MVT::f80;
561    }
562
563    virtual const X86Subtarget* getSubtarget() {
564      return Subtarget;
565    }
566
567    /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
568    /// computed in an SSE register, not on the X87 floating point stack.
569    bool isScalarFPTypeInSSEReg(EVT VT) const {
570      return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
571      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
572    }
573
574    /// createFastISel - This method returns a target specific FastISel object,
575    /// or null if the target does not support "fast" ISel.
576    virtual FastISel *
577    createFastISel(MachineFunction &mf,
578                   MachineModuleInfo *mmi, DwarfWriter *dw,
579                   DenseMap<const Value *, unsigned> &,
580                   DenseMap<const BasicBlock *, MachineBasicBlock *> &,
581                   DenseMap<const AllocaInst *, int> &
582#ifndef NDEBUG
583                   , SmallSet<Instruction*, 8> &
584#endif
585                   );
586
587    /// getFunctionAlignment - Return the Log2 alignment of this function.
588    virtual unsigned getFunctionAlignment(const Function *F) const;
589
590  private:
591    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
592    /// make the right decision when generating code for different targets.
593    const X86Subtarget *Subtarget;
594    const X86RegisterInfo *RegInfo;
595    const TargetData *TD;
596
597    /// X86StackPtr - X86 physical register used as stack ptr.
598    unsigned X86StackPtr;
599
600    /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
601    /// floating point ops.
602    /// When SSE is available, use it for f32 operations.
603    /// When SSE2 is available, use it for f64 operations.
604    bool X86ScalarSSEf32;
605    bool X86ScalarSSEf64;
606
607    /// LegalFPImmediates - A list of legal fp immediates.
608    std::vector<APFloat> LegalFPImmediates;
609
610    /// addLegalFPImmediate - Indicate that this x86 target can instruction
611    /// select the specified FP immediate natively.
612    void addLegalFPImmediate(const APFloat& Imm) {
613      LegalFPImmediates.push_back(Imm);
614    }
615
616    SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
617                            CallingConv::ID CallConv, bool isVarArg,
618                            const SmallVectorImpl<ISD::InputArg> &Ins,
619                            DebugLoc dl, SelectionDAG &DAG,
620                            SmallVectorImpl<SDValue> &InVals);
621    SDValue LowerMemArgument(SDValue Chain,
622                             CallingConv::ID CallConv,
623                             const SmallVectorImpl<ISD::InputArg> &ArgInfo,
624                             DebugLoc dl, SelectionDAG &DAG,
625                             const CCValAssign &VA,  MachineFrameInfo *MFI,
626                              unsigned i);
627    SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
628                             DebugLoc dl, SelectionDAG &DAG,
629                             const CCValAssign &VA,
630                             ISD::ArgFlagsTy Flags);
631
632    // Call lowering helpers.
633
634    /// IsEligibleForTailCallOptimization - Check whether the call is eligible
635    /// for tail call optimization. Targets which want to do tail call
636    /// optimization should implement this function.
637    bool IsEligibleForTailCallOptimization(SDValue Callee,
638                                           CallingConv::ID CalleeCC,
639                                           bool isVarArg,
640                                           bool isCalleeStructRet,
641                                           bool isCallerStructRet,
642                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
643                                    const SmallVectorImpl<ISD::InputArg> &Ins,
644                                           SelectionDAG& DAG) const;
645    bool IsCalleePop(bool isVarArg, CallingConv::ID CallConv);
646    SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
647                                SDValue Chain, bool IsTailCall, bool Is64Bit,
648                                int FPDiff, DebugLoc dl);
649
650    CCAssignFn *CCAssignFnForNode(CallingConv::ID CallConv) const;
651    unsigned GetAlignedArgumentStackSize(unsigned StackSize, SelectionDAG &DAG);
652
653    std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
654                                               bool isSigned);
655
656    SDValue LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
657                                   SelectionDAG &DAG);
658    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG);
659    SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG);
660    SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG);
661    SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG);
662    SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG);
663    SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG);
664    SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG);
665    SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG);
666    SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG);
667    SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG);
668    SDValue LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
669                               int64_t Offset, SelectionDAG &DAG) const;
670    SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG);
671    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG);
672    SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG);
673    SDValue LowerShift(SDValue Op, SelectionDAG &DAG);
674    SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
675                      SelectionDAG &DAG);
676    SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG);
677    SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG);
678    SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG);
679    SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG);
680    SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG);
681    SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG);
682    SDValue LowerFABS(SDValue Op, SelectionDAG &DAG);
683    SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG);
684    SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG);
685    SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG);
686    SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG);
687    SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG);
688    SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG);
689    SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG);
690    SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG);
691    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG);
692    SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG);
693    SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG);
694    SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG);
695    SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG);
696    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG);
697    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG);
698    SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG);
699    SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG);
700    SDValue LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG);
701    SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG);
702    SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG);
703    SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG);
704    SDValue LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG);
705    SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG);
706
707    SDValue LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG);
708    SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG);
709    SDValue LowerREADCYCLECOUNTER(SDValue Op, SelectionDAG &DAG);
710
711    virtual SDValue
712      LowerFormalArguments(SDValue Chain,
713                           CallingConv::ID CallConv, bool isVarArg,
714                           const SmallVectorImpl<ISD::InputArg> &Ins,
715                           DebugLoc dl, SelectionDAG &DAG,
716                           SmallVectorImpl<SDValue> &InVals);
717    virtual SDValue
718      LowerCall(SDValue Chain, SDValue Callee,
719                CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
720                const SmallVectorImpl<ISD::OutputArg> &Outs,
721                const SmallVectorImpl<ISD::InputArg> &Ins,
722                DebugLoc dl, SelectionDAG &DAG,
723                SmallVectorImpl<SDValue> &InVals);
724
725    virtual SDValue
726      LowerReturn(SDValue Chain,
727                  CallingConv::ID CallConv, bool isVarArg,
728                  const SmallVectorImpl<ISD::OutputArg> &Outs,
729                  DebugLoc dl, SelectionDAG &DAG);
730
731    virtual bool
732      CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
733                     const SmallVectorImpl<EVT> &OutTys,
734                     const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
735                     SelectionDAG &DAG);
736
737    void ReplaceATOMIC_BINARY_64(SDNode *N, SmallVectorImpl<SDValue> &Results,
738                                 SelectionDAG &DAG, unsigned NewOp);
739
740    SDValue EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
741                                    SDValue Chain,
742                                    SDValue Dst, SDValue Src,
743                                    SDValue Size, unsigned Align,
744                                    const Value *DstSV, uint64_t DstSVOff);
745    SDValue EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
746                                    SDValue Chain,
747                                    SDValue Dst, SDValue Src,
748                                    SDValue Size, unsigned Align,
749                                    bool AlwaysInline,
750                                    const Value *DstSV, uint64_t DstSVOff,
751                                    const Value *SrcSV, uint64_t SrcSVOff);
752
753    /// Utility function to emit string processing sse4.2 instructions
754    /// that return in xmm0.
755    /// This takes the instruction to expand, the associated machine basic
756    /// block, the number of args, and whether or not the second arg is
757    /// in memory or not.
758    MachineBasicBlock *EmitPCMP(MachineInstr *BInstr, MachineBasicBlock *BB,
759				unsigned argNum, bool inMem) const;
760
761    /// Utility function to emit atomic bitwise operations (and, or, xor).
762    /// It takes the bitwise instruction to expand, the associated machine basic
763    /// block, and the associated X86 opcodes for reg/reg and reg/imm.
764    MachineBasicBlock *EmitAtomicBitwiseWithCustomInserter(
765                                                    MachineInstr *BInstr,
766                                                    MachineBasicBlock *BB,
767                                                    unsigned regOpc,
768                                                    unsigned immOpc,
769                                                    unsigned loadOpc,
770                                                    unsigned cxchgOpc,
771                                                    unsigned copyOpc,
772                                                    unsigned notOpc,
773                                                    unsigned EAXreg,
774                                                    TargetRegisterClass *RC,
775                                                    bool invSrc = false) const;
776
777    MachineBasicBlock *EmitAtomicBit6432WithCustomInserter(
778                                                    MachineInstr *BInstr,
779                                                    MachineBasicBlock *BB,
780                                                    unsigned regOpcL,
781                                                    unsigned regOpcH,
782                                                    unsigned immOpcL,
783                                                    unsigned immOpcH,
784                                                    bool invSrc = false) const;
785
786    /// Utility function to emit atomic min and max.  It takes the min/max
787    /// instruction to expand, the associated basic block, and the associated
788    /// cmov opcode for moving the min or max value.
789    MachineBasicBlock *EmitAtomicMinMaxWithCustomInserter(MachineInstr *BInstr,
790                                                          MachineBasicBlock *BB,
791                                                        unsigned cmovOpc) const;
792
793    /// Utility function to emit the xmm reg save portion of va_start.
794    MachineBasicBlock *EmitVAStartSaveXMMRegsWithCustomInserter(
795                                                   MachineInstr *BInstr,
796                                                   MachineBasicBlock *BB) const;
797
798    MachineBasicBlock *EmitLoweredSelect(MachineInstr *I,
799                                         MachineBasicBlock *BB,
800                    DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const;
801
802    MachineBasicBlock *EmitLoweredMingwAlloca(MachineInstr *MI,
803                                              MachineBasicBlock *BB,
804                    DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const;
805
806    /// Emit nodes that will be selected as "test Op0,Op0", or something
807    /// equivalent, for use with the given x86 condition code.
808    SDValue EmitTest(SDValue Op0, unsigned X86CC, SelectionDAG &DAG);
809
810    /// Emit nodes that will be selected as "cmp Op0,Op1", or something
811    /// equivalent, for use with the given x86 condition code.
812    SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
813                    SelectionDAG &DAG);
814  };
815
816  namespace X86 {
817    FastISel *createFastISel(MachineFunction &mf,
818                           MachineModuleInfo *mmi, DwarfWriter *dw,
819                           DenseMap<const Value *, unsigned> &,
820                           DenseMap<const BasicBlock *, MachineBasicBlock *> &,
821                           DenseMap<const AllocaInst *, int> &
822#ifndef NDEBUG
823                           , SmallSet<Instruction*, 8> &
824#endif
825                           );
826  }
827}
828
829#endif    // X86ISELLOWERING_H
830