X86ISelLowering.h revision 195340
1//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef X86ISELLOWERING_H
16#define X86ISELLOWERING_H
17
18#include "X86Subtarget.h"
19#include "X86RegisterInfo.h"
20#include "X86MachineFunctionInfo.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/CodeGen/FastISel.h"
23#include "llvm/CodeGen/SelectionDAG.h"
24#include "llvm/CodeGen/CallingConvLower.h"
25
26namespace llvm {
27  namespace X86ISD {
28    // X86 Specific DAG Nodes
29    enum NodeType {
30      // Start the numbering where the builtin ops leave off.
31      FIRST_NUMBER = ISD::BUILTIN_OP_END,
32
33      /// BSF - Bit scan forward.
34      /// BSR - Bit scan reverse.
35      BSF,
36      BSR,
37
38      /// SHLD, SHRD - Double shift instructions. These correspond to
39      /// X86::SHLDxx and X86::SHRDxx instructions.
40      SHLD,
41      SHRD,
42
43      /// FAND - Bitwise logical AND of floating point values. This corresponds
44      /// to X86::ANDPS or X86::ANDPD.
45      FAND,
46
47      /// FOR - Bitwise logical OR of floating point values. This corresponds
48      /// to X86::ORPS or X86::ORPD.
49      FOR,
50
51      /// FXOR - Bitwise logical XOR of floating point values. This corresponds
52      /// to X86::XORPS or X86::XORPD.
53      FXOR,
54
55      /// FSRL - Bitwise logical right shift of floating point values. These
56      /// corresponds to X86::PSRLDQ.
57      FSRL,
58
59      /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
60      /// integer source in memory and FP reg result.  This corresponds to the
61      /// X86::FILD*m instructions. It has three inputs (token chain, address,
62      /// and source type) and two outputs (FP value and token chain). FILD_FLAG
63      /// also produces a flag).
64      FILD,
65      FILD_FLAG,
66
67      /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
68      /// integer destination in memory and a FP reg source.  This corresponds
69      /// to the X86::FIST*m instructions and the rounding mode change stuff. It
70      /// has two inputs (token chain and address) and two outputs (int value
71      /// and token chain).
72      FP_TO_INT16_IN_MEM,
73      FP_TO_INT32_IN_MEM,
74      FP_TO_INT64_IN_MEM,
75
76      /// FLD - This instruction implements an extending load to FP stack slots.
77      /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
78      /// operand, ptr to load from, and a ValueType node indicating the type
79      /// to load to.
80      FLD,
81
82      /// FST - This instruction implements a truncating store to FP stack
83      /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
84      /// chain operand, value to store, address, and a ValueType to store it
85      /// as.
86      FST,
87
88      /// CALL/TAILCALL - These operations represent an abstract X86 call
89      /// instruction, which includes a bunch of information.  In particular the
90      /// operands of these node are:
91      ///
92      ///     #0 - The incoming token chain
93      ///     #1 - The callee
94      ///     #2 - The number of arg bytes the caller pushes on the stack.
95      ///     #3 - The number of arg bytes the callee pops off the stack.
96      ///     #4 - The value to pass in AL/AX/EAX (optional)
97      ///     #5 - The value to pass in DL/DX/EDX (optional)
98      ///
99      /// The result values of these nodes are:
100      ///
101      ///     #0 - The outgoing token chain
102      ///     #1 - The first register result value (optional)
103      ///     #2 - The second register result value (optional)
104      ///
105      /// The CALL vs TAILCALL distinction boils down to whether the callee is
106      /// known not to modify the caller's stack frame, as is standard with
107      /// LLVM.
108      CALL,
109      TAILCALL,
110
111      /// RDTSC_DAG - This operation implements the lowering for
112      /// readcyclecounter
113      RDTSC_DAG,
114
115      /// X86 compare and logical compare instructions.
116      CMP, COMI, UCOMI,
117
118      /// X86 bit-test instructions.
119      BT,
120
121      /// X86 SetCC. Operand 0 is condition code, and operand 1 is the flag
122      /// operand produced by a CMP instruction.
123      SETCC,
124
125      /// X86 conditional moves. Operand 0 and operand 1 are the two values
126      /// to select from. Operand 2 is the condition code, and operand 3 is the
127      /// flag operand produced by a CMP or TEST instruction. It also writes a
128      /// flag result.
129      CMOV,
130
131      /// X86 conditional branches. Operand 0 is the chain operand, operand 1
132      /// is the block to branch if condition is true, operand 2 is the
133      /// condition code, and operand 3 is the flag operand produced by a CMP
134      /// or TEST instruction.
135      BRCOND,
136
137      /// Return with a flag operand. Operand 0 is the chain operand, operand
138      /// 1 is the number of bytes of stack to pop.
139      RET_FLAG,
140
141      /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
142      REP_STOS,
143
144      /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
145      REP_MOVS,
146
147      /// GlobalBaseReg - On Darwin, this node represents the result of the popl
148      /// at function entry, used for PIC code.
149      GlobalBaseReg,
150
151      /// Wrapper - A wrapper node for TargetConstantPool,
152      /// TargetExternalSymbol, and TargetGlobalAddress.
153      Wrapper,
154
155      /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
156      /// relative displacements.
157      WrapperRIP,
158
159      /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to
160      /// i32, corresponds to X86::PEXTRB.
161      PEXTRB,
162
163      /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
164      /// i32, corresponds to X86::PEXTRW.
165      PEXTRW,
166
167      /// INSERTPS - Insert any element of a 4 x float vector into any element
168      /// of a destination 4 x floatvector.
169      INSERTPS,
170
171      /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector,
172      /// corresponds to X86::PINSRB.
173      PINSRB,
174
175      /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
176      /// corresponds to X86::PINSRW.
177      PINSRW,
178
179      /// PSHUFB - Shuffle 16 8-bit values within a vector.
180      PSHUFB,
181
182      /// FMAX, FMIN - Floating point max and min.
183      ///
184      FMAX, FMIN,
185
186      /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
187      /// approximation.  Note that these typically require refinement
188      /// in order to obtain suitable precision.
189      FRSQRT, FRCP,
190
191      // TLSADDR - Thread Local Storage.
192      TLSADDR,
193
194      // SegmentBaseAddress - The address segment:0
195      SegmentBaseAddress,
196
197      // EH_RETURN - Exception Handling helpers.
198      EH_RETURN,
199
200      /// TC_RETURN - Tail call return.
201      ///   operand #0 chain
202      ///   operand #1 callee (register or absolute)
203      ///   operand #2 stack adjustment
204      ///   operand #3 optional in flag
205      TC_RETURN,
206
207      // LCMPXCHG_DAG, LCMPXCHG8_DAG - Compare and swap.
208      LCMPXCHG_DAG,
209      LCMPXCHG8_DAG,
210
211      // ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG,
212      // ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG -
213      // Atomic 64-bit binary operations.
214      ATOMADD64_DAG,
215      ATOMSUB64_DAG,
216      ATOMOR64_DAG,
217      ATOMXOR64_DAG,
218      ATOMAND64_DAG,
219      ATOMNAND64_DAG,
220      ATOMSWAP64_DAG,
221
222      // FNSTCW16m - Store FP control world into i16 memory.
223      FNSTCW16m,
224
225      // VZEXT_MOVL - Vector move low and zero extend.
226      VZEXT_MOVL,
227
228      // VZEXT_LOAD - Load, scalar_to_vector, and zero extend.
229      VZEXT_LOAD,
230
231      // VSHL, VSRL - Vector logical left / right shift.
232      VSHL, VSRL,
233
234      // CMPPD, CMPPS - Vector double/float comparison.
235      // CMPPD, CMPPS - Vector double/float comparison.
236      CMPPD, CMPPS,
237
238      // PCMP* - Vector integer comparisons.
239      PCMPEQB, PCMPEQW, PCMPEQD, PCMPEQQ,
240      PCMPGTB, PCMPGTW, PCMPGTD, PCMPGTQ,
241
242      // ADD, SUB, SMUL, UMUL, etc. - Arithmetic operations with FLAGS results.
243      ADD, SUB, SMUL, UMUL,
244      INC, DEC,
245
246      // MUL_IMM - X86 specific multiply by immediate.
247      MUL_IMM
248    };
249  }
250
251  /// Define some predicates that are used for node matching.
252  namespace X86 {
253    /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
254    /// specifies a shuffle of elements that is suitable for input to PSHUFD.
255    bool isPSHUFDMask(ShuffleVectorSDNode *N);
256
257    /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
258    /// specifies a shuffle of elements that is suitable for input to PSHUFD.
259    bool isPSHUFHWMask(ShuffleVectorSDNode *N);
260
261    /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
262    /// specifies a shuffle of elements that is suitable for input to PSHUFD.
263    bool isPSHUFLWMask(ShuffleVectorSDNode *N);
264
265    /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
266    /// specifies a shuffle of elements that is suitable for input to SHUFP*.
267    bool isSHUFPMask(ShuffleVectorSDNode *N);
268
269    /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
270    /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
271    bool isMOVHLPSMask(ShuffleVectorSDNode *N);
272
273    /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
274    /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
275    /// <2, 3, 2, 3>
276    bool isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N);
277
278    /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
279    /// specifies a shuffle of elements that is suitable for MOVLP{S|D}.
280    bool isMOVLPMask(ShuffleVectorSDNode *N);
281
282    /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
283    /// specifies a shuffle of elements that is suitable for MOVHP{S|D}.
284    /// as well as MOVLHPS.
285    bool isMOVHPMask(ShuffleVectorSDNode *N);
286
287    /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
288    /// specifies a shuffle of elements that is suitable for input to UNPCKL.
289    bool isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat = false);
290
291    /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
292    /// specifies a shuffle of elements that is suitable for input to UNPCKH.
293    bool isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat = false);
294
295    /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
296    /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
297    /// <0, 0, 1, 1>
298    bool isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N);
299
300    /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
301    /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
302    /// <2, 2, 3, 3>
303    bool isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N);
304
305    /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
306    /// specifies a shuffle of elements that is suitable for input to MOVSS,
307    /// MOVSD, and MOVD, i.e. setting the lowest element.
308    bool isMOVLMask(ShuffleVectorSDNode *N);
309
310    /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
311    /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
312    bool isMOVSHDUPMask(ShuffleVectorSDNode *N);
313
314    /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
315    /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
316    bool isMOVSLDUPMask(ShuffleVectorSDNode *N);
317
318    /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
319    /// specifies a shuffle of elements that is suitable for input to MOVDDUP.
320    bool isMOVDDUPMask(ShuffleVectorSDNode *N);
321
322    /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
323    /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
324    /// instructions.
325    unsigned getShuffleSHUFImmediate(SDNode *N);
326
327    /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
328    /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
329    /// instructions.
330    unsigned getShufflePSHUFHWImmediate(SDNode *N);
331
332    /// getShufflePSHUFKWImmediate - Return the appropriate immediate to shuffle
333    /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
334    /// instructions.
335    unsigned getShufflePSHUFLWImmediate(SDNode *N);
336  }
337
338  //===--------------------------------------------------------------------===//
339  //  X86TargetLowering - X86 Implementation of the TargetLowering interface
340  class X86TargetLowering : public TargetLowering {
341    int VarArgsFrameIndex;            // FrameIndex for start of varargs area.
342    int RegSaveFrameIndex;            // X86-64 vararg func register save area.
343    unsigned VarArgsGPOffset;         // X86-64 vararg func int reg offset.
344    unsigned VarArgsFPOffset;         // X86-64 vararg func fp reg offset.
345    int BytesToPopOnReturn;           // Number of arg bytes ret should pop.
346    int BytesCallerReserves;          // Number of arg bytes caller makes.
347
348  public:
349    explicit X86TargetLowering(X86TargetMachine &TM);
350
351    /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
352    /// jumptable.
353    SDValue getPICJumpTableRelocBase(SDValue Table,
354                                       SelectionDAG &DAG) const;
355
356    // Return the number of bytes that a function should pop when it returns (in
357    // addition to the space used by the return address).
358    //
359    unsigned getBytesToPopOnReturn() const { return BytesToPopOnReturn; }
360
361    // Return the number of bytes that the caller reserves for arguments passed
362    // to this function.
363    unsigned getBytesCallerReserves() const { return BytesCallerReserves; }
364
365    /// getStackPtrReg - Return the stack pointer register we are using: either
366    /// ESP or RSP.
367    unsigned getStackPtrReg() const { return X86StackPtr; }
368
369    /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
370    /// function arguments in the caller parameter area. For X86, aggregates
371    /// that contains are placed at 16-byte boundaries while the rest are at
372    /// 4-byte boundaries.
373    virtual unsigned getByValTypeAlignment(const Type *Ty) const;
374
375    /// getOptimalMemOpType - Returns the target specific optimal type for load
376    /// and store operations as a result of memset, memcpy, and memmove
377    /// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
378    /// determining it.
379    virtual
380    MVT getOptimalMemOpType(uint64_t Size, unsigned Align,
381                            bool isSrcConst, bool isSrcStr,
382                            SelectionDAG &DAG) const;
383
384    /// LowerOperation - Provide custom lowering hooks for some operations.
385    ///
386    virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);
387
388    /// ReplaceNodeResults - Replace the results of node with an illegal result
389    /// type with new values built out of custom code.
390    ///
391    virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
392                                    SelectionDAG &DAG);
393
394
395    virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
396
397    virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
398                                                  MachineBasicBlock *MBB) const;
399
400
401    /// getTargetNodeName - This method returns the name of a target specific
402    /// DAG node.
403    virtual const char *getTargetNodeName(unsigned Opcode) const;
404
405    /// getSetCCResultType - Return the ISD::SETCC ValueType
406    virtual MVT getSetCCResultType(MVT VT) const;
407
408    /// computeMaskedBitsForTargetNode - Determine which of the bits specified
409    /// in Mask are known to be either zero or one and return them in the
410    /// KnownZero/KnownOne bitsets.
411    virtual void computeMaskedBitsForTargetNode(const SDValue Op,
412                                                const APInt &Mask,
413                                                APInt &KnownZero,
414                                                APInt &KnownOne,
415                                                const SelectionDAG &DAG,
416                                                unsigned Depth = 0) const;
417
418    virtual bool
419    isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) const;
420
421    SDValue getReturnAddressFrameIndex(SelectionDAG &DAG);
422
423    ConstraintType getConstraintType(const std::string &Constraint) const;
424
425    std::vector<unsigned>
426      getRegClassForInlineAsmConstraint(const std::string &Constraint,
427                                        MVT VT) const;
428
429    virtual const char *LowerXConstraint(MVT ConstraintVT) const;
430
431    /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
432    /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is
433    /// true it means one of the asm constraint of the inline asm instruction
434    /// being processed is 'm'.
435    virtual void LowerAsmOperandForConstraint(SDValue Op,
436                                              char ConstraintLetter,
437                                              bool hasMemory,
438                                              std::vector<SDValue> &Ops,
439                                              SelectionDAG &DAG) const;
440
441    /// getRegForInlineAsmConstraint - Given a physical register constraint
442    /// (e.g. {edx}), return the register number and the register class for the
443    /// register.  This should only be used for C_Register constraints.  On
444    /// error, this returns a register number of 0.
445    std::pair<unsigned, const TargetRegisterClass*>
446      getRegForInlineAsmConstraint(const std::string &Constraint,
447                                   MVT VT) const;
448
449    /// isLegalAddressingMode - Return true if the addressing mode represented
450    /// by AM is legal for this target, for a load/store of the specified type.
451    virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty)const;
452
453    /// isTruncateFree - Return true if it's free to truncate a value of
454    /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
455    /// register EAX to i16 by referencing its sub-register AX.
456    virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const;
457    virtual bool isTruncateFree(MVT VT1, MVT VT2) const;
458
459    /// isZExtFree - Return true if any actual instruction that defines a
460    /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
461    /// register. This does not necessarily include registers defined in
462    /// unknown ways, such as incoming arguments, or copies from unknown
463    /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
464    /// does not necessarily apply to truncate instructions. e.g. on x86-64,
465    /// all instructions that define 32-bit values implicit zero-extend the
466    /// result out to 64 bits.
467    virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const;
468    virtual bool isZExtFree(MVT VT1, MVT VT2) const;
469
470    /// isNarrowingProfitable - Return true if it's profitable to narrow
471    /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
472    /// from i32 to i8 but not from i32 to i16.
473    virtual bool isNarrowingProfitable(MVT VT1, MVT VT2) const;
474
475    /// isShuffleMaskLegal - Targets can use this to indicate that they only
476    /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
477    /// By default, if a target supports the VECTOR_SHUFFLE node, all mask
478    /// values are assumed to be legal.
479    virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
480                                    MVT VT) const;
481
482    /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
483    /// used by Targets can use this to indicate if there is a suitable
484    /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
485    /// pool entry.
486    virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
487                                        MVT VT) const;
488
489    /// ShouldShrinkFPConstant - If true, then instruction selection should
490    /// seek to shrink the FP constant of the specified type to a smaller type
491    /// in order to save space and / or reduce runtime.
492    virtual bool ShouldShrinkFPConstant(MVT VT) const {
493      // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
494      // expensive than a straight movsd. On the other hand, it's important to
495      // shrink long double fp constant since fldt is very slow.
496      return !X86ScalarSSEf64 || VT == MVT::f80;
497    }
498
499    /// IsEligibleForTailCallOptimization - Check whether the call is eligible
500    /// for tail call optimization. Target which want to do tail call
501    /// optimization should implement this function.
502    virtual bool IsEligibleForTailCallOptimization(CallSDNode *TheCall,
503                                                   SDValue Ret,
504                                                   SelectionDAG &DAG) const;
505
506    virtual const X86Subtarget* getSubtarget() {
507      return Subtarget;
508    }
509
510    /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
511    /// computed in an SSE register, not on the X87 floating point stack.
512    bool isScalarFPTypeInSSEReg(MVT VT) const {
513      return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
514      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
515    }
516
517    /// getWidenVectorType: given a vector type, returns the type to widen
518    /// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
519    /// If there is no vector type that we want to widen to, returns MVT::Other
520    /// When and were to widen is target dependent based on the cost of
521    /// scalarizing vs using the wider vector type.
522    virtual MVT getWidenVectorType(MVT VT) const;
523
524    /// createFastISel - This method returns a target specific FastISel object,
525    /// or null if the target does not support "fast" ISel.
526    virtual FastISel *
527    createFastISel(MachineFunction &mf,
528                   MachineModuleInfo *mmi, DwarfWriter *dw,
529                   DenseMap<const Value *, unsigned> &,
530                   DenseMap<const BasicBlock *, MachineBasicBlock *> &,
531                   DenseMap<const AllocaInst *, int> &
532#ifndef NDEBUG
533                   , SmallSet<Instruction*, 8> &
534#endif
535                   );
536
537    /// getFunctionAlignment - Return the Log2 alignment of this function.
538    virtual unsigned getFunctionAlignment(const Function *F) const;
539
540  private:
541    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
542    /// make the right decision when generating code for different targets.
543    const X86Subtarget *Subtarget;
544    const X86RegisterInfo *RegInfo;
545    const TargetData *TD;
546
547    /// X86StackPtr - X86 physical register used as stack ptr.
548    unsigned X86StackPtr;
549
550    /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
551    /// floating point ops.
552    /// When SSE is available, use it for f32 operations.
553    /// When SSE2 is available, use it for f64 operations.
554    bool X86ScalarSSEf32;
555    bool X86ScalarSSEf64;
556
557    SDNode *LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
558                            unsigned CallingConv, SelectionDAG &DAG);
559
560    SDValue LowerMemArgument(SDValue Op, SelectionDAG &DAG,
561                               const CCValAssign &VA,  MachineFrameInfo *MFI,
562                               unsigned CC, SDValue Root, unsigned i);
563
564    SDValue LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG,
565                               const SDValue &StackPtr,
566                               const CCValAssign &VA, SDValue Chain,
567                               SDValue Arg, ISD::ArgFlagsTy Flags);
568
569    // Call lowering helpers.
570    bool IsCalleePop(bool isVarArg, unsigned CallingConv);
571    bool CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall);
572    bool CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall);
573    SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
574                                SDValue Chain, bool IsTailCall, bool Is64Bit,
575                                int FPDiff, DebugLoc dl);
576
577    CCAssignFn *CCAssignFnForNode(unsigned CallingConv) const;
578    NameDecorationStyle NameDecorationForFORMAL_ARGUMENTS(SDValue Op);
579    unsigned GetAlignedArgumentStackSize(unsigned StackSize, SelectionDAG &DAG);
580
581    std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
582                                               bool isSigned);
583
584    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG);
585    SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG);
586    SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG);
587    SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG);
588    SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG);
589    SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG);
590    SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG);
591    SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG);
592    SDValue LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
593                               int64_t Offset, SelectionDAG &DAG) const;
594    SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG);
595    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG);
596    SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG);
597    SDValue LowerShift(SDValue Op, SelectionDAG &DAG);
598    SDValue BuildFILD(SDValue Op, MVT SrcVT, SDValue Chain, SDValue StackSlot,
599                      SelectionDAG &DAG);
600    SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG);
601    SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG);
602    SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG);
603    SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG);
604    SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG);
605    SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG);
606    SDValue LowerFABS(SDValue Op, SelectionDAG &DAG);
607    SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG);
608    SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG);
609    SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG);
610    SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG);
611    SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG);
612    SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG);
613    SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG);
614    SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG);
615    SDValue LowerCALL(SDValue Op, SelectionDAG &DAG);
616    SDValue LowerRET(SDValue Op, SelectionDAG &DAG);
617    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG);
618    SDValue LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG);
619    SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG);
620    SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG);
621    SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG);
622    SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG);
623    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG);
624    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG);
625    SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG);
626    SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG);
627    SDValue LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG);
628    SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG);
629    SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG);
630    SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG);
631    SDValue LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG);
632    SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG);
633
634    SDValue LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG);
635    SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG);
636    SDValue LowerREADCYCLECOUNTER(SDValue Op, SelectionDAG &DAG);
637
638    void ReplaceATOMIC_BINARY_64(SDNode *N, SmallVectorImpl<SDValue> &Results,
639                                 SelectionDAG &DAG, unsigned NewOp);
640
641    SDValue EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
642                                    SDValue Chain,
643                                    SDValue Dst, SDValue Src,
644                                    SDValue Size, unsigned Align,
645                                    const Value *DstSV, uint64_t DstSVOff);
646    SDValue EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
647                                    SDValue Chain,
648                                    SDValue Dst, SDValue Src,
649                                    SDValue Size, unsigned Align,
650                                    bool AlwaysInline,
651                                    const Value *DstSV, uint64_t DstSVOff,
652                                    const Value *SrcSV, uint64_t SrcSVOff);
653
654    /// Utility function to emit atomic bitwise operations (and, or, xor).
655    // It takes the bitwise instruction to expand, the associated machine basic
656    // block, and the associated X86 opcodes for reg/reg and reg/imm.
657    MachineBasicBlock *EmitAtomicBitwiseWithCustomInserter(
658                                                    MachineInstr *BInstr,
659                                                    MachineBasicBlock *BB,
660                                                    unsigned regOpc,
661                                                    unsigned immOpc,
662                                                    unsigned loadOpc,
663                                                    unsigned cxchgOpc,
664                                                    unsigned copyOpc,
665                                                    unsigned notOpc,
666                                                    unsigned EAXreg,
667                                                    TargetRegisterClass *RC,
668                                                    bool invSrc = false) const;
669
670    MachineBasicBlock *EmitAtomicBit6432WithCustomInserter(
671                                                    MachineInstr *BInstr,
672                                                    MachineBasicBlock *BB,
673                                                    unsigned regOpcL,
674                                                    unsigned regOpcH,
675                                                    unsigned immOpcL,
676                                                    unsigned immOpcH,
677                                                    bool invSrc = false) const;
678
679    /// Utility function to emit atomic min and max.  It takes the min/max
680    /// instruction to expand, the associated basic block, and the associated
681    /// cmov opcode for moving the min or max value.
682    MachineBasicBlock *EmitAtomicMinMaxWithCustomInserter(MachineInstr *BInstr,
683                                                          MachineBasicBlock *BB,
684                                                        unsigned cmovOpc) const;
685
686    /// Emit nodes that will be selected as "test Op0,Op0", or something
687    /// equivalent, for use with the given x86 condition code.
688    SDValue EmitTest(SDValue Op0, unsigned X86CC, SelectionDAG &DAG);
689
690    /// Emit nodes that will be selected as "cmp Op0,Op1", or something
691    /// equivalent, for use with the given x86 condition code.
692    SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
693                    SelectionDAG &DAG);
694  };
695
696  namespace X86 {
697    FastISel *createFastISel(MachineFunction &mf,
698                           MachineModuleInfo *mmi, DwarfWriter *dw,
699                           DenseMap<const Value *, unsigned> &,
700                           DenseMap<const BasicBlock *, MachineBasicBlock *> &,
701                           DenseMap<const AllocaInst *, int> &
702#ifndef NDEBUG
703                           , SmallSet<Instruction*, 8> &
704#endif
705                           );
706  }
707}
708
709#endif    // X86ISELLOWERING_H
710