X86ISelLowering.h revision 234982
1//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef X86ISELLOWERING_H
16#define X86ISELLOWERING_H
17
18#include "X86Subtarget.h"
19#include "X86RegisterInfo.h"
20#include "X86MachineFunctionInfo.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/Target/TargetOptions.h"
23#include "llvm/CodeGen/FastISel.h"
24#include "llvm/CodeGen/SelectionDAG.h"
25#include "llvm/CodeGen/CallingConvLower.h"
26
27namespace llvm {
28  namespace X86ISD {
29    // X86 Specific DAG Nodes
30    enum NodeType {
31      // Start the numbering where the builtin ops leave off.
32      FIRST_NUMBER = ISD::BUILTIN_OP_END,
33
34      /// BSF - Bit scan forward.
35      /// BSR - Bit scan reverse.
36      BSF,
37      BSR,
38
39      /// SHLD, SHRD - Double shift instructions. These correspond to
40      /// X86::SHLDxx and X86::SHRDxx instructions.
41      SHLD,
42      SHRD,
43
44      /// FAND - Bitwise logical AND of floating point values. This corresponds
45      /// to X86::ANDPS or X86::ANDPD.
46      FAND,
47
48      /// FOR - Bitwise logical OR of floating point values. This corresponds
49      /// to X86::ORPS or X86::ORPD.
50      FOR,
51
52      /// FXOR - Bitwise logical XOR of floating point values. This corresponds
53      /// to X86::XORPS or X86::XORPD.
54      FXOR,
55
56      /// FSRL - Bitwise logical right shift of floating point values. These
57      /// corresponds to X86::PSRLDQ.
58      FSRL,
59
60      /// CALL - These operations represent an abstract X86 call
61      /// instruction, which includes a bunch of information.  In particular the
62      /// operands of these node are:
63      ///
64      ///     #0 - The incoming token chain
65      ///     #1 - The callee
66      ///     #2 - The number of arg bytes the caller pushes on the stack.
67      ///     #3 - The number of arg bytes the callee pops off the stack.
68      ///     #4 - The value to pass in AL/AX/EAX (optional)
69      ///     #5 - The value to pass in DL/DX/EDX (optional)
70      ///
71      /// The result values of these nodes are:
72      ///
73      ///     #0 - The outgoing token chain
74      ///     #1 - The first register result value (optional)
75      ///     #2 - The second register result value (optional)
76      ///
77      CALL,
78
79      /// RDTSC_DAG - This operation implements the lowering for
80      /// readcyclecounter
81      RDTSC_DAG,
82
83      /// X86 compare and logical compare instructions.
84      CMP, COMI, UCOMI,
85
86      /// X86 bit-test instructions.
87      BT,
88
89      /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
90      /// operand, usually produced by a CMP instruction.
91      SETCC,
92
93      // Same as SETCC except it's materialized with a sbb and the value is all
94      // one's or all zero's.
95      SETCC_CARRY,  // R = carry_bit ? ~0 : 0
96
97      /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
98      /// Operands are two FP values to compare; result is a mask of
99      /// 0s or 1s.  Generally DTRT for C/C++ with NaNs.
100      FSETCCss, FSETCCsd,
101
102      /// X86 MOVMSK{pd|ps}, extracts sign bits of two or four FP values,
103      /// result in an integer GPR.  Needs masking for scalar result.
104      FGETSIGNx86,
105
106      /// X86 conditional moves. Operand 0 and operand 1 are the two values
107      /// to select from. Operand 2 is the condition code, and operand 3 is the
108      /// flag operand produced by a CMP or TEST instruction. It also writes a
109      /// flag result.
110      CMOV,
111
112      /// X86 conditional branches. Operand 0 is the chain operand, operand 1
113      /// is the block to branch if condition is true, operand 2 is the
114      /// condition code, and operand 3 is the flag operand produced by a CMP
115      /// or TEST instruction.
116      BRCOND,
117
118      /// Return with a flag operand. Operand 0 is the chain operand, operand
119      /// 1 is the number of bytes of stack to pop.
120      RET_FLAG,
121
122      /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
123      REP_STOS,
124
125      /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
126      REP_MOVS,
127
128      /// GlobalBaseReg - On Darwin, this node represents the result of the popl
129      /// at function entry, used for PIC code.
130      GlobalBaseReg,
131
132      /// Wrapper - A wrapper node for TargetConstantPool,
133      /// TargetExternalSymbol, and TargetGlobalAddress.
134      Wrapper,
135
136      /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
137      /// relative displacements.
138      WrapperRIP,
139
140      /// MOVQ2DQ - Copies a 64-bit value from an MMX vector to the low word
141      /// of an XMM vector, with the high word zero filled.
142      MOVQ2DQ,
143
144      /// MOVDQ2Q - Copies a 64-bit value from the low word of an XMM vector
145      /// to an MMX vector.  If you think this is too close to the previous
146      /// mnemonic, so do I; blame Intel.
147      MOVDQ2Q,
148
149      /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to
150      /// i32, corresponds to X86::PEXTRB.
151      PEXTRB,
152
153      /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
154      /// i32, corresponds to X86::PEXTRW.
155      PEXTRW,
156
157      /// INSERTPS - Insert any element of a 4 x float vector into any element
158      /// of a destination 4 x floatvector.
159      INSERTPS,
160
161      /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector,
162      /// corresponds to X86::PINSRB.
163      PINSRB,
164
165      /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
166      /// corresponds to X86::PINSRW.
167      PINSRW, MMX_PINSRW,
168
169      /// PSHUFB - Shuffle 16 8-bit values within a vector.
170      PSHUFB,
171
172      /// ANDNP - Bitwise Logical AND NOT of Packed FP values.
173      ANDNP,
174
175      /// PSIGN - Copy integer sign.
176      PSIGN,
177
178      /// BLENDV - Blend where the selector is an XMM.
179      BLENDV,
180
181      /// BLENDxx - Blend where the selector is an immediate.
182      BLENDPW,
183      BLENDPS,
184      BLENDPD,
185
186      /// HADD - Integer horizontal add.
187      HADD,
188
189      /// HSUB - Integer horizontal sub.
190      HSUB,
191
192      /// FHADD - Floating point horizontal add.
193      FHADD,
194
195      /// FHSUB - Floating point horizontal sub.
196      FHSUB,
197
198      /// FMAX, FMIN - Floating point max and min.
199      ///
200      FMAX, FMIN,
201
202      /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
203      /// approximation.  Note that these typically require refinement
204      /// in order to obtain suitable precision.
205      FRSQRT, FRCP,
206
207      // TLSADDR - Thread Local Storage.
208      TLSADDR,
209
210      // TLSCALL - Thread Local Storage.  When calling to an OS provided
211      // thunk at the address from an earlier relocation.
212      TLSCALL,
213
214      // EH_RETURN - Exception Handling helpers.
215      EH_RETURN,
216
217      /// TC_RETURN - Tail call return.
218      ///   operand #0 chain
219      ///   operand #1 callee (register or absolute)
220      ///   operand #2 stack adjustment
221      ///   operand #3 optional in flag
222      TC_RETURN,
223
224      // VZEXT_MOVL - Vector move low and zero extend.
225      VZEXT_MOVL,
226
227      // VSEXT_MOVL - Vector move low and sign extend.
228      VSEXT_MOVL,
229
230      // VSHL, VSRL - 128-bit vector logical left / right shift
231      VSHLDQ, VSRLDQ,
232
233      // VSHL, VSRL, VSRA - Vector shift elements
234      VSHL, VSRL, VSRA,
235
236      // VSHLI, VSRLI, VSRAI - Vector shift elements by immediate
237      VSHLI, VSRLI, VSRAI,
238
239      // CMPP - Vector packed double/float comparison.
240      CMPP,
241
242      // PCMP* - Vector integer comparisons.
243      PCMPEQ, PCMPGT,
244
245      // VPCOM, VPCOMU - XOP Vector integer comparisons.
246      VPCOM, VPCOMU,
247
248      // ADD, SUB, SMUL, etc. - Arithmetic operations with FLAGS results.
249      ADD, SUB, ADC, SBB, SMUL,
250      INC, DEC, OR, XOR, AND,
251
252      ANDN, // ANDN - Bitwise AND NOT with FLAGS results.
253
254      BLSI,   // BLSI - Extract lowest set isolated bit
255      BLSMSK, // BLSMSK - Get mask up to lowest set bit
256      BLSR,   // BLSR - Reset lowest set bit
257
258      UMUL, // LOW, HI, FLAGS = umul LHS, RHS
259
260      // MUL_IMM - X86 specific multiply by immediate.
261      MUL_IMM,
262
263      // PTEST - Vector bitwise comparisons
264      PTEST,
265
266      // TESTP - Vector packed fp sign bitwise comparisons
267      TESTP,
268
269      // Several flavors of instructions with vector shuffle behaviors.
270      PALIGN,
271      PSHUFD,
272      PSHUFHW,
273      PSHUFLW,
274      SHUFP,
275      MOVDDUP,
276      MOVSHDUP,
277      MOVSLDUP,
278      MOVLHPS,
279      MOVLHPD,
280      MOVHLPS,
281      MOVLPS,
282      MOVLPD,
283      MOVSD,
284      MOVSS,
285      UNPCKL,
286      UNPCKH,
287      VPERMILP,
288      VPERMV,
289      VPERMI,
290      VPERM2X128,
291      VBROADCAST,
292
293      // PMULUDQ - Vector multiply packed unsigned doubleword integers
294      PMULUDQ,
295
296      // VASTART_SAVE_XMM_REGS - Save xmm argument registers to the stack,
297      // according to %al. An operator is needed so that this can be expanded
298      // with control flow.
299      VASTART_SAVE_XMM_REGS,
300
301      // WIN_ALLOCA - Windows's _chkstk call to do stack probing.
302      WIN_ALLOCA,
303
304      // SEG_ALLOCA - For allocating variable amounts of stack space when using
305      // segmented stacks. Check if the current stacklet has enough space, and
306      // falls back to heap allocation if not.
307      SEG_ALLOCA,
308
309      // WIN_FTOL - Windows's _ftol2 runtime routine to do fptoui.
310      WIN_FTOL,
311
312      // Memory barrier
313      MEMBARRIER,
314      MFENCE,
315      SFENCE,
316      LFENCE,
317
318      // ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG,
319      // ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG -
320      // Atomic 64-bit binary operations.
321      ATOMADD64_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
322      ATOMSUB64_DAG,
323      ATOMOR64_DAG,
324      ATOMXOR64_DAG,
325      ATOMAND64_DAG,
326      ATOMNAND64_DAG,
327      ATOMSWAP64_DAG,
328
329      // LCMPXCHG_DAG, LCMPXCHG8_DAG, LCMPXCHG16_DAG - Compare and swap.
330      LCMPXCHG_DAG,
331      LCMPXCHG8_DAG,
332      LCMPXCHG16_DAG,
333
334      // VZEXT_LOAD - Load, scalar_to_vector, and zero extend.
335      VZEXT_LOAD,
336
337      // FNSTCW16m - Store FP control world into i16 memory.
338      FNSTCW16m,
339
340      /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
341      /// integer destination in memory and a FP reg source.  This corresponds
342      /// to the X86::FIST*m instructions and the rounding mode change stuff. It
343      /// has two inputs (token chain and address) and two outputs (int value
344      /// and token chain).
345      FP_TO_INT16_IN_MEM,
346      FP_TO_INT32_IN_MEM,
347      FP_TO_INT64_IN_MEM,
348
349      /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
350      /// integer source in memory and FP reg result.  This corresponds to the
351      /// X86::FILD*m instructions. It has three inputs (token chain, address,
352      /// and source type) and two outputs (FP value and token chain). FILD_FLAG
353      /// also produces a flag).
354      FILD,
355      FILD_FLAG,
356
357      /// FLD - This instruction implements an extending load to FP stack slots.
358      /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
359      /// operand, ptr to load from, and a ValueType node indicating the type
360      /// to load to.
361      FLD,
362
363      /// FST - This instruction implements a truncating store to FP stack
364      /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
365      /// chain operand, value to store, address, and a ValueType to store it
366      /// as.
367      FST,
368
369      /// VAARG_64 - This instruction grabs the address of the next argument
370      /// from a va_list. (reads and modifies the va_list in memory)
371      VAARG_64
372
373      // WARNING: Do not add anything in the end unless you want the node to
374      // have memop! In fact, starting from ATOMADD64_DAG all opcodes will be
375      // thought as target memory ops!
376    };
377  }
378
379  /// Define some predicates that are used for node matching.
380  namespace X86 {
381    /// isVEXTRACTF128Index - Return true if the specified
382    /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
383    /// suitable for input to VEXTRACTF128.
384    bool isVEXTRACTF128Index(SDNode *N);
385
386    /// isVINSERTF128Index - Return true if the specified
387    /// INSERT_SUBVECTOR operand specifies a subvector insert that is
388    /// suitable for input to VINSERTF128.
389    bool isVINSERTF128Index(SDNode *N);
390
391    /// getExtractVEXTRACTF128Immediate - Return the appropriate
392    /// immediate to extract the specified EXTRACT_SUBVECTOR index
393    /// with VEXTRACTF128 instructions.
394    unsigned getExtractVEXTRACTF128Immediate(SDNode *N);
395
396    /// getInsertVINSERTF128Immediate - Return the appropriate
397    /// immediate to insert at the specified INSERT_SUBVECTOR index
398    /// with VINSERTF128 instructions.
399    unsigned getInsertVINSERTF128Immediate(SDNode *N);
400
401    /// isZeroNode - Returns true if Elt is a constant zero or a floating point
402    /// constant +0.0.
403    bool isZeroNode(SDValue Elt);
404
405    /// isOffsetSuitableForCodeModel - Returns true of the given offset can be
406    /// fit into displacement field of the instruction.
407    bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
408                                      bool hasSymbolicDisplacement = true);
409
410
411    /// isCalleePop - Determines whether the callee is required to pop its
412    /// own arguments. Callee pop is necessary to support tail calls.
413    bool isCalleePop(CallingConv::ID CallingConv,
414                     bool is64Bit, bool IsVarArg, bool TailCallOpt);
415  }
416
417  //===--------------------------------------------------------------------===//
418  //  X86TargetLowering - X86 Implementation of the TargetLowering interface
419  class X86TargetLowering : public TargetLowering {
420  public:
421    explicit X86TargetLowering(X86TargetMachine &TM);
422
423    virtual unsigned getJumpTableEncoding() const;
424
425    virtual MVT getShiftAmountTy(EVT LHSTy) const { return MVT::i8; }
426
427    virtual const MCExpr *
428    LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
429                              const MachineBasicBlock *MBB, unsigned uid,
430                              MCContext &Ctx) const;
431
432    /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
433    /// jumptable.
434    virtual SDValue getPICJumpTableRelocBase(SDValue Table,
435                                             SelectionDAG &DAG) const;
436    virtual const MCExpr *
437    getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
438                                 unsigned JTI, MCContext &Ctx) const;
439
440    /// getStackPtrReg - Return the stack pointer register we are using: either
441    /// ESP or RSP.
442    unsigned getStackPtrReg() const { return X86StackPtr; }
443
444    /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
445    /// function arguments in the caller parameter area. For X86, aggregates
446    /// that contains are placed at 16-byte boundaries while the rest are at
447    /// 4-byte boundaries.
448    virtual unsigned getByValTypeAlignment(Type *Ty) const;
449
450    /// getOptimalMemOpType - Returns the target specific optimal type for load
451    /// and store operations as a result of memset, memcpy, and memmove
452    /// lowering. If DstAlign is zero that means it's safe to destination
453    /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
454    /// means there isn't a need to check it against alignment requirement,
455    /// probably because the source does not need to be loaded. If
456    /// 'IsZeroVal' is true, that means it's safe to return a
457    /// non-scalar-integer type, e.g. empty string source, constant, or loaded
458    /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
459    /// constant so it does not need to be loaded.
460    /// It returns EVT::Other if the type should be determined using generic
461    /// target-independent logic.
462    virtual EVT
463    getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
464                        bool IsZeroVal, bool MemcpyStrSrc,
465                        MachineFunction &MF) const;
466
467    /// allowsUnalignedMemoryAccesses - Returns true if the target allows
468    /// unaligned memory accesses. of the specified type.
469    virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
470      return true;
471    }
472
473    /// LowerOperation - Provide custom lowering hooks for some operations.
474    ///
475    virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
476
477    /// ReplaceNodeResults - Replace the results of node with an illegal result
478    /// type with new values built out of custom code.
479    ///
480    virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
481                                    SelectionDAG &DAG) const;
482
483
484    virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
485
486    /// isTypeDesirableForOp - Return true if the target has native support for
487    /// the specified value type and it is 'desirable' to use the type for the
488    /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
489    /// instruction encodings are longer and some i16 instructions are slow.
490    virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const;
491
492    /// isTypeDesirable - Return true if the target has native support for the
493    /// specified value type and it is 'desirable' to use the type. e.g. On x86
494    /// i16 is legal, but undesirable since i16 instruction encodings are longer
495    /// and some i16 instructions are slow.
496    virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const;
497
498    virtual MachineBasicBlock *
499      EmitInstrWithCustomInserter(MachineInstr *MI,
500                                  MachineBasicBlock *MBB) const;
501
502
503    /// getTargetNodeName - This method returns the name of a target specific
504    /// DAG node.
505    virtual const char *getTargetNodeName(unsigned Opcode) const;
506
507    /// getSetCCResultType - Return the value type to use for ISD::SETCC.
508    virtual EVT getSetCCResultType(EVT VT) const;
509
510    /// computeMaskedBitsForTargetNode - Determine which of the bits specified
511    /// in Mask are known to be either zero or one and return them in the
512    /// KnownZero/KnownOne bitsets.
513    virtual void computeMaskedBitsForTargetNode(const SDValue Op,
514                                                APInt &KnownZero,
515                                                APInt &KnownOne,
516                                                const SelectionDAG &DAG,
517                                                unsigned Depth = 0) const;
518
519    // ComputeNumSignBitsForTargetNode - Determine the number of bits in the
520    // operation that are sign bits.
521    virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
522                                                     unsigned Depth) const;
523
524    virtual bool
525    isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
526
527    SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;
528
529    virtual bool ExpandInlineAsm(CallInst *CI) const;
530
531    ConstraintType getConstraintType(const std::string &Constraint) const;
532
533    /// Examine constraint string and operand type and determine a weight value.
534    /// The operand object must already have been set up with the operand type.
535    virtual ConstraintWeight getSingleConstraintMatchWeight(
536      AsmOperandInfo &info, const char *constraint) const;
537
538    virtual const char *LowerXConstraint(EVT ConstraintVT) const;
539
540    /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
541    /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is
542    /// true it means one of the asm constraint of the inline asm instruction
543    /// being processed is 'm'.
544    virtual void LowerAsmOperandForConstraint(SDValue Op,
545                                              std::string &Constraint,
546                                              std::vector<SDValue> &Ops,
547                                              SelectionDAG &DAG) const;
548
549    /// getRegForInlineAsmConstraint - Given a physical register constraint
550    /// (e.g. {edx}), return the register number and the register class for the
551    /// register.  This should only be used for C_Register constraints.  On
552    /// error, this returns a register number of 0.
553    std::pair<unsigned, const TargetRegisterClass*>
554      getRegForInlineAsmConstraint(const std::string &Constraint,
555                                   EVT VT) const;
556
557    /// isLegalAddressingMode - Return true if the addressing mode represented
558    /// by AM is legal for this target, for a load/store of the specified type.
559    virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty)const;
560
561    /// isTruncateFree - Return true if it's free to truncate a value of
562    /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
563    /// register EAX to i16 by referencing its sub-register AX.
564    virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const;
565    virtual bool isTruncateFree(EVT VT1, EVT VT2) const;
566
567    /// isZExtFree - Return true if any actual instruction that defines a
568    /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
569    /// register. This does not necessarily include registers defined in
570    /// unknown ways, such as incoming arguments, or copies from unknown
571    /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
572    /// does not necessarily apply to truncate instructions. e.g. on x86-64,
573    /// all instructions that define 32-bit values implicit zero-extend the
574    /// result out to 64 bits.
575    virtual bool isZExtFree(Type *Ty1, Type *Ty2) const;
576    virtual bool isZExtFree(EVT VT1, EVT VT2) const;
577
578    /// isNarrowingProfitable - Return true if it's profitable to narrow
579    /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
580    /// from i32 to i8 but not from i32 to i16.
581    virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const;
582
583    /// isFPImmLegal - Returns true if the target can instruction select the
584    /// specified FP immediate natively. If false, the legalizer will
585    /// materialize the FP immediate as a load from a constant pool.
586    virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const;
587
588    /// isShuffleMaskLegal - Targets can use this to indicate that they only
589    /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
590    /// By default, if a target supports the VECTOR_SHUFFLE node, all mask
591    /// values are assumed to be legal.
592    virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
593                                    EVT VT) const;
594
595    /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
596    /// used by Targets can use this to indicate if there is a suitable
597    /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
598    /// pool entry.
599    virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
600                                        EVT VT) const;
601
602    /// ShouldShrinkFPConstant - If true, then instruction selection should
603    /// seek to shrink the FP constant of the specified type to a smaller type
604    /// in order to save space and / or reduce runtime.
605    virtual bool ShouldShrinkFPConstant(EVT VT) const {
606      // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
607      // expensive than a straight movsd. On the other hand, it's important to
608      // shrink long double fp constant since fldt is very slow.
609      return !X86ScalarSSEf64 || VT == MVT::f80;
610    }
611
612    const X86Subtarget* getSubtarget() const {
613      return Subtarget;
614    }
615
616    /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
617    /// computed in an SSE register, not on the X87 floating point stack.
618    bool isScalarFPTypeInSSEReg(EVT VT) const {
619      return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
620      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
621    }
622
623    /// isTargetFTOL - Return true if the target uses the MSVC _ftol2 routine
624    /// for fptoui.
625    bool isTargetFTOL() const {
626      return Subtarget->isTargetWindows() && !Subtarget->is64Bit();
627    }
628
629    /// isIntegerTypeFTOL - Return true if the MSVC _ftol2 routine should be
630    /// used for fptoui to the given type.
631    bool isIntegerTypeFTOL(EVT VT) const {
632      return isTargetFTOL() && VT == MVT::i64;
633    }
634
635    /// createFastISel - This method returns a target specific FastISel object,
636    /// or null if the target does not support "fast" ISel.
637    virtual FastISel *createFastISel(FunctionLoweringInfo &funcInfo) const;
638
639    /// getStackCookieLocation - Return true if the target stores stack
640    /// protector cookies at a fixed offset in some non-standard address
641    /// space, and populates the address space and offset as
642    /// appropriate.
643    virtual bool getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const;
644
645    SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
646                      SelectionDAG &DAG) const;
647
648  protected:
649    std::pair<const TargetRegisterClass*, uint8_t>
650    findRepresentativeClass(EVT VT) const;
651
652  private:
653    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
654    /// make the right decision when generating code for different targets.
655    const X86Subtarget *Subtarget;
656    const X86RegisterInfo *RegInfo;
657    const TargetData *TD;
658
659    /// X86StackPtr - X86 physical register used as stack ptr.
660    unsigned X86StackPtr;
661
662    /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
663    /// floating point ops.
664    /// When SSE is available, use it for f32 operations.
665    /// When SSE2 is available, use it for f64 operations.
666    bool X86ScalarSSEf32;
667    bool X86ScalarSSEf64;
668
669    /// LegalFPImmediates - A list of legal fp immediates.
670    std::vector<APFloat> LegalFPImmediates;
671
672    /// addLegalFPImmediate - Indicate that this x86 target can instruction
673    /// select the specified FP immediate natively.
674    void addLegalFPImmediate(const APFloat& Imm) {
675      LegalFPImmediates.push_back(Imm);
676    }
677
678    SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
679                            CallingConv::ID CallConv, bool isVarArg,
680                            const SmallVectorImpl<ISD::InputArg> &Ins,
681                            DebugLoc dl, SelectionDAG &DAG,
682                            SmallVectorImpl<SDValue> &InVals) const;
683    SDValue LowerMemArgument(SDValue Chain,
684                             CallingConv::ID CallConv,
685                             const SmallVectorImpl<ISD::InputArg> &ArgInfo,
686                             DebugLoc dl, SelectionDAG &DAG,
687                             const CCValAssign &VA,  MachineFrameInfo *MFI,
688                              unsigned i) const;
689    SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
690                             DebugLoc dl, SelectionDAG &DAG,
691                             const CCValAssign &VA,
692                             ISD::ArgFlagsTy Flags) const;
693
694    // Call lowering helpers.
695
696    /// IsEligibleForTailCallOptimization - Check whether the call is eligible
697    /// for tail call optimization. Targets which want to do tail call
698    /// optimization should implement this function.
699    bool IsEligibleForTailCallOptimization(SDValue Callee,
700                                           CallingConv::ID CalleeCC,
701                                           bool isVarArg,
702                                           bool isCalleeStructRet,
703                                           bool isCallerStructRet,
704                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
705                                    const SmallVectorImpl<SDValue> &OutVals,
706                                    const SmallVectorImpl<ISD::InputArg> &Ins,
707                                           SelectionDAG& DAG) const;
708    bool IsCalleePop(bool isVarArg, CallingConv::ID CallConv) const;
709    SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
710                                SDValue Chain, bool IsTailCall, bool Is64Bit,
711                                int FPDiff, DebugLoc dl) const;
712
713    unsigned GetAlignedArgumentStackSize(unsigned StackSize,
714                                         SelectionDAG &DAG) const;
715
716    std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
717                                               bool isSigned,
718                                               bool isReplace) const;
719
720    SDValue LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
721                                   SelectionDAG &DAG) const;
722    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
723    SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const;
724    SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
725    SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
726    SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const;
727    SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
728    SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const;
729    SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
730    SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
731    SDValue LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
732    SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
733    SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
734    SDValue LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
735                               int64_t Offset, SelectionDAG &DAG) const;
736    SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
737    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
738    SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
739    SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) const;
740    SDValue LowerBITCAST(SDValue op, SelectionDAG &DAG) const;
741    SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
742    SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
743    SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const;
744    SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const;
745    SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const;
746    SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const;
747    SDValue LowerFABS(SDValue Op, SelectionDAG &DAG) const;
748    SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG) const;
749    SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const;
750    SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const;
751    SDValue LowerToBT(SDValue And, ISD::CondCode CC,
752                      DebugLoc dl, SelectionDAG &DAG) const;
753    SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
754    SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) const;
755    SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
756    SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
757    SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG) const;
758    SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
759    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
760    SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
761    SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
762    SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
763    SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
764    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
765    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
766    SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
767    SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
768    SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
769    SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
770    SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
771    SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) const;
772    SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) const;
773    SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) const;
774    SDValue LowerADD(SDValue Op, SelectionDAG &DAG) const;
775    SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) const;
776    SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
777    SDValue LowerShift(SDValue Op, SelectionDAG &DAG) const;
778    SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) const;
779
780    SDValue LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
781    SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const;
782    SDValue LowerREADCYCLECOUNTER(SDValue Op, SelectionDAG &DAG) const;
783    SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const;
784    SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const;
785    SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
786    SDValue PerformTruncateCombine(SDNode* N, SelectionDAG &DAG, DAGCombinerInfo &DCI) const;
787
788    // Utility functions to help LowerVECTOR_SHUFFLE
789    SDValue LowerVECTOR_SHUFFLEv8i16(SDValue Op, SelectionDAG &DAG) const;
790    SDValue LowerVectorBroadcast(SDValue &Op, SelectionDAG &DAG) const;
791    SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const;
792
793    virtual SDValue
794      LowerFormalArguments(SDValue Chain,
795                           CallingConv::ID CallConv, bool isVarArg,
796                           const SmallVectorImpl<ISD::InputArg> &Ins,
797                           DebugLoc dl, SelectionDAG &DAG,
798                           SmallVectorImpl<SDValue> &InVals) const;
799    virtual SDValue
800      LowerCall(SDValue Chain, SDValue Callee, CallingConv::ID CallConv,
801                bool isVarArg, bool doesNotRet, bool &isTailCall,
802                const SmallVectorImpl<ISD::OutputArg> &Outs,
803                const SmallVectorImpl<SDValue> &OutVals,
804                const SmallVectorImpl<ISD::InputArg> &Ins,
805                DebugLoc dl, SelectionDAG &DAG,
806                SmallVectorImpl<SDValue> &InVals) const;
807
808    virtual SDValue
809      LowerReturn(SDValue Chain,
810                  CallingConv::ID CallConv, bool isVarArg,
811                  const SmallVectorImpl<ISD::OutputArg> &Outs,
812                  const SmallVectorImpl<SDValue> &OutVals,
813                  DebugLoc dl, SelectionDAG &DAG) const;
814
815    virtual bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const;
816
817    virtual bool mayBeEmittedAsTailCall(CallInst *CI) const;
818
819    virtual EVT
820    getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
821                             ISD::NodeType ExtendKind) const;
822
823    virtual bool
824    CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
825		   bool isVarArg,
826		   const SmallVectorImpl<ISD::OutputArg> &Outs,
827		   LLVMContext &Context) const;
828
829    void ReplaceATOMIC_BINARY_64(SDNode *N, SmallVectorImpl<SDValue> &Results,
830                                 SelectionDAG &DAG, unsigned NewOp) const;
831
832    /// Utility function to emit string processing sse4.2 instructions
833    /// that return in xmm0.
834    /// This takes the instruction to expand, the associated machine basic
835    /// block, the number of args, and whether or not the second arg is
836    /// in memory or not.
837    MachineBasicBlock *EmitPCMP(MachineInstr *BInstr, MachineBasicBlock *BB,
838                                unsigned argNum, bool inMem) const;
839
840    /// Utility functions to emit monitor and mwait instructions. These
841    /// need to make sure that the arguments to the intrinsic are in the
842    /// correct registers.
843    MachineBasicBlock *EmitMonitor(MachineInstr *MI,
844                                   MachineBasicBlock *BB) const;
845    MachineBasicBlock *EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const;
846
847    /// Utility function to emit atomic bitwise operations (and, or, xor).
848    /// It takes the bitwise instruction to expand, the associated machine basic
849    /// block, and the associated X86 opcodes for reg/reg and reg/imm.
850    MachineBasicBlock *EmitAtomicBitwiseWithCustomInserter(
851                                                    MachineInstr *BInstr,
852                                                    MachineBasicBlock *BB,
853                                                    unsigned regOpc,
854                                                    unsigned immOpc,
855                                                    unsigned loadOpc,
856                                                    unsigned cxchgOpc,
857                                                    unsigned notOpc,
858                                                    unsigned EAXreg,
859                                              const TargetRegisterClass *RC,
860                                                    bool Invert = false) const;
861
862    MachineBasicBlock *EmitAtomicBit6432WithCustomInserter(
863                                                    MachineInstr *BInstr,
864                                                    MachineBasicBlock *BB,
865                                                    unsigned regOpcL,
866                                                    unsigned regOpcH,
867                                                    unsigned immOpcL,
868                                                    unsigned immOpcH,
869                                                    bool Invert = false) const;
870
871    /// Utility function to emit atomic min and max.  It takes the min/max
872    /// instruction to expand, the associated basic block, and the associated
873    /// cmov opcode for moving the min or max value.
874    MachineBasicBlock *EmitAtomicMinMaxWithCustomInserter(MachineInstr *BInstr,
875                                                          MachineBasicBlock *BB,
876                                                        unsigned cmovOpc) const;
877
878    // Utility function to emit the low-level va_arg code for X86-64.
879    MachineBasicBlock *EmitVAARG64WithCustomInserter(
880                       MachineInstr *MI,
881                       MachineBasicBlock *MBB) const;
882
883    /// Utility function to emit the xmm reg save portion of va_start.
884    MachineBasicBlock *EmitVAStartSaveXMMRegsWithCustomInserter(
885                                                   MachineInstr *BInstr,
886                                                   MachineBasicBlock *BB) const;
887
888    MachineBasicBlock *EmitLoweredSelect(MachineInstr *I,
889                                         MachineBasicBlock *BB) const;
890
891    MachineBasicBlock *EmitLoweredWinAlloca(MachineInstr *MI,
892                                              MachineBasicBlock *BB) const;
893
894    MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr *MI,
895                                            MachineBasicBlock *BB,
896                                            bool Is64Bit) const;
897
898    MachineBasicBlock *EmitLoweredTLSCall(MachineInstr *MI,
899                                          MachineBasicBlock *BB) const;
900
901    MachineBasicBlock *emitLoweredTLSAddr(MachineInstr *MI,
902                                          MachineBasicBlock *BB) const;
903
904    /// Emit nodes that will be selected as "test Op0,Op0", or something
905    /// equivalent, for use with the given x86 condition code.
906    SDValue EmitTest(SDValue Op0, unsigned X86CC, SelectionDAG &DAG) const;
907
908    /// Emit nodes that will be selected as "cmp Op0,Op1", or something
909    /// equivalent, for use with the given x86 condition code.
910    SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
911                    SelectionDAG &DAG) const;
912  };
913
914  namespace X86 {
915    FastISel *createFastISel(FunctionLoweringInfo &funcInfo);
916  }
917}
918
919#endif    // X86ISELLOWERING_H
920