X86ISelLowering.h revision 234353
1//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef X86ISELLOWERING_H
16#define X86ISELLOWERING_H
17
18#include "X86Subtarget.h"
19#include "X86RegisterInfo.h"
20#include "X86MachineFunctionInfo.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/Target/TargetOptions.h"
23#include "llvm/CodeGen/FastISel.h"
24#include "llvm/CodeGen/SelectionDAG.h"
25#include "llvm/CodeGen/CallingConvLower.h"
26
27namespace llvm {
28  namespace X86ISD {
29    // X86 Specific DAG Nodes
30    enum NodeType {
31      // Start the numbering where the builtin ops leave off.
32      FIRST_NUMBER = ISD::BUILTIN_OP_END,
33
34      /// BSF - Bit scan forward.
35      /// BSR - Bit scan reverse.
36      BSF,
37      BSR,
38
39      /// SHLD, SHRD - Double shift instructions. These correspond to
40      /// X86::SHLDxx and X86::SHRDxx instructions.
41      SHLD,
42      SHRD,
43
44      /// FAND - Bitwise logical AND of floating point values. This corresponds
45      /// to X86::ANDPS or X86::ANDPD.
46      FAND,
47
48      /// FOR - Bitwise logical OR of floating point values. This corresponds
49      /// to X86::ORPS or X86::ORPD.
50      FOR,
51
52      /// FXOR - Bitwise logical XOR of floating point values. This corresponds
53      /// to X86::XORPS or X86::XORPD.
54      FXOR,
55
56      /// FSRL - Bitwise logical right shift of floating point values. These
57      /// corresponds to X86::PSRLDQ.
58      FSRL,
59
60      /// CALL - These operations represent an abstract X86 call
61      /// instruction, which includes a bunch of information.  In particular the
62      /// operands of these node are:
63      ///
64      ///     #0 - The incoming token chain
65      ///     #1 - The callee
66      ///     #2 - The number of arg bytes the caller pushes on the stack.
67      ///     #3 - The number of arg bytes the callee pops off the stack.
68      ///     #4 - The value to pass in AL/AX/EAX (optional)
69      ///     #5 - The value to pass in DL/DX/EDX (optional)
70      ///
71      /// The result values of these nodes are:
72      ///
73      ///     #0 - The outgoing token chain
74      ///     #1 - The first register result value (optional)
75      ///     #2 - The second register result value (optional)
76      ///
77      CALL,
78
79      /// RDTSC_DAG - This operation implements the lowering for
80      /// readcyclecounter
81      RDTSC_DAG,
82
83      /// X86 compare and logical compare instructions.
84      CMP, COMI, UCOMI,
85
86      /// X86 bit-test instructions.
87      BT,
88
89      /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
90      /// operand, usually produced by a CMP instruction.
91      SETCC,
92
93      // Same as SETCC except it's materialized with a sbb and the value is all
94      // one's or all zero's.
95      SETCC_CARRY,  // R = carry_bit ? ~0 : 0
96
97      /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
98      /// Operands are two FP values to compare; result is a mask of
99      /// 0s or 1s.  Generally DTRT for C/C++ with NaNs.
100      FSETCCss, FSETCCsd,
101
102      /// X86 MOVMSK{pd|ps}, extracts sign bits of two or four FP values,
103      /// result in an integer GPR.  Needs masking for scalar result.
104      FGETSIGNx86,
105
106      /// X86 conditional moves. Operand 0 and operand 1 are the two values
107      /// to select from. Operand 2 is the condition code, and operand 3 is the
108      /// flag operand produced by a CMP or TEST instruction. It also writes a
109      /// flag result.
110      CMOV,
111
112      /// X86 conditional branches. Operand 0 is the chain operand, operand 1
113      /// is the block to branch if condition is true, operand 2 is the
114      /// condition code, and operand 3 is the flag operand produced by a CMP
115      /// or TEST instruction.
116      BRCOND,
117
118      /// Return with a flag operand. Operand 0 is the chain operand, operand
119      /// 1 is the number of bytes of stack to pop.
120      RET_FLAG,
121
122      /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
123      REP_STOS,
124
125      /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
126      REP_MOVS,
127
128      /// GlobalBaseReg - On Darwin, this node represents the result of the popl
129      /// at function entry, used for PIC code.
130      GlobalBaseReg,
131
132      /// Wrapper - A wrapper node for TargetConstantPool,
133      /// TargetExternalSymbol, and TargetGlobalAddress.
134      Wrapper,
135
136      /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
137      /// relative displacements.
138      WrapperRIP,
139
140      /// MOVQ2DQ - Copies a 64-bit value from an MMX vector to the low word
141      /// of an XMM vector, with the high word zero filled.
142      MOVQ2DQ,
143
144      /// MOVDQ2Q - Copies a 64-bit value from the low word of an XMM vector
145      /// to an MMX vector.  If you think this is too close to the previous
146      /// mnemonic, so do I; blame Intel.
147      MOVDQ2Q,
148
149      /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to
150      /// i32, corresponds to X86::PEXTRB.
151      PEXTRB,
152
153      /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
154      /// i32, corresponds to X86::PEXTRW.
155      PEXTRW,
156
157      /// INSERTPS - Insert any element of a 4 x float vector into any element
158      /// of a destination 4 x floatvector.
159      INSERTPS,
160
161      /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector,
162      /// corresponds to X86::PINSRB.
163      PINSRB,
164
165      /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
166      /// corresponds to X86::PINSRW.
167      PINSRW, MMX_PINSRW,
168
169      /// PSHUFB - Shuffle 16 8-bit values within a vector.
170      PSHUFB,
171
172      /// ANDNP - Bitwise Logical AND NOT of Packed FP values.
173      ANDNP,
174
175      /// PSIGN - Copy integer sign.
176      PSIGN,
177
178      /// BLENDV - Blend where the selector is an XMM.
179      BLENDV,
180
181      /// BLENDxx - Blend where the selector is an immediate.
182      BLENDPW,
183      BLENDPS,
184      BLENDPD,
185
186      /// HADD - Integer horizontal add.
187      HADD,
188
189      /// HSUB - Integer horizontal sub.
190      HSUB,
191
192      /// FHADD - Floating point horizontal add.
193      FHADD,
194
195      /// FHSUB - Floating point horizontal sub.
196      FHSUB,
197
198      /// FMAX, FMIN - Floating point max and min.
199      ///
200      FMAX, FMIN,
201
202      /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
203      /// approximation.  Note that these typically require refinement
204      /// in order to obtain suitable precision.
205      FRSQRT, FRCP,
206
207      // TLSADDR - Thread Local Storage.
208      TLSADDR,
209
210      // TLSCALL - Thread Local Storage.  When calling to an OS provided
211      // thunk at the address from an earlier relocation.
212      TLSCALL,
213
214      // EH_RETURN - Exception Handling helpers.
215      EH_RETURN,
216
217      /// TC_RETURN - Tail call return.
218      ///   operand #0 chain
219      ///   operand #1 callee (register or absolute)
220      ///   operand #2 stack adjustment
221      ///   operand #3 optional in flag
222      TC_RETURN,
223
224      // VZEXT_MOVL - Vector move low and zero extend.
225      VZEXT_MOVL,
226
227      // VSEXT_MOVL - Vector move low and sign extend.
228      VSEXT_MOVL,
229
230      // VSHL, VSRL - 128-bit vector logical left / right shift
231      VSHLDQ, VSRLDQ,
232
233      // VSHL, VSRL, VSRA - Vector shift elements
234      VSHL, VSRL, VSRA,
235
236      // VSHLI, VSRLI, VSRAI - Vector shift elements by immediate
237      VSHLI, VSRLI, VSRAI,
238
239      // CMPP - Vector packed double/float comparison.
240      CMPP,
241
242      // PCMP* - Vector integer comparisons.
243      PCMPEQ, PCMPGT,
244
245      // VPCOM, VPCOMU - XOP Vector integer comparisons.
246      VPCOM, VPCOMU,
247
248      // ADD, SUB, SMUL, etc. - Arithmetic operations with FLAGS results.
249      ADD, SUB, ADC, SBB, SMUL,
250      INC, DEC, OR, XOR, AND,
251
252      ANDN, // ANDN - Bitwise AND NOT with FLAGS results.
253
254      BLSI,   // BLSI - Extract lowest set isolated bit
255      BLSMSK, // BLSMSK - Get mask up to lowest set bit
256      BLSR,   // BLSR - Reset lowest set bit
257
258      UMUL, // LOW, HI, FLAGS = umul LHS, RHS
259
260      // MUL_IMM - X86 specific multiply by immediate.
261      MUL_IMM,
262
263      // PTEST - Vector bitwise comparisons
264      PTEST,
265
266      // TESTP - Vector packed fp sign bitwise comparisons
267      TESTP,
268
269      // Several flavors of instructions with vector shuffle behaviors.
270      PALIGN,
271      PSHUFD,
272      PSHUFHW,
273      PSHUFLW,
274      SHUFP,
275      MOVDDUP,
276      MOVSHDUP,
277      MOVSLDUP,
278      MOVLHPS,
279      MOVLHPD,
280      MOVHLPS,
281      MOVLPS,
282      MOVLPD,
283      MOVSD,
284      MOVSS,
285      UNPCKL,
286      UNPCKH,
287      VPERMILP,
288      VPERM2X128,
289      VBROADCAST,
290
291      // PMULUDQ - Vector multiply packed unsigned doubleword integers
292      PMULUDQ,
293
294      // VASTART_SAVE_XMM_REGS - Save xmm argument registers to the stack,
295      // according to %al. An operator is needed so that this can be expanded
296      // with control flow.
297      VASTART_SAVE_XMM_REGS,
298
299      // WIN_ALLOCA - Windows's _chkstk call to do stack probing.
300      WIN_ALLOCA,
301
302      // SEG_ALLOCA - For allocating variable amounts of stack space when using
303      // segmented stacks. Check if the current stacklet has enough space, and
304      // falls back to heap allocation if not.
305      SEG_ALLOCA,
306
307      // WIN_FTOL - Windows's _ftol2 runtime routine to do fptoui.
308      WIN_FTOL,
309
310      // Memory barrier
311      MEMBARRIER,
312      MFENCE,
313      SFENCE,
314      LFENCE,
315
316      // ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG,
317      // ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG -
318      // Atomic 64-bit binary operations.
319      ATOMADD64_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
320      ATOMSUB64_DAG,
321      ATOMOR64_DAG,
322      ATOMXOR64_DAG,
323      ATOMAND64_DAG,
324      ATOMNAND64_DAG,
325      ATOMSWAP64_DAG,
326
327      // LCMPXCHG_DAG, LCMPXCHG8_DAG, LCMPXCHG16_DAG - Compare and swap.
328      LCMPXCHG_DAG,
329      LCMPXCHG8_DAG,
330      LCMPXCHG16_DAG,
331
332      // VZEXT_LOAD - Load, scalar_to_vector, and zero extend.
333      VZEXT_LOAD,
334
335      // FNSTCW16m - Store FP control world into i16 memory.
336      FNSTCW16m,
337
338      /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
339      /// integer destination in memory and a FP reg source.  This corresponds
340      /// to the X86::FIST*m instructions and the rounding mode change stuff. It
341      /// has two inputs (token chain and address) and two outputs (int value
342      /// and token chain).
343      FP_TO_INT16_IN_MEM,
344      FP_TO_INT32_IN_MEM,
345      FP_TO_INT64_IN_MEM,
346
347      /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
348      /// integer source in memory and FP reg result.  This corresponds to the
349      /// X86::FILD*m instructions. It has three inputs (token chain, address,
350      /// and source type) and two outputs (FP value and token chain). FILD_FLAG
351      /// also produces a flag).
352      FILD,
353      FILD_FLAG,
354
355      /// FLD - This instruction implements an extending load to FP stack slots.
356      /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
357      /// operand, ptr to load from, and a ValueType node indicating the type
358      /// to load to.
359      FLD,
360
361      /// FST - This instruction implements a truncating store to FP stack
362      /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
363      /// chain operand, value to store, address, and a ValueType to store it
364      /// as.
365      FST,
366
367      /// VAARG_64 - This instruction grabs the address of the next argument
368      /// from a va_list. (reads and modifies the va_list in memory)
369      VAARG_64
370
371      // WARNING: Do not add anything in the end unless you want the node to
372      // have memop! In fact, starting from ATOMADD64_DAG all opcodes will be
373      // thought as target memory ops!
374    };
375  }
376
377  /// Define some predicates that are used for node matching.
378  namespace X86 {
379    /// isVEXTRACTF128Index - Return true if the specified
380    /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
381    /// suitable for input to VEXTRACTF128.
382    bool isVEXTRACTF128Index(SDNode *N);
383
384    /// isVINSERTF128Index - Return true if the specified
385    /// INSERT_SUBVECTOR operand specifies a subvector insert that is
386    /// suitable for input to VINSERTF128.
387    bool isVINSERTF128Index(SDNode *N);
388
389    /// getExtractVEXTRACTF128Immediate - Return the appropriate
390    /// immediate to extract the specified EXTRACT_SUBVECTOR index
391    /// with VEXTRACTF128 instructions.
392    unsigned getExtractVEXTRACTF128Immediate(SDNode *N);
393
394    /// getInsertVINSERTF128Immediate - Return the appropriate
395    /// immediate to insert at the specified INSERT_SUBVECTOR index
396    /// with VINSERTF128 instructions.
397    unsigned getInsertVINSERTF128Immediate(SDNode *N);
398
399    /// isZeroNode - Returns true if Elt is a constant zero or a floating point
400    /// constant +0.0.
401    bool isZeroNode(SDValue Elt);
402
403    /// isOffsetSuitableForCodeModel - Returns true of the given offset can be
404    /// fit into displacement field of the instruction.
405    bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
406                                      bool hasSymbolicDisplacement = true);
407
408
409    /// isCalleePop - Determines whether the callee is required to pop its
410    /// own arguments. Callee pop is necessary to support tail calls.
411    bool isCalleePop(CallingConv::ID CallingConv,
412                     bool is64Bit, bool IsVarArg, bool TailCallOpt);
413  }
414
415  //===--------------------------------------------------------------------===//
416  //  X86TargetLowering - X86 Implementation of the TargetLowering interface
417  class X86TargetLowering : public TargetLowering {
418  public:
419    explicit X86TargetLowering(X86TargetMachine &TM);
420
421    virtual unsigned getJumpTableEncoding() const;
422
423    virtual MVT getShiftAmountTy(EVT LHSTy) const { return MVT::i8; }
424
425    virtual const MCExpr *
426    LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
427                              const MachineBasicBlock *MBB, unsigned uid,
428                              MCContext &Ctx) const;
429
430    /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
431    /// jumptable.
432    virtual SDValue getPICJumpTableRelocBase(SDValue Table,
433                                             SelectionDAG &DAG) const;
434    virtual const MCExpr *
435    getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
436                                 unsigned JTI, MCContext &Ctx) const;
437
438    /// getStackPtrReg - Return the stack pointer register we are using: either
439    /// ESP or RSP.
440    unsigned getStackPtrReg() const { return X86StackPtr; }
441
442    /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
443    /// function arguments in the caller parameter area. For X86, aggregates
444    /// that contains are placed at 16-byte boundaries while the rest are at
445    /// 4-byte boundaries.
446    virtual unsigned getByValTypeAlignment(Type *Ty) const;
447
448    /// getOptimalMemOpType - Returns the target specific optimal type for load
449    /// and store operations as a result of memset, memcpy, and memmove
450    /// lowering. If DstAlign is zero that means it's safe to destination
451    /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
452    /// means there isn't a need to check it against alignment requirement,
453    /// probably because the source does not need to be loaded. If
454    /// 'IsZeroVal' is true, that means it's safe to return a
455    /// non-scalar-integer type, e.g. empty string source, constant, or loaded
456    /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
457    /// constant so it does not need to be loaded.
458    /// It returns EVT::Other if the type should be determined using generic
459    /// target-independent logic.
460    virtual EVT
461    getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
462                        bool IsZeroVal, bool MemcpyStrSrc,
463                        MachineFunction &MF) const;
464
465    /// allowsUnalignedMemoryAccesses - Returns true if the target allows
466    /// unaligned memory accesses. of the specified type.
467    virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
468      return true;
469    }
470
471    /// LowerOperation - Provide custom lowering hooks for some operations.
472    ///
473    virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
474
475    /// ReplaceNodeResults - Replace the results of node with an illegal result
476    /// type with new values built out of custom code.
477    ///
478    virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
479                                    SelectionDAG &DAG) const;
480
481
482    virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
483
484    /// isTypeDesirableForOp - Return true if the target has native support for
485    /// the specified value type and it is 'desirable' to use the type for the
486    /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
487    /// instruction encodings are longer and some i16 instructions are slow.
488    virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const;
489
490    /// isTypeDesirable - Return true if the target has native support for the
491    /// specified value type and it is 'desirable' to use the type. e.g. On x86
492    /// i16 is legal, but undesirable since i16 instruction encodings are longer
493    /// and some i16 instructions are slow.
494    virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const;
495
496    virtual MachineBasicBlock *
497      EmitInstrWithCustomInserter(MachineInstr *MI,
498                                  MachineBasicBlock *MBB) const;
499
500
501    /// getTargetNodeName - This method returns the name of a target specific
502    /// DAG node.
503    virtual const char *getTargetNodeName(unsigned Opcode) const;
504
505    /// getSetCCResultType - Return the value type to use for ISD::SETCC.
506    virtual EVT getSetCCResultType(EVT VT) const;
507
508    /// computeMaskedBitsForTargetNode - Determine which of the bits specified
509    /// in Mask are known to be either zero or one and return them in the
510    /// KnownZero/KnownOne bitsets.
511    virtual void computeMaskedBitsForTargetNode(const SDValue Op,
512                                                APInt &KnownZero,
513                                                APInt &KnownOne,
514                                                const SelectionDAG &DAG,
515                                                unsigned Depth = 0) const;
516
517    // ComputeNumSignBitsForTargetNode - Determine the number of bits in the
518    // operation that are sign bits.
519    virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
520                                                     unsigned Depth) const;
521
522    virtual bool
523    isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
524
525    SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;
526
527    virtual bool ExpandInlineAsm(CallInst *CI) const;
528
529    ConstraintType getConstraintType(const std::string &Constraint) const;
530
531    /// Examine constraint string and operand type and determine a weight value.
532    /// The operand object must already have been set up with the operand type.
533    virtual ConstraintWeight getSingleConstraintMatchWeight(
534      AsmOperandInfo &info, const char *constraint) const;
535
536    virtual const char *LowerXConstraint(EVT ConstraintVT) const;
537
538    /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
539    /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is
540    /// true it means one of the asm constraint of the inline asm instruction
541    /// being processed is 'm'.
542    virtual void LowerAsmOperandForConstraint(SDValue Op,
543                                              std::string &Constraint,
544                                              std::vector<SDValue> &Ops,
545                                              SelectionDAG &DAG) const;
546
547    /// getRegForInlineAsmConstraint - Given a physical register constraint
548    /// (e.g. {edx}), return the register number and the register class for the
549    /// register.  This should only be used for C_Register constraints.  On
550    /// error, this returns a register number of 0.
551    std::pair<unsigned, const TargetRegisterClass*>
552      getRegForInlineAsmConstraint(const std::string &Constraint,
553                                   EVT VT) const;
554
555    /// isLegalAddressingMode - Return true if the addressing mode represented
556    /// by AM is legal for this target, for a load/store of the specified type.
557    virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty)const;
558
559    /// isTruncateFree - Return true if it's free to truncate a value of
560    /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
561    /// register EAX to i16 by referencing its sub-register AX.
562    virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const;
563    virtual bool isTruncateFree(EVT VT1, EVT VT2) const;
564
565    /// isZExtFree - Return true if any actual instruction that defines a
566    /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
567    /// register. This does not necessarily include registers defined in
568    /// unknown ways, such as incoming arguments, or copies from unknown
569    /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
570    /// does not necessarily apply to truncate instructions. e.g. on x86-64,
571    /// all instructions that define 32-bit values implicit zero-extend the
572    /// result out to 64 bits.
573    virtual bool isZExtFree(Type *Ty1, Type *Ty2) const;
574    virtual bool isZExtFree(EVT VT1, EVT VT2) const;
575
576    /// isNarrowingProfitable - Return true if it's profitable to narrow
577    /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
578    /// from i32 to i8 but not from i32 to i16.
579    virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const;
580
581    /// isFPImmLegal - Returns true if the target can instruction select the
582    /// specified FP immediate natively. If false, the legalizer will
583    /// materialize the FP immediate as a load from a constant pool.
584    virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const;
585
586    /// isShuffleMaskLegal - Targets can use this to indicate that they only
587    /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
588    /// By default, if a target supports the VECTOR_SHUFFLE node, all mask
589    /// values are assumed to be legal.
590    virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
591                                    EVT VT) const;
592
593    /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
594    /// used by Targets can use this to indicate if there is a suitable
595    /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
596    /// pool entry.
597    virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
598                                        EVT VT) const;
599
600    /// ShouldShrinkFPConstant - If true, then instruction selection should
601    /// seek to shrink the FP constant of the specified type to a smaller type
602    /// in order to save space and / or reduce runtime.
603    virtual bool ShouldShrinkFPConstant(EVT VT) const {
604      // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
605      // expensive than a straight movsd. On the other hand, it's important to
606      // shrink long double fp constant since fldt is very slow.
607      return !X86ScalarSSEf64 || VT == MVT::f80;
608    }
609
610    const X86Subtarget* getSubtarget() const {
611      return Subtarget;
612    }
613
614    /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
615    /// computed in an SSE register, not on the X87 floating point stack.
616    bool isScalarFPTypeInSSEReg(EVT VT) const {
617      return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
618      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
619    }
620
621    /// isTargetFTOL - Return true if the target uses the MSVC _ftol2 routine
622    /// for fptoui.
623    bool isTargetFTOL() const {
624      return Subtarget->isTargetWindows() && !Subtarget->is64Bit();
625    }
626
627    /// isIntegerTypeFTOL - Return true if the MSVC _ftol2 routine should be
628    /// used for fptoui to the given type.
629    bool isIntegerTypeFTOL(EVT VT) const {
630      return isTargetFTOL() && VT == MVT::i64;
631    }
632
633    /// createFastISel - This method returns a target specific FastISel object,
634    /// or null if the target does not support "fast" ISel.
635    virtual FastISel *createFastISel(FunctionLoweringInfo &funcInfo) const;
636
637    /// getStackCookieLocation - Return true if the target stores stack
638    /// protector cookies at a fixed offset in some non-standard address
639    /// space, and populates the address space and offset as
640    /// appropriate.
641    virtual bool getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const;
642
643    SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
644                      SelectionDAG &DAG) const;
645
646  protected:
647    std::pair<const TargetRegisterClass*, uint8_t>
648    findRepresentativeClass(EVT VT) const;
649
650  private:
651    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
652    /// make the right decision when generating code for different targets.
653    const X86Subtarget *Subtarget;
654    const X86RegisterInfo *RegInfo;
655    const TargetData *TD;
656
657    /// X86StackPtr - X86 physical register used as stack ptr.
658    unsigned X86StackPtr;
659
660    /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
661    /// floating point ops.
662    /// When SSE is available, use it for f32 operations.
663    /// When SSE2 is available, use it for f64 operations.
664    bool X86ScalarSSEf32;
665    bool X86ScalarSSEf64;
666
667    /// LegalFPImmediates - A list of legal fp immediates.
668    std::vector<APFloat> LegalFPImmediates;
669
670    /// addLegalFPImmediate - Indicate that this x86 target can instruction
671    /// select the specified FP immediate natively.
672    void addLegalFPImmediate(const APFloat& Imm) {
673      LegalFPImmediates.push_back(Imm);
674    }
675
676    SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
677                            CallingConv::ID CallConv, bool isVarArg,
678                            const SmallVectorImpl<ISD::InputArg> &Ins,
679                            DebugLoc dl, SelectionDAG &DAG,
680                            SmallVectorImpl<SDValue> &InVals) const;
681    SDValue LowerMemArgument(SDValue Chain,
682                             CallingConv::ID CallConv,
683                             const SmallVectorImpl<ISD::InputArg> &ArgInfo,
684                             DebugLoc dl, SelectionDAG &DAG,
685                             const CCValAssign &VA,  MachineFrameInfo *MFI,
686                              unsigned i) const;
687    SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
688                             DebugLoc dl, SelectionDAG &DAG,
689                             const CCValAssign &VA,
690                             ISD::ArgFlagsTy Flags) const;
691
692    // Call lowering helpers.
693
694    /// IsEligibleForTailCallOptimization - Check whether the call is eligible
695    /// for tail call optimization. Targets which want to do tail call
696    /// optimization should implement this function.
697    bool IsEligibleForTailCallOptimization(SDValue Callee,
698                                           CallingConv::ID CalleeCC,
699                                           bool isVarArg,
700                                           bool isCalleeStructRet,
701                                           bool isCallerStructRet,
702                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
703                                    const SmallVectorImpl<SDValue> &OutVals,
704                                    const SmallVectorImpl<ISD::InputArg> &Ins,
705                                           SelectionDAG& DAG) const;
706    bool IsCalleePop(bool isVarArg, CallingConv::ID CallConv) const;
707    SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
708                                SDValue Chain, bool IsTailCall, bool Is64Bit,
709                                int FPDiff, DebugLoc dl) const;
710
711    unsigned GetAlignedArgumentStackSize(unsigned StackSize,
712                                         SelectionDAG &DAG) const;
713
714    std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
715                                               bool isSigned,
716                                               bool isReplace) const;
717
718    SDValue LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
719                                   SelectionDAG &DAG) const;
720    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
721    SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const;
722    SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
723    SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
724    SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const;
725    SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
726    SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const;
727    SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
728    SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
729    SDValue LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
730    SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
731    SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
732    SDValue LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
733                               int64_t Offset, SelectionDAG &DAG) const;
734    SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
735    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
736    SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
737    SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) const;
738    SDValue LowerBITCAST(SDValue op, SelectionDAG &DAG) const;
739    SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
740    SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
741    SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const;
742    SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const;
743    SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const;
744    SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const;
745    SDValue LowerFABS(SDValue Op, SelectionDAG &DAG) const;
746    SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG) const;
747    SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const;
748    SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const;
749    SDValue LowerToBT(SDValue And, ISD::CondCode CC,
750                      DebugLoc dl, SelectionDAG &DAG) const;
751    SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
752    SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) const;
753    SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
754    SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
755    SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG) const;
756    SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
757    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
758    SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
759    SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
760    SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
761    SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
762    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
763    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
764    SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
765    SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
766    SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
767    SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
768    SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
769    SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) const;
770    SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) const;
771    SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) const;
772    SDValue LowerADD(SDValue Op, SelectionDAG &DAG) const;
773    SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) const;
774    SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
775    SDValue LowerShift(SDValue Op, SelectionDAG &DAG) const;
776    SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) const;
777
778    SDValue LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
779    SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const;
780    SDValue LowerREADCYCLECOUNTER(SDValue Op, SelectionDAG &DAG) const;
781    SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const;
782    SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const;
783    SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
784    SDValue PerformTruncateCombine(SDNode* N, SelectionDAG &DAG, DAGCombinerInfo &DCI) const;
785
786    // Utility functions to help LowerVECTOR_SHUFFLE
787    SDValue LowerVECTOR_SHUFFLEv8i16(SDValue Op, SelectionDAG &DAG) const;
788    SDValue LowerVectorBroadcast(SDValue &Op, SelectionDAG &DAG) const;
789    SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const;
790
791    virtual SDValue
792      LowerFormalArguments(SDValue Chain,
793                           CallingConv::ID CallConv, bool isVarArg,
794                           const SmallVectorImpl<ISD::InputArg> &Ins,
795                           DebugLoc dl, SelectionDAG &DAG,
796                           SmallVectorImpl<SDValue> &InVals) const;
797    virtual SDValue
798      LowerCall(SDValue Chain, SDValue Callee, CallingConv::ID CallConv,
799                bool isVarArg, bool doesNotRet, bool &isTailCall,
800                const SmallVectorImpl<ISD::OutputArg> &Outs,
801                const SmallVectorImpl<SDValue> &OutVals,
802                const SmallVectorImpl<ISD::InputArg> &Ins,
803                DebugLoc dl, SelectionDAG &DAG,
804                SmallVectorImpl<SDValue> &InVals) const;
805
806    virtual SDValue
807      LowerReturn(SDValue Chain,
808                  CallingConv::ID CallConv, bool isVarArg,
809                  const SmallVectorImpl<ISD::OutputArg> &Outs,
810                  const SmallVectorImpl<SDValue> &OutVals,
811                  DebugLoc dl, SelectionDAG &DAG) const;
812
813    virtual bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const;
814
815    virtual bool mayBeEmittedAsTailCall(CallInst *CI) const;
816
817    virtual EVT
818    getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
819                             ISD::NodeType ExtendKind) const;
820
821    virtual bool
822    CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
823		   bool isVarArg,
824		   const SmallVectorImpl<ISD::OutputArg> &Outs,
825		   LLVMContext &Context) const;
826
827    void ReplaceATOMIC_BINARY_64(SDNode *N, SmallVectorImpl<SDValue> &Results,
828                                 SelectionDAG &DAG, unsigned NewOp) const;
829
830    /// Utility function to emit string processing sse4.2 instructions
831    /// that return in xmm0.
832    /// This takes the instruction to expand, the associated machine basic
833    /// block, the number of args, and whether or not the second arg is
834    /// in memory or not.
835    MachineBasicBlock *EmitPCMP(MachineInstr *BInstr, MachineBasicBlock *BB,
836                                unsigned argNum, bool inMem) const;
837
838    /// Utility functions to emit monitor and mwait instructions. These
839    /// need to make sure that the arguments to the intrinsic are in the
840    /// correct registers.
841    MachineBasicBlock *EmitMonitor(MachineInstr *MI,
842                                   MachineBasicBlock *BB) const;
843    MachineBasicBlock *EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const;
844
845    /// Utility function to emit atomic bitwise operations (and, or, xor).
846    /// It takes the bitwise instruction to expand, the associated machine basic
847    /// block, and the associated X86 opcodes for reg/reg and reg/imm.
848    MachineBasicBlock *EmitAtomicBitwiseWithCustomInserter(
849                                                    MachineInstr *BInstr,
850                                                    MachineBasicBlock *BB,
851                                                    unsigned regOpc,
852                                                    unsigned immOpc,
853                                                    unsigned loadOpc,
854                                                    unsigned cxchgOpc,
855                                                    unsigned notOpc,
856                                                    unsigned EAXreg,
857                                              const TargetRegisterClass *RC,
858                                                    bool invSrc = false) const;
859
860    MachineBasicBlock *EmitAtomicBit6432WithCustomInserter(
861                                                    MachineInstr *BInstr,
862                                                    MachineBasicBlock *BB,
863                                                    unsigned regOpcL,
864                                                    unsigned regOpcH,
865                                                    unsigned immOpcL,
866                                                    unsigned immOpcH,
867                                                    bool invSrc = false) const;
868
869    /// Utility function to emit atomic min and max.  It takes the min/max
870    /// instruction to expand, the associated basic block, and the associated
871    /// cmov opcode for moving the min or max value.
872    MachineBasicBlock *EmitAtomicMinMaxWithCustomInserter(MachineInstr *BInstr,
873                                                          MachineBasicBlock *BB,
874                                                        unsigned cmovOpc) const;
875
876    // Utility function to emit the low-level va_arg code for X86-64.
877    MachineBasicBlock *EmitVAARG64WithCustomInserter(
878                       MachineInstr *MI,
879                       MachineBasicBlock *MBB) const;
880
881    /// Utility function to emit the xmm reg save portion of va_start.
882    MachineBasicBlock *EmitVAStartSaveXMMRegsWithCustomInserter(
883                                                   MachineInstr *BInstr,
884                                                   MachineBasicBlock *BB) const;
885
886    MachineBasicBlock *EmitLoweredSelect(MachineInstr *I,
887                                         MachineBasicBlock *BB) const;
888
889    MachineBasicBlock *EmitLoweredWinAlloca(MachineInstr *MI,
890                                              MachineBasicBlock *BB) const;
891
892    MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr *MI,
893                                            MachineBasicBlock *BB,
894                                            bool Is64Bit) const;
895
896    MachineBasicBlock *EmitLoweredTLSCall(MachineInstr *MI,
897                                          MachineBasicBlock *BB) const;
898
899    MachineBasicBlock *emitLoweredTLSAddr(MachineInstr *MI,
900                                          MachineBasicBlock *BB) const;
901
902    /// Emit nodes that will be selected as "test Op0,Op0", or something
903    /// equivalent, for use with the given x86 condition code.
904    SDValue EmitTest(SDValue Op0, unsigned X86CC, SelectionDAG &DAG) const;
905
906    /// Emit nodes that will be selected as "cmp Op0,Op1", or something
907    /// equivalent, for use with the given x86 condition code.
908    SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
909                    SelectionDAG &DAG) const;
910  };
911
912  namespace X86 {
913    FastISel *createFastISel(FunctionLoweringInfo &funcInfo);
914  }
915}
916
917#endif    // X86ISELLOWERING_H
918