X86ISelLowering.h revision 207618
1//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef X86ISELLOWERING_H
16#define X86ISELLOWERING_H
17
18#include "X86Subtarget.h"
19#include "X86RegisterInfo.h"
20#include "X86MachineFunctionInfo.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/Target/TargetOptions.h"
23#include "llvm/CodeGen/FastISel.h"
24#include "llvm/CodeGen/SelectionDAG.h"
25#include "llvm/CodeGen/CallingConvLower.h"
26
27namespace llvm {
28  namespace X86ISD {
29    // X86 Specific DAG Nodes
30    enum NodeType {
31      // Start the numbering where the builtin ops leave off.
32      FIRST_NUMBER = ISD::BUILTIN_OP_END,
33
34      /// BSF - Bit scan forward.
35      /// BSR - Bit scan reverse.
36      BSF,
37      BSR,
38
39      /// SHLD, SHRD - Double shift instructions. These correspond to
40      /// X86::SHLDxx and X86::SHRDxx instructions.
41      SHLD,
42      SHRD,
43
44      /// FAND - Bitwise logical AND of floating point values. This corresponds
45      /// to X86::ANDPS or X86::ANDPD.
46      FAND,
47
48      /// FOR - Bitwise logical OR of floating point values. This corresponds
49      /// to X86::ORPS or X86::ORPD.
50      FOR,
51
52      /// FXOR - Bitwise logical XOR of floating point values. This corresponds
53      /// to X86::XORPS or X86::XORPD.
54      FXOR,
55
56      /// FSRL - Bitwise logical right shift of floating point values. These
57      /// corresponds to X86::PSRLDQ.
58      FSRL,
59
60      /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
61      /// integer source in memory and FP reg result.  This corresponds to the
62      /// X86::FILD*m instructions. It has three inputs (token chain, address,
63      /// and source type) and two outputs (FP value and token chain). FILD_FLAG
64      /// also produces a flag).
65      FILD,
66      FILD_FLAG,
67
68      /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
69      /// integer destination in memory and a FP reg source.  This corresponds
70      /// to the X86::FIST*m instructions and the rounding mode change stuff. It
71      /// has two inputs (token chain and address) and two outputs (int value
72      /// and token chain).
73      FP_TO_INT16_IN_MEM,
74      FP_TO_INT32_IN_MEM,
75      FP_TO_INT64_IN_MEM,
76
77      /// FLD - This instruction implements an extending load to FP stack slots.
78      /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
79      /// operand, ptr to load from, and a ValueType node indicating the type
80      /// to load to.
81      FLD,
82
83      /// FST - This instruction implements a truncating store to FP stack
84      /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
85      /// chain operand, value to store, address, and a ValueType to store it
86      /// as.
87      FST,
88
89      /// CALL - These operations represent an abstract X86 call
90      /// instruction, which includes a bunch of information.  In particular the
91      /// operands of these node are:
92      ///
93      ///     #0 - The incoming token chain
94      ///     #1 - The callee
95      ///     #2 - The number of arg bytes the caller pushes on the stack.
96      ///     #3 - The number of arg bytes the callee pops off the stack.
97      ///     #4 - The value to pass in AL/AX/EAX (optional)
98      ///     #5 - The value to pass in DL/DX/EDX (optional)
99      ///
100      /// The result values of these nodes are:
101      ///
102      ///     #0 - The outgoing token chain
103      ///     #1 - The first register result value (optional)
104      ///     #2 - The second register result value (optional)
105      ///
106      CALL,
107
108      /// RDTSC_DAG - This operation implements the lowering for
109      /// readcyclecounter
110      RDTSC_DAG,
111
112      /// X86 compare and logical compare instructions.
113      CMP, COMI, UCOMI,
114
115      /// X86 bit-test instructions.
116      BT,
117
118      /// X86 SetCC. Operand 0 is condition code, and operand 1 is the flag
119      /// operand produced by a CMP instruction.
120      SETCC,
121
122      // Same as SETCC except it's materialized with a sbb and the value is all
123      // one's or all zero's.
124      SETCC_CARRY,
125
126      /// X86 conditional moves. Operand 0 and operand 1 are the two values
127      /// to select from. Operand 2 is the condition code, and operand 3 is the
128      /// flag operand produced by a CMP or TEST instruction. It also writes a
129      /// flag result.
130      CMOV,
131
132      /// X86 conditional branches. Operand 0 is the chain operand, operand 1
133      /// is the block to branch if condition is true, operand 2 is the
134      /// condition code, and operand 3 is the flag operand produced by a CMP
135      /// or TEST instruction.
136      BRCOND,
137
138      /// Return with a flag operand. Operand 0 is the chain operand, operand
139      /// 1 is the number of bytes of stack to pop.
140      RET_FLAG,
141
142      /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
143      REP_STOS,
144
145      /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
146      REP_MOVS,
147
148      /// GlobalBaseReg - On Darwin, this node represents the result of the popl
149      /// at function entry, used for PIC code.
150      GlobalBaseReg,
151
152      /// Wrapper - A wrapper node for TargetConstantPool,
153      /// TargetExternalSymbol, and TargetGlobalAddress.
154      Wrapper,
155
156      /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
157      /// relative displacements.
158      WrapperRIP,
159
160      /// MOVQ2DQ - Copies a 64-bit value from a vector to another vector.
161      /// Can be used to move a vector value from a MMX register to a XMM
162      /// register.
163      MOVQ2DQ,
164
165      /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to
166      /// i32, corresponds to X86::PEXTRB.
167      PEXTRB,
168
169      /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
170      /// i32, corresponds to X86::PEXTRW.
171      PEXTRW,
172
173      /// INSERTPS - Insert any element of a 4 x float vector into any element
174      /// of a destination 4 x floatvector.
175      INSERTPS,
176
177      /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector,
178      /// corresponds to X86::PINSRB.
179      PINSRB,
180
181      /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
182      /// corresponds to X86::PINSRW.
183      PINSRW, MMX_PINSRW,
184
185      /// PSHUFB - Shuffle 16 8-bit values within a vector.
186      PSHUFB,
187
188      /// FMAX, FMIN - Floating point max and min.
189      ///
190      FMAX, FMIN,
191
192      /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
193      /// approximation.  Note that these typically require refinement
194      /// in order to obtain suitable precision.
195      FRSQRT, FRCP,
196
197      // TLSADDR - Thread Local Storage.
198      TLSADDR,
199
200      // SegmentBaseAddress - The address segment:0
201      SegmentBaseAddress,
202
203      // EH_RETURN - Exception Handling helpers.
204      EH_RETURN,
205
206      /// TC_RETURN - Tail call return.
207      ///   operand #0 chain
208      ///   operand #1 callee (register or absolute)
209      ///   operand #2 stack adjustment
210      ///   operand #3 optional in flag
211      TC_RETURN,
212
213      // LCMPXCHG_DAG, LCMPXCHG8_DAG - Compare and swap.
214      LCMPXCHG_DAG,
215      LCMPXCHG8_DAG,
216
217      // FNSTCW16m - Store FP control world into i16 memory.
218      FNSTCW16m,
219
220      // VZEXT_MOVL - Vector move low and zero extend.
221      VZEXT_MOVL,
222
223      // VZEXT_LOAD - Load, scalar_to_vector, and zero extend.
224      VZEXT_LOAD,
225
226      // VSHL, VSRL - Vector logical left / right shift.
227      VSHL, VSRL,
228
229      // CMPPD, CMPPS - Vector double/float comparison.
230      // CMPPD, CMPPS - Vector double/float comparison.
231      CMPPD, CMPPS,
232
233      // PCMP* - Vector integer comparisons.
234      PCMPEQB, PCMPEQW, PCMPEQD, PCMPEQQ,
235      PCMPGTB, PCMPGTW, PCMPGTD, PCMPGTQ,
236
237      // ADD, SUB, SMUL, UMUL, etc. - Arithmetic operations with FLAGS results.
238      ADD, SUB, SMUL, UMUL,
239      INC, DEC, OR, XOR, AND,
240
241      // MUL_IMM - X86 specific multiply by immediate.
242      MUL_IMM,
243
244      // PTEST - Vector bitwise comparisons
245      PTEST,
246
247      // VASTART_SAVE_XMM_REGS - Save xmm argument registers to the stack,
248      // according to %al. An operator is needed so that this can be expanded
249      // with control flow.
250      VASTART_SAVE_XMM_REGS,
251
252      // MINGW_ALLOCA - MingW's __alloca call to do stack probing.
253      MINGW_ALLOCA,
254
255      // ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG,
256      // ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG -
257      // Atomic 64-bit binary operations.
258      ATOMADD64_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
259      ATOMSUB64_DAG,
260      ATOMOR64_DAG,
261      ATOMXOR64_DAG,
262      ATOMAND64_DAG,
263      ATOMNAND64_DAG,
264      ATOMSWAP64_DAG
265
266      // WARNING: Do not add anything in the end unless you want the node to
267      // have memop! In fact, starting from ATOMADD64_DAG all opcodes will be
268      // thought as target memory ops!
269    };
270  }
271
272  /// Define some predicates that are used for node matching.
273  namespace X86 {
274    /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
275    /// specifies a shuffle of elements that is suitable for input to PSHUFD.
276    bool isPSHUFDMask(ShuffleVectorSDNode *N);
277
278    /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
279    /// specifies a shuffle of elements that is suitable for input to PSHUFD.
280    bool isPSHUFHWMask(ShuffleVectorSDNode *N);
281
282    /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
283    /// specifies a shuffle of elements that is suitable for input to PSHUFD.
284    bool isPSHUFLWMask(ShuffleVectorSDNode *N);
285
286    /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
287    /// specifies a shuffle of elements that is suitable for input to SHUFP*.
288    bool isSHUFPMask(ShuffleVectorSDNode *N);
289
290    /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
291    /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
292    bool isMOVHLPSMask(ShuffleVectorSDNode *N);
293
294    /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
295    /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
296    /// <2, 3, 2, 3>
297    bool isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N);
298
299    /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
300    /// specifies a shuffle of elements that is suitable for MOVLP{S|D}.
301    bool isMOVLPMask(ShuffleVectorSDNode *N);
302
303    /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
304    /// specifies a shuffle of elements that is suitable for MOVHP{S|D}.
305    /// as well as MOVLHPS.
306    bool isMOVLHPSMask(ShuffleVectorSDNode *N);
307
308    /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
309    /// specifies a shuffle of elements that is suitable for input to UNPCKL.
310    bool isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat = false);
311
312    /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
313    /// specifies a shuffle of elements that is suitable for input to UNPCKH.
314    bool isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat = false);
315
316    /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
317    /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
318    /// <0, 0, 1, 1>
319    bool isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N);
320
321    /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
322    /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
323    /// <2, 2, 3, 3>
324    bool isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N);
325
326    /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
327    /// specifies a shuffle of elements that is suitable for input to MOVSS,
328    /// MOVSD, and MOVD, i.e. setting the lowest element.
329    bool isMOVLMask(ShuffleVectorSDNode *N);
330
331    /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
332    /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
333    bool isMOVSHDUPMask(ShuffleVectorSDNode *N);
334
335    /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
336    /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
337    bool isMOVSLDUPMask(ShuffleVectorSDNode *N);
338
339    /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
340    /// specifies a shuffle of elements that is suitable for input to MOVDDUP.
341    bool isMOVDDUPMask(ShuffleVectorSDNode *N);
342
343    /// isPALIGNRMask - Return true if the specified VECTOR_SHUFFLE operand
344    /// specifies a shuffle of elements that is suitable for input to PALIGNR.
345    bool isPALIGNRMask(ShuffleVectorSDNode *N);
346
347    /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
348    /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
349    /// instructions.
350    unsigned getShuffleSHUFImmediate(SDNode *N);
351
352    /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
353    /// the specified VECTOR_SHUFFLE mask with PSHUFHW instruction.
354    unsigned getShufflePSHUFHWImmediate(SDNode *N);
355
356    /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
357    /// the specified VECTOR_SHUFFLE mask with PSHUFLW instruction.
358    unsigned getShufflePSHUFLWImmediate(SDNode *N);
359
360    /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
361    /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
362    unsigned getShufflePALIGNRImmediate(SDNode *N);
363
364    /// isZeroNode - Returns true if Elt is a constant zero or a floating point
365    /// constant +0.0.
366    bool isZeroNode(SDValue Elt);
367
368    /// isOffsetSuitableForCodeModel - Returns true of the given offset can be
369    /// fit into displacement field of the instruction.
370    bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
371                                      bool hasSymbolicDisplacement = true);
372  }
373
374  //===--------------------------------------------------------------------===//
375  //  X86TargetLowering - X86 Implementation of the TargetLowering interface
376  class X86TargetLowering : public TargetLowering {
377  public:
378    explicit X86TargetLowering(X86TargetMachine &TM);
379
380    /// getPICBaseSymbol - Return the X86-32 PIC base.
381    MCSymbol *getPICBaseSymbol(const MachineFunction *MF, MCContext &Ctx) const;
382
383    virtual unsigned getJumpTableEncoding() const;
384
385    virtual const MCExpr *
386    LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
387                              const MachineBasicBlock *MBB, unsigned uid,
388                              MCContext &Ctx) const;
389
390    /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
391    /// jumptable.
392    virtual SDValue getPICJumpTableRelocBase(SDValue Table,
393                                             SelectionDAG &DAG) const;
394    virtual const MCExpr *
395    getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
396                                 unsigned JTI, MCContext &Ctx) const;
397
398    /// getStackPtrReg - Return the stack pointer register we are using: either
399    /// ESP or RSP.
400    unsigned getStackPtrReg() const { return X86StackPtr; }
401
402    /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
403    /// function arguments in the caller parameter area. For X86, aggregates
404    /// that contains are placed at 16-byte boundaries while the rest are at
405    /// 4-byte boundaries.
406    virtual unsigned getByValTypeAlignment(const Type *Ty) const;
407
408    /// getOptimalMemOpType - Returns the target specific optimal type for load
409    /// and store operations as a result of memset, memcpy, and memmove
410    /// lowering. If DstAlign is zero that means it's safe to destination
411    /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
412    /// means there isn't a need to check it against alignment requirement,
413    /// probably because the source does not need to be loaded. If
414    /// 'NonScalarIntSafe' is true, that means it's safe to return a
415    /// non-scalar-integer type, e.g. empty string source, constant, or loaded
416    /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
417    /// constant so it does not need to be loaded.
418    /// It returns EVT::Other if the type should be determined using generic
419    /// target-independent logic.
420    virtual EVT
421    getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
422                        bool NonScalarIntSafe, bool MemcpyStrSrc,
423                        MachineFunction &MF) const;
424
425    /// allowsUnalignedMemoryAccesses - Returns true if the target allows
426    /// unaligned memory accesses. of the specified type.
427    virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
428      return true;
429    }
430
431    /// LowerOperation - Provide custom lowering hooks for some operations.
432    ///
433    virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
434
435    /// ReplaceNodeResults - Replace the results of node with an illegal result
436    /// type with new values built out of custom code.
437    ///
438    virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
439                                    SelectionDAG &DAG) const;
440
441
442    virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
443
444    /// isTypeDesirableForOp - Return true if the target has native support for
445    /// the specified value type and it is 'desirable' to use the type for the
446    /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
447    /// instruction encodings are longer and some i16 instructions are slow.
448    virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const;
449
450    /// isTypeDesirable - Return true if the target has native support for the
451    /// specified value type and it is 'desirable' to use the type. e.g. On x86
452    /// i16 is legal, but undesirable since i16 instruction encodings are longer
453    /// and some i16 instructions are slow.
454    virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const;
455
456    virtual MachineBasicBlock *
457      EmitInstrWithCustomInserter(MachineInstr *MI,
458                                  MachineBasicBlock *MBB) const;
459
460
461    /// getTargetNodeName - This method returns the name of a target specific
462    /// DAG node.
463    virtual const char *getTargetNodeName(unsigned Opcode) const;
464
465    /// getSetCCResultType - Return the ISD::SETCC ValueType
466    virtual MVT::SimpleValueType getSetCCResultType(EVT VT) const;
467
468    /// computeMaskedBitsForTargetNode - Determine which of the bits specified
469    /// in Mask are known to be either zero or one and return them in the
470    /// KnownZero/KnownOne bitsets.
471    virtual void computeMaskedBitsForTargetNode(const SDValue Op,
472                                                const APInt &Mask,
473                                                APInt &KnownZero,
474                                                APInt &KnownOne,
475                                                const SelectionDAG &DAG,
476                                                unsigned Depth = 0) const;
477
478    virtual bool
479    isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
480
481    SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;
482
483    virtual bool ExpandInlineAsm(CallInst *CI) const;
484
485    ConstraintType getConstraintType(const std::string &Constraint) const;
486
487    std::vector<unsigned>
488      getRegClassForInlineAsmConstraint(const std::string &Constraint,
489                                        EVT VT) const;
490
491    virtual const char *LowerXConstraint(EVT ConstraintVT) const;
492
493    /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
494    /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is
495    /// true it means one of the asm constraint of the inline asm instruction
496    /// being processed is 'm'.
497    virtual void LowerAsmOperandForConstraint(SDValue Op,
498                                              char ConstraintLetter,
499                                              bool hasMemory,
500                                              std::vector<SDValue> &Ops,
501                                              SelectionDAG &DAG) const;
502
503    /// getRegForInlineAsmConstraint - Given a physical register constraint
504    /// (e.g. {edx}), return the register number and the register class for the
505    /// register.  This should only be used for C_Register constraints.  On
506    /// error, this returns a register number of 0.
507    std::pair<unsigned, const TargetRegisterClass*>
508      getRegForInlineAsmConstraint(const std::string &Constraint,
509                                   EVT VT) const;
510
511    /// isLegalAddressingMode - Return true if the addressing mode represented
512    /// by AM is legal for this target, for a load/store of the specified type.
513    virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty)const;
514
515    /// isTruncateFree - Return true if it's free to truncate a value of
516    /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
517    /// register EAX to i16 by referencing its sub-register AX.
518    virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const;
519    virtual bool isTruncateFree(EVT VT1, EVT VT2) const;
520
521    /// isZExtFree - Return true if any actual instruction that defines a
522    /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
523    /// register. This does not necessarily include registers defined in
524    /// unknown ways, such as incoming arguments, or copies from unknown
525    /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
526    /// does not necessarily apply to truncate instructions. e.g. on x86-64,
527    /// all instructions that define 32-bit values implicit zero-extend the
528    /// result out to 64 bits.
529    virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const;
530    virtual bool isZExtFree(EVT VT1, EVT VT2) const;
531
532    /// isNarrowingProfitable - Return true if it's profitable to narrow
533    /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
534    /// from i32 to i8 but not from i32 to i16.
535    virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const;
536
537    /// isFPImmLegal - Returns true if the target can instruction select the
538    /// specified FP immediate natively. If false, the legalizer will
539    /// materialize the FP immediate as a load from a constant pool.
540    virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const;
541
542    /// isShuffleMaskLegal - Targets can use this to indicate that they only
543    /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
544    /// By default, if a target supports the VECTOR_SHUFFLE node, all mask
545    /// values are assumed to be legal.
546    virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
547                                    EVT VT) const;
548
549    /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
550    /// used by Targets can use this to indicate if there is a suitable
551    /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
552    /// pool entry.
553    virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
554                                        EVT VT) const;
555
556    /// ShouldShrinkFPConstant - If true, then instruction selection should
557    /// seek to shrink the FP constant of the specified type to a smaller type
558    /// in order to save space and / or reduce runtime.
559    virtual bool ShouldShrinkFPConstant(EVT VT) const {
560      // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
561      // expensive than a straight movsd. On the other hand, it's important to
562      // shrink long double fp constant since fldt is very slow.
563      return !X86ScalarSSEf64 || VT == MVT::f80;
564    }
565
566    virtual const X86Subtarget* getSubtarget() const {
567      return Subtarget;
568    }
569
570    /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
571    /// computed in an SSE register, not on the X87 floating point stack.
572    bool isScalarFPTypeInSSEReg(EVT VT) const {
573      return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
574      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
575    }
576
577    /// createFastISel - This method returns a target specific FastISel object,
578    /// or null if the target does not support "fast" ISel.
579    virtual FastISel *
580    createFastISel(MachineFunction &mf,
581                   DenseMap<const Value *, unsigned> &,
582                   DenseMap<const BasicBlock *, MachineBasicBlock *> &,
583                   DenseMap<const AllocaInst *, int> &,
584                   std::vector<std::pair<MachineInstr*, unsigned> > &
585#ifndef NDEBUG
586                   , SmallSet<const Instruction *, 8> &
587#endif
588                   ) const;
589
590    /// getFunctionAlignment - Return the Log2 alignment of this function.
591    virtual unsigned getFunctionAlignment(const Function *F) const;
592
593  private:
594    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
595    /// make the right decision when generating code for different targets.
596    const X86Subtarget *Subtarget;
597    const X86RegisterInfo *RegInfo;
598    const TargetData *TD;
599
600    /// X86StackPtr - X86 physical register used as stack ptr.
601    unsigned X86StackPtr;
602
603    /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
604    /// floating point ops.
605    /// When SSE is available, use it for f32 operations.
606    /// When SSE2 is available, use it for f64 operations.
607    bool X86ScalarSSEf32;
608    bool X86ScalarSSEf64;
609
610    /// LegalFPImmediates - A list of legal fp immediates.
611    std::vector<APFloat> LegalFPImmediates;
612
613    /// addLegalFPImmediate - Indicate that this x86 target can instruction
614    /// select the specified FP immediate natively.
615    void addLegalFPImmediate(const APFloat& Imm) {
616      LegalFPImmediates.push_back(Imm);
617    }
618
619    SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
620                            CallingConv::ID CallConv, bool isVarArg,
621                            const SmallVectorImpl<ISD::InputArg> &Ins,
622                            DebugLoc dl, SelectionDAG &DAG,
623                            SmallVectorImpl<SDValue> &InVals) const;
624    SDValue LowerMemArgument(SDValue Chain,
625                             CallingConv::ID CallConv,
626                             const SmallVectorImpl<ISD::InputArg> &ArgInfo,
627                             DebugLoc dl, SelectionDAG &DAG,
628                             const CCValAssign &VA,  MachineFrameInfo *MFI,
629                              unsigned i) const;
630    SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
631                             DebugLoc dl, SelectionDAG &DAG,
632                             const CCValAssign &VA,
633                             ISD::ArgFlagsTy Flags) const;
634
635    // Call lowering helpers.
636
637    /// IsEligibleForTailCallOptimization - Check whether the call is eligible
638    /// for tail call optimization. Targets which want to do tail call
639    /// optimization should implement this function.
640    bool IsEligibleForTailCallOptimization(SDValue Callee,
641                                           CallingConv::ID CalleeCC,
642                                           bool isVarArg,
643                                           bool isCalleeStructRet,
644                                           bool isCallerStructRet,
645                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
646                                    const SmallVectorImpl<ISD::InputArg> &Ins,
647                                           SelectionDAG& DAG) const;
648    bool IsCalleePop(bool isVarArg, CallingConv::ID CallConv) const;
649    SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
650                                SDValue Chain, bool IsTailCall, bool Is64Bit,
651                                int FPDiff, DebugLoc dl) const;
652
653    CCAssignFn *CCAssignFnForNode(CallingConv::ID CallConv) const;
654    unsigned GetAlignedArgumentStackSize(unsigned StackSize,
655                                         SelectionDAG &DAG) const;
656
657    std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
658                                               bool isSigned) const;
659
660    SDValue LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
661                                   SelectionDAG &DAG) const;
662    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
663    SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const;
664    SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
665    SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
666    SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const;
667    SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
668    SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const;
669    SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
670    SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
671    SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
672    SDValue LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
673                               int64_t Offset, SelectionDAG &DAG) const;
674    SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
675    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
676    SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
677    SDValue LowerShift(SDValue Op, SelectionDAG &DAG) const;
678    SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
679                      SelectionDAG &DAG) const;
680    SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
681    SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
682    SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const;
683    SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const;
684    SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const;
685    SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const;
686    SDValue LowerFABS(SDValue Op, SelectionDAG &DAG) const;
687    SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG) const;
688    SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const;
689    SDValue LowerToBT(SDValue And, ISD::CondCode CC,
690                      DebugLoc dl, SelectionDAG &DAG) const;
691    SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
692    SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) const;
693    SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
694    SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
695    SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG) const;
696    SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
697    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
698    SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
699    SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
700    SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
701    SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
702    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
703    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
704    SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
705    SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
706    SDValue LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
707    SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
708    SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) const;
709    SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) const;
710    SDValue LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const;
711    SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) const;
712
713    SDValue LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
714    SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const;
715    SDValue LowerREADCYCLECOUNTER(SDValue Op, SelectionDAG &DAG) const;
716
717    virtual SDValue
718      LowerFormalArguments(SDValue Chain,
719                           CallingConv::ID CallConv, bool isVarArg,
720                           const SmallVectorImpl<ISD::InputArg> &Ins,
721                           DebugLoc dl, SelectionDAG &DAG,
722                           SmallVectorImpl<SDValue> &InVals) const;
723    virtual SDValue
724      LowerCall(SDValue Chain, SDValue Callee,
725                CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
726                const SmallVectorImpl<ISD::OutputArg> &Outs,
727                const SmallVectorImpl<ISD::InputArg> &Ins,
728                DebugLoc dl, SelectionDAG &DAG,
729                SmallVectorImpl<SDValue> &InVals) const;
730
731    virtual SDValue
732      LowerReturn(SDValue Chain,
733                  CallingConv::ID CallConv, bool isVarArg,
734                  const SmallVectorImpl<ISD::OutputArg> &Outs,
735                  DebugLoc dl, SelectionDAG &DAG) const;
736
737    virtual bool
738      CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
739                     const SmallVectorImpl<EVT> &OutTys,
740                     const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
741                     SelectionDAG &DAG) const;
742
743    void ReplaceATOMIC_BINARY_64(SDNode *N, SmallVectorImpl<SDValue> &Results,
744                                 SelectionDAG &DAG, unsigned NewOp) const;
745
746    SDValue EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
747                                    SDValue Chain,
748                                    SDValue Dst, SDValue Src,
749                                    SDValue Size, unsigned Align,
750                                    bool isVolatile,
751                                    const Value *DstSV,
752                                    uint64_t DstSVOff) const;
753    SDValue EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
754                                    SDValue Chain,
755                                    SDValue Dst, SDValue Src,
756                                    SDValue Size, unsigned Align,
757                                    bool isVolatile, bool AlwaysInline,
758                                    const Value *DstSV,
759                                    uint64_t DstSVOff,
760                                    const Value *SrcSV,
761                                    uint64_t SrcSVOff) const;
762
763    /// Utility function to emit string processing sse4.2 instructions
764    /// that return in xmm0.
765    /// This takes the instruction to expand, the associated machine basic
766    /// block, the number of args, and whether or not the second arg is
767    /// in memory or not.
768    MachineBasicBlock *EmitPCMP(MachineInstr *BInstr, MachineBasicBlock *BB,
769                                unsigned argNum, bool inMem) const;
770
771    /// Utility function to emit atomic bitwise operations (and, or, xor).
772    /// It takes the bitwise instruction to expand, the associated machine basic
773    /// block, and the associated X86 opcodes for reg/reg and reg/imm.
774    MachineBasicBlock *EmitAtomicBitwiseWithCustomInserter(
775                                                    MachineInstr *BInstr,
776                                                    MachineBasicBlock *BB,
777                                                    unsigned regOpc,
778                                                    unsigned immOpc,
779                                                    unsigned loadOpc,
780                                                    unsigned cxchgOpc,
781                                                    unsigned copyOpc,
782                                                    unsigned notOpc,
783                                                    unsigned EAXreg,
784                                                    TargetRegisterClass *RC,
785                                                    bool invSrc = false) const;
786
787    MachineBasicBlock *EmitAtomicBit6432WithCustomInserter(
788                                                    MachineInstr *BInstr,
789                                                    MachineBasicBlock *BB,
790                                                    unsigned regOpcL,
791                                                    unsigned regOpcH,
792                                                    unsigned immOpcL,
793                                                    unsigned immOpcH,
794                                                    bool invSrc = false) const;
795
796    /// Utility function to emit atomic min and max.  It takes the min/max
797    /// instruction to expand, the associated basic block, and the associated
798    /// cmov opcode for moving the min or max value.
799    MachineBasicBlock *EmitAtomicMinMaxWithCustomInserter(MachineInstr *BInstr,
800                                                          MachineBasicBlock *BB,
801                                                        unsigned cmovOpc) const;
802
803    /// Utility function to emit the xmm reg save portion of va_start.
804    MachineBasicBlock *EmitVAStartSaveXMMRegsWithCustomInserter(
805                                                   MachineInstr *BInstr,
806                                                   MachineBasicBlock *BB) const;
807
808    MachineBasicBlock *EmitLoweredSelect(MachineInstr *I,
809                                         MachineBasicBlock *BB) const;
810
811    MachineBasicBlock *EmitLoweredMingwAlloca(MachineInstr *MI,
812                                              MachineBasicBlock *BB) const;
813
814    /// Emit nodes that will be selected as "test Op0,Op0", or something
815    /// equivalent, for use with the given x86 condition code.
816    SDValue EmitTest(SDValue Op0, unsigned X86CC, SelectionDAG &DAG) const;
817
818    /// Emit nodes that will be selected as "cmp Op0,Op1", or something
819    /// equivalent, for use with the given x86 condition code.
820    SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
821                    SelectionDAG &DAG) const;
822  };
823
824  namespace X86 {
825    FastISel *createFastISel(MachineFunction &mf,
826                           DenseMap<const Value *, unsigned> &,
827                           DenseMap<const BasicBlock *, MachineBasicBlock *> &,
828                           DenseMap<const AllocaInst *, int> &,
829                           std::vector<std::pair<MachineInstr*, unsigned> > &
830#ifndef NDEBUG
831                           , SmallSet<const Instruction*, 8> &
832#endif
833                           );
834  }
835}
836
837#endif    // X86ISELLOWERING_H
838