X86ISelDAGToDAG.cpp revision 296417
1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a DAG pattern matching instruction selector for X86,
11// converting from a legalized dag to a X86 dag.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86MachineFunctionInfo.h"
18#include "X86RegisterInfo.h"
19#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/SelectionDAGISel.h"
27#include "llvm/IR/Function.h"
28#include "llvm/IR/Instructions.h"
29#include "llvm/IR/Intrinsics.h"
30#include "llvm/IR/Type.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetMachine.h"
36#include "llvm/Target/TargetOptions.h"
37#include <stdint.h>
38using namespace llvm;
39
40#define DEBUG_TYPE "x86-isel"
41
42STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
43
44//===----------------------------------------------------------------------===//
45//                      Pattern Matcher Implementation
46//===----------------------------------------------------------------------===//
47
48namespace {
49  /// This corresponds to X86AddressMode, but uses SDValue's instead of register
50  /// numbers for the leaves of the matched tree.
51  struct X86ISelAddressMode {
52    enum {
53      RegBase,
54      FrameIndexBase
55    } BaseType;
56
57    // This is really a union, discriminated by BaseType!
58    SDValue Base_Reg;
59    int Base_FrameIndex;
60
61    unsigned Scale;
62    SDValue IndexReg;
63    int32_t Disp;
64    SDValue Segment;
65    const GlobalValue *GV;
66    const Constant *CP;
67    const BlockAddress *BlockAddr;
68    const char *ES;
69    MCSymbol *MCSym;
70    int JT;
71    unsigned Align;    // CP alignment.
72    unsigned char SymbolFlags;  // X86II::MO_*
73
74    X86ISelAddressMode()
75        : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
76          Segment(), GV(nullptr), CP(nullptr), BlockAddr(nullptr), ES(nullptr),
77          MCSym(nullptr), JT(-1), Align(0), SymbolFlags(X86II::MO_NO_FLAG) {}
78
79    bool hasSymbolicDisplacement() const {
80      return GV != nullptr || CP != nullptr || ES != nullptr ||
81             MCSym != nullptr || JT != -1 || BlockAddr != nullptr;
82    }
83
84    bool hasBaseOrIndexReg() const {
85      return BaseType == FrameIndexBase ||
86             IndexReg.getNode() != nullptr || Base_Reg.getNode() != nullptr;
87    }
88
89    /// Return true if this addressing mode is already RIP-relative.
90    bool isRIPRelative() const {
91      if (BaseType != RegBase) return false;
92      if (RegisterSDNode *RegNode =
93            dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
94        return RegNode->getReg() == X86::RIP;
95      return false;
96    }
97
98    void setBaseReg(SDValue Reg) {
99      BaseType = RegBase;
100      Base_Reg = Reg;
101    }
102
103#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
104    void dump() {
105      dbgs() << "X86ISelAddressMode " << this << '\n';
106      dbgs() << "Base_Reg ";
107      if (Base_Reg.getNode())
108        Base_Reg.getNode()->dump();
109      else
110        dbgs() << "nul";
111      dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
112             << " Scale" << Scale << '\n'
113             << "IndexReg ";
114      if (IndexReg.getNode())
115        IndexReg.getNode()->dump();
116      else
117        dbgs() << "nul";
118      dbgs() << " Disp " << Disp << '\n'
119             << "GV ";
120      if (GV)
121        GV->dump();
122      else
123        dbgs() << "nul";
124      dbgs() << " CP ";
125      if (CP)
126        CP->dump();
127      else
128        dbgs() << "nul";
129      dbgs() << '\n'
130             << "ES ";
131      if (ES)
132        dbgs() << ES;
133      else
134        dbgs() << "nul";
135      dbgs() << " MCSym ";
136      if (MCSym)
137        dbgs() << MCSym;
138      else
139        dbgs() << "nul";
140      dbgs() << " JT" << JT << " Align" << Align << '\n';
141    }
142#endif
143  };
144}
145
146namespace {
147  //===--------------------------------------------------------------------===//
148  /// ISel - X86-specific code to select X86 machine instructions for
149  /// SelectionDAG operations.
150  ///
151  class X86DAGToDAGISel final : public SelectionDAGISel {
152    /// Keep a pointer to the X86Subtarget around so that we can
153    /// make the right decision when generating code for different targets.
154    const X86Subtarget *Subtarget;
155
156    /// If true, selector should try to optimize for code size instead of
157    /// performance.
158    bool OptForSize;
159
160  public:
161    explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
162        : SelectionDAGISel(tm, OptLevel), OptForSize(false) {}
163
164    const char *getPassName() const override {
165      return "X86 DAG->DAG Instruction Selection";
166    }
167
168    bool runOnMachineFunction(MachineFunction &MF) override {
169      // Reset the subtarget each time through.
170      Subtarget = &MF.getSubtarget<X86Subtarget>();
171      SelectionDAGISel::runOnMachineFunction(MF);
172      return true;
173    }
174
175    void EmitFunctionEntryCode() override;
176
177    bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
178
179    void PreprocessISelDAG() override;
180
181    inline bool immSext8(SDNode *N) const {
182      return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
183    }
184
185    // True if the 64-bit immediate fits in a 32-bit sign-extended field.
186    inline bool i64immSExt32(SDNode *N) const {
187      uint64_t v = cast<ConstantSDNode>(N)->getZExtValue();
188      return (int64_t)v == (int32_t)v;
189    }
190
191// Include the pieces autogenerated from the target description.
192#include "X86GenDAGISel.inc"
193
194  private:
195    SDNode *Select(SDNode *N) override;
196    SDNode *selectGather(SDNode *N, unsigned Opc);
197    SDNode *selectAtomicLoadArith(SDNode *Node, MVT NVT);
198
199    bool foldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
200    bool matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
201    bool matchWrapper(SDValue N, X86ISelAddressMode &AM);
202    bool matchAddress(SDValue N, X86ISelAddressMode &AM);
203    bool matchAdd(SDValue N, X86ISelAddressMode &AM, unsigned Depth);
204    bool matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
205                                 unsigned Depth);
206    bool matchAddressBase(SDValue N, X86ISelAddressMode &AM);
207    bool selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
208                    SDValue &Scale, SDValue &Index, SDValue &Disp,
209                    SDValue &Segment);
210    bool selectVectorAddr(SDNode *Parent, SDValue N, SDValue &Base,
211                          SDValue &Scale, SDValue &Index, SDValue &Disp,
212                          SDValue &Segment);
213    bool selectMOV64Imm32(SDValue N, SDValue &Imm);
214    bool selectLEAAddr(SDValue N, SDValue &Base,
215                       SDValue &Scale, SDValue &Index, SDValue &Disp,
216                       SDValue &Segment);
217    bool selectLEA64_32Addr(SDValue N, SDValue &Base,
218                            SDValue &Scale, SDValue &Index, SDValue &Disp,
219                            SDValue &Segment);
220    bool selectTLSADDRAddr(SDValue N, SDValue &Base,
221                           SDValue &Scale, SDValue &Index, SDValue &Disp,
222                           SDValue &Segment);
223    bool selectScalarSSELoad(SDNode *Root, SDValue N,
224                             SDValue &Base, SDValue &Scale,
225                             SDValue &Index, SDValue &Disp,
226                             SDValue &Segment,
227                             SDValue &NodeWithChain);
228
229    bool tryFoldLoad(SDNode *P, SDValue N,
230                     SDValue &Base, SDValue &Scale,
231                     SDValue &Index, SDValue &Disp,
232                     SDValue &Segment);
233
234    /// Implement addressing mode selection for inline asm expressions.
235    bool SelectInlineAsmMemoryOperand(const SDValue &Op,
236                                      unsigned ConstraintID,
237                                      std::vector<SDValue> &OutOps) override;
238
239    void emitSpecialCodeForMain();
240
241    inline void getAddressOperands(X86ISelAddressMode &AM, SDLoc DL,
242                                   SDValue &Base, SDValue &Scale,
243                                   SDValue &Index, SDValue &Disp,
244                                   SDValue &Segment) {
245      Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
246                 ? CurDAG->getTargetFrameIndex(
247                       AM.Base_FrameIndex,
248                       TLI->getPointerTy(CurDAG->getDataLayout()))
249                 : AM.Base_Reg;
250      Scale = getI8Imm(AM.Scale, DL);
251      Index = AM.IndexReg;
252      // These are 32-bit even in 64-bit mode since RIP-relative offset
253      // is 32-bit.
254      if (AM.GV)
255        Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(),
256                                              MVT::i32, AM.Disp,
257                                              AM.SymbolFlags);
258      else if (AM.CP)
259        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
260                                             AM.Align, AM.Disp, AM.SymbolFlags);
261      else if (AM.ES) {
262        assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
263        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
264      } else if (AM.MCSym) {
265        assert(!AM.Disp && "Non-zero displacement is ignored with MCSym.");
266        assert(AM.SymbolFlags == 0 && "oo");
267        Disp = CurDAG->getMCSymbol(AM.MCSym, MVT::i32);
268      } else if (AM.JT != -1) {
269        assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
270        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
271      } else if (AM.BlockAddr)
272        Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
273                                             AM.SymbolFlags);
274      else
275        Disp = CurDAG->getTargetConstant(AM.Disp, DL, MVT::i32);
276
277      if (AM.Segment.getNode())
278        Segment = AM.Segment;
279      else
280        Segment = CurDAG->getRegister(0, MVT::i32);
281    }
282
283    // Utility function to determine whether we should avoid selecting
284    // immediate forms of instructions for better code size or not.
285    // At a high level, we'd like to avoid such instructions when
286    // we have similar constants used within the same basic block
287    // that can be kept in a register.
288    //
289    bool shouldAvoidImmediateInstFormsForSize(SDNode *N) const {
290      uint32_t UseCount = 0;
291
292      // Do not want to hoist if we're not optimizing for size.
293      // TODO: We'd like to remove this restriction.
294      // See the comment in X86InstrInfo.td for more info.
295      if (!OptForSize)
296        return false;
297
298      // Walk all the users of the immediate.
299      for (SDNode::use_iterator UI = N->use_begin(),
300           UE = N->use_end(); (UI != UE) && (UseCount < 2); ++UI) {
301
302        SDNode *User = *UI;
303
304        // This user is already selected. Count it as a legitimate use and
305        // move on.
306        if (User->isMachineOpcode()) {
307          UseCount++;
308          continue;
309        }
310
311        // We want to count stores of immediates as real uses.
312        if (User->getOpcode() == ISD::STORE &&
313            User->getOperand(1).getNode() == N) {
314          UseCount++;
315          continue;
316        }
317
318        // We don't currently match users that have > 2 operands (except
319        // for stores, which are handled above)
320        // Those instruction won't match in ISEL, for now, and would
321        // be counted incorrectly.
322        // This may change in the future as we add additional instruction
323        // types.
324        if (User->getNumOperands() != 2)
325          continue;
326
327        // Immediates that are used for offsets as part of stack
328        // manipulation should be left alone. These are typically
329        // used to indicate SP offsets for argument passing and
330        // will get pulled into stores/pushes (implicitly).
331        if (User->getOpcode() == X86ISD::ADD ||
332            User->getOpcode() == ISD::ADD    ||
333            User->getOpcode() == X86ISD::SUB ||
334            User->getOpcode() == ISD::SUB) {
335
336          // Find the other operand of the add/sub.
337          SDValue OtherOp = User->getOperand(0);
338          if (OtherOp.getNode() == N)
339            OtherOp = User->getOperand(1);
340
341          // Don't count if the other operand is SP.
342          RegisterSDNode *RegNode;
343          if (OtherOp->getOpcode() == ISD::CopyFromReg &&
344              (RegNode = dyn_cast_or_null<RegisterSDNode>(
345                 OtherOp->getOperand(1).getNode())))
346            if ((RegNode->getReg() == X86::ESP) ||
347                (RegNode->getReg() == X86::RSP))
348              continue;
349        }
350
351        // ... otherwise, count this and move on.
352        UseCount++;
353      }
354
355      // If we have more than 1 use, then recommend for hoisting.
356      return (UseCount > 1);
357    }
358
359    /// Return a target constant with the specified value of type i8.
360    inline SDValue getI8Imm(unsigned Imm, SDLoc DL) {
361      return CurDAG->getTargetConstant(Imm, DL, MVT::i8);
362    }
363
364    /// Return a target constant with the specified value, of type i32.
365    inline SDValue getI32Imm(unsigned Imm, SDLoc DL) {
366      return CurDAG->getTargetConstant(Imm, DL, MVT::i32);
367    }
368
369    /// Return an SDNode that returns the value of the global base register.
370    /// Output instructions required to initialize the global base register,
371    /// if necessary.
372    SDNode *getGlobalBaseReg();
373
374    /// Return a reference to the TargetMachine, casted to the target-specific
375    /// type.
376    const X86TargetMachine &getTargetMachine() const {
377      return static_cast<const X86TargetMachine &>(TM);
378    }
379
380    /// Return a reference to the TargetInstrInfo, casted to the target-specific
381    /// type.
382    const X86InstrInfo *getInstrInfo() const {
383      return Subtarget->getInstrInfo();
384    }
385
386    /// \brief Address-mode matching performs shift-of-and to and-of-shift
387    /// reassociation in order to expose more scaled addressing
388    /// opportunities.
389    bool ComplexPatternFuncMutatesDAG() const override {
390      return true;
391    }
392  };
393}
394
395
396bool
397X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
398  if (OptLevel == CodeGenOpt::None) return false;
399
400  if (!N.hasOneUse())
401    return false;
402
403  if (N.getOpcode() != ISD::LOAD)
404    return true;
405
406  // If N is a load, do additional profitability checks.
407  if (U == Root) {
408    switch (U->getOpcode()) {
409    default: break;
410    case X86ISD::ADD:
411    case X86ISD::SUB:
412    case X86ISD::AND:
413    case X86ISD::XOR:
414    case X86ISD::OR:
415    case ISD::ADD:
416    case ISD::ADDC:
417    case ISD::ADDE:
418    case ISD::AND:
419    case ISD::OR:
420    case ISD::XOR: {
421      SDValue Op1 = U->getOperand(1);
422
423      // If the other operand is a 8-bit immediate we should fold the immediate
424      // instead. This reduces code size.
425      // e.g.
426      // movl 4(%esp), %eax
427      // addl $4, %eax
428      // vs.
429      // movl $4, %eax
430      // addl 4(%esp), %eax
431      // The former is 2 bytes shorter. In case where the increment is 1, then
432      // the saving can be 4 bytes (by using incl %eax).
433      if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
434        if (Imm->getAPIntValue().isSignedIntN(8))
435          return false;
436
437      // If the other operand is a TLS address, we should fold it instead.
438      // This produces
439      // movl    %gs:0, %eax
440      // leal    i@NTPOFF(%eax), %eax
441      // instead of
442      // movl    $i@NTPOFF, %eax
443      // addl    %gs:0, %eax
444      // if the block also has an access to a second TLS address this will save
445      // a load.
446      // FIXME: This is probably also true for non-TLS addresses.
447      if (Op1.getOpcode() == X86ISD::Wrapper) {
448        SDValue Val = Op1.getOperand(0);
449        if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
450          return false;
451      }
452    }
453    }
454  }
455
456  return true;
457}
458
459/// Replace the original chain operand of the call with
460/// load's chain operand and move load below the call's chain operand.
461static void moveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
462                               SDValue Call, SDValue OrigChain) {
463  SmallVector<SDValue, 8> Ops;
464  SDValue Chain = OrigChain.getOperand(0);
465  if (Chain.getNode() == Load.getNode())
466    Ops.push_back(Load.getOperand(0));
467  else {
468    assert(Chain.getOpcode() == ISD::TokenFactor &&
469           "Unexpected chain operand");
470    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
471      if (Chain.getOperand(i).getNode() == Load.getNode())
472        Ops.push_back(Load.getOperand(0));
473      else
474        Ops.push_back(Chain.getOperand(i));
475    SDValue NewChain =
476      CurDAG->getNode(ISD::TokenFactor, SDLoc(Load), MVT::Other, Ops);
477    Ops.clear();
478    Ops.push_back(NewChain);
479  }
480  Ops.append(OrigChain->op_begin() + 1, OrigChain->op_end());
481  CurDAG->UpdateNodeOperands(OrigChain.getNode(), Ops);
482  CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
483                             Load.getOperand(1), Load.getOperand(2));
484
485  Ops.clear();
486  Ops.push_back(SDValue(Load.getNode(), 1));
487  Ops.append(Call->op_begin() + 1, Call->op_end());
488  CurDAG->UpdateNodeOperands(Call.getNode(), Ops);
489}
490
491/// Return true if call address is a load and it can be
492/// moved below CALLSEQ_START and the chains leading up to the call.
493/// Return the CALLSEQ_START by reference as a second output.
494/// In the case of a tail call, there isn't a callseq node between the call
495/// chain and the load.
496static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
497  // The transformation is somewhat dangerous if the call's chain was glued to
498  // the call. After MoveBelowOrigChain the load is moved between the call and
499  // the chain, this can create a cycle if the load is not folded. So it is
500  // *really* important that we are sure the load will be folded.
501  if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
502    return false;
503  LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
504  if (!LD ||
505      LD->isVolatile() ||
506      LD->getAddressingMode() != ISD::UNINDEXED ||
507      LD->getExtensionType() != ISD::NON_EXTLOAD)
508    return false;
509
510  // Now let's find the callseq_start.
511  while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
512    if (!Chain.hasOneUse())
513      return false;
514    Chain = Chain.getOperand(0);
515  }
516
517  if (!Chain.getNumOperands())
518    return false;
519  // Since we are not checking for AA here, conservatively abort if the chain
520  // writes to memory. It's not safe to move the callee (a load) across a store.
521  if (isa<MemSDNode>(Chain.getNode()) &&
522      cast<MemSDNode>(Chain.getNode())->writeMem())
523    return false;
524  if (Chain.getOperand(0).getNode() == Callee.getNode())
525    return true;
526  if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
527      Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
528      Callee.getValue(1).hasOneUse())
529    return true;
530  return false;
531}
532
533void X86DAGToDAGISel::PreprocessISelDAG() {
534  // OptForSize is used in pattern predicates that isel is matching.
535  OptForSize = MF->getFunction()->optForSize();
536
537  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
538       E = CurDAG->allnodes_end(); I != E; ) {
539    SDNode *N = &*I++; // Preincrement iterator to avoid invalidation issues.
540
541    if (OptLevel != CodeGenOpt::None &&
542        // Only does this when target favors doesn't favor register indirect
543        // call.
544        ((N->getOpcode() == X86ISD::CALL && !Subtarget->callRegIndirect()) ||
545         (N->getOpcode() == X86ISD::TC_RETURN &&
546          // Only does this if load can be folded into TC_RETURN.
547          (Subtarget->is64Bit() ||
548           getTargetMachine().getRelocationModel() != Reloc::PIC_)))) {
549      /// Also try moving call address load from outside callseq_start to just
550      /// before the call to allow it to be folded.
551      ///
552      ///     [Load chain]
553      ///         ^
554      ///         |
555      ///       [Load]
556      ///       ^    ^
557      ///       |    |
558      ///      /      \--
559      ///     /          |
560      ///[CALLSEQ_START] |
561      ///     ^          |
562      ///     |          |
563      /// [LOAD/C2Reg]   |
564      ///     |          |
565      ///      \        /
566      ///       \      /
567      ///       [CALL]
568      bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
569      SDValue Chain = N->getOperand(0);
570      SDValue Load  = N->getOperand(1);
571      if (!isCalleeLoad(Load, Chain, HasCallSeq))
572        continue;
573      moveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
574      ++NumLoadMoved;
575      continue;
576    }
577
578    // Lower fpround and fpextend nodes that target the FP stack to be store and
579    // load to the stack.  This is a gross hack.  We would like to simply mark
580    // these as being illegal, but when we do that, legalize produces these when
581    // it expands calls, then expands these in the same legalize pass.  We would
582    // like dag combine to be able to hack on these between the call expansion
583    // and the node legalization.  As such this pass basically does "really
584    // late" legalization of these inline with the X86 isel pass.
585    // FIXME: This should only happen when not compiled with -O0.
586    if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
587      continue;
588
589    MVT SrcVT = N->getOperand(0).getSimpleValueType();
590    MVT DstVT = N->getSimpleValueType(0);
591
592    // If any of the sources are vectors, no fp stack involved.
593    if (SrcVT.isVector() || DstVT.isVector())
594      continue;
595
596    // If the source and destination are SSE registers, then this is a legal
597    // conversion that should not be lowered.
598    const X86TargetLowering *X86Lowering =
599        static_cast<const X86TargetLowering *>(TLI);
600    bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
601    bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
602    if (SrcIsSSE && DstIsSSE)
603      continue;
604
605    if (!SrcIsSSE && !DstIsSSE) {
606      // If this is an FPStack extension, it is a noop.
607      if (N->getOpcode() == ISD::FP_EXTEND)
608        continue;
609      // If this is a value-preserving FPStack truncation, it is a noop.
610      if (N->getConstantOperandVal(1))
611        continue;
612    }
613
614    // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
615    // FPStack has extload and truncstore.  SSE can fold direct loads into other
616    // operations.  Based on this, decide what we want to do.
617    MVT MemVT;
618    if (N->getOpcode() == ISD::FP_ROUND)
619      MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
620    else
621      MemVT = SrcIsSSE ? SrcVT : DstVT;
622
623    SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
624    SDLoc dl(N);
625
626    // FIXME: optimize the case where the src/dest is a load or store?
627    SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
628                                          N->getOperand(0),
629                                          MemTmp, MachinePointerInfo(), MemVT,
630                                          false, false, 0);
631    SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
632                                        MachinePointerInfo(),
633                                        MemVT, false, false, false, 0);
634
635    // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
636    // extload we created.  This will cause general havok on the dag because
637    // anything below the conversion could be folded into other existing nodes.
638    // To avoid invalidating 'I', back it up to the convert node.
639    --I;
640    CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
641
642    // Now that we did that, the node is dead.  Increment the iterator to the
643    // next node to process, then delete N.
644    ++I;
645    CurDAG->DeleteNode(N);
646  }
647}
648
649
650/// Emit any code that needs to be executed only in the main function.
651void X86DAGToDAGISel::emitSpecialCodeForMain() {
652  if (Subtarget->isTargetCygMing()) {
653    TargetLowering::ArgListTy Args;
654    auto &DL = CurDAG->getDataLayout();
655
656    TargetLowering::CallLoweringInfo CLI(*CurDAG);
657    CLI.setChain(CurDAG->getRoot())
658        .setCallee(CallingConv::C, Type::getVoidTy(*CurDAG->getContext()),
659                   CurDAG->getExternalSymbol("__main", TLI->getPointerTy(DL)),
660                   std::move(Args), 0);
661    const TargetLowering &TLI = CurDAG->getTargetLoweringInfo();
662    std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
663    CurDAG->setRoot(Result.second);
664  }
665}
666
667void X86DAGToDAGISel::EmitFunctionEntryCode() {
668  // If this is main, emit special code for main.
669  if (const Function *Fn = MF->getFunction())
670    if (Fn->hasExternalLinkage() && Fn->getName() == "main")
671      emitSpecialCodeForMain();
672}
673
674static bool isDispSafeForFrameIndex(int64_t Val) {
675  // On 64-bit platforms, we can run into an issue where a frame index
676  // includes a displacement that, when added to the explicit displacement,
677  // will overflow the displacement field. Assuming that the frame index
678  // displacement fits into a 31-bit integer  (which is only slightly more
679  // aggressive than the current fundamental assumption that it fits into
680  // a 32-bit integer), a 31-bit disp should always be safe.
681  return isInt<31>(Val);
682}
683
684bool X86DAGToDAGISel::foldOffsetIntoAddress(uint64_t Offset,
685                                            X86ISelAddressMode &AM) {
686  // Cannot combine ExternalSymbol displacements with integer offsets.
687  if (Offset != 0 && (AM.ES || AM.MCSym))
688    return true;
689  int64_t Val = AM.Disp + Offset;
690  CodeModel::Model M = TM.getCodeModel();
691  if (Subtarget->is64Bit()) {
692    if (!X86::isOffsetSuitableForCodeModel(Val, M,
693                                           AM.hasSymbolicDisplacement()))
694      return true;
695    // In addition to the checks required for a register base, check that
696    // we do not try to use an unsafe Disp with a frame index.
697    if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
698        !isDispSafeForFrameIndex(Val))
699      return true;
700  }
701  AM.Disp = Val;
702  return false;
703
704}
705
706bool X86DAGToDAGISel::matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
707  SDValue Address = N->getOperand(1);
708
709  // load gs:0 -> GS segment register.
710  // load fs:0 -> FS segment register.
711  //
712  // This optimization is valid because the GNU TLS model defines that
713  // gs:0 (or fs:0 on X86-64) contains its own address.
714  // For more information see http://people.redhat.com/drepper/tls.pdf
715  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
716    if (C->getSExtValue() == 0 && AM.Segment.getNode() == nullptr &&
717        Subtarget->isTargetLinux())
718      switch (N->getPointerInfo().getAddrSpace()) {
719      case 256:
720        AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
721        return false;
722      case 257:
723        AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
724        return false;
725      }
726
727  return true;
728}
729
730/// Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes into an addressing
731/// mode. These wrap things that will resolve down into a symbol reference.
732/// If no match is possible, this returns true, otherwise it returns false.
733bool X86DAGToDAGISel::matchWrapper(SDValue N, X86ISelAddressMode &AM) {
734  // If the addressing mode already has a symbol as the displacement, we can
735  // never match another symbol.
736  if (AM.hasSymbolicDisplacement())
737    return true;
738
739  SDValue N0 = N.getOperand(0);
740  CodeModel::Model M = TM.getCodeModel();
741
742  // Handle X86-64 rip-relative addresses.  We check this before checking direct
743  // folding because RIP is preferable to non-RIP accesses.
744  if (Subtarget->is64Bit() && N.getOpcode() == X86ISD::WrapperRIP &&
745      // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
746      // they cannot be folded into immediate fields.
747      // FIXME: This can be improved for kernel and other models?
748      (M == CodeModel::Small || M == CodeModel::Kernel)) {
749    // Base and index reg must be 0 in order to use %rip as base.
750    if (AM.hasBaseOrIndexReg())
751      return true;
752    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
753      X86ISelAddressMode Backup = AM;
754      AM.GV = G->getGlobal();
755      AM.SymbolFlags = G->getTargetFlags();
756      if (foldOffsetIntoAddress(G->getOffset(), AM)) {
757        AM = Backup;
758        return true;
759      }
760    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
761      X86ISelAddressMode Backup = AM;
762      AM.CP = CP->getConstVal();
763      AM.Align = CP->getAlignment();
764      AM.SymbolFlags = CP->getTargetFlags();
765      if (foldOffsetIntoAddress(CP->getOffset(), AM)) {
766        AM = Backup;
767        return true;
768      }
769    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
770      AM.ES = S->getSymbol();
771      AM.SymbolFlags = S->getTargetFlags();
772    } else if (auto *S = dyn_cast<MCSymbolSDNode>(N0)) {
773      AM.MCSym = S->getMCSymbol();
774    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
775      AM.JT = J->getIndex();
776      AM.SymbolFlags = J->getTargetFlags();
777    } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
778      X86ISelAddressMode Backup = AM;
779      AM.BlockAddr = BA->getBlockAddress();
780      AM.SymbolFlags = BA->getTargetFlags();
781      if (foldOffsetIntoAddress(BA->getOffset(), AM)) {
782        AM = Backup;
783        return true;
784      }
785    } else
786      llvm_unreachable("Unhandled symbol reference node.");
787
788    if (N.getOpcode() == X86ISD::WrapperRIP)
789      AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
790    return false;
791  }
792
793  // Handle the case when globals fit in our immediate field: This is true for
794  // X86-32 always and X86-64 when in -mcmodel=small mode.  In 64-bit
795  // mode, this only applies to a non-RIP-relative computation.
796  if (!Subtarget->is64Bit() ||
797      M == CodeModel::Small || M == CodeModel::Kernel) {
798    assert(N.getOpcode() != X86ISD::WrapperRIP &&
799           "RIP-relative addressing already handled");
800    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
801      AM.GV = G->getGlobal();
802      AM.Disp += G->getOffset();
803      AM.SymbolFlags = G->getTargetFlags();
804    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
805      AM.CP = CP->getConstVal();
806      AM.Align = CP->getAlignment();
807      AM.Disp += CP->getOffset();
808      AM.SymbolFlags = CP->getTargetFlags();
809    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
810      AM.ES = S->getSymbol();
811      AM.SymbolFlags = S->getTargetFlags();
812    } else if (auto *S = dyn_cast<MCSymbolSDNode>(N0)) {
813      AM.MCSym = S->getMCSymbol();
814    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
815      AM.JT = J->getIndex();
816      AM.SymbolFlags = J->getTargetFlags();
817    } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
818      AM.BlockAddr = BA->getBlockAddress();
819      AM.Disp += BA->getOffset();
820      AM.SymbolFlags = BA->getTargetFlags();
821    } else
822      llvm_unreachable("Unhandled symbol reference node.");
823    return false;
824  }
825
826  return true;
827}
828
829/// Add the specified node to the specified addressing mode, returning true if
830/// it cannot be done. This just pattern matches for the addressing mode.
831bool X86DAGToDAGISel::matchAddress(SDValue N, X86ISelAddressMode &AM) {
832  if (matchAddressRecursively(N, AM, 0))
833    return true;
834
835  // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
836  // a smaller encoding and avoids a scaled-index.
837  if (AM.Scale == 2 &&
838      AM.BaseType == X86ISelAddressMode::RegBase &&
839      AM.Base_Reg.getNode() == nullptr) {
840    AM.Base_Reg = AM.IndexReg;
841    AM.Scale = 1;
842  }
843
844  // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
845  // because it has a smaller encoding.
846  // TODO: Which other code models can use this?
847  if (TM.getCodeModel() == CodeModel::Small &&
848      Subtarget->is64Bit() &&
849      AM.Scale == 1 &&
850      AM.BaseType == X86ISelAddressMode::RegBase &&
851      AM.Base_Reg.getNode() == nullptr &&
852      AM.IndexReg.getNode() == nullptr &&
853      AM.SymbolFlags == X86II::MO_NO_FLAG &&
854      AM.hasSymbolicDisplacement())
855    AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
856
857  return false;
858}
859
860bool X86DAGToDAGISel::matchAdd(SDValue N, X86ISelAddressMode &AM,
861                               unsigned Depth) {
862  // Add an artificial use to this node so that we can keep track of
863  // it if it gets CSE'd with a different node.
864  HandleSDNode Handle(N);
865
866  X86ISelAddressMode Backup = AM;
867  if (!matchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
868      !matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
869    return false;
870  AM = Backup;
871
872  // Try again after commuting the operands.
873  if (!matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1) &&
874      !matchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
875    return false;
876  AM = Backup;
877
878  // If we couldn't fold both operands into the address at the same time,
879  // see if we can just put each operand into a register and fold at least
880  // the add.
881  if (AM.BaseType == X86ISelAddressMode::RegBase &&
882      !AM.Base_Reg.getNode() &&
883      !AM.IndexReg.getNode()) {
884    N = Handle.getValue();
885    AM.Base_Reg = N.getOperand(0);
886    AM.IndexReg = N.getOperand(1);
887    AM.Scale = 1;
888    return false;
889  }
890  N = Handle.getValue();
891  return true;
892}
893
894// Insert a node into the DAG at least before the Pos node's position. This
895// will reposition the node as needed, and will assign it a node ID that is <=
896// the Pos node's ID. Note that this does *not* preserve the uniqueness of node
897// IDs! The selection DAG must no longer depend on their uniqueness when this
898// is used.
899static void insertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
900  if (N.getNode()->getNodeId() == -1 ||
901      N.getNode()->getNodeId() > Pos.getNode()->getNodeId()) {
902    DAG.RepositionNode(Pos.getNode()->getIterator(), N.getNode());
903    N.getNode()->setNodeId(Pos.getNode()->getNodeId());
904  }
905}
906
907// Transform "(X >> (8-C1)) & (0xff << C1)" to "((X >> 8) & 0xff) << C1" if
908// safe. This allows us to convert the shift and and into an h-register
909// extract and a scaled index. Returns false if the simplification is
910// performed.
911static bool foldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
912                                      uint64_t Mask,
913                                      SDValue Shift, SDValue X,
914                                      X86ISelAddressMode &AM) {
915  if (Shift.getOpcode() != ISD::SRL ||
916      !isa<ConstantSDNode>(Shift.getOperand(1)) ||
917      !Shift.hasOneUse())
918    return true;
919
920  int ScaleLog = 8 - Shift.getConstantOperandVal(1);
921  if (ScaleLog <= 0 || ScaleLog >= 4 ||
922      Mask != (0xffu << ScaleLog))
923    return true;
924
925  MVT VT = N.getSimpleValueType();
926  SDLoc DL(N);
927  SDValue Eight = DAG.getConstant(8, DL, MVT::i8);
928  SDValue NewMask = DAG.getConstant(0xff, DL, VT);
929  SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
930  SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
931  SDValue ShlCount = DAG.getConstant(ScaleLog, DL, MVT::i8);
932  SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);
933
934  // Insert the new nodes into the topological ordering. We must do this in
935  // a valid topological ordering as nothing is going to go back and re-sort
936  // these nodes. We continually insert before 'N' in sequence as this is
937  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
938  // hierarchy left to express.
939  insertDAGNode(DAG, N, Eight);
940  insertDAGNode(DAG, N, Srl);
941  insertDAGNode(DAG, N, NewMask);
942  insertDAGNode(DAG, N, And);
943  insertDAGNode(DAG, N, ShlCount);
944  insertDAGNode(DAG, N, Shl);
945  DAG.ReplaceAllUsesWith(N, Shl);
946  AM.IndexReg = And;
947  AM.Scale = (1 << ScaleLog);
948  return false;
949}
950
951// Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
952// allows us to fold the shift into this addressing mode. Returns false if the
953// transform succeeded.
954static bool foldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
955                                        uint64_t Mask,
956                                        SDValue Shift, SDValue X,
957                                        X86ISelAddressMode &AM) {
958  if (Shift.getOpcode() != ISD::SHL ||
959      !isa<ConstantSDNode>(Shift.getOperand(1)))
960    return true;
961
962  // Not likely to be profitable if either the AND or SHIFT node has more
963  // than one use (unless all uses are for address computation). Besides,
964  // isel mechanism requires their node ids to be reused.
965  if (!N.hasOneUse() || !Shift.hasOneUse())
966    return true;
967
968  // Verify that the shift amount is something we can fold.
969  unsigned ShiftAmt = Shift.getConstantOperandVal(1);
970  if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
971    return true;
972
973  MVT VT = N.getSimpleValueType();
974  SDLoc DL(N);
975  SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, DL, VT);
976  SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
977  SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
978
979  // Insert the new nodes into the topological ordering. We must do this in
980  // a valid topological ordering as nothing is going to go back and re-sort
981  // these nodes. We continually insert before 'N' in sequence as this is
982  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
983  // hierarchy left to express.
984  insertDAGNode(DAG, N, NewMask);
985  insertDAGNode(DAG, N, NewAnd);
986  insertDAGNode(DAG, N, NewShift);
987  DAG.ReplaceAllUsesWith(N, NewShift);
988
989  AM.Scale = 1 << ShiftAmt;
990  AM.IndexReg = NewAnd;
991  return false;
992}
993
994// Implement some heroics to detect shifts of masked values where the mask can
995// be replaced by extending the shift and undoing that in the addressing mode
996// scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
997// (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
998// the addressing mode. This results in code such as:
999//
1000//   int f(short *y, int *lookup_table) {
1001//     ...
1002//     return *y + lookup_table[*y >> 11];
1003//   }
1004//
1005// Turning into:
1006//   movzwl (%rdi), %eax
1007//   movl %eax, %ecx
1008//   shrl $11, %ecx
1009//   addl (%rsi,%rcx,4), %eax
1010//
1011// Instead of:
1012//   movzwl (%rdi), %eax
1013//   movl %eax, %ecx
1014//   shrl $9, %ecx
1015//   andl $124, %rcx
1016//   addl (%rsi,%rcx), %eax
1017//
1018// Note that this function assumes the mask is provided as a mask *after* the
1019// value is shifted. The input chain may or may not match that, but computing
1020// such a mask is trivial.
1021static bool foldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
1022                                    uint64_t Mask,
1023                                    SDValue Shift, SDValue X,
1024                                    X86ISelAddressMode &AM) {
1025  if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
1026      !isa<ConstantSDNode>(Shift.getOperand(1)))
1027    return true;
1028
1029  unsigned ShiftAmt = Shift.getConstantOperandVal(1);
1030  unsigned MaskLZ = countLeadingZeros(Mask);
1031  unsigned MaskTZ = countTrailingZeros(Mask);
1032
1033  // The amount of shift we're trying to fit into the addressing mode is taken
1034  // from the trailing zeros of the mask.
1035  unsigned AMShiftAmt = MaskTZ;
1036
1037  // There is nothing we can do here unless the mask is removing some bits.
1038  // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
1039  if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true;
1040
1041  // We also need to ensure that mask is a continuous run of bits.
1042  if (countTrailingOnes(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;
1043
1044  // Scale the leading zero count down based on the actual size of the value.
1045  // Also scale it down based on the size of the shift.
1046  MaskLZ -= (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt;
1047
1048  // The final check is to ensure that any masked out high bits of X are
1049  // already known to be zero. Otherwise, the mask has a semantic impact
1050  // other than masking out a couple of low bits. Unfortunately, because of
1051  // the mask, zero extensions will be removed from operands in some cases.
1052  // This code works extra hard to look through extensions because we can
1053  // replace them with zero extensions cheaply if necessary.
1054  bool ReplacingAnyExtend = false;
1055  if (X.getOpcode() == ISD::ANY_EXTEND) {
1056    unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() -
1057                          X.getOperand(0).getSimpleValueType().getSizeInBits();
1058    // Assume that we'll replace the any-extend with a zero-extend, and
1059    // narrow the search to the extended value.
1060    X = X.getOperand(0);
1061    MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
1062    ReplacingAnyExtend = true;
1063  }
1064  APInt MaskedHighBits =
1065    APInt::getHighBitsSet(X.getSimpleValueType().getSizeInBits(), MaskLZ);
1066  APInt KnownZero, KnownOne;
1067  DAG.computeKnownBits(X, KnownZero, KnownOne);
1068  if (MaskedHighBits != KnownZero) return true;
1069
1070  // We've identified a pattern that can be transformed into a single shift
1071  // and an addressing mode. Make it so.
1072  MVT VT = N.getSimpleValueType();
1073  if (ReplacingAnyExtend) {
1074    assert(X.getValueType() != VT);
1075    // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
1076    SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X);
1077    insertDAGNode(DAG, N, NewX);
1078    X = NewX;
1079  }
1080  SDLoc DL(N);
1081  SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
1082  SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
1083  SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
1084  SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);
1085
1086  // Insert the new nodes into the topological ordering. We must do this in
1087  // a valid topological ordering as nothing is going to go back and re-sort
1088  // these nodes. We continually insert before 'N' in sequence as this is
1089  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
1090  // hierarchy left to express.
1091  insertDAGNode(DAG, N, NewSRLAmt);
1092  insertDAGNode(DAG, N, NewSRL);
1093  insertDAGNode(DAG, N, NewSHLAmt);
1094  insertDAGNode(DAG, N, NewSHL);
1095  DAG.ReplaceAllUsesWith(N, NewSHL);
1096
1097  AM.Scale = 1 << AMShiftAmt;
1098  AM.IndexReg = NewSRL;
1099  return false;
1100}
1101
1102bool X86DAGToDAGISel::matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
1103                                              unsigned Depth) {
1104  SDLoc dl(N);
1105  DEBUG({
1106      dbgs() << "MatchAddress: ";
1107      AM.dump();
1108    });
1109  // Limit recursion.
1110  if (Depth > 5)
1111    return matchAddressBase(N, AM);
1112
1113  // If this is already a %rip relative address, we can only merge immediates
1114  // into it.  Instead of handling this in every case, we handle it here.
1115  // RIP relative addressing: %rip + 32-bit displacement!
1116  if (AM.isRIPRelative()) {
1117    // FIXME: JumpTable and ExternalSymbol address currently don't like
1118    // displacements.  It isn't very important, but this should be fixed for
1119    // consistency.
1120    if (!(AM.ES || AM.MCSym) && AM.JT != -1)
1121      return true;
1122
1123    if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
1124      if (!foldOffsetIntoAddress(Cst->getSExtValue(), AM))
1125        return false;
1126    return true;
1127  }
1128
1129  switch (N.getOpcode()) {
1130  default: break;
1131  case ISD::LOCAL_RECOVER: {
1132    if (!AM.hasSymbolicDisplacement() && AM.Disp == 0)
1133      if (const auto *ESNode = dyn_cast<MCSymbolSDNode>(N.getOperand(0))) {
1134        // Use the symbol and don't prefix it.
1135        AM.MCSym = ESNode->getMCSymbol();
1136        return false;
1137      }
1138    break;
1139  }
1140  case ISD::Constant: {
1141    uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
1142    if (!foldOffsetIntoAddress(Val, AM))
1143      return false;
1144    break;
1145  }
1146
1147  case X86ISD::Wrapper:
1148  case X86ISD::WrapperRIP:
1149    if (!matchWrapper(N, AM))
1150      return false;
1151    break;
1152
1153  case ISD::LOAD:
1154    if (!matchLoadInAddress(cast<LoadSDNode>(N), AM))
1155      return false;
1156    break;
1157
1158  case ISD::FrameIndex:
1159    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1160        AM.Base_Reg.getNode() == nullptr &&
1161        (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
1162      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
1163      AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
1164      return false;
1165    }
1166    break;
1167
1168  case ISD::SHL:
1169    if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
1170      break;
1171
1172    if (ConstantSDNode
1173          *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
1174      unsigned Val = CN->getZExtValue();
1175      // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
1176      // that the base operand remains free for further matching. If
1177      // the base doesn't end up getting used, a post-processing step
1178      // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
1179      if (Val == 1 || Val == 2 || Val == 3) {
1180        AM.Scale = 1 << Val;
1181        SDValue ShVal = N.getNode()->getOperand(0);
1182
1183        // Okay, we know that we have a scale by now.  However, if the scaled
1184        // value is an add of something and a constant, we can fold the
1185        // constant into the disp field here.
1186        if (CurDAG->isBaseWithConstantOffset(ShVal)) {
1187          AM.IndexReg = ShVal.getNode()->getOperand(0);
1188          ConstantSDNode *AddVal =
1189            cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
1190          uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val;
1191          if (!foldOffsetIntoAddress(Disp, AM))
1192            return false;
1193        }
1194
1195        AM.IndexReg = ShVal;
1196        return false;
1197      }
1198    }
1199    break;
1200
1201  case ISD::SRL: {
1202    // Scale must not be used already.
1203    if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
1204
1205    SDValue And = N.getOperand(0);
1206    if (And.getOpcode() != ISD::AND) break;
1207    SDValue X = And.getOperand(0);
1208
1209    // We only handle up to 64-bit values here as those are what matter for
1210    // addressing mode optimizations.
1211    if (X.getSimpleValueType().getSizeInBits() > 64) break;
1212
1213    // The mask used for the transform is expected to be post-shift, but we
1214    // found the shift first so just apply the shift to the mask before passing
1215    // it down.
1216    if (!isa<ConstantSDNode>(N.getOperand(1)) ||
1217        !isa<ConstantSDNode>(And.getOperand(1)))
1218      break;
1219    uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
1220
1221    // Try to fold the mask and shift into the scale, and return false if we
1222    // succeed.
1223    if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
1224      return false;
1225    break;
1226  }
1227
1228  case ISD::SMUL_LOHI:
1229  case ISD::UMUL_LOHI:
1230    // A mul_lohi where we need the low part can be folded as a plain multiply.
1231    if (N.getResNo() != 0) break;
1232    // FALL THROUGH
1233  case ISD::MUL:
1234  case X86ISD::MUL_IMM:
1235    // X*[3,5,9] -> X+X*[2,4,8]
1236    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1237        AM.Base_Reg.getNode() == nullptr &&
1238        AM.IndexReg.getNode() == nullptr) {
1239      if (ConstantSDNode
1240            *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
1241        if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
1242            CN->getZExtValue() == 9) {
1243          AM.Scale = unsigned(CN->getZExtValue())-1;
1244
1245          SDValue MulVal = N.getNode()->getOperand(0);
1246          SDValue Reg;
1247
1248          // Okay, we know that we have a scale by now.  However, if the scaled
1249          // value is an add of something and a constant, we can fold the
1250          // constant into the disp field here.
1251          if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
1252              isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
1253            Reg = MulVal.getNode()->getOperand(0);
1254            ConstantSDNode *AddVal =
1255              cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
1256            uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
1257            if (foldOffsetIntoAddress(Disp, AM))
1258              Reg = N.getNode()->getOperand(0);
1259          } else {
1260            Reg = N.getNode()->getOperand(0);
1261          }
1262
1263          AM.IndexReg = AM.Base_Reg = Reg;
1264          return false;
1265        }
1266    }
1267    break;
1268
1269  case ISD::SUB: {
1270    // Given A-B, if A can be completely folded into the address and
1271    // the index field with the index field unused, use -B as the index.
1272    // This is a win if a has multiple parts that can be folded into
1273    // the address. Also, this saves a mov if the base register has
1274    // other uses, since it avoids a two-address sub instruction, however
1275    // it costs an additional mov if the index register has other uses.
1276
1277    // Add an artificial use to this node so that we can keep track of
1278    // it if it gets CSE'd with a different node.
1279    HandleSDNode Handle(N);
1280
1281    // Test if the LHS of the sub can be folded.
1282    X86ISelAddressMode Backup = AM;
1283    if (matchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
1284      AM = Backup;
1285      break;
1286    }
1287    // Test if the index field is free for use.
1288    if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
1289      AM = Backup;
1290      break;
1291    }
1292
1293    int Cost = 0;
1294    SDValue RHS = Handle.getValue().getNode()->getOperand(1);
1295    // If the RHS involves a register with multiple uses, this
1296    // transformation incurs an extra mov, due to the neg instruction
1297    // clobbering its operand.
1298    if (!RHS.getNode()->hasOneUse() ||
1299        RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
1300        RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
1301        RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
1302        (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
1303         RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
1304      ++Cost;
1305    // If the base is a register with multiple uses, this
1306    // transformation may save a mov.
1307    if ((AM.BaseType == X86ISelAddressMode::RegBase &&
1308         AM.Base_Reg.getNode() &&
1309         !AM.Base_Reg.getNode()->hasOneUse()) ||
1310        AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1311      --Cost;
1312    // If the folded LHS was interesting, this transformation saves
1313    // address arithmetic.
1314    if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
1315        ((AM.Disp != 0) && (Backup.Disp == 0)) +
1316        (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
1317      --Cost;
1318    // If it doesn't look like it may be an overall win, don't do it.
1319    if (Cost >= 0) {
1320      AM = Backup;
1321      break;
1322    }
1323
1324    // Ok, the transformation is legal and appears profitable. Go for it.
1325    SDValue Zero = CurDAG->getConstant(0, dl, N.getValueType());
1326    SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
1327    AM.IndexReg = Neg;
1328    AM.Scale = 1;
1329
1330    // Insert the new nodes into the topological ordering.
1331    insertDAGNode(*CurDAG, N, Zero);
1332    insertDAGNode(*CurDAG, N, Neg);
1333    return false;
1334  }
1335
1336  case ISD::ADD:
1337    if (!matchAdd(N, AM, Depth))
1338      return false;
1339    break;
1340
1341  case ISD::OR:
1342    // We want to look through a transform in InstCombine and DAGCombiner that
1343    // turns 'add' into 'or', so we can treat this 'or' exactly like an 'add'.
1344    // Example: (or (and x, 1), (shl y, 3)) --> (add (and x, 1), (shl y, 3))
1345    // An 'lea' can then be used to match the shift (multiply) and add:
1346    // and $1, %esi
1347    // lea (%rsi, %rdi, 8), %rax
1348    if (CurDAG->haveNoCommonBitsSet(N.getOperand(0), N.getOperand(1)) &&
1349        !matchAdd(N, AM, Depth))
1350      return false;
1351    break;
1352
1353  case ISD::AND: {
1354    // Perform some heroic transforms on an and of a constant-count shift
1355    // with a constant to enable use of the scaled offset field.
1356
1357    // Scale must not be used already.
1358    if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
1359
1360    SDValue Shift = N.getOperand(0);
1361    if (Shift.getOpcode() != ISD::SRL && Shift.getOpcode() != ISD::SHL) break;
1362    SDValue X = Shift.getOperand(0);
1363
1364    // We only handle up to 64-bit values here as those are what matter for
1365    // addressing mode optimizations.
1366    if (X.getSimpleValueType().getSizeInBits() > 64) break;
1367
1368    if (!isa<ConstantSDNode>(N.getOperand(1)))
1369      break;
1370    uint64_t Mask = N.getConstantOperandVal(1);
1371
1372    // Try to fold the mask and shift into an extract and scale.
1373    if (!foldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
1374      return false;
1375
1376    // Try to fold the mask and shift directly into the scale.
1377    if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
1378      return false;
1379
1380    // Try to swap the mask and shift to place shifts which can be done as
1381    // a scale on the outside of the mask.
1382    if (!foldMaskedShiftToScaledMask(*CurDAG, N, Mask, Shift, X, AM))
1383      return false;
1384    break;
1385  }
1386  }
1387
1388  return matchAddressBase(N, AM);
1389}
1390
1391/// Helper for MatchAddress. Add the specified node to the
1392/// specified addressing mode without any further recursion.
1393bool X86DAGToDAGISel::matchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1394  // Is the base register already occupied?
1395  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
1396    // If so, check to see if the scale index register is set.
1397    if (!AM.IndexReg.getNode()) {
1398      AM.IndexReg = N;
1399      AM.Scale = 1;
1400      return false;
1401    }
1402
1403    // Otherwise, we cannot select it.
1404    return true;
1405  }
1406
1407  // Default, generate it as a register.
1408  AM.BaseType = X86ISelAddressMode::RegBase;
1409  AM.Base_Reg = N;
1410  return false;
1411}
1412
1413bool X86DAGToDAGISel::selectVectorAddr(SDNode *Parent, SDValue N, SDValue &Base,
1414                                      SDValue &Scale, SDValue &Index,
1415                                      SDValue &Disp, SDValue &Segment) {
1416
1417  MaskedGatherScatterSDNode *Mgs = dyn_cast<MaskedGatherScatterSDNode>(Parent);
1418  if (!Mgs)
1419    return false;
1420  X86ISelAddressMode AM;
1421  unsigned AddrSpace = Mgs->getPointerInfo().getAddrSpace();
1422  // AddrSpace 256 -> GS, 257 -> FS.
1423  if (AddrSpace == 256)
1424    AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1425  if (AddrSpace == 257)
1426    AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1427
1428  SDLoc DL(N);
1429  Base = Mgs->getBasePtr();
1430  Index = Mgs->getIndex();
1431  unsigned ScalarSize = Mgs->getValue().getValueType().getScalarSizeInBits();
1432  Scale = getI8Imm(ScalarSize/8, DL);
1433
1434  // If Base is 0, the whole address is in index and the Scale is 1
1435  if (isa<ConstantSDNode>(Base)) {
1436    assert(cast<ConstantSDNode>(Base)->isNullValue() &&
1437           "Unexpected base in gather/scatter");
1438    Scale = getI8Imm(1, DL);
1439    Base = CurDAG->getRegister(0, MVT::i32);
1440  }
1441  if (AM.Segment.getNode())
1442    Segment = AM.Segment;
1443  else
1444    Segment = CurDAG->getRegister(0, MVT::i32);
1445  Disp = CurDAG->getTargetConstant(0, DL, MVT::i32);
1446  return true;
1447}
1448
1449/// Returns true if it is able to pattern match an addressing mode.
1450/// It returns the operands which make up the maximal addressing mode it can
1451/// match by reference.
1452///
1453/// Parent is the parent node of the addr operand that is being matched.  It
1454/// is always a load, store, atomic node, or null.  It is only null when
1455/// checking memory operands for inline asm nodes.
1456bool X86DAGToDAGISel::selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
1457                                 SDValue &Scale, SDValue &Index,
1458                                 SDValue &Disp, SDValue &Segment) {
1459  X86ISelAddressMode AM;
1460
1461  if (Parent &&
1462      // This list of opcodes are all the nodes that have an "addr:$ptr" operand
1463      // that are not a MemSDNode, and thus don't have proper addrspace info.
1464      Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
1465      Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
1466      Parent->getOpcode() != X86ISD::TLSCALL && // Fixme
1467      Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp
1468      Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp
1469    unsigned AddrSpace =
1470      cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
1471    // AddrSpace 256 -> GS, 257 -> FS.
1472    if (AddrSpace == 256)
1473      AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1474    if (AddrSpace == 257)
1475      AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1476  }
1477
1478  if (matchAddress(N, AM))
1479    return false;
1480
1481  MVT VT = N.getSimpleValueType();
1482  if (AM.BaseType == X86ISelAddressMode::RegBase) {
1483    if (!AM.Base_Reg.getNode())
1484      AM.Base_Reg = CurDAG->getRegister(0, VT);
1485  }
1486
1487  if (!AM.IndexReg.getNode())
1488    AM.IndexReg = CurDAG->getRegister(0, VT);
1489
1490  getAddressOperands(AM, SDLoc(N), Base, Scale, Index, Disp, Segment);
1491  return true;
1492}
1493
1494/// Match a scalar SSE load. In particular, we want to match a load whose top
1495/// elements are either undef or zeros. The load flavor is derived from the
1496/// type of N, which is either v4f32 or v2f64.
1497///
1498/// We also return:
1499///   PatternChainNode: this is the matched node that has a chain input and
1500///   output.
1501bool X86DAGToDAGISel::selectScalarSSELoad(SDNode *Root,
1502                                          SDValue N, SDValue &Base,
1503                                          SDValue &Scale, SDValue &Index,
1504                                          SDValue &Disp, SDValue &Segment,
1505                                          SDValue &PatternNodeWithChain) {
1506  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1507    PatternNodeWithChain = N.getOperand(0);
1508    if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
1509        PatternNodeWithChain.hasOneUse() &&
1510        IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1511        IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1512      LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
1513      if (!selectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1514        return false;
1515      return true;
1516    }
1517  }
1518
1519  // Also handle the case where we explicitly require zeros in the top
1520  // elements.  This is a vector shuffle from the zero vector.
1521  if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1522      // Check to see if the top elements are all zeros (or bitcast of zeros).
1523      N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1524      N.getOperand(0).getNode()->hasOneUse() &&
1525      ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1526      N.getOperand(0).getOperand(0).hasOneUse() &&
1527      IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1528      IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1529    // Okay, this is a zero extending load.  Fold it.
1530    LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1531    if (!selectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1532      return false;
1533    PatternNodeWithChain = SDValue(LD, 0);
1534    return true;
1535  }
1536  return false;
1537}
1538
1539
1540bool X86DAGToDAGISel::selectMOV64Imm32(SDValue N, SDValue &Imm) {
1541  if (const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1542    uint64_t ImmVal = CN->getZExtValue();
1543    if ((uint32_t)ImmVal != (uint64_t)ImmVal)
1544      return false;
1545
1546    Imm = CurDAG->getTargetConstant(ImmVal, SDLoc(N), MVT::i64);
1547    return true;
1548  }
1549
1550  // In static codegen with small code model, we can get the address of a label
1551  // into a register with 'movl'. TableGen has already made sure we're looking
1552  // at a label of some kind.
1553  assert(N->getOpcode() == X86ISD::Wrapper &&
1554         "Unexpected node type for MOV32ri64");
1555  N = N.getOperand(0);
1556
1557  if (N->getOpcode() != ISD::TargetConstantPool &&
1558      N->getOpcode() != ISD::TargetJumpTable &&
1559      N->getOpcode() != ISD::TargetGlobalAddress &&
1560      N->getOpcode() != ISD::TargetExternalSymbol &&
1561      N->getOpcode() != ISD::MCSymbol &&
1562      N->getOpcode() != ISD::TargetBlockAddress)
1563    return false;
1564
1565  Imm = N;
1566  return TM.getCodeModel() == CodeModel::Small;
1567}
1568
1569bool X86DAGToDAGISel::selectLEA64_32Addr(SDValue N, SDValue &Base,
1570                                         SDValue &Scale, SDValue &Index,
1571                                         SDValue &Disp, SDValue &Segment) {
1572  if (!selectLEAAddr(N, Base, Scale, Index, Disp, Segment))
1573    return false;
1574
1575  SDLoc DL(N);
1576  RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Base);
1577  if (RN && RN->getReg() == 0)
1578    Base = CurDAG->getRegister(0, MVT::i64);
1579  else if (Base.getValueType() == MVT::i32 && !dyn_cast<FrameIndexSDNode>(Base)) {
1580    // Base could already be %rip, particularly in the x32 ABI.
1581    Base = SDValue(CurDAG->getMachineNode(
1582                       TargetOpcode::SUBREG_TO_REG, DL, MVT::i64,
1583                       CurDAG->getTargetConstant(0, DL, MVT::i64),
1584                       Base,
1585                       CurDAG->getTargetConstant(X86::sub_32bit, DL, MVT::i32)),
1586                   0);
1587  }
1588
1589  RN = dyn_cast<RegisterSDNode>(Index);
1590  if (RN && RN->getReg() == 0)
1591    Index = CurDAG->getRegister(0, MVT::i64);
1592  else {
1593    assert(Index.getValueType() == MVT::i32 &&
1594           "Expect to be extending 32-bit registers for use in LEA");
1595    Index = SDValue(CurDAG->getMachineNode(
1596                        TargetOpcode::SUBREG_TO_REG, DL, MVT::i64,
1597                        CurDAG->getTargetConstant(0, DL, MVT::i64),
1598                        Index,
1599                        CurDAG->getTargetConstant(X86::sub_32bit, DL,
1600                                                  MVT::i32)),
1601                    0);
1602  }
1603
1604  return true;
1605}
1606
1607/// Calls SelectAddr and determines if the maximal addressing
1608/// mode it matches can be cost effectively emitted as an LEA instruction.
1609bool X86DAGToDAGISel::selectLEAAddr(SDValue N,
1610                                    SDValue &Base, SDValue &Scale,
1611                                    SDValue &Index, SDValue &Disp,
1612                                    SDValue &Segment) {
1613  X86ISelAddressMode AM;
1614
1615  // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1616  // segments.
1617  SDValue Copy = AM.Segment;
1618  SDValue T = CurDAG->getRegister(0, MVT::i32);
1619  AM.Segment = T;
1620  if (matchAddress(N, AM))
1621    return false;
1622  assert (T == AM.Segment);
1623  AM.Segment = Copy;
1624
1625  MVT VT = N.getSimpleValueType();
1626  unsigned Complexity = 0;
1627  if (AM.BaseType == X86ISelAddressMode::RegBase)
1628    if (AM.Base_Reg.getNode())
1629      Complexity = 1;
1630    else
1631      AM.Base_Reg = CurDAG->getRegister(0, VT);
1632  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1633    Complexity = 4;
1634
1635  if (AM.IndexReg.getNode())
1636    Complexity++;
1637  else
1638    AM.IndexReg = CurDAG->getRegister(0, VT);
1639
1640  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1641  // a simple shift.
1642  if (AM.Scale > 1)
1643    Complexity++;
1644
1645  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1646  // to a LEA. This is determined with some experimentation but is by no means
1647  // optimal (especially for code size consideration). LEA is nice because of
1648  // its three-address nature. Tweak the cost function again when we can run
1649  // convertToThreeAddress() at register allocation time.
1650  if (AM.hasSymbolicDisplacement()) {
1651    // For X86-64, always use LEA to materialize RIP-relative addresses.
1652    if (Subtarget->is64Bit())
1653      Complexity = 4;
1654    else
1655      Complexity += 2;
1656  }
1657
1658  if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
1659    Complexity++;
1660
1661  // If it isn't worth using an LEA, reject it.
1662  if (Complexity <= 2)
1663    return false;
1664
1665  getAddressOperands(AM, SDLoc(N), Base, Scale, Index, Disp, Segment);
1666  return true;
1667}
1668
1669/// This is only run on TargetGlobalTLSAddress nodes.
1670bool X86DAGToDAGISel::selectTLSADDRAddr(SDValue N, SDValue &Base,
1671                                        SDValue &Scale, SDValue &Index,
1672                                        SDValue &Disp, SDValue &Segment) {
1673  assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
1674  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
1675
1676  X86ISelAddressMode AM;
1677  AM.GV = GA->getGlobal();
1678  AM.Disp += GA->getOffset();
1679  AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
1680  AM.SymbolFlags = GA->getTargetFlags();
1681
1682  if (N.getValueType() == MVT::i32) {
1683    AM.Scale = 1;
1684    AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
1685  } else {
1686    AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
1687  }
1688
1689  getAddressOperands(AM, SDLoc(N), Base, Scale, Index, Disp, Segment);
1690  return true;
1691}
1692
1693
1694bool X86DAGToDAGISel::tryFoldLoad(SDNode *P, SDValue N,
1695                                  SDValue &Base, SDValue &Scale,
1696                                  SDValue &Index, SDValue &Disp,
1697                                  SDValue &Segment) {
1698  if (!ISD::isNON_EXTLoad(N.getNode()) ||
1699      !IsProfitableToFold(N, P, P) ||
1700      !IsLegalToFold(N, P, P, OptLevel))
1701    return false;
1702
1703  return selectAddr(N.getNode(),
1704                    N.getOperand(1), Base, Scale, Index, Disp, Segment);
1705}
1706
1707/// Return an SDNode that returns the value of the global base register.
1708/// Output instructions required to initialize the global base register,
1709/// if necessary.
1710SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1711  unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
1712  auto &DL = MF->getDataLayout();
1713  return CurDAG->getRegister(GlobalBaseReg, TLI->getPointerTy(DL)).getNode();
1714}
1715
1716/// Atomic opcode table
1717///
1718enum AtomicOpc {
1719  ADD,
1720  SUB,
1721  INC,
1722  DEC,
1723  OR,
1724  AND,
1725  XOR,
1726  AtomicOpcEnd
1727};
1728
1729enum AtomicSz {
1730  ConstantI8,
1731  I8,
1732  SextConstantI16,
1733  ConstantI16,
1734  I16,
1735  SextConstantI32,
1736  ConstantI32,
1737  I32,
1738  SextConstantI64,
1739  ConstantI64,
1740  I64,
1741  AtomicSzEnd
1742};
1743
1744static const uint16_t AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = {
1745  {
1746    X86::LOCK_ADD8mi,
1747    X86::LOCK_ADD8mr,
1748    X86::LOCK_ADD16mi8,
1749    X86::LOCK_ADD16mi,
1750    X86::LOCK_ADD16mr,
1751    X86::LOCK_ADD32mi8,
1752    X86::LOCK_ADD32mi,
1753    X86::LOCK_ADD32mr,
1754    X86::LOCK_ADD64mi8,
1755    X86::LOCK_ADD64mi32,
1756    X86::LOCK_ADD64mr,
1757  },
1758  {
1759    X86::LOCK_SUB8mi,
1760    X86::LOCK_SUB8mr,
1761    X86::LOCK_SUB16mi8,
1762    X86::LOCK_SUB16mi,
1763    X86::LOCK_SUB16mr,
1764    X86::LOCK_SUB32mi8,
1765    X86::LOCK_SUB32mi,
1766    X86::LOCK_SUB32mr,
1767    X86::LOCK_SUB64mi8,
1768    X86::LOCK_SUB64mi32,
1769    X86::LOCK_SUB64mr,
1770  },
1771  {
1772    0,
1773    X86::LOCK_INC8m,
1774    0,
1775    0,
1776    X86::LOCK_INC16m,
1777    0,
1778    0,
1779    X86::LOCK_INC32m,
1780    0,
1781    0,
1782    X86::LOCK_INC64m,
1783  },
1784  {
1785    0,
1786    X86::LOCK_DEC8m,
1787    0,
1788    0,
1789    X86::LOCK_DEC16m,
1790    0,
1791    0,
1792    X86::LOCK_DEC32m,
1793    0,
1794    0,
1795    X86::LOCK_DEC64m,
1796  },
1797  {
1798    X86::LOCK_OR8mi,
1799    X86::LOCK_OR8mr,
1800    X86::LOCK_OR16mi8,
1801    X86::LOCK_OR16mi,
1802    X86::LOCK_OR16mr,
1803    X86::LOCK_OR32mi8,
1804    X86::LOCK_OR32mi,
1805    X86::LOCK_OR32mr,
1806    X86::LOCK_OR64mi8,
1807    X86::LOCK_OR64mi32,
1808    X86::LOCK_OR64mr,
1809  },
1810  {
1811    X86::LOCK_AND8mi,
1812    X86::LOCK_AND8mr,
1813    X86::LOCK_AND16mi8,
1814    X86::LOCK_AND16mi,
1815    X86::LOCK_AND16mr,
1816    X86::LOCK_AND32mi8,
1817    X86::LOCK_AND32mi,
1818    X86::LOCK_AND32mr,
1819    X86::LOCK_AND64mi8,
1820    X86::LOCK_AND64mi32,
1821    X86::LOCK_AND64mr,
1822  },
1823  {
1824    X86::LOCK_XOR8mi,
1825    X86::LOCK_XOR8mr,
1826    X86::LOCK_XOR16mi8,
1827    X86::LOCK_XOR16mi,
1828    X86::LOCK_XOR16mr,
1829    X86::LOCK_XOR32mi8,
1830    X86::LOCK_XOR32mi,
1831    X86::LOCK_XOR32mr,
1832    X86::LOCK_XOR64mi8,
1833    X86::LOCK_XOR64mi32,
1834    X86::LOCK_XOR64mr,
1835  }
1836};
1837
1838// Return the target constant operand for atomic-load-op and do simple
1839// translations, such as from atomic-load-add to lock-sub. The return value is
1840// one of the following 3 cases:
1841// + target-constant, the operand could be supported as a target constant.
1842// + empty, the operand is not needed any more with the new op selected.
1843// + non-empty, otherwise.
1844static SDValue getAtomicLoadArithTargetConstant(SelectionDAG *CurDAG,
1845                                                SDLoc dl,
1846                                                enum AtomicOpc &Op, MVT NVT,
1847                                                SDValue Val,
1848                                                const X86Subtarget *Subtarget) {
1849  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val)) {
1850    int64_t CNVal = CN->getSExtValue();
1851    // Quit if not 32-bit imm.
1852    if ((int32_t)CNVal != CNVal)
1853      return Val;
1854    // Quit if INT32_MIN: it would be negated as it is negative and overflow,
1855    // producing an immediate that does not fit in the 32 bits available for
1856    // an immediate operand to sub. However, it still fits in 32 bits for the
1857    // add (since it is not negated) so we can return target-constant.
1858    if (CNVal == INT32_MIN)
1859      return CurDAG->getTargetConstant(CNVal, dl, NVT);
1860    // For atomic-load-add, we could do some optimizations.
1861    if (Op == ADD) {
1862      // Translate to INC/DEC if ADD by 1 or -1.
1863      if (((CNVal == 1) || (CNVal == -1)) && !Subtarget->slowIncDec()) {
1864        Op = (CNVal == 1) ? INC : DEC;
1865        // No more constant operand after being translated into INC/DEC.
1866        return SDValue();
1867      }
1868      // Translate to SUB if ADD by negative value.
1869      if (CNVal < 0) {
1870        Op = SUB;
1871        CNVal = -CNVal;
1872      }
1873    }
1874    return CurDAG->getTargetConstant(CNVal, dl, NVT);
1875  }
1876
1877  // If the value operand is single-used, try to optimize it.
1878  if (Op == ADD && Val.hasOneUse()) {
1879    // Translate (atomic-load-add ptr (sub 0 x)) back to (lock-sub x).
1880    if (Val.getOpcode() == ISD::SUB && X86::isZeroNode(Val.getOperand(0))) {
1881      Op = SUB;
1882      return Val.getOperand(1);
1883    }
1884    // A special case for i16, which needs truncating as, in most cases, it's
1885    // promoted to i32. We will translate
1886    // (atomic-load-add (truncate (sub 0 x))) to (lock-sub (EXTRACT_SUBREG x))
1887    if (Val.getOpcode() == ISD::TRUNCATE && NVT == MVT::i16 &&
1888        Val.getOperand(0).getOpcode() == ISD::SUB &&
1889        X86::isZeroNode(Val.getOperand(0).getOperand(0))) {
1890      Op = SUB;
1891      Val = Val.getOperand(0);
1892      return CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl, NVT,
1893                                            Val.getOperand(1));
1894    }
1895  }
1896
1897  return Val;
1898}
1899
1900SDNode *X86DAGToDAGISel::selectAtomicLoadArith(SDNode *Node, MVT NVT) {
1901  if (Node->hasAnyUseOfValue(0))
1902    return nullptr;
1903
1904  SDLoc dl(Node);
1905
1906  // Optimize common patterns for __sync_or_and_fetch and similar arith
1907  // operations where the result is not used. This allows us to use the "lock"
1908  // version of the arithmetic instruction.
1909  SDValue Chain = Node->getOperand(0);
1910  SDValue Ptr = Node->getOperand(1);
1911  SDValue Val = Node->getOperand(2);
1912  SDValue Base, Scale, Index, Disp, Segment;
1913  if (!selectAddr(Node, Ptr, Base, Scale, Index, Disp, Segment))
1914    return nullptr;
1915
1916  // Which index into the table.
1917  enum AtomicOpc Op;
1918  switch (Node->getOpcode()) {
1919    default:
1920      return nullptr;
1921    case ISD::ATOMIC_LOAD_OR:
1922      Op = OR;
1923      break;
1924    case ISD::ATOMIC_LOAD_AND:
1925      Op = AND;
1926      break;
1927    case ISD::ATOMIC_LOAD_XOR:
1928      Op = XOR;
1929      break;
1930    case ISD::ATOMIC_LOAD_ADD:
1931      Op = ADD;
1932      break;
1933  }
1934
1935  Val = getAtomicLoadArithTargetConstant(CurDAG, dl, Op, NVT, Val, Subtarget);
1936  bool isUnOp = !Val.getNode();
1937  bool isCN = Val.getNode() && (Val.getOpcode() == ISD::TargetConstant);
1938
1939  unsigned Opc = 0;
1940  switch (NVT.SimpleTy) {
1941    default: return nullptr;
1942    case MVT::i8:
1943      if (isCN)
1944        Opc = AtomicOpcTbl[Op][ConstantI8];
1945      else
1946        Opc = AtomicOpcTbl[Op][I8];
1947      break;
1948    case MVT::i16:
1949      if (isCN) {
1950        if (immSext8(Val.getNode()))
1951          Opc = AtomicOpcTbl[Op][SextConstantI16];
1952        else
1953          Opc = AtomicOpcTbl[Op][ConstantI16];
1954      } else
1955        Opc = AtomicOpcTbl[Op][I16];
1956      break;
1957    case MVT::i32:
1958      if (isCN) {
1959        if (immSext8(Val.getNode()))
1960          Opc = AtomicOpcTbl[Op][SextConstantI32];
1961        else
1962          Opc = AtomicOpcTbl[Op][ConstantI32];
1963      } else
1964        Opc = AtomicOpcTbl[Op][I32];
1965      break;
1966    case MVT::i64:
1967      if (isCN) {
1968        if (immSext8(Val.getNode()))
1969          Opc = AtomicOpcTbl[Op][SextConstantI64];
1970        else if (i64immSExt32(Val.getNode()))
1971          Opc = AtomicOpcTbl[Op][ConstantI64];
1972        else
1973          llvm_unreachable("True 64 bits constant in SelectAtomicLoadArith");
1974      } else
1975        Opc = AtomicOpcTbl[Op][I64];
1976      break;
1977  }
1978
1979  assert(Opc != 0 && "Invalid arith lock transform!");
1980
1981  // Building the new node.
1982  SDValue Ret;
1983  if (isUnOp) {
1984    SDValue Ops[] = { Base, Scale, Index, Disp, Segment, Chain };
1985    Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0);
1986  } else {
1987    SDValue Ops[] = { Base, Scale, Index, Disp, Segment, Val, Chain };
1988    Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0);
1989  }
1990
1991  // Copying the MachineMemOperand.
1992  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1993  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1994  cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1995
1996  // We need to have two outputs as that is what the original instruction had.
1997  // So we add a dummy, undefined output. This is safe as we checked first
1998  // that no-one uses our output anyway.
1999  SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
2000                                                 dl, NVT), 0);
2001  SDValue RetVals[] = { Undef, Ret };
2002  return CurDAG->getMergeValues(RetVals, dl).getNode();
2003}
2004
2005/// Test whether the given X86ISD::CMP node has any uses which require the SF
2006/// or OF bits to be accurate.
2007static bool hasNoSignedComparisonUses(SDNode *N) {
2008  // Examine each user of the node.
2009  for (SDNode::use_iterator UI = N->use_begin(),
2010         UE = N->use_end(); UI != UE; ++UI) {
2011    // Only examine CopyToReg uses.
2012    if (UI->getOpcode() != ISD::CopyToReg)
2013      return false;
2014    // Only examine CopyToReg uses that copy to EFLAGS.
2015    if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
2016          X86::EFLAGS)
2017      return false;
2018    // Examine each user of the CopyToReg use.
2019    for (SDNode::use_iterator FlagUI = UI->use_begin(),
2020           FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
2021      // Only examine the Flag result.
2022      if (FlagUI.getUse().getResNo() != 1) continue;
2023      // Anything unusual: assume conservatively.
2024      if (!FlagUI->isMachineOpcode()) return false;
2025      // Examine the opcode of the user.
2026      switch (FlagUI->getMachineOpcode()) {
2027      // These comparisons don't treat the most significant bit specially.
2028      case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
2029      case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
2030      case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
2031      case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
2032      case X86::JA_1: case X86::JAE_1: case X86::JB_1: case X86::JBE_1:
2033      case X86::JE_1: case X86::JNE_1: case X86::JP_1: case X86::JNP_1:
2034      case X86::CMOVA16rr: case X86::CMOVA16rm:
2035      case X86::CMOVA32rr: case X86::CMOVA32rm:
2036      case X86::CMOVA64rr: case X86::CMOVA64rm:
2037      case X86::CMOVAE16rr: case X86::CMOVAE16rm:
2038      case X86::CMOVAE32rr: case X86::CMOVAE32rm:
2039      case X86::CMOVAE64rr: case X86::CMOVAE64rm:
2040      case X86::CMOVB16rr: case X86::CMOVB16rm:
2041      case X86::CMOVB32rr: case X86::CMOVB32rm:
2042      case X86::CMOVB64rr: case X86::CMOVB64rm:
2043      case X86::CMOVBE16rr: case X86::CMOVBE16rm:
2044      case X86::CMOVBE32rr: case X86::CMOVBE32rm:
2045      case X86::CMOVBE64rr: case X86::CMOVBE64rm:
2046      case X86::CMOVE16rr: case X86::CMOVE16rm:
2047      case X86::CMOVE32rr: case X86::CMOVE32rm:
2048      case X86::CMOVE64rr: case X86::CMOVE64rm:
2049      case X86::CMOVNE16rr: case X86::CMOVNE16rm:
2050      case X86::CMOVNE32rr: case X86::CMOVNE32rm:
2051      case X86::CMOVNE64rr: case X86::CMOVNE64rm:
2052      case X86::CMOVNP16rr: case X86::CMOVNP16rm:
2053      case X86::CMOVNP32rr: case X86::CMOVNP32rm:
2054      case X86::CMOVNP64rr: case X86::CMOVNP64rm:
2055      case X86::CMOVP16rr: case X86::CMOVP16rm:
2056      case X86::CMOVP32rr: case X86::CMOVP32rm:
2057      case X86::CMOVP64rr: case X86::CMOVP64rm:
2058        continue;
2059      // Anything else: assume conservatively.
2060      default: return false;
2061      }
2062    }
2063  }
2064  return true;
2065}
2066
2067/// Check whether or not the chain ending in StoreNode is suitable for doing
2068/// the {load; increment or decrement; store} to modify transformation.
2069static bool isLoadIncOrDecStore(StoreSDNode *StoreNode, unsigned Opc,
2070                                SDValue StoredVal, SelectionDAG *CurDAG,
2071                                LoadSDNode* &LoadNode, SDValue &InputChain) {
2072
2073  // is the value stored the result of a DEC or INC?
2074  if (!(Opc == X86ISD::DEC || Opc == X86ISD::INC)) return false;
2075
2076  // is the stored value result 0 of the load?
2077  if (StoredVal.getResNo() != 0) return false;
2078
2079  // are there other uses of the loaded value than the inc or dec?
2080  if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
2081
2082  // is the store non-extending and non-indexed?
2083  if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
2084    return false;
2085
2086  SDValue Load = StoredVal->getOperand(0);
2087  // Is the stored value a non-extending and non-indexed load?
2088  if (!ISD::isNormalLoad(Load.getNode())) return false;
2089
2090  // Return LoadNode by reference.
2091  LoadNode = cast<LoadSDNode>(Load);
2092  // is the size of the value one that we can handle? (i.e. 64, 32, 16, or 8)
2093  EVT LdVT = LoadNode->getMemoryVT();
2094  if (LdVT != MVT::i64 && LdVT != MVT::i32 && LdVT != MVT::i16 &&
2095      LdVT != MVT::i8)
2096    return false;
2097
2098  // Is store the only read of the loaded value?
2099  if (!Load.hasOneUse())
2100    return false;
2101
2102  // Is the address of the store the same as the load?
2103  if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
2104      LoadNode->getOffset() != StoreNode->getOffset())
2105    return false;
2106
2107  // Check if the chain is produced by the load or is a TokenFactor with
2108  // the load output chain as an operand. Return InputChain by reference.
2109  SDValue Chain = StoreNode->getChain();
2110
2111  bool ChainCheck = false;
2112  if (Chain == Load.getValue(1)) {
2113    ChainCheck = true;
2114    InputChain = LoadNode->getChain();
2115  } else if (Chain.getOpcode() == ISD::TokenFactor) {
2116    SmallVector<SDValue, 4> ChainOps;
2117    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
2118      SDValue Op = Chain.getOperand(i);
2119      if (Op == Load.getValue(1)) {
2120        ChainCheck = true;
2121        continue;
2122      }
2123
2124      // Make sure using Op as part of the chain would not cause a cycle here.
2125      // In theory, we could check whether the chain node is a predecessor of
2126      // the load. But that can be very expensive. Instead visit the uses and
2127      // make sure they all have smaller node id than the load.
2128      int LoadId = LoadNode->getNodeId();
2129      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
2130             UE = UI->use_end(); UI != UE; ++UI) {
2131        if (UI.getUse().getResNo() != 0)
2132          continue;
2133        if (UI->getNodeId() > LoadId)
2134          return false;
2135      }
2136
2137      ChainOps.push_back(Op);
2138    }
2139
2140    if (ChainCheck)
2141      // Make a new TokenFactor with all the other input chains except
2142      // for the load.
2143      InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain),
2144                                   MVT::Other, ChainOps);
2145  }
2146  if (!ChainCheck)
2147    return false;
2148
2149  return true;
2150}
2151
2152/// Get the appropriate X86 opcode for an in-memory increment or decrement.
2153/// Opc should be X86ISD::DEC or X86ISD::INC.
2154static unsigned getFusedLdStOpcode(EVT &LdVT, unsigned Opc) {
2155  if (Opc == X86ISD::DEC) {
2156    if (LdVT == MVT::i64) return X86::DEC64m;
2157    if (LdVT == MVT::i32) return X86::DEC32m;
2158    if (LdVT == MVT::i16) return X86::DEC16m;
2159    if (LdVT == MVT::i8)  return X86::DEC8m;
2160  } else {
2161    assert(Opc == X86ISD::INC && "unrecognized opcode");
2162    if (LdVT == MVT::i64) return X86::INC64m;
2163    if (LdVT == MVT::i32) return X86::INC32m;
2164    if (LdVT == MVT::i16) return X86::INC16m;
2165    if (LdVT == MVT::i8)  return X86::INC8m;
2166  }
2167  llvm_unreachable("unrecognized size for LdVT");
2168}
2169
2170/// Customized ISel for GATHER operations.
2171SDNode *X86DAGToDAGISel::selectGather(SDNode *Node, unsigned Opc) {
2172  // Operands of Gather: VSrc, Base, VIdx, VMask, Scale
2173  SDValue Chain = Node->getOperand(0);
2174  SDValue VSrc = Node->getOperand(2);
2175  SDValue Base = Node->getOperand(3);
2176  SDValue VIdx = Node->getOperand(4);
2177  SDValue VMask = Node->getOperand(5);
2178  ConstantSDNode *Scale = dyn_cast<ConstantSDNode>(Node->getOperand(6));
2179  if (!Scale)
2180    return nullptr;
2181
2182  SDVTList VTs = CurDAG->getVTList(VSrc.getValueType(), VSrc.getValueType(),
2183                                   MVT::Other);
2184
2185  SDLoc DL(Node);
2186
2187  // Memory Operands: Base, Scale, Index, Disp, Segment
2188  SDValue Disp = CurDAG->getTargetConstant(0, DL, MVT::i32);
2189  SDValue Segment = CurDAG->getRegister(0, MVT::i32);
2190  const SDValue Ops[] = { VSrc, Base, getI8Imm(Scale->getSExtValue(), DL), VIdx,
2191                          Disp, Segment, VMask, Chain};
2192  SDNode *ResNode = CurDAG->getMachineNode(Opc, DL, VTs, Ops);
2193  // Node has 2 outputs: VDst and MVT::Other.
2194  // ResNode has 3 outputs: VDst, VMask_wb, and MVT::Other.
2195  // We replace VDst of Node with VDst of ResNode, and Other of Node with Other
2196  // of ResNode.
2197  ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0));
2198  ReplaceUses(SDValue(Node, 1), SDValue(ResNode, 2));
2199  return ResNode;
2200}
2201
2202SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
2203  MVT NVT = Node->getSimpleValueType(0);
2204  unsigned Opc, MOpc;
2205  unsigned Opcode = Node->getOpcode();
2206  SDLoc dl(Node);
2207
2208  DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');
2209
2210  if (Node->isMachineOpcode()) {
2211    DEBUG(dbgs() << "== ";  Node->dump(CurDAG); dbgs() << '\n');
2212    Node->setNodeId(-1);
2213    return nullptr;   // Already selected.
2214  }
2215
2216  switch (Opcode) {
2217  default: break;
2218  case ISD::BRIND: {
2219    if (Subtarget->isTargetNaCl())
2220      // NaCl has its own pass where jmp %r32 are converted to jmp %r64. We
2221      // leave the instruction alone.
2222      break;
2223    if (Subtarget->isTarget64BitILP32()) {
2224      // Converts a 32-bit register to a 64-bit, zero-extended version of
2225      // it. This is needed because x86-64 can do many things, but jmp %r32
2226      // ain't one of them.
2227      const SDValue &Target = Node->getOperand(1);
2228      assert(Target.getSimpleValueType() == llvm::MVT::i32);
2229      SDValue ZextTarget = CurDAG->getZExtOrTrunc(Target, dl, EVT(MVT::i64));
2230      SDValue Brind = CurDAG->getNode(ISD::BRIND, dl, MVT::Other,
2231                                      Node->getOperand(0), ZextTarget);
2232      ReplaceUses(SDValue(Node, 0), Brind);
2233      SelectCode(ZextTarget.getNode());
2234      SelectCode(Brind.getNode());
2235      return nullptr;
2236    }
2237    break;
2238  }
2239  case ISD::INTRINSIC_W_CHAIN: {
2240    unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
2241    switch (IntNo) {
2242    default: break;
2243    case Intrinsic::x86_avx2_gather_d_pd:
2244    case Intrinsic::x86_avx2_gather_d_pd_256:
2245    case Intrinsic::x86_avx2_gather_q_pd:
2246    case Intrinsic::x86_avx2_gather_q_pd_256:
2247    case Intrinsic::x86_avx2_gather_d_ps:
2248    case Intrinsic::x86_avx2_gather_d_ps_256:
2249    case Intrinsic::x86_avx2_gather_q_ps:
2250    case Intrinsic::x86_avx2_gather_q_ps_256:
2251    case Intrinsic::x86_avx2_gather_d_q:
2252    case Intrinsic::x86_avx2_gather_d_q_256:
2253    case Intrinsic::x86_avx2_gather_q_q:
2254    case Intrinsic::x86_avx2_gather_q_q_256:
2255    case Intrinsic::x86_avx2_gather_d_d:
2256    case Intrinsic::x86_avx2_gather_d_d_256:
2257    case Intrinsic::x86_avx2_gather_q_d:
2258    case Intrinsic::x86_avx2_gather_q_d_256: {
2259      if (!Subtarget->hasAVX2())
2260        break;
2261      unsigned Opc;
2262      switch (IntNo) {
2263      default: llvm_unreachable("Impossible intrinsic");
2264      case Intrinsic::x86_avx2_gather_d_pd:     Opc = X86::VGATHERDPDrm;  break;
2265      case Intrinsic::x86_avx2_gather_d_pd_256: Opc = X86::VGATHERDPDYrm; break;
2266      case Intrinsic::x86_avx2_gather_q_pd:     Opc = X86::VGATHERQPDrm;  break;
2267      case Intrinsic::x86_avx2_gather_q_pd_256: Opc = X86::VGATHERQPDYrm; break;
2268      case Intrinsic::x86_avx2_gather_d_ps:     Opc = X86::VGATHERDPSrm;  break;
2269      case Intrinsic::x86_avx2_gather_d_ps_256: Opc = X86::VGATHERDPSYrm; break;
2270      case Intrinsic::x86_avx2_gather_q_ps:     Opc = X86::VGATHERQPSrm;  break;
2271      case Intrinsic::x86_avx2_gather_q_ps_256: Opc = X86::VGATHERQPSYrm; break;
2272      case Intrinsic::x86_avx2_gather_d_q:      Opc = X86::VPGATHERDQrm;  break;
2273      case Intrinsic::x86_avx2_gather_d_q_256:  Opc = X86::VPGATHERDQYrm; break;
2274      case Intrinsic::x86_avx2_gather_q_q:      Opc = X86::VPGATHERQQrm;  break;
2275      case Intrinsic::x86_avx2_gather_q_q_256:  Opc = X86::VPGATHERQQYrm; break;
2276      case Intrinsic::x86_avx2_gather_d_d:      Opc = X86::VPGATHERDDrm;  break;
2277      case Intrinsic::x86_avx2_gather_d_d_256:  Opc = X86::VPGATHERDDYrm; break;
2278      case Intrinsic::x86_avx2_gather_q_d:      Opc = X86::VPGATHERQDrm;  break;
2279      case Intrinsic::x86_avx2_gather_q_d_256:  Opc = X86::VPGATHERQDYrm; break;
2280      }
2281      SDNode *RetVal = selectGather(Node, Opc);
2282      if (RetVal)
2283        // We already called ReplaceUses inside SelectGather.
2284        return nullptr;
2285      break;
2286    }
2287    }
2288    break;
2289  }
2290  case X86ISD::GlobalBaseReg:
2291    return getGlobalBaseReg();
2292
2293  case X86ISD::SHRUNKBLEND: {
2294    // SHRUNKBLEND selects like a regular VSELECT.
2295    SDValue VSelect = CurDAG->getNode(
2296        ISD::VSELECT, SDLoc(Node), Node->getValueType(0), Node->getOperand(0),
2297        Node->getOperand(1), Node->getOperand(2));
2298    ReplaceUses(SDValue(Node, 0), VSelect);
2299    SelectCode(VSelect.getNode());
2300    // We already called ReplaceUses.
2301    return nullptr;
2302  }
2303
2304  case ISD::ATOMIC_LOAD_XOR:
2305  case ISD::ATOMIC_LOAD_AND:
2306  case ISD::ATOMIC_LOAD_OR:
2307  case ISD::ATOMIC_LOAD_ADD: {
2308    SDNode *RetVal = selectAtomicLoadArith(Node, NVT);
2309    if (RetVal)
2310      return RetVal;
2311    break;
2312  }
2313  case ISD::AND:
2314  case ISD::OR:
2315  case ISD::XOR: {
2316    // For operations of the form (x << C1) op C2, check if we can use a smaller
2317    // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
2318    SDValue N0 = Node->getOperand(0);
2319    SDValue N1 = Node->getOperand(1);
2320
2321    if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse())
2322      break;
2323
2324    // i8 is unshrinkable, i16 should be promoted to i32.
2325    if (NVT != MVT::i32 && NVT != MVT::i64)
2326      break;
2327
2328    ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
2329    ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
2330    if (!Cst || !ShlCst)
2331      break;
2332
2333    int64_t Val = Cst->getSExtValue();
2334    uint64_t ShlVal = ShlCst->getZExtValue();
2335
2336    // Make sure that we don't change the operation by removing bits.
2337    // This only matters for OR and XOR, AND is unaffected.
2338    uint64_t RemovedBitsMask = (1ULL << ShlVal) - 1;
2339    if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
2340      break;
2341
2342    unsigned ShlOp, AddOp, Op;
2343    MVT CstVT = NVT;
2344
2345    // Check the minimum bitwidth for the new constant.
2346    // TODO: AND32ri is the same as AND64ri32 with zext imm.
2347    // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr
2348    // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
2349    if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal))
2350      CstVT = MVT::i8;
2351    else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal))
2352      CstVT = MVT::i32;
2353
2354    // Bail if there is no smaller encoding.
2355    if (NVT == CstVT)
2356      break;
2357
2358    switch (NVT.SimpleTy) {
2359    default: llvm_unreachable("Unsupported VT!");
2360    case MVT::i32:
2361      assert(CstVT == MVT::i8);
2362      ShlOp = X86::SHL32ri;
2363      AddOp = X86::ADD32rr;
2364
2365      switch (Opcode) {
2366      default: llvm_unreachable("Impossible opcode");
2367      case ISD::AND: Op = X86::AND32ri8; break;
2368      case ISD::OR:  Op =  X86::OR32ri8; break;
2369      case ISD::XOR: Op = X86::XOR32ri8; break;
2370      }
2371      break;
2372    case MVT::i64:
2373      assert(CstVT == MVT::i8 || CstVT == MVT::i32);
2374      ShlOp = X86::SHL64ri;
2375      AddOp = X86::ADD64rr;
2376
2377      switch (Opcode) {
2378      default: llvm_unreachable("Impossible opcode");
2379      case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break;
2380      case ISD::OR:  Op = CstVT==MVT::i8?  X86::OR64ri8 :  X86::OR64ri32; break;
2381      case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break;
2382      }
2383      break;
2384    }
2385
2386    // Emit the smaller op and the shift.
2387    SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, dl, CstVT);
2388    SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst);
2389    if (ShlVal == 1)
2390      return CurDAG->SelectNodeTo(Node, AddOp, NVT, SDValue(New, 0),
2391                                  SDValue(New, 0));
2392    return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0),
2393                                getI8Imm(ShlVal, dl));
2394  }
2395  case X86ISD::UMUL8:
2396  case X86ISD::SMUL8: {
2397    SDValue N0 = Node->getOperand(0);
2398    SDValue N1 = Node->getOperand(1);
2399
2400    Opc = (Opcode == X86ISD::SMUL8 ? X86::IMUL8r : X86::MUL8r);
2401
2402    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::AL,
2403                                          N0, SDValue()).getValue(1);
2404
2405    SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32);
2406    SDValue Ops[] = {N1, InFlag};
2407    SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2408
2409    ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
2410    ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
2411    return nullptr;
2412  }
2413
2414  case X86ISD::UMUL: {
2415    SDValue N0 = Node->getOperand(0);
2416    SDValue N1 = Node->getOperand(1);
2417
2418    unsigned LoReg;
2419    switch (NVT.SimpleTy) {
2420    default: llvm_unreachable("Unsupported VT!");
2421    case MVT::i8:  LoReg = X86::AL;  Opc = X86::MUL8r; break;
2422    case MVT::i16: LoReg = X86::AX;  Opc = X86::MUL16r; break;
2423    case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break;
2424    case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break;
2425    }
2426
2427    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
2428                                          N0, SDValue()).getValue(1);
2429
2430    SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
2431    SDValue Ops[] = {N1, InFlag};
2432    SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2433
2434    ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
2435    ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
2436    ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2));
2437    return nullptr;
2438  }
2439
2440  case ISD::SMUL_LOHI:
2441  case ISD::UMUL_LOHI: {
2442    SDValue N0 = Node->getOperand(0);
2443    SDValue N1 = Node->getOperand(1);
2444
2445    bool isSigned = Opcode == ISD::SMUL_LOHI;
2446    bool hasBMI2 = Subtarget->hasBMI2();
2447    if (!isSigned) {
2448      switch (NVT.SimpleTy) {
2449      default: llvm_unreachable("Unsupported VT!");
2450      case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
2451      case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
2452      case MVT::i32: Opc = hasBMI2 ? X86::MULX32rr : X86::MUL32r;
2453                     MOpc = hasBMI2 ? X86::MULX32rm : X86::MUL32m; break;
2454      case MVT::i64: Opc = hasBMI2 ? X86::MULX64rr : X86::MUL64r;
2455                     MOpc = hasBMI2 ? X86::MULX64rm : X86::MUL64m; break;
2456      }
2457    } else {
2458      switch (NVT.SimpleTy) {
2459      default: llvm_unreachable("Unsupported VT!");
2460      case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
2461      case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
2462      case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
2463      case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
2464      }
2465    }
2466
2467    unsigned SrcReg, LoReg, HiReg;
2468    switch (Opc) {
2469    default: llvm_unreachable("Unknown MUL opcode!");
2470    case X86::IMUL8r:
2471    case X86::MUL8r:
2472      SrcReg = LoReg = X86::AL; HiReg = X86::AH;
2473      break;
2474    case X86::IMUL16r:
2475    case X86::MUL16r:
2476      SrcReg = LoReg = X86::AX; HiReg = X86::DX;
2477      break;
2478    case X86::IMUL32r:
2479    case X86::MUL32r:
2480      SrcReg = LoReg = X86::EAX; HiReg = X86::EDX;
2481      break;
2482    case X86::IMUL64r:
2483    case X86::MUL64r:
2484      SrcReg = LoReg = X86::RAX; HiReg = X86::RDX;
2485      break;
2486    case X86::MULX32rr:
2487      SrcReg = X86::EDX; LoReg = HiReg = 0;
2488      break;
2489    case X86::MULX64rr:
2490      SrcReg = X86::RDX; LoReg = HiReg = 0;
2491      break;
2492    }
2493
2494    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2495    bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2496    // Multiply is commmutative.
2497    if (!foldedLoad) {
2498      foldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2499      if (foldedLoad)
2500        std::swap(N0, N1);
2501    }
2502
2503    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, SrcReg,
2504                                          N0, SDValue()).getValue(1);
2505    SDValue ResHi, ResLo;
2506
2507    if (foldedLoad) {
2508      SDValue Chain;
2509      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2510                        InFlag };
2511      if (MOpc == X86::MULX32rm || MOpc == X86::MULX64rm) {
2512        SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other, MVT::Glue);
2513        SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
2514        ResHi = SDValue(CNode, 0);
2515        ResLo = SDValue(CNode, 1);
2516        Chain = SDValue(CNode, 2);
2517        InFlag = SDValue(CNode, 3);
2518      } else {
2519        SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
2520        SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
2521        Chain = SDValue(CNode, 0);
2522        InFlag = SDValue(CNode, 1);
2523      }
2524
2525      // Update the chain.
2526      ReplaceUses(N1.getValue(1), Chain);
2527    } else {
2528      SDValue Ops[] = { N1, InFlag };
2529      if (Opc == X86::MULX32rr || Opc == X86::MULX64rr) {
2530        SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Glue);
2531        SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2532        ResHi = SDValue(CNode, 0);
2533        ResLo = SDValue(CNode, 1);
2534        InFlag = SDValue(CNode, 2);
2535      } else {
2536        SDVTList VTs = CurDAG->getVTList(MVT::Glue);
2537        SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2538        InFlag = SDValue(CNode, 0);
2539      }
2540    }
2541
2542    // Prevent use of AH in a REX instruction by referencing AX instead.
2543    if (HiReg == X86::AH && Subtarget->is64Bit() &&
2544        !SDValue(Node, 1).use_empty()) {
2545      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2546                                              X86::AX, MVT::i16, InFlag);
2547      InFlag = Result.getValue(2);
2548      // Get the low part if needed. Don't use getCopyFromReg for aliasing
2549      // registers.
2550      if (!SDValue(Node, 0).use_empty())
2551        ReplaceUses(SDValue(Node, 1),
2552          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2553
2554      // Shift AX down 8 bits.
2555      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2556                                              Result,
2557                                     CurDAG->getTargetConstant(8, dl, MVT::i8)),
2558                       0);
2559      // Then truncate it down to i8.
2560      ReplaceUses(SDValue(Node, 1),
2561        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2562    }
2563    // Copy the low half of the result, if it is needed.
2564    if (!SDValue(Node, 0).use_empty()) {
2565      if (!ResLo.getNode()) {
2566        assert(LoReg && "Register for low half is not defined!");
2567        ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, NVT,
2568                                       InFlag);
2569        InFlag = ResLo.getValue(2);
2570      }
2571      ReplaceUses(SDValue(Node, 0), ResLo);
2572      DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG); dbgs() << '\n');
2573    }
2574    // Copy the high half of the result, if it is needed.
2575    if (!SDValue(Node, 1).use_empty()) {
2576      if (!ResHi.getNode()) {
2577        assert(HiReg && "Register for high half is not defined!");
2578        ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, NVT,
2579                                       InFlag);
2580        InFlag = ResHi.getValue(2);
2581      }
2582      ReplaceUses(SDValue(Node, 1), ResHi);
2583      DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG); dbgs() << '\n');
2584    }
2585
2586    return nullptr;
2587  }
2588
2589  case ISD::SDIVREM:
2590  case ISD::UDIVREM:
2591  case X86ISD::SDIVREM8_SEXT_HREG:
2592  case X86ISD::UDIVREM8_ZEXT_HREG: {
2593    SDValue N0 = Node->getOperand(0);
2594    SDValue N1 = Node->getOperand(1);
2595
2596    bool isSigned = (Opcode == ISD::SDIVREM ||
2597                     Opcode == X86ISD::SDIVREM8_SEXT_HREG);
2598    if (!isSigned) {
2599      switch (NVT.SimpleTy) {
2600      default: llvm_unreachable("Unsupported VT!");
2601      case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
2602      case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
2603      case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
2604      case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
2605      }
2606    } else {
2607      switch (NVT.SimpleTy) {
2608      default: llvm_unreachable("Unsupported VT!");
2609      case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
2610      case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
2611      case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
2612      case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
2613      }
2614    }
2615
2616    unsigned LoReg, HiReg, ClrReg;
2617    unsigned SExtOpcode;
2618    switch (NVT.SimpleTy) {
2619    default: llvm_unreachable("Unsupported VT!");
2620    case MVT::i8:
2621      LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
2622      SExtOpcode = X86::CBW;
2623      break;
2624    case MVT::i16:
2625      LoReg = X86::AX;  HiReg = X86::DX;
2626      ClrReg = X86::DX;
2627      SExtOpcode = X86::CWD;
2628      break;
2629    case MVT::i32:
2630      LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
2631      SExtOpcode = X86::CDQ;
2632      break;
2633    case MVT::i64:
2634      LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
2635      SExtOpcode = X86::CQO;
2636      break;
2637    }
2638
2639    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2640    bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2641    bool signBitIsZero = CurDAG->SignBitIsZero(N0);
2642
2643    SDValue InFlag;
2644    if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
2645      // Special case for div8, just use a move with zero extension to AX to
2646      // clear the upper 8 bits (AH).
2647      SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
2648      if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
2649        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
2650        Move =
2651          SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32,
2652                                         MVT::Other, Ops), 0);
2653        Chain = Move.getValue(1);
2654        ReplaceUses(N0.getValue(1), Chain);
2655      } else {
2656        Move =
2657          SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0);
2658        Chain = CurDAG->getEntryNode();
2659      }
2660      Chain  = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue());
2661      InFlag = Chain.getValue(1);
2662    } else {
2663      InFlag =
2664        CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
2665                             LoReg, N0, SDValue()).getValue(1);
2666      if (isSigned && !signBitIsZero) {
2667        // Sign extend the low part into the high part.
2668        InFlag =
2669          SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
2670      } else {
2671        // Zero out the high part, effectively zero extending the input.
2672        SDValue ClrNode = SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, NVT), 0);
2673        switch (NVT.SimpleTy) {
2674        case MVT::i16:
2675          ClrNode =
2676              SDValue(CurDAG->getMachineNode(
2677                          TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode,
2678                          CurDAG->getTargetConstant(X86::sub_16bit, dl,
2679                                                    MVT::i32)),
2680                      0);
2681          break;
2682        case MVT::i32:
2683          break;
2684        case MVT::i64:
2685          ClrNode =
2686              SDValue(CurDAG->getMachineNode(
2687                          TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
2688                          CurDAG->getTargetConstant(0, dl, MVT::i64), ClrNode,
2689                          CurDAG->getTargetConstant(X86::sub_32bit, dl,
2690                                                    MVT::i32)),
2691                      0);
2692          break;
2693        default:
2694          llvm_unreachable("Unexpected division source");
2695        }
2696
2697        InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
2698                                      ClrNode, InFlag).getValue(1);
2699      }
2700    }
2701
2702    if (foldedLoad) {
2703      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2704                        InFlag };
2705      SDNode *CNode =
2706        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops);
2707      InFlag = SDValue(CNode, 1);
2708      // Update the chain.
2709      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
2710    } else {
2711      InFlag =
2712        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
2713    }
2714
2715    // Prevent use of AH in a REX instruction by explicitly copying it to
2716    // an ABCD_L register.
2717    //
2718    // The current assumption of the register allocator is that isel
2719    // won't generate explicit references to the GR8_ABCD_H registers. If
2720    // the allocator and/or the backend get enhanced to be more robust in
2721    // that regard, this can be, and should be, removed.
2722    if (HiReg == X86::AH && !SDValue(Node, 1).use_empty()) {
2723      SDValue AHCopy = CurDAG->getRegister(X86::AH, MVT::i8);
2724      unsigned AHExtOpcode =
2725          isSigned ? X86::MOVSX32_NOREXrr8 : X86::MOVZX32_NOREXrr8;
2726
2727      SDNode *RNode = CurDAG->getMachineNode(AHExtOpcode, dl, MVT::i32,
2728                                             MVT::Glue, AHCopy, InFlag);
2729      SDValue Result(RNode, 0);
2730      InFlag = SDValue(RNode, 1);
2731
2732      if (Opcode == X86ISD::UDIVREM8_ZEXT_HREG ||
2733          Opcode == X86ISD::SDIVREM8_SEXT_HREG) {
2734        if (Node->getValueType(1) == MVT::i64) {
2735          // It's not possible to directly movsx AH to a 64bit register, because
2736          // the latter needs the REX prefix, but the former can't have it.
2737          assert(Opcode != X86ISD::SDIVREM8_SEXT_HREG &&
2738                 "Unexpected i64 sext of h-register");
2739          Result =
2740              SDValue(CurDAG->getMachineNode(
2741                          TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
2742                          CurDAG->getTargetConstant(0, dl, MVT::i64), Result,
2743                          CurDAG->getTargetConstant(X86::sub_32bit, dl,
2744                                                    MVT::i32)),
2745                      0);
2746        }
2747      } else {
2748        Result =
2749            CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result);
2750      }
2751      ReplaceUses(SDValue(Node, 1), Result);
2752      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2753    }
2754    // Copy the division (low) result, if it is needed.
2755    if (!SDValue(Node, 0).use_empty()) {
2756      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2757                                                LoReg, NVT, InFlag);
2758      InFlag = Result.getValue(2);
2759      ReplaceUses(SDValue(Node, 0), Result);
2760      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2761    }
2762    // Copy the remainder (high) result, if it is needed.
2763    if (!SDValue(Node, 1).use_empty()) {
2764      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2765                                              HiReg, NVT, InFlag);
2766      InFlag = Result.getValue(2);
2767      ReplaceUses(SDValue(Node, 1), Result);
2768      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2769    }
2770    return nullptr;
2771  }
2772
2773  case X86ISD::CMP:
2774  case X86ISD::SUB: {
2775    // Sometimes a SUB is used to perform comparison.
2776    if (Opcode == X86ISD::SUB && Node->hasAnyUseOfValue(0))
2777      // This node is not a CMP.
2778      break;
2779    SDValue N0 = Node->getOperand(0);
2780    SDValue N1 = Node->getOperand(1);
2781
2782    if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
2783        hasNoSignedComparisonUses(Node))
2784      N0 = N0.getOperand(0);
2785
2786    // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
2787    // use a smaller encoding.
2788    // Look past the truncate if CMP is the only use of it.
2789    if ((N0.getNode()->getOpcode() == ISD::AND ||
2790         (N0.getResNo() == 0 && N0.getNode()->getOpcode() == X86ISD::AND)) &&
2791        N0.getNode()->hasOneUse() &&
2792        N0.getValueType() != MVT::i8 &&
2793        X86::isZeroNode(N1)) {
2794      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
2795      if (!C) break;
2796
2797      // For example, convert "testl %eax, $8" to "testb %al, $8"
2798      if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
2799          (!(C->getZExtValue() & 0x80) ||
2800           hasNoSignedComparisonUses(Node))) {
2801        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), dl, MVT::i8);
2802        SDValue Reg = N0.getNode()->getOperand(0);
2803
2804        // On x86-32, only the ABCD registers have 8-bit subregisters.
2805        if (!Subtarget->is64Bit()) {
2806          const TargetRegisterClass *TRC;
2807          switch (N0.getSimpleValueType().SimpleTy) {
2808          case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2809          case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2810          default: llvm_unreachable("Unsupported TEST operand type!");
2811          }
2812          SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32);
2813          Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2814                                               Reg.getValueType(), Reg, RC), 0);
2815        }
2816
2817        // Extract the l-register.
2818        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl,
2819                                                        MVT::i8, Reg);
2820
2821        // Emit a testb.
2822        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
2823                                                 Subreg, Imm);
2824        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2825        // one, do not call ReplaceAllUsesWith.
2826        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2827                    SDValue(NewNode, 0));
2828        return nullptr;
2829      }
2830
2831      // For example, "testl %eax, $2048" to "testb %ah, $8".
2832      if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
2833          (!(C->getZExtValue() & 0x8000) ||
2834           hasNoSignedComparisonUses(Node))) {
2835        // Shift the immediate right by 8 bits.
2836        SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
2837                                                       dl, MVT::i8);
2838        SDValue Reg = N0.getNode()->getOperand(0);
2839
2840        // Put the value in an ABCD register.
2841        const TargetRegisterClass *TRC;
2842        switch (N0.getSimpleValueType().SimpleTy) {
2843        case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
2844        case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2845        case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2846        default: llvm_unreachable("Unsupported TEST operand type!");
2847        }
2848        SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32);
2849        Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2850                                             Reg.getValueType(), Reg, RC), 0);
2851
2852        // Extract the h-register.
2853        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
2854                                                        MVT::i8, Reg);
2855
2856        // Emit a testb.  The EXTRACT_SUBREG becomes a COPY that can only
2857        // target GR8_NOREX registers, so make sure the register class is
2858        // forced.
2859        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri_NOREX, dl,
2860                                                 MVT::i32, Subreg, ShiftedImm);
2861        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2862        // one, do not call ReplaceAllUsesWith.
2863        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2864                    SDValue(NewNode, 0));
2865        return nullptr;
2866      }
2867
2868      // For example, "testl %eax, $32776" to "testw %ax, $32776".
2869      if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
2870          N0.getValueType() != MVT::i16 &&
2871          (!(C->getZExtValue() & 0x8000) ||
2872           hasNoSignedComparisonUses(Node))) {
2873        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), dl,
2874                                                MVT::i16);
2875        SDValue Reg = N0.getNode()->getOperand(0);
2876
2877        // Extract the 16-bit subregister.
2878        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl,
2879                                                        MVT::i16, Reg);
2880
2881        // Emit a testw.
2882        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32,
2883                                                 Subreg, Imm);
2884        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2885        // one, do not call ReplaceAllUsesWith.
2886        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2887                    SDValue(NewNode, 0));
2888        return nullptr;
2889      }
2890
2891      // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
2892      if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
2893          N0.getValueType() == MVT::i64 &&
2894          (!(C->getZExtValue() & 0x80000000) ||
2895           hasNoSignedComparisonUses(Node))) {
2896        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), dl,
2897                                                MVT::i32);
2898        SDValue Reg = N0.getNode()->getOperand(0);
2899
2900        // Extract the 32-bit subregister.
2901        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl,
2902                                                        MVT::i32, Reg);
2903
2904        // Emit a testl.
2905        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32,
2906                                                 Subreg, Imm);
2907        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2908        // one, do not call ReplaceAllUsesWith.
2909        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2910                    SDValue(NewNode, 0));
2911        return nullptr;
2912      }
2913    }
2914    break;
2915  }
2916  case ISD::STORE: {
2917    // Change a chain of {load; incr or dec; store} of the same value into
2918    // a simple increment or decrement through memory of that value, if the
2919    // uses of the modified value and its address are suitable.
2920    // The DEC64m tablegen pattern is currently not able to match the case where
2921    // the EFLAGS on the original DEC are used. (This also applies to
2922    // {INC,DEC}X{64,32,16,8}.)
2923    // We'll need to improve tablegen to allow flags to be transferred from a
2924    // node in the pattern to the result node.  probably with a new keyword
2925    // for example, we have this
2926    // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2927    //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2928    //   (implicit EFLAGS)]>;
2929    // but maybe need something like this
2930    // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2931    //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2932    //   (transferrable EFLAGS)]>;
2933
2934    StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
2935    SDValue StoredVal = StoreNode->getOperand(1);
2936    unsigned Opc = StoredVal->getOpcode();
2937
2938    LoadSDNode *LoadNode = nullptr;
2939    SDValue InputChain;
2940    if (!isLoadIncOrDecStore(StoreNode, Opc, StoredVal, CurDAG,
2941                             LoadNode, InputChain))
2942      break;
2943
2944    SDValue Base, Scale, Index, Disp, Segment;
2945    if (!selectAddr(LoadNode, LoadNode->getBasePtr(),
2946                    Base, Scale, Index, Disp, Segment))
2947      break;
2948
2949    MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(2);
2950    MemOp[0] = StoreNode->getMemOperand();
2951    MemOp[1] = LoadNode->getMemOperand();
2952    const SDValue Ops[] = { Base, Scale, Index, Disp, Segment, InputChain };
2953    EVT LdVT = LoadNode->getMemoryVT();
2954    unsigned newOpc = getFusedLdStOpcode(LdVT, Opc);
2955    MachineSDNode *Result = CurDAG->getMachineNode(newOpc,
2956                                                   SDLoc(Node),
2957                                                   MVT::i32, MVT::Other, Ops);
2958    Result->setMemRefs(MemOp, MemOp + 2);
2959
2960    ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
2961    ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
2962
2963    return Result;
2964  }
2965  }
2966
2967  SDNode *ResNode = SelectCode(Node);
2968
2969  DEBUG(dbgs() << "=> ";
2970        if (ResNode == nullptr || ResNode == Node)
2971          Node->dump(CurDAG);
2972        else
2973          ResNode->dump(CurDAG);
2974        dbgs() << '\n');
2975
2976  return ResNode;
2977}
2978
2979bool X86DAGToDAGISel::
2980SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
2981                             std::vector<SDValue> &OutOps) {
2982  SDValue Op0, Op1, Op2, Op3, Op4;
2983  switch (ConstraintID) {
2984  default:
2985    llvm_unreachable("Unexpected asm memory constraint");
2986  case InlineAsm::Constraint_i:
2987    // FIXME: It seems strange that 'i' is needed here since it's supposed to
2988    //        be an immediate and not a memory constraint.
2989    // Fallthrough.
2990  case InlineAsm::Constraint_o: // offsetable        ??
2991  case InlineAsm::Constraint_v: // not offsetable    ??
2992  case InlineAsm::Constraint_m: // memory
2993  case InlineAsm::Constraint_X:
2994    if (!selectAddr(nullptr, Op, Op0, Op1, Op2, Op3, Op4))
2995      return true;
2996    break;
2997  }
2998
2999  OutOps.push_back(Op0);
3000  OutOps.push_back(Op1);
3001  OutOps.push_back(Op2);
3002  OutOps.push_back(Op3);
3003  OutOps.push_back(Op4);
3004  return false;
3005}
3006
3007/// This pass converts a legalized DAG into a X86-specific DAG,
3008/// ready for instruction scheduling.
3009FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
3010                                     CodeGenOpt::Level OptLevel) {
3011  return new X86DAGToDAGISel(TM, OptLevel);
3012}
3013