X86ISelDAGToDAG.cpp revision 198090
1193323Sed//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2193323Sed//
3193323Sed//                     The LLVM Compiler Infrastructure
4193323Sed//
5193323Sed// This file is distributed under the University of Illinois Open Source
6193323Sed// License. See LICENSE.TXT for details.
7193323Sed//
8193323Sed//===----------------------------------------------------------------------===//
9193323Sed//
10193323Sed// This file defines a DAG pattern matching instruction selector for X86,
11193323Sed// converting from a legalized dag to a X86 dag.
12193323Sed//
13193323Sed//===----------------------------------------------------------------------===//
14193323Sed
15193323Sed#define DEBUG_TYPE "x86-isel"
16193323Sed#include "X86.h"
17193323Sed#include "X86InstrBuilder.h"
18193323Sed#include "X86ISelLowering.h"
19193323Sed#include "X86MachineFunctionInfo.h"
20193323Sed#include "X86RegisterInfo.h"
21193323Sed#include "X86Subtarget.h"
22193323Sed#include "X86TargetMachine.h"
23193323Sed#include "llvm/GlobalValue.h"
24193323Sed#include "llvm/Instructions.h"
25193323Sed#include "llvm/Intrinsics.h"
26193323Sed#include "llvm/Support/CFG.h"
27193323Sed#include "llvm/Type.h"
28193323Sed#include "llvm/CodeGen/MachineConstantPool.h"
29193323Sed#include "llvm/CodeGen/MachineFunction.h"
30193323Sed#include "llvm/CodeGen/MachineFrameInfo.h"
31193323Sed#include "llvm/CodeGen/MachineInstrBuilder.h"
32193323Sed#include "llvm/CodeGen/MachineRegisterInfo.h"
33193323Sed#include "llvm/CodeGen/SelectionDAGISel.h"
34193323Sed#include "llvm/Target/TargetMachine.h"
35193323Sed#include "llvm/Target/TargetOptions.h"
36193323Sed#include "llvm/Support/Compiler.h"
37193323Sed#include "llvm/Support/Debug.h"
38198090Srdivacky#include "llvm/Support/ErrorHandling.h"
39193323Sed#include "llvm/Support/MathExtras.h"
40198090Srdivacky#include "llvm/Support/raw_ostream.h"
41193323Sed#include "llvm/ADT/SmallPtrSet.h"
42193323Sed#include "llvm/ADT/Statistic.h"
43193323Sedusing namespace llvm;
44193323Sed
45193323Sed#include "llvm/Support/CommandLine.h"
46193323Sedstatic cl::opt<bool> AvoidDupAddrCompute("x86-avoid-dup-address", cl::Hidden);
47193323Sed
48193323SedSTATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
49193323Sed
50193323Sed//===----------------------------------------------------------------------===//
51193323Sed//                      Pattern Matcher Implementation
52193323Sed//===----------------------------------------------------------------------===//
53193323Sed
54193323Sednamespace {
55193323Sed  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
56193323Sed  /// SDValue's instead of register numbers for the leaves of the matched
57193323Sed  /// tree.
58193323Sed  struct X86ISelAddressMode {
59193323Sed    enum {
60193323Sed      RegBase,
61193323Sed      FrameIndexBase
62193323Sed    } BaseType;
63193323Sed
64193323Sed    struct {            // This is really a union, discriminated by BaseType!
65193323Sed      SDValue Reg;
66193323Sed      int FrameIndex;
67193323Sed    } Base;
68193323Sed
69193323Sed    unsigned Scale;
70193323Sed    SDValue IndexReg;
71193323Sed    int32_t Disp;
72193323Sed    SDValue Segment;
73193323Sed    GlobalValue *GV;
74193323Sed    Constant *CP;
75193323Sed    const char *ES;
76193323Sed    int JT;
77193323Sed    unsigned Align;    // CP alignment.
78195098Sed    unsigned char SymbolFlags;  // X86II::MO_*
79193323Sed
80193323Sed    X86ISelAddressMode()
81195098Sed      : BaseType(RegBase), Scale(1), IndexReg(), Disp(0),
82198090Srdivacky        Segment(), GV(0), CP(0), ES(0), JT(-1), Align(0),
83198090Srdivacky        SymbolFlags(X86II::MO_NO_FLAG) {
84193323Sed    }
85193323Sed
86193323Sed    bool hasSymbolicDisplacement() const {
87193323Sed      return GV != 0 || CP != 0 || ES != 0 || JT != -1;
88193323Sed    }
89195098Sed
90195098Sed    bool hasBaseOrIndexReg() const {
91195098Sed      return IndexReg.getNode() != 0 || Base.Reg.getNode() != 0;
92195098Sed    }
93195098Sed
94195098Sed    /// isRIPRelative - Return true if this addressing mode is already RIP
95195098Sed    /// relative.
96195098Sed    bool isRIPRelative() const {
97195098Sed      if (BaseType != RegBase) return false;
98195098Sed      if (RegisterSDNode *RegNode =
99195098Sed            dyn_cast_or_null<RegisterSDNode>(Base.Reg.getNode()))
100195098Sed        return RegNode->getReg() == X86::RIP;
101195098Sed      return false;
102195098Sed    }
103195098Sed
104195098Sed    void setBaseReg(SDValue Reg) {
105195098Sed      BaseType = RegBase;
106195098Sed      Base.Reg = Reg;
107195098Sed    }
108193323Sed
109193323Sed    void dump() {
110198090Srdivacky      errs() << "X86ISelAddressMode " << this << '\n';
111198090Srdivacky      errs() << "Base.Reg ";
112198090Srdivacky      if (Base.Reg.getNode() != 0)
113198090Srdivacky        Base.Reg.getNode()->dump();
114198090Srdivacky      else
115198090Srdivacky        errs() << "nul";
116198090Srdivacky      errs() << " Base.FrameIndex " << Base.FrameIndex << '\n'
117198090Srdivacky             << " Scale" << Scale << '\n'
118198090Srdivacky             << "IndexReg ";
119198090Srdivacky      if (IndexReg.getNode() != 0)
120198090Srdivacky        IndexReg.getNode()->dump();
121198090Srdivacky      else
122198090Srdivacky        errs() << "nul";
123198090Srdivacky      errs() << " Disp " << Disp << '\n'
124198090Srdivacky             << "GV ";
125198090Srdivacky      if (GV)
126198090Srdivacky        GV->dump();
127198090Srdivacky      else
128198090Srdivacky        errs() << "nul";
129198090Srdivacky      errs() << " CP ";
130198090Srdivacky      if (CP)
131198090Srdivacky        CP->dump();
132198090Srdivacky      else
133198090Srdivacky        errs() << "nul";
134198090Srdivacky      errs() << '\n'
135198090Srdivacky             << "ES ";
136198090Srdivacky      if (ES)
137198090Srdivacky        errs() << ES;
138198090Srdivacky      else
139198090Srdivacky        errs() << "nul";
140198090Srdivacky      errs() << " JT" << JT << " Align" << Align << '\n';
141193323Sed    }
142193323Sed  };
143193323Sed}
144193323Sed
145193323Sednamespace {
146193323Sed  //===--------------------------------------------------------------------===//
147193323Sed  /// ISel - X86 specific code to select X86 machine instructions for
148193323Sed  /// SelectionDAG operations.
149193323Sed  ///
150193323Sed  class VISIBILITY_HIDDEN X86DAGToDAGISel : public SelectionDAGISel {
151193323Sed    /// X86Lowering - This object fully describes how to lower LLVM code to an
152193323Sed    /// X86-specific SelectionDAG.
153193323Sed    X86TargetLowering &X86Lowering;
154193323Sed
155193323Sed    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
156193323Sed    /// make the right decision when generating code for different targets.
157193323Sed    const X86Subtarget *Subtarget;
158193323Sed
159193323Sed    /// OptForSize - If true, selector should try to optimize for code size
160193323Sed    /// instead of performance.
161193323Sed    bool OptForSize;
162193323Sed
163193323Sed  public:
164193323Sed    explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
165193323Sed      : SelectionDAGISel(tm, OptLevel),
166193399Sed        X86Lowering(*tm.getTargetLowering()),
167193399Sed        Subtarget(&tm.getSubtarget<X86Subtarget>()),
168193323Sed        OptForSize(false) {}
169193323Sed
170193323Sed    virtual const char *getPassName() const {
171193323Sed      return "X86 DAG->DAG Instruction Selection";
172193323Sed    }
173193323Sed
174193323Sed    /// InstructionSelect - This callback is invoked by
175193323Sed    /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
176193323Sed    virtual void InstructionSelect();
177193323Sed
178193323Sed    virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF);
179193323Sed
180193323Sed    virtual
181193323Sed      bool IsLegalAndProfitableToFold(SDNode *N, SDNode *U, SDNode *Root) const;
182193323Sed
183193323Sed// Include the pieces autogenerated from the target description.
184193323Sed#include "X86GenDAGISel.inc"
185193323Sed
186193323Sed  private:
187193323Sed    SDNode *Select(SDValue N);
188193323Sed    SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
189198090Srdivacky    SDNode *SelectAtomicLoadAdd(SDNode *Node, EVT NVT);
190193323Sed
191193323Sed    bool MatchSegmentBaseAddress(SDValue N, X86ISelAddressMode &AM);
192193323Sed    bool MatchLoad(SDValue N, X86ISelAddressMode &AM);
193193323Sed    bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
194198090Srdivacky    bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
195198090Srdivacky    bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
196198090Srdivacky                                 unsigned Depth);
197193323Sed    bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
198193323Sed    bool SelectAddr(SDValue Op, SDValue N, SDValue &Base,
199193323Sed                    SDValue &Scale, SDValue &Index, SDValue &Disp,
200193323Sed                    SDValue &Segment);
201193323Sed    bool SelectLEAAddr(SDValue Op, SDValue N, SDValue &Base,
202193323Sed                       SDValue &Scale, SDValue &Index, SDValue &Disp);
203194612Sed    bool SelectTLSADDRAddr(SDValue Op, SDValue N, SDValue &Base,
204194612Sed                       SDValue &Scale, SDValue &Index, SDValue &Disp);
205193323Sed    bool SelectScalarSSELoad(SDValue Op, SDValue Pred,
206193323Sed                             SDValue N, SDValue &Base, SDValue &Scale,
207193323Sed                             SDValue &Index, SDValue &Disp,
208193323Sed                             SDValue &Segment,
209193323Sed                             SDValue &InChain, SDValue &OutChain);
210193323Sed    bool TryFoldLoad(SDValue P, SDValue N,
211193323Sed                     SDValue &Base, SDValue &Scale,
212193323Sed                     SDValue &Index, SDValue &Disp,
213193323Sed                     SDValue &Segment);
214193323Sed    void PreprocessForRMW();
215193323Sed    void PreprocessForFPConvert();
216193323Sed
217193323Sed    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
218193323Sed    /// inline asm expressions.
219193323Sed    virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
220193323Sed                                              char ConstraintCode,
221193323Sed                                              std::vector<SDValue> &OutOps);
222193323Sed
223193323Sed    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
224193323Sed
225193323Sed    inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
226193323Sed                                   SDValue &Scale, SDValue &Index,
227193323Sed                                   SDValue &Disp, SDValue &Segment) {
228193323Sed      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
229193323Sed        CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy()) :
230193323Sed        AM.Base.Reg;
231193323Sed      Scale = getI8Imm(AM.Scale);
232193323Sed      Index = AM.IndexReg;
233193323Sed      // These are 32-bit even in 64-bit mode since RIP relative offset
234193323Sed      // is 32-bit.
235193323Sed      if (AM.GV)
236195098Sed        Disp = CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp,
237195098Sed                                              AM.SymbolFlags);
238193323Sed      else if (AM.CP)
239193323Sed        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
240195098Sed                                             AM.Align, AM.Disp, AM.SymbolFlags);
241193323Sed      else if (AM.ES)
242195098Sed        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
243193323Sed      else if (AM.JT != -1)
244195098Sed        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
245193323Sed      else
246193323Sed        Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
247193323Sed
248193323Sed      if (AM.Segment.getNode())
249193323Sed        Segment = AM.Segment;
250193323Sed      else
251193323Sed        Segment = CurDAG->getRegister(0, MVT::i32);
252193323Sed    }
253193323Sed
254193323Sed    /// getI8Imm - Return a target constant with the specified value, of type
255193323Sed    /// i8.
256193323Sed    inline SDValue getI8Imm(unsigned Imm) {
257193323Sed      return CurDAG->getTargetConstant(Imm, MVT::i8);
258193323Sed    }
259193323Sed
260193323Sed    /// getI16Imm - Return a target constant with the specified value, of type
261193323Sed    /// i16.
262193323Sed    inline SDValue getI16Imm(unsigned Imm) {
263193323Sed      return CurDAG->getTargetConstant(Imm, MVT::i16);
264193323Sed    }
265193323Sed
266193323Sed    /// getI32Imm - Return a target constant with the specified value, of type
267193323Sed    /// i32.
268193323Sed    inline SDValue getI32Imm(unsigned Imm) {
269193323Sed      return CurDAG->getTargetConstant(Imm, MVT::i32);
270193323Sed    }
271193323Sed
272193323Sed    /// getGlobalBaseReg - Return an SDNode that returns the value of
273193323Sed    /// the global base register. Output instructions required to
274193323Sed    /// initialize the global base register, if necessary.
275193323Sed    ///
276193323Sed    SDNode *getGlobalBaseReg();
277193323Sed
278193399Sed    /// getTargetMachine - Return a reference to the TargetMachine, casted
279193399Sed    /// to the target-specific type.
280193399Sed    const X86TargetMachine &getTargetMachine() {
281193399Sed      return static_cast<const X86TargetMachine &>(TM);
282193399Sed    }
283193399Sed
284193399Sed    /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
285193399Sed    /// to the target-specific type.
286193399Sed    const X86InstrInfo *getInstrInfo() {
287193399Sed      return getTargetMachine().getInstrInfo();
288193399Sed    }
289193399Sed
290193323Sed#ifndef NDEBUG
291193323Sed    unsigned Indent;
292193323Sed#endif
293193323Sed  };
294193323Sed}
295193323Sed
296193323Sed
297193323Sedbool X86DAGToDAGISel::IsLegalAndProfitableToFold(SDNode *N, SDNode *U,
298193323Sed                                                 SDNode *Root) const {
299193323Sed  if (OptLevel == CodeGenOpt::None) return false;
300193323Sed
301193323Sed  if (U == Root)
302193323Sed    switch (U->getOpcode()) {
303193323Sed    default: break;
304193323Sed    case ISD::ADD:
305193323Sed    case ISD::ADDC:
306193323Sed    case ISD::ADDE:
307193323Sed    case ISD::AND:
308193323Sed    case ISD::OR:
309193323Sed    case ISD::XOR: {
310193323Sed      SDValue Op1 = U->getOperand(1);
311193323Sed
312193323Sed      // If the other operand is a 8-bit immediate we should fold the immediate
313193323Sed      // instead. This reduces code size.
314193323Sed      // e.g.
315193323Sed      // movl 4(%esp), %eax
316193323Sed      // addl $4, %eax
317193323Sed      // vs.
318193323Sed      // movl $4, %eax
319193323Sed      // addl 4(%esp), %eax
320193323Sed      // The former is 2 bytes shorter. In case where the increment is 1, then
321193323Sed      // the saving can be 4 bytes (by using incl %eax).
322193323Sed      if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
323193323Sed        if (Imm->getAPIntValue().isSignedIntN(8))
324193323Sed          return false;
325193323Sed
326193323Sed      // If the other operand is a TLS address, we should fold it instead.
327193323Sed      // This produces
328193323Sed      // movl    %gs:0, %eax
329193323Sed      // leal    i@NTPOFF(%eax), %eax
330193323Sed      // instead of
331193323Sed      // movl    $i@NTPOFF, %eax
332193323Sed      // addl    %gs:0, %eax
333193323Sed      // if the block also has an access to a second TLS address this will save
334193323Sed      // a load.
335193323Sed      // FIXME: This is probably also true for non TLS addresses.
336193323Sed      if (Op1.getOpcode() == X86ISD::Wrapper) {
337193323Sed        SDValue Val = Op1.getOperand(0);
338193323Sed        if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
339193323Sed          return false;
340193323Sed      }
341193323Sed    }
342193323Sed    }
343193323Sed
344193323Sed  // Proceed to 'generic' cycle finder code
345193323Sed  return SelectionDAGISel::IsLegalAndProfitableToFold(N, U, Root);
346193323Sed}
347193323Sed
348193323Sed/// MoveBelowTokenFactor - Replace TokenFactor operand with load's chain operand
349193323Sed/// and move load below the TokenFactor. Replace store's chain operand with
350193323Sed/// load's chain result.
351193323Sedstatic void MoveBelowTokenFactor(SelectionDAG *CurDAG, SDValue Load,
352193323Sed                                 SDValue Store, SDValue TF) {
353193323Sed  SmallVector<SDValue, 4> Ops;
354193323Sed  for (unsigned i = 0, e = TF.getNode()->getNumOperands(); i != e; ++i)
355193323Sed    if (Load.getNode() == TF.getOperand(i).getNode())
356193323Sed      Ops.push_back(Load.getOperand(0));
357193323Sed    else
358193323Sed      Ops.push_back(TF.getOperand(i));
359198090Srdivacky  SDValue NewTF = CurDAG->UpdateNodeOperands(TF, &Ops[0], Ops.size());
360198090Srdivacky  SDValue NewLoad = CurDAG->UpdateNodeOperands(Load, NewTF,
361198090Srdivacky                                               Load.getOperand(1),
362198090Srdivacky                                               Load.getOperand(2));
363198090Srdivacky  CurDAG->UpdateNodeOperands(Store, NewLoad.getValue(1), Store.getOperand(1),
364193323Sed                             Store.getOperand(2), Store.getOperand(3));
365193323Sed}
366193323Sed
367198090Srdivacky/// isRMWLoad - Return true if N is a load that's part of RMW sub-DAG.  The
368198090Srdivacky/// chain produced by the load must only be used by the store's chain operand,
369198090Srdivacky/// otherwise this may produce a cycle in the DAG.
370193323Sed///
371193323Sedstatic bool isRMWLoad(SDValue N, SDValue Chain, SDValue Address,
372193323Sed                      SDValue &Load) {
373193323Sed  if (N.getOpcode() == ISD::BIT_CONVERT)
374193323Sed    N = N.getOperand(0);
375193323Sed
376193323Sed  LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
377193323Sed  if (!LD || LD->isVolatile())
378193323Sed    return false;
379193323Sed  if (LD->getAddressingMode() != ISD::UNINDEXED)
380193323Sed    return false;
381193323Sed
382193323Sed  ISD::LoadExtType ExtType = LD->getExtensionType();
383193323Sed  if (ExtType != ISD::NON_EXTLOAD && ExtType != ISD::EXTLOAD)
384193323Sed    return false;
385193323Sed
386193323Sed  if (N.hasOneUse() &&
387198090Srdivacky      LD->hasNUsesOfValue(1, 1) &&
388193323Sed      N.getOperand(1) == Address &&
389198090Srdivacky      LD->isOperandOf(Chain.getNode())) {
390193323Sed    Load = N;
391193323Sed    return true;
392193323Sed  }
393193323Sed  return false;
394193323Sed}
395193323Sed
396193323Sed/// MoveBelowCallSeqStart - Replace CALLSEQ_START operand with load's chain
397193323Sed/// operand and move load below the call's chain operand.
398193323Sedstatic void MoveBelowCallSeqStart(SelectionDAG *CurDAG, SDValue Load,
399193323Sed                                  SDValue Call, SDValue CallSeqStart) {
400193323Sed  SmallVector<SDValue, 8> Ops;
401193323Sed  SDValue Chain = CallSeqStart.getOperand(0);
402193323Sed  if (Chain.getNode() == Load.getNode())
403193323Sed    Ops.push_back(Load.getOperand(0));
404193323Sed  else {
405193323Sed    assert(Chain.getOpcode() == ISD::TokenFactor &&
406193323Sed           "Unexpected CallSeqStart chain operand");
407193323Sed    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
408193323Sed      if (Chain.getOperand(i).getNode() == Load.getNode())
409193323Sed        Ops.push_back(Load.getOperand(0));
410193323Sed      else
411193323Sed        Ops.push_back(Chain.getOperand(i));
412193323Sed    SDValue NewChain =
413193323Sed      CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
414193323Sed                      MVT::Other, &Ops[0], Ops.size());
415193323Sed    Ops.clear();
416193323Sed    Ops.push_back(NewChain);
417193323Sed  }
418193323Sed  for (unsigned i = 1, e = CallSeqStart.getNumOperands(); i != e; ++i)
419193323Sed    Ops.push_back(CallSeqStart.getOperand(i));
420193323Sed  CurDAG->UpdateNodeOperands(CallSeqStart, &Ops[0], Ops.size());
421193323Sed  CurDAG->UpdateNodeOperands(Load, Call.getOperand(0),
422193323Sed                             Load.getOperand(1), Load.getOperand(2));
423193323Sed  Ops.clear();
424193323Sed  Ops.push_back(SDValue(Load.getNode(), 1));
425193323Sed  for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
426193323Sed    Ops.push_back(Call.getOperand(i));
427193323Sed  CurDAG->UpdateNodeOperands(Call, &Ops[0], Ops.size());
428193323Sed}
429193323Sed
430193323Sed/// isCalleeLoad - Return true if call address is a load and it can be
431193323Sed/// moved below CALLSEQ_START and the chains leading up to the call.
432193323Sed/// Return the CALLSEQ_START by reference as a second output.
433193323Sedstatic bool isCalleeLoad(SDValue Callee, SDValue &Chain) {
434193323Sed  if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
435193323Sed    return false;
436193323Sed  LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
437193323Sed  if (!LD ||
438193323Sed      LD->isVolatile() ||
439193323Sed      LD->getAddressingMode() != ISD::UNINDEXED ||
440193323Sed      LD->getExtensionType() != ISD::NON_EXTLOAD)
441193323Sed    return false;
442193323Sed
443193323Sed  // Now let's find the callseq_start.
444193323Sed  while (Chain.getOpcode() != ISD::CALLSEQ_START) {
445193323Sed    if (!Chain.hasOneUse())
446193323Sed      return false;
447193323Sed    Chain = Chain.getOperand(0);
448193323Sed  }
449193323Sed
450193323Sed  if (Chain.getOperand(0).getNode() == Callee.getNode())
451193323Sed    return true;
452193323Sed  if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
453198090Srdivacky      Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
454198090Srdivacky      Callee.getValue(1).hasOneUse())
455193323Sed    return true;
456193323Sed  return false;
457193323Sed}
458193323Sed
459193323Sed
460193323Sed/// PreprocessForRMW - Preprocess the DAG to make instruction selection better.
461193323Sed/// This is only run if not in -O0 mode.
462193323Sed/// This allows the instruction selector to pick more read-modify-write
463193323Sed/// instructions. This is a common case:
464193323Sed///
465193323Sed///     [Load chain]
466193323Sed///         ^
467193323Sed///         |
468193323Sed///       [Load]
469193323Sed///       ^    ^
470193323Sed///       |    |
471193323Sed///      /      \-
472193323Sed///     /         |
473193323Sed/// [TokenFactor] [Op]
474193323Sed///     ^          ^
475193323Sed///     |          |
476193323Sed///      \        /
477193323Sed///       \      /
478193323Sed///       [Store]
479193323Sed///
480193323Sed/// The fact the store's chain operand != load's chain will prevent the
481193323Sed/// (store (op (load))) instruction from being selected. We can transform it to:
482193323Sed///
483193323Sed///     [Load chain]
484193323Sed///         ^
485193323Sed///         |
486193323Sed///    [TokenFactor]
487193323Sed///         ^
488193323Sed///         |
489193323Sed///       [Load]
490193323Sed///       ^    ^
491193323Sed///       |    |
492193323Sed///       |     \-
493193323Sed///       |       |
494193323Sed///       |     [Op]
495193323Sed///       |       ^
496193323Sed///       |       |
497193323Sed///       \      /
498193323Sed///        \    /
499193323Sed///       [Store]
500193323Sedvoid X86DAGToDAGISel::PreprocessForRMW() {
501193323Sed  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
502193323Sed         E = CurDAG->allnodes_end(); I != E; ++I) {
503193323Sed    if (I->getOpcode() == X86ISD::CALL) {
504193323Sed      /// Also try moving call address load from outside callseq_start to just
505193323Sed      /// before the call to allow it to be folded.
506193323Sed      ///
507193323Sed      ///     [Load chain]
508193323Sed      ///         ^
509193323Sed      ///         |
510193323Sed      ///       [Load]
511193323Sed      ///       ^    ^
512193323Sed      ///       |    |
513193323Sed      ///      /      \--
514193323Sed      ///     /          |
515193323Sed      ///[CALLSEQ_START] |
516193323Sed      ///     ^          |
517193323Sed      ///     |          |
518193323Sed      /// [LOAD/C2Reg]   |
519193323Sed      ///     |          |
520193323Sed      ///      \        /
521193323Sed      ///       \      /
522193323Sed      ///       [CALL]
523193323Sed      SDValue Chain = I->getOperand(0);
524193323Sed      SDValue Load  = I->getOperand(1);
525193323Sed      if (!isCalleeLoad(Load, Chain))
526193323Sed        continue;
527193323Sed      MoveBelowCallSeqStart(CurDAG, Load, SDValue(I, 0), Chain);
528193323Sed      ++NumLoadMoved;
529193323Sed      continue;
530193323Sed    }
531193323Sed
532193323Sed    if (!ISD::isNON_TRUNCStore(I))
533193323Sed      continue;
534193323Sed    SDValue Chain = I->getOperand(0);
535193323Sed
536193323Sed    if (Chain.getNode()->getOpcode() != ISD::TokenFactor)
537193323Sed      continue;
538193323Sed
539193323Sed    SDValue N1 = I->getOperand(1);
540193323Sed    SDValue N2 = I->getOperand(2);
541193323Sed    if ((N1.getValueType().isFloatingPoint() &&
542193323Sed         !N1.getValueType().isVector()) ||
543193323Sed        !N1.hasOneUse())
544193323Sed      continue;
545193323Sed
546193323Sed    bool RModW = false;
547193323Sed    SDValue Load;
548193323Sed    unsigned Opcode = N1.getNode()->getOpcode();
549193323Sed    switch (Opcode) {
550193323Sed    case ISD::ADD:
551193323Sed    case ISD::MUL:
552193323Sed    case ISD::AND:
553193323Sed    case ISD::OR:
554193323Sed    case ISD::XOR:
555193323Sed    case ISD::ADDC:
556193323Sed    case ISD::ADDE:
557193323Sed    case ISD::VECTOR_SHUFFLE: {
558193323Sed      SDValue N10 = N1.getOperand(0);
559193323Sed      SDValue N11 = N1.getOperand(1);
560193323Sed      RModW = isRMWLoad(N10, Chain, N2, Load);
561193323Sed      if (!RModW)
562193323Sed        RModW = isRMWLoad(N11, Chain, N2, Load);
563193323Sed      break;
564193323Sed    }
565193323Sed    case ISD::SUB:
566193323Sed    case ISD::SHL:
567193323Sed    case ISD::SRA:
568193323Sed    case ISD::SRL:
569193323Sed    case ISD::ROTL:
570193323Sed    case ISD::ROTR:
571193323Sed    case ISD::SUBC:
572193323Sed    case ISD::SUBE:
573193323Sed    case X86ISD::SHLD:
574193323Sed    case X86ISD::SHRD: {
575193323Sed      SDValue N10 = N1.getOperand(0);
576193323Sed      RModW = isRMWLoad(N10, Chain, N2, Load);
577193323Sed      break;
578193323Sed    }
579193323Sed    }
580193323Sed
581193323Sed    if (RModW) {
582193323Sed      MoveBelowTokenFactor(CurDAG, Load, SDValue(I, 0), Chain);
583193323Sed      ++NumLoadMoved;
584193323Sed    }
585193323Sed  }
586193323Sed}
587193323Sed
588193323Sed
589193323Sed/// PreprocessForFPConvert - Walk over the dag lowering fpround and fpextend
590193323Sed/// nodes that target the FP stack to be store and load to the stack.  This is a
591193323Sed/// gross hack.  We would like to simply mark these as being illegal, but when
592193323Sed/// we do that, legalize produces these when it expands calls, then expands
593193323Sed/// these in the same legalize pass.  We would like dag combine to be able to
594193323Sed/// hack on these between the call expansion and the node legalization.  As such
595193323Sed/// this pass basically does "really late" legalization of these inline with the
596193323Sed/// X86 isel pass.
597193323Sedvoid X86DAGToDAGISel::PreprocessForFPConvert() {
598193323Sed  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
599193323Sed       E = CurDAG->allnodes_end(); I != E; ) {
600193323Sed    SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
601193323Sed    if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
602193323Sed      continue;
603193323Sed
604193323Sed    // If the source and destination are SSE registers, then this is a legal
605193323Sed    // conversion that should not be lowered.
606198090Srdivacky    EVT SrcVT = N->getOperand(0).getValueType();
607198090Srdivacky    EVT DstVT = N->getValueType(0);
608193323Sed    bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
609193323Sed    bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
610193323Sed    if (SrcIsSSE && DstIsSSE)
611193323Sed      continue;
612193323Sed
613193323Sed    if (!SrcIsSSE && !DstIsSSE) {
614193323Sed      // If this is an FPStack extension, it is a noop.
615193323Sed      if (N->getOpcode() == ISD::FP_EXTEND)
616193323Sed        continue;
617193323Sed      // If this is a value-preserving FPStack truncation, it is a noop.
618193323Sed      if (N->getConstantOperandVal(1))
619193323Sed        continue;
620193323Sed    }
621193323Sed
622193323Sed    // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
623193323Sed    // FPStack has extload and truncstore.  SSE can fold direct loads into other
624193323Sed    // operations.  Based on this, decide what we want to do.
625198090Srdivacky    EVT MemVT;
626193323Sed    if (N->getOpcode() == ISD::FP_ROUND)
627193323Sed      MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
628193323Sed    else
629193323Sed      MemVT = SrcIsSSE ? SrcVT : DstVT;
630193323Sed
631193323Sed    SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
632193323Sed    DebugLoc dl = N->getDebugLoc();
633193323Sed
634193323Sed    // FIXME: optimize the case where the src/dest is a load or store?
635193323Sed    SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
636193323Sed                                          N->getOperand(0),
637193323Sed                                          MemTmp, NULL, 0, MemVT);
638193323Sed    SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
639193323Sed                                        NULL, 0, MemVT);
640193323Sed
641193323Sed    // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
642193323Sed    // extload we created.  This will cause general havok on the dag because
643193323Sed    // anything below the conversion could be folded into other existing nodes.
644193323Sed    // To avoid invalidating 'I', back it up to the convert node.
645193323Sed    --I;
646193323Sed    CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
647193323Sed
648193323Sed    // Now that we did that, the node is dead.  Increment the iterator to the
649193323Sed    // next node to process, then delete N.
650193323Sed    ++I;
651193323Sed    CurDAG->DeleteNode(N);
652193323Sed  }
653193323Sed}
654193323Sed
655193323Sed/// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
656193323Sed/// when it has created a SelectionDAG for us to codegen.
657193323Sedvoid X86DAGToDAGISel::InstructionSelect() {
658198090Srdivacky  const Function *F = MF->getFunction();
659193323Sed  OptForSize = F->hasFnAttr(Attribute::OptimizeForSize);
660193323Sed
661193323Sed  DEBUG(BB->dump());
662193323Sed  if (OptLevel != CodeGenOpt::None)
663193323Sed    PreprocessForRMW();
664193323Sed
665193323Sed  // FIXME: This should only happen when not compiled with -O0.
666193323Sed  PreprocessForFPConvert();
667193323Sed
668193323Sed  // Codegen the basic block.
669193323Sed#ifndef NDEBUG
670198090Srdivacky  DEBUG(errs() << "===== Instruction selection begins:\n");
671193323Sed  Indent = 0;
672193323Sed#endif
673193323Sed  SelectRoot(*CurDAG);
674193323Sed#ifndef NDEBUG
675198090Srdivacky  DEBUG(errs() << "===== Instruction selection ends:\n");
676193323Sed#endif
677193323Sed
678193323Sed  CurDAG->RemoveDeadNodes();
679193323Sed}
680193323Sed
681193323Sed/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
682193323Sed/// the main function.
683193323Sedvoid X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
684193323Sed                                             MachineFrameInfo *MFI) {
685193323Sed  const TargetInstrInfo *TII = TM.getInstrInfo();
686193323Sed  if (Subtarget->isTargetCygMing())
687193323Sed    BuildMI(BB, DebugLoc::getUnknownLoc(),
688193323Sed            TII->get(X86::CALLpcrel32)).addExternalSymbol("__main");
689193323Sed}
690193323Sed
691193323Sedvoid X86DAGToDAGISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) {
692193323Sed  // If this is main, emit special code for main.
693193323Sed  MachineBasicBlock *BB = MF.begin();
694193323Sed  if (Fn.hasExternalLinkage() && Fn.getName() == "main")
695193323Sed    EmitSpecialCodeForMain(BB, MF.getFrameInfo());
696193323Sed}
697193323Sed
698193323Sed
699193323Sedbool X86DAGToDAGISel::MatchSegmentBaseAddress(SDValue N,
700193323Sed                                              X86ISelAddressMode &AM) {
701193323Sed  assert(N.getOpcode() == X86ISD::SegmentBaseAddress);
702193323Sed  SDValue Segment = N.getOperand(0);
703193323Sed
704193323Sed  if (AM.Segment.getNode() == 0) {
705193323Sed    AM.Segment = Segment;
706193323Sed    return false;
707193323Sed  }
708193323Sed
709193323Sed  return true;
710193323Sed}
711193323Sed
712193323Sedbool X86DAGToDAGISel::MatchLoad(SDValue N, X86ISelAddressMode &AM) {
713193323Sed  // This optimization is valid because the GNU TLS model defines that
714193323Sed  // gs:0 (or fs:0 on X86-64) contains its own address.
715193323Sed  // For more information see http://people.redhat.com/drepper/tls.pdf
716193323Sed
717193323Sed  SDValue Address = N.getOperand(1);
718193323Sed  if (Address.getOpcode() == X86ISD::SegmentBaseAddress &&
719193323Sed      !MatchSegmentBaseAddress (Address, AM))
720193323Sed    return false;
721193323Sed
722193323Sed  return true;
723193323Sed}
724193323Sed
725195098Sed/// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
726195098Sed/// into an addressing mode.  These wrap things that will resolve down into a
727195098Sed/// symbol reference.  If no match is possible, this returns true, otherwise it
728198090Srdivacky/// returns false.
729193323Sedbool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
730195098Sed  // If the addressing mode already has a symbol as the displacement, we can
731195098Sed  // never match another symbol.
732193323Sed  if (AM.hasSymbolicDisplacement())
733193323Sed    return true;
734193323Sed
735193323Sed  SDValue N0 = N.getOperand(0);
736198090Srdivacky  CodeModel::Model M = TM.getCodeModel();
737198090Srdivacky
738195098Sed  // Handle X86-64 rip-relative addresses.  We check this before checking direct
739195098Sed  // folding because RIP is preferable to non-RIP accesses.
740195098Sed  if (Subtarget->is64Bit() &&
741195098Sed      // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
742195098Sed      // they cannot be folded into immediate fields.
743195098Sed      // FIXME: This can be improved for kernel and other models?
744198090Srdivacky      (M == CodeModel::Small || M == CodeModel::Kernel) &&
745195098Sed      // Base and index reg must be 0 in order to use %rip as base and lowering
746195098Sed      // must allow RIP.
747195098Sed      !AM.hasBaseOrIndexReg() && N.getOpcode() == X86ISD::WrapperRIP) {
748195098Sed    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
749195098Sed      int64_t Offset = AM.Disp + G->getOffset();
750198090Srdivacky      if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true;
751195098Sed      AM.GV = G->getGlobal();
752195098Sed      AM.Disp = Offset;
753195098Sed      AM.SymbolFlags = G->getTargetFlags();
754195098Sed    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
755195098Sed      int64_t Offset = AM.Disp + CP->getOffset();
756198090Srdivacky      if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true;
757195098Sed      AM.CP = CP->getConstVal();
758195098Sed      AM.Align = CP->getAlignment();
759195098Sed      AM.Disp = Offset;
760195098Sed      AM.SymbolFlags = CP->getTargetFlags();
761195098Sed    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
762195098Sed      AM.ES = S->getSymbol();
763195098Sed      AM.SymbolFlags = S->getTargetFlags();
764195098Sed    } else {
765195098Sed      JumpTableSDNode *J = cast<JumpTableSDNode>(N0);
766195098Sed      AM.JT = J->getIndex();
767195098Sed      AM.SymbolFlags = J->getTargetFlags();
768193323Sed    }
769198090Srdivacky
770195098Sed    if (N.getOpcode() == X86ISD::WrapperRIP)
771195098Sed      AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
772195098Sed    return false;
773195098Sed  }
774195098Sed
775195098Sed  // Handle the case when globals fit in our immediate field: This is true for
776195098Sed  // X86-32 always and X86-64 when in -static -mcmodel=small mode.  In 64-bit
777195098Sed  // mode, this results in a non-RIP-relative computation.
778195098Sed  if (!Subtarget->is64Bit() ||
779198090Srdivacky      ((M == CodeModel::Small || M == CodeModel::Kernel) &&
780195098Sed       TM.getRelocationModel() == Reloc::Static)) {
781195098Sed    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
782195098Sed      AM.GV = G->getGlobal();
783195098Sed      AM.Disp += G->getOffset();
784195098Sed      AM.SymbolFlags = G->getTargetFlags();
785195098Sed    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
786193323Sed      AM.CP = CP->getConstVal();
787193323Sed      AM.Align = CP->getAlignment();
788195098Sed      AM.Disp += CP->getOffset();
789195098Sed      AM.SymbolFlags = CP->getTargetFlags();
790195098Sed    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
791195098Sed      AM.ES = S->getSymbol();
792195098Sed      AM.SymbolFlags = S->getTargetFlags();
793195098Sed    } else {
794195098Sed      JumpTableSDNode *J = cast<JumpTableSDNode>(N0);
795195098Sed      AM.JT = J->getIndex();
796195098Sed      AM.SymbolFlags = J->getTargetFlags();
797193323Sed    }
798193323Sed    return false;
799193323Sed  }
800193323Sed
801193323Sed  return true;
802193323Sed}
803193323Sed
804193323Sed/// MatchAddress - Add the specified node to the specified addressing mode,
805193323Sed/// returning true if it cannot be done.  This just pattern matches for the
806193323Sed/// addressing mode.
807198090Srdivackybool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
808198090Srdivacky  if (MatchAddressRecursively(N, AM, 0))
809198090Srdivacky    return true;
810198090Srdivacky
811198090Srdivacky  // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
812198090Srdivacky  // a smaller encoding and avoids a scaled-index.
813198090Srdivacky  if (AM.Scale == 2 &&
814198090Srdivacky      AM.BaseType == X86ISelAddressMode::RegBase &&
815198090Srdivacky      AM.Base.Reg.getNode() == 0) {
816198090Srdivacky    AM.Base.Reg = AM.IndexReg;
817198090Srdivacky    AM.Scale = 1;
818198090Srdivacky  }
819198090Srdivacky
820198090Srdivacky  // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
821198090Srdivacky  // because it has a smaller encoding.
822198090Srdivacky  // TODO: Which other code models can use this?
823198090Srdivacky  if (TM.getCodeModel() == CodeModel::Small &&
824198090Srdivacky      Subtarget->is64Bit() &&
825198090Srdivacky      AM.Scale == 1 &&
826198090Srdivacky      AM.BaseType == X86ISelAddressMode::RegBase &&
827198090Srdivacky      AM.Base.Reg.getNode() == 0 &&
828198090Srdivacky      AM.IndexReg.getNode() == 0 &&
829198090Srdivacky      AM.SymbolFlags == X86II::MO_NO_FLAG &&
830198090Srdivacky      AM.hasSymbolicDisplacement())
831198090Srdivacky    AM.Base.Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
832198090Srdivacky
833198090Srdivacky  return false;
834198090Srdivacky}
835198090Srdivacky
836198090Srdivackybool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
837198090Srdivacky                                              unsigned Depth) {
838193323Sed  bool is64Bit = Subtarget->is64Bit();
839193323Sed  DebugLoc dl = N.getDebugLoc();
840198090Srdivacky  DEBUG({
841198090Srdivacky      errs() << "MatchAddress: ";
842198090Srdivacky      AM.dump();
843198090Srdivacky    });
844193323Sed  // Limit recursion.
845193323Sed  if (Depth > 5)
846193323Sed    return MatchAddressBase(N, AM);
847198090Srdivacky
848198090Srdivacky  CodeModel::Model M = TM.getCodeModel();
849198090Srdivacky
850195098Sed  // If this is already a %rip relative address, we can only merge immediates
851195098Sed  // into it.  Instead of handling this in every case, we handle it here.
852193323Sed  // RIP relative addressing: %rip + 32-bit displacement!
853195098Sed  if (AM.isRIPRelative()) {
854195098Sed    // FIXME: JumpTable and ExternalSymbol address currently don't like
855195098Sed    // displacements.  It isn't very important, but this should be fixed for
856195098Sed    // consistency.
857195098Sed    if (!AM.ES && AM.JT != -1) return true;
858198090Srdivacky
859195098Sed    if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N)) {
860195098Sed      int64_t Val = AM.Disp + Cst->getSExtValue();
861198090Srdivacky      if (X86::isOffsetSuitableForCodeModel(Val, M,
862198090Srdivacky                                            AM.hasSymbolicDisplacement())) {
863195098Sed        AM.Disp = Val;
864193323Sed        return false;
865193323Sed      }
866193323Sed    }
867193323Sed    return true;
868193323Sed  }
869193323Sed
870193323Sed  switch (N.getOpcode()) {
871193323Sed  default: break;
872193323Sed  case ISD::Constant: {
873193323Sed    uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
874198090Srdivacky    if (!is64Bit ||
875198090Srdivacky        X86::isOffsetSuitableForCodeModel(AM.Disp + Val, M,
876198090Srdivacky                                          AM.hasSymbolicDisplacement())) {
877193323Sed      AM.Disp += Val;
878193323Sed      return false;
879193323Sed    }
880193323Sed    break;
881193323Sed  }
882193323Sed
883193323Sed  case X86ISD::SegmentBaseAddress:
884193323Sed    if (!MatchSegmentBaseAddress(N, AM))
885193323Sed      return false;
886193323Sed    break;
887193323Sed
888193323Sed  case X86ISD::Wrapper:
889195098Sed  case X86ISD::WrapperRIP:
890193323Sed    if (!MatchWrapper(N, AM))
891193323Sed      return false;
892193323Sed    break;
893193323Sed
894193323Sed  case ISD::LOAD:
895193323Sed    if (!MatchLoad(N, AM))
896193323Sed      return false;
897193323Sed    break;
898193323Sed
899193323Sed  case ISD::FrameIndex:
900193323Sed    if (AM.BaseType == X86ISelAddressMode::RegBase
901193323Sed        && AM.Base.Reg.getNode() == 0) {
902193323Sed      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
903193323Sed      AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
904193323Sed      return false;
905193323Sed    }
906193323Sed    break;
907193323Sed
908193323Sed  case ISD::SHL:
909195098Sed    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
910193323Sed      break;
911193323Sed
912193323Sed    if (ConstantSDNode
913193323Sed          *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
914193323Sed      unsigned Val = CN->getZExtValue();
915198090Srdivacky      // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
916198090Srdivacky      // that the base operand remains free for further matching. If
917198090Srdivacky      // the base doesn't end up getting used, a post-processing step
918198090Srdivacky      // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
919193323Sed      if (Val == 1 || Val == 2 || Val == 3) {
920193323Sed        AM.Scale = 1 << Val;
921193323Sed        SDValue ShVal = N.getNode()->getOperand(0);
922193323Sed
923193323Sed        // Okay, we know that we have a scale by now.  However, if the scaled
924193323Sed        // value is an add of something and a constant, we can fold the
925193323Sed        // constant into the disp field here.
926193323Sed        if (ShVal.getNode()->getOpcode() == ISD::ADD && ShVal.hasOneUse() &&
927193323Sed            isa<ConstantSDNode>(ShVal.getNode()->getOperand(1))) {
928193323Sed          AM.IndexReg = ShVal.getNode()->getOperand(0);
929193323Sed          ConstantSDNode *AddVal =
930193323Sed            cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
931193323Sed          uint64_t Disp = AM.Disp + (AddVal->getSExtValue() << Val);
932198090Srdivacky          if (!is64Bit ||
933198090Srdivacky              X86::isOffsetSuitableForCodeModel(Disp, M,
934198090Srdivacky                                                AM.hasSymbolicDisplacement()))
935193323Sed            AM.Disp = Disp;
936193323Sed          else
937193323Sed            AM.IndexReg = ShVal;
938193323Sed        } else {
939193323Sed          AM.IndexReg = ShVal;
940193323Sed        }
941193323Sed        return false;
942193323Sed      }
943193323Sed    break;
944193323Sed    }
945193323Sed
946193323Sed  case ISD::SMUL_LOHI:
947193323Sed  case ISD::UMUL_LOHI:
948193323Sed    // A mul_lohi where we need the low part can be folded as a plain multiply.
949193323Sed    if (N.getResNo() != 0) break;
950193323Sed    // FALL THROUGH
951193323Sed  case ISD::MUL:
952193323Sed  case X86ISD::MUL_IMM:
953193323Sed    // X*[3,5,9] -> X+X*[2,4,8]
954193323Sed    if (AM.BaseType == X86ISelAddressMode::RegBase &&
955193323Sed        AM.Base.Reg.getNode() == 0 &&
956195098Sed        AM.IndexReg.getNode() == 0) {
957193323Sed      if (ConstantSDNode
958193323Sed            *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
959193323Sed        if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
960193323Sed            CN->getZExtValue() == 9) {
961193323Sed          AM.Scale = unsigned(CN->getZExtValue())-1;
962193323Sed
963193323Sed          SDValue MulVal = N.getNode()->getOperand(0);
964193323Sed          SDValue Reg;
965193323Sed
966193323Sed          // Okay, we know that we have a scale by now.  However, if the scaled
967193323Sed          // value is an add of something and a constant, we can fold the
968193323Sed          // constant into the disp field here.
969193323Sed          if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
970193323Sed              isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
971193323Sed            Reg = MulVal.getNode()->getOperand(0);
972193323Sed            ConstantSDNode *AddVal =
973193323Sed              cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
974193323Sed            uint64_t Disp = AM.Disp + AddVal->getSExtValue() *
975193323Sed                                      CN->getZExtValue();
976198090Srdivacky            if (!is64Bit ||
977198090Srdivacky                X86::isOffsetSuitableForCodeModel(Disp, M,
978198090Srdivacky                                                  AM.hasSymbolicDisplacement()))
979193323Sed              AM.Disp = Disp;
980193323Sed            else
981193323Sed              Reg = N.getNode()->getOperand(0);
982193323Sed          } else {
983193323Sed            Reg = N.getNode()->getOperand(0);
984193323Sed          }
985193323Sed
986193323Sed          AM.IndexReg = AM.Base.Reg = Reg;
987193323Sed          return false;
988193323Sed        }
989193323Sed    }
990193323Sed    break;
991193323Sed
992193323Sed  case ISD::SUB: {
993193323Sed    // Given A-B, if A can be completely folded into the address and
994193323Sed    // the index field with the index field unused, use -B as the index.
995193323Sed    // This is a win if a has multiple parts that can be folded into
996193323Sed    // the address. Also, this saves a mov if the base register has
997193323Sed    // other uses, since it avoids a two-address sub instruction, however
998193323Sed    // it costs an additional mov if the index register has other uses.
999193323Sed
1000193323Sed    // Test if the LHS of the sub can be folded.
1001193323Sed    X86ISelAddressMode Backup = AM;
1002198090Srdivacky    if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
1003193323Sed      AM = Backup;
1004193323Sed      break;
1005193323Sed    }
1006193323Sed    // Test if the index field is free for use.
1007195098Sed    if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
1008193323Sed      AM = Backup;
1009193323Sed      break;
1010193323Sed    }
1011193323Sed    int Cost = 0;
1012193323Sed    SDValue RHS = N.getNode()->getOperand(1);
1013193323Sed    // If the RHS involves a register with multiple uses, this
1014193323Sed    // transformation incurs an extra mov, due to the neg instruction
1015193323Sed    // clobbering its operand.
1016193323Sed    if (!RHS.getNode()->hasOneUse() ||
1017193323Sed        RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
1018193323Sed        RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
1019193323Sed        RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
1020193323Sed        (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
1021193323Sed         RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
1022193323Sed      ++Cost;
1023193323Sed    // If the base is a register with multiple uses, this
1024193323Sed    // transformation may save a mov.
1025193323Sed    if ((AM.BaseType == X86ISelAddressMode::RegBase &&
1026193323Sed         AM.Base.Reg.getNode() &&
1027193323Sed         !AM.Base.Reg.getNode()->hasOneUse()) ||
1028193323Sed        AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1029193323Sed      --Cost;
1030193323Sed    // If the folded LHS was interesting, this transformation saves
1031193323Sed    // address arithmetic.
1032193323Sed    if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
1033193323Sed        ((AM.Disp != 0) && (Backup.Disp == 0)) +
1034193323Sed        (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
1035193323Sed      --Cost;
1036193323Sed    // If it doesn't look like it may be an overall win, don't do it.
1037193323Sed    if (Cost >= 0) {
1038193323Sed      AM = Backup;
1039193323Sed      break;
1040193323Sed    }
1041193323Sed
1042193323Sed    // Ok, the transformation is legal and appears profitable. Go for it.
1043193323Sed    SDValue Zero = CurDAG->getConstant(0, N.getValueType());
1044193323Sed    SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
1045193323Sed    AM.IndexReg = Neg;
1046193323Sed    AM.Scale = 1;
1047193323Sed
1048193323Sed    // Insert the new nodes into the topological ordering.
1049193323Sed    if (Zero.getNode()->getNodeId() == -1 ||
1050193323Sed        Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1051193323Sed      CurDAG->RepositionNode(N.getNode(), Zero.getNode());
1052193323Sed      Zero.getNode()->setNodeId(N.getNode()->getNodeId());
1053193323Sed    }
1054193323Sed    if (Neg.getNode()->getNodeId() == -1 ||
1055193323Sed        Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1056193323Sed      CurDAG->RepositionNode(N.getNode(), Neg.getNode());
1057193323Sed      Neg.getNode()->setNodeId(N.getNode()->getNodeId());
1058193323Sed    }
1059193323Sed    return false;
1060193323Sed  }
1061193323Sed
1062193323Sed  case ISD::ADD: {
1063193323Sed    X86ISelAddressMode Backup = AM;
1064198090Srdivacky    if (!MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1) &&
1065198090Srdivacky        !MatchAddressRecursively(N.getNode()->getOperand(1), AM, Depth+1))
1066193323Sed      return false;
1067193323Sed    AM = Backup;
1068198090Srdivacky    if (!MatchAddressRecursively(N.getNode()->getOperand(1), AM, Depth+1) &&
1069198090Srdivacky        !MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1))
1070193323Sed      return false;
1071193323Sed    AM = Backup;
1072193323Sed
1073193323Sed    // If we couldn't fold both operands into the address at the same time,
1074193323Sed    // see if we can just put each operand into a register and fold at least
1075193323Sed    // the add.
1076193323Sed    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1077193323Sed        !AM.Base.Reg.getNode() &&
1078195098Sed        !AM.IndexReg.getNode()) {
1079193323Sed      AM.Base.Reg = N.getNode()->getOperand(0);
1080193323Sed      AM.IndexReg = N.getNode()->getOperand(1);
1081193323Sed      AM.Scale = 1;
1082193323Sed      return false;
1083193323Sed    }
1084193323Sed    break;
1085193323Sed  }
1086193323Sed
1087193323Sed  case ISD::OR:
1088193323Sed    // Handle "X | C" as "X + C" iff X is known to have C bits clear.
1089193323Sed    if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1090193323Sed      X86ISelAddressMode Backup = AM;
1091193323Sed      uint64_t Offset = CN->getSExtValue();
1092193323Sed      // Start with the LHS as an addr mode.
1093198090Srdivacky      if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1094193323Sed          // Address could not have picked a GV address for the displacement.
1095193323Sed          AM.GV == NULL &&
1096193323Sed          // On x86-64, the resultant disp must fit in 32-bits.
1097198090Srdivacky          (!is64Bit ||
1098198090Srdivacky           X86::isOffsetSuitableForCodeModel(AM.Disp + Offset, M,
1099198090Srdivacky                                             AM.hasSymbolicDisplacement())) &&
1100193323Sed          // Check to see if the LHS & C is zero.
1101193323Sed          CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getAPIntValue())) {
1102193323Sed        AM.Disp += Offset;
1103193323Sed        return false;
1104193323Sed      }
1105193323Sed      AM = Backup;
1106193323Sed    }
1107193323Sed    break;
1108193323Sed
1109193323Sed  case ISD::AND: {
1110193323Sed    // Perform some heroic transforms on an and of a constant-count shift
1111193323Sed    // with a constant to enable use of the scaled offset field.
1112193323Sed
1113193323Sed    SDValue Shift = N.getOperand(0);
1114193323Sed    if (Shift.getNumOperands() != 2) break;
1115193323Sed
1116193323Sed    // Scale must not be used already.
1117193323Sed    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
1118193323Sed
1119193323Sed    SDValue X = Shift.getOperand(0);
1120193323Sed    ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1));
1121193323Sed    ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
1122193323Sed    if (!C1 || !C2) break;
1123193323Sed
1124193323Sed    // Handle "(X >> (8-C1)) & C2" as "(X >> 8) & 0xff)" if safe. This
1125193323Sed    // allows us to convert the shift and and into an h-register extract and
1126193323Sed    // a scaled index.
1127193323Sed    if (Shift.getOpcode() == ISD::SRL && Shift.hasOneUse()) {
1128193323Sed      unsigned ScaleLog = 8 - C1->getZExtValue();
1129193323Sed      if (ScaleLog > 0 && ScaleLog < 4 &&
1130193323Sed          C2->getZExtValue() == (UINT64_C(0xff) << ScaleLog)) {
1131193323Sed        SDValue Eight = CurDAG->getConstant(8, MVT::i8);
1132193323Sed        SDValue Mask = CurDAG->getConstant(0xff, N.getValueType());
1133193323Sed        SDValue Srl = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1134193323Sed                                      X, Eight);
1135193323Sed        SDValue And = CurDAG->getNode(ISD::AND, dl, N.getValueType(),
1136193323Sed                                      Srl, Mask);
1137193323Sed        SDValue ShlCount = CurDAG->getConstant(ScaleLog, MVT::i8);
1138193323Sed        SDValue Shl = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1139193323Sed                                      And, ShlCount);
1140193323Sed
1141193323Sed        // Insert the new nodes into the topological ordering.
1142193323Sed        if (Eight.getNode()->getNodeId() == -1 ||
1143193323Sed            Eight.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1144193323Sed          CurDAG->RepositionNode(X.getNode(), Eight.getNode());
1145193323Sed          Eight.getNode()->setNodeId(X.getNode()->getNodeId());
1146193323Sed        }
1147193323Sed        if (Mask.getNode()->getNodeId() == -1 ||
1148193323Sed            Mask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1149193323Sed          CurDAG->RepositionNode(X.getNode(), Mask.getNode());
1150193323Sed          Mask.getNode()->setNodeId(X.getNode()->getNodeId());
1151193323Sed        }
1152193323Sed        if (Srl.getNode()->getNodeId() == -1 ||
1153193323Sed            Srl.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1154193323Sed          CurDAG->RepositionNode(Shift.getNode(), Srl.getNode());
1155193323Sed          Srl.getNode()->setNodeId(Shift.getNode()->getNodeId());
1156193323Sed        }
1157193323Sed        if (And.getNode()->getNodeId() == -1 ||
1158193323Sed            And.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1159193323Sed          CurDAG->RepositionNode(N.getNode(), And.getNode());
1160193323Sed          And.getNode()->setNodeId(N.getNode()->getNodeId());
1161193323Sed        }
1162193323Sed        if (ShlCount.getNode()->getNodeId() == -1 ||
1163193323Sed            ShlCount.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1164193323Sed          CurDAG->RepositionNode(X.getNode(), ShlCount.getNode());
1165193323Sed          ShlCount.getNode()->setNodeId(N.getNode()->getNodeId());
1166193323Sed        }
1167193323Sed        if (Shl.getNode()->getNodeId() == -1 ||
1168193323Sed            Shl.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1169193323Sed          CurDAG->RepositionNode(N.getNode(), Shl.getNode());
1170193323Sed          Shl.getNode()->setNodeId(N.getNode()->getNodeId());
1171193323Sed        }
1172193323Sed        CurDAG->ReplaceAllUsesWith(N, Shl);
1173193323Sed        AM.IndexReg = And;
1174193323Sed        AM.Scale = (1 << ScaleLog);
1175193323Sed        return false;
1176193323Sed      }
1177193323Sed    }
1178193323Sed
1179193323Sed    // Handle "(X << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this
1180193323Sed    // allows us to fold the shift into this addressing mode.
1181193323Sed    if (Shift.getOpcode() != ISD::SHL) break;
1182193323Sed
1183193323Sed    // Not likely to be profitable if either the AND or SHIFT node has more
1184193323Sed    // than one use (unless all uses are for address computation). Besides,
1185193323Sed    // isel mechanism requires their node ids to be reused.
1186193323Sed    if (!N.hasOneUse() || !Shift.hasOneUse())
1187193323Sed      break;
1188193323Sed
1189193323Sed    // Verify that the shift amount is something we can fold.
1190193323Sed    unsigned ShiftCst = C1->getZExtValue();
1191193323Sed    if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3)
1192193323Sed      break;
1193193323Sed
1194193323Sed    // Get the new AND mask, this folds to a constant.
1195193323Sed    SDValue NewANDMask = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1196193323Sed                                         SDValue(C2, 0), SDValue(C1, 0));
1197193323Sed    SDValue NewAND = CurDAG->getNode(ISD::AND, dl, N.getValueType(), X,
1198193323Sed                                     NewANDMask);
1199193323Sed    SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1200193323Sed                                       NewAND, SDValue(C1, 0));
1201193323Sed
1202193323Sed    // Insert the new nodes into the topological ordering.
1203193323Sed    if (C1->getNodeId() > X.getNode()->getNodeId()) {
1204193323Sed      CurDAG->RepositionNode(X.getNode(), C1);
1205193323Sed      C1->setNodeId(X.getNode()->getNodeId());
1206193323Sed    }
1207193323Sed    if (NewANDMask.getNode()->getNodeId() == -1 ||
1208193323Sed        NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1209193323Sed      CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode());
1210193323Sed      NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId());
1211193323Sed    }
1212193323Sed    if (NewAND.getNode()->getNodeId() == -1 ||
1213193323Sed        NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1214193323Sed      CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode());
1215193323Sed      NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId());
1216193323Sed    }
1217193323Sed    if (NewSHIFT.getNode()->getNodeId() == -1 ||
1218193323Sed        NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1219193323Sed      CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode());
1220193323Sed      NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId());
1221193323Sed    }
1222193323Sed
1223193323Sed    CurDAG->ReplaceAllUsesWith(N, NewSHIFT);
1224193323Sed
1225193323Sed    AM.Scale = 1 << ShiftCst;
1226193323Sed    AM.IndexReg = NewAND;
1227193323Sed    return false;
1228193323Sed  }
1229193323Sed  }
1230193323Sed
1231193323Sed  return MatchAddressBase(N, AM);
1232193323Sed}
1233193323Sed
1234193323Sed/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1235193323Sed/// specified addressing mode without any further recursion.
1236193323Sedbool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1237193323Sed  // Is the base register already occupied?
1238193323Sed  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.getNode()) {
1239193323Sed    // If so, check to see if the scale index register is set.
1240195098Sed    if (AM.IndexReg.getNode() == 0) {
1241193323Sed      AM.IndexReg = N;
1242193323Sed      AM.Scale = 1;
1243193323Sed      return false;
1244193323Sed    }
1245193323Sed
1246193323Sed    // Otherwise, we cannot select it.
1247193323Sed    return true;
1248193323Sed  }
1249193323Sed
1250193323Sed  // Default, generate it as a register.
1251193323Sed  AM.BaseType = X86ISelAddressMode::RegBase;
1252193323Sed  AM.Base.Reg = N;
1253193323Sed  return false;
1254193323Sed}
1255193323Sed
1256193323Sed/// SelectAddr - returns true if it is able pattern match an addressing mode.
1257193323Sed/// It returns the operands which make up the maximal addressing mode it can
1258193323Sed/// match by reference.
1259193323Sedbool X86DAGToDAGISel::SelectAddr(SDValue Op, SDValue N, SDValue &Base,
1260193323Sed                                 SDValue &Scale, SDValue &Index,
1261193323Sed                                 SDValue &Disp, SDValue &Segment) {
1262193323Sed  X86ISelAddressMode AM;
1263193323Sed  bool Done = false;
1264193323Sed  if (AvoidDupAddrCompute && !N.hasOneUse()) {
1265193323Sed    unsigned Opcode = N.getOpcode();
1266193323Sed    if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex &&
1267195098Sed        Opcode != X86ISD::Wrapper && Opcode != X86ISD::WrapperRIP) {
1268193323Sed      // If we are able to fold N into addressing mode, then we'll allow it even
1269193323Sed      // if N has multiple uses. In general, addressing computation is used as
1270193323Sed      // addresses by all of its uses. But watch out for CopyToReg uses, that
1271193323Sed      // means the address computation is liveout. It will be computed by a LEA
1272193323Sed      // so we want to avoid computing the address twice.
1273193323Sed      for (SDNode::use_iterator UI = N.getNode()->use_begin(),
1274193323Sed             UE = N.getNode()->use_end(); UI != UE; ++UI) {
1275193323Sed        if (UI->getOpcode() == ISD::CopyToReg) {
1276193323Sed          MatchAddressBase(N, AM);
1277193323Sed          Done = true;
1278193323Sed          break;
1279193323Sed        }
1280193323Sed      }
1281193323Sed    }
1282193323Sed  }
1283193323Sed
1284193323Sed  if (!Done && MatchAddress(N, AM))
1285193323Sed    return false;
1286193323Sed
1287198090Srdivacky  EVT VT = N.getValueType();
1288193323Sed  if (AM.BaseType == X86ISelAddressMode::RegBase) {
1289193323Sed    if (!AM.Base.Reg.getNode())
1290193323Sed      AM.Base.Reg = CurDAG->getRegister(0, VT);
1291193323Sed  }
1292193323Sed
1293193323Sed  if (!AM.IndexReg.getNode())
1294193323Sed    AM.IndexReg = CurDAG->getRegister(0, VT);
1295193323Sed
1296193323Sed  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1297193323Sed  return true;
1298193323Sed}
1299193323Sed
1300193323Sed/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
1301193323Sed/// match a load whose top elements are either undef or zeros.  The load flavor
1302193323Sed/// is derived from the type of N, which is either v4f32 or v2f64.
1303193323Sedbool X86DAGToDAGISel::SelectScalarSSELoad(SDValue Op, SDValue Pred,
1304193323Sed                                          SDValue N, SDValue &Base,
1305193323Sed                                          SDValue &Scale, SDValue &Index,
1306193323Sed                                          SDValue &Disp, SDValue &Segment,
1307193323Sed                                          SDValue &InChain,
1308193323Sed                                          SDValue &OutChain) {
1309193323Sed  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1310193323Sed    InChain = N.getOperand(0).getValue(1);
1311193323Sed    if (ISD::isNON_EXTLoad(InChain.getNode()) &&
1312193323Sed        InChain.getValue(0).hasOneUse() &&
1313193323Sed        N.hasOneUse() &&
1314193323Sed        IsLegalAndProfitableToFold(N.getNode(), Pred.getNode(), Op.getNode())) {
1315193323Sed      LoadSDNode *LD = cast<LoadSDNode>(InChain);
1316193323Sed      if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1317193323Sed        return false;
1318193323Sed      OutChain = LD->getChain();
1319193323Sed      return true;
1320193323Sed    }
1321193323Sed  }
1322193323Sed
1323193323Sed  // Also handle the case where we explicitly require zeros in the top
1324193323Sed  // elements.  This is a vector shuffle from the zero vector.
1325193323Sed  if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1326193323Sed      // Check to see if the top elements are all zeros (or bitcast of zeros).
1327193323Sed      N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1328193323Sed      N.getOperand(0).getNode()->hasOneUse() &&
1329193323Sed      ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1330193323Sed      N.getOperand(0).getOperand(0).hasOneUse()) {
1331193323Sed    // Okay, this is a zero extending load.  Fold it.
1332193323Sed    LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1333193323Sed    if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1334193323Sed      return false;
1335193323Sed    OutChain = LD->getChain();
1336193323Sed    InChain = SDValue(LD, 1);
1337193323Sed    return true;
1338193323Sed  }
1339193323Sed  return false;
1340193323Sed}
1341193323Sed
1342193323Sed
1343193323Sed/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1344193323Sed/// mode it matches can be cost effectively emitted as an LEA instruction.
1345193323Sedbool X86DAGToDAGISel::SelectLEAAddr(SDValue Op, SDValue N,
1346193323Sed                                    SDValue &Base, SDValue &Scale,
1347193323Sed                                    SDValue &Index, SDValue &Disp) {
1348193323Sed  X86ISelAddressMode AM;
1349193323Sed
1350193323Sed  // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1351193323Sed  // segments.
1352193323Sed  SDValue Copy = AM.Segment;
1353193323Sed  SDValue T = CurDAG->getRegister(0, MVT::i32);
1354193323Sed  AM.Segment = T;
1355193323Sed  if (MatchAddress(N, AM))
1356193323Sed    return false;
1357193323Sed  assert (T == AM.Segment);
1358193323Sed  AM.Segment = Copy;
1359193323Sed
1360198090Srdivacky  EVT VT = N.getValueType();
1361193323Sed  unsigned Complexity = 0;
1362193323Sed  if (AM.BaseType == X86ISelAddressMode::RegBase)
1363193323Sed    if (AM.Base.Reg.getNode())
1364193323Sed      Complexity = 1;
1365193323Sed    else
1366193323Sed      AM.Base.Reg = CurDAG->getRegister(0, VT);
1367193323Sed  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1368193323Sed    Complexity = 4;
1369193323Sed
1370193323Sed  if (AM.IndexReg.getNode())
1371193323Sed    Complexity++;
1372193323Sed  else
1373193323Sed    AM.IndexReg = CurDAG->getRegister(0, VT);
1374193323Sed
1375193323Sed  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1376193323Sed  // a simple shift.
1377193323Sed  if (AM.Scale > 1)
1378193323Sed    Complexity++;
1379193323Sed
1380193323Sed  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1381193323Sed  // to a LEA. This is determined with some expermentation but is by no means
1382193323Sed  // optimal (especially for code size consideration). LEA is nice because of
1383193323Sed  // its three-address nature. Tweak the cost function again when we can run
1384193323Sed  // convertToThreeAddress() at register allocation time.
1385193323Sed  if (AM.hasSymbolicDisplacement()) {
1386193323Sed    // For X86-64, we should always use lea to materialize RIP relative
1387193323Sed    // addresses.
1388193323Sed    if (Subtarget->is64Bit())
1389193323Sed      Complexity = 4;
1390193323Sed    else
1391193323Sed      Complexity += 2;
1392193323Sed  }
1393193323Sed
1394193323Sed  if (AM.Disp && (AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
1395193323Sed    Complexity++;
1396193323Sed
1397198090Srdivacky  // If it isn't worth using an LEA, reject it.
1398198090Srdivacky  if (Complexity <= 2)
1399198090Srdivacky    return false;
1400198090Srdivacky
1401198090Srdivacky  SDValue Segment;
1402198090Srdivacky  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1403198090Srdivacky  return true;
1404193323Sed}
1405193323Sed
1406194612Sed/// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
1407194612Sedbool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue Op, SDValue N, SDValue &Base,
1408194612Sed                                        SDValue &Scale, SDValue &Index,
1409194612Sed                                        SDValue &Disp) {
1410194612Sed  assert(Op.getOpcode() == X86ISD::TLSADDR);
1411194612Sed  assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
1412194612Sed  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
1413194612Sed
1414194612Sed  X86ISelAddressMode AM;
1415194612Sed  AM.GV = GA->getGlobal();
1416194612Sed  AM.Disp += GA->getOffset();
1417194612Sed  AM.Base.Reg = CurDAG->getRegister(0, N.getValueType());
1418195098Sed  AM.SymbolFlags = GA->getTargetFlags();
1419195098Sed
1420194612Sed  if (N.getValueType() == MVT::i32) {
1421194612Sed    AM.Scale = 1;
1422194612Sed    AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
1423194612Sed  } else {
1424194612Sed    AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
1425194612Sed  }
1426194612Sed
1427194612Sed  SDValue Segment;
1428194612Sed  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1429194612Sed  return true;
1430194612Sed}
1431194612Sed
1432194612Sed
1433193323Sedbool X86DAGToDAGISel::TryFoldLoad(SDValue P, SDValue N,
1434193323Sed                                  SDValue &Base, SDValue &Scale,
1435193323Sed                                  SDValue &Index, SDValue &Disp,
1436193323Sed                                  SDValue &Segment) {
1437193323Sed  if (ISD::isNON_EXTLoad(N.getNode()) &&
1438193323Sed      N.hasOneUse() &&
1439193323Sed      IsLegalAndProfitableToFold(N.getNode(), P.getNode(), P.getNode()))
1440193323Sed    return SelectAddr(P, N.getOperand(1), Base, Scale, Index, Disp, Segment);
1441193323Sed  return false;
1442193323Sed}
1443193323Sed
1444193323Sed/// getGlobalBaseReg - Return an SDNode that returns the value of
1445193323Sed/// the global base register. Output instructions required to
1446193323Sed/// initialize the global base register, if necessary.
1447193323Sed///
1448193323SedSDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1449193399Sed  unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
1450193323Sed  return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
1451193323Sed}
1452193323Sed
1453193323Sedstatic SDNode *FindCallStartFromCall(SDNode *Node) {
1454193323Sed  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
1455193323Sed    assert(Node->getOperand(0).getValueType() == MVT::Other &&
1456193323Sed         "Node doesn't have a token chain argument!");
1457193323Sed  return FindCallStartFromCall(Node->getOperand(0).getNode());
1458193323Sed}
1459193323Sed
1460193323SedSDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1461193323Sed  SDValue Chain = Node->getOperand(0);
1462193323Sed  SDValue In1 = Node->getOperand(1);
1463193323Sed  SDValue In2L = Node->getOperand(2);
1464193323Sed  SDValue In2H = Node->getOperand(3);
1465193323Sed  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1466193323Sed  if (!SelectAddr(In1, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1467193323Sed    return NULL;
1468198090Srdivacky  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1469198090Srdivacky  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1470198090Srdivacky  const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
1471198090Srdivacky  SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
1472198090Srdivacky                                           MVT::i32, MVT::i32, MVT::Other, Ops,
1473198090Srdivacky                                           array_lengthof(Ops));
1474198090Srdivacky  cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
1475198090Srdivacky  return ResNode;
1476193323Sed}
1477193323Sed
1478198090SrdivackySDNode *X86DAGToDAGISel::SelectAtomicLoadAdd(SDNode *Node, EVT NVT) {
1479198090Srdivacky  if (Node->hasAnyUseOfValue(0))
1480198090Srdivacky    return 0;
1481198090Srdivacky
1482198090Srdivacky  // Optimize common patterns for __sync_add_and_fetch and
1483198090Srdivacky  // __sync_sub_and_fetch where the result is not used. This allows us
1484198090Srdivacky  // to use "lock" version of add, sub, inc, dec instructions.
1485198090Srdivacky  // FIXME: Do not use special instructions but instead add the "lock"
1486198090Srdivacky  // prefix to the target node somehow. The extra information will then be
1487198090Srdivacky  // transferred to machine instruction and it denotes the prefix.
1488198090Srdivacky  SDValue Chain = Node->getOperand(0);
1489198090Srdivacky  SDValue Ptr = Node->getOperand(1);
1490198090Srdivacky  SDValue Val = Node->getOperand(2);
1491198090Srdivacky  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1492198090Srdivacky  if (!SelectAddr(Ptr, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1493198090Srdivacky    return 0;
1494198090Srdivacky
1495198090Srdivacky  bool isInc = false, isDec = false, isSub = false, isCN = false;
1496198090Srdivacky  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val);
1497198090Srdivacky  if (CN) {
1498198090Srdivacky    isCN = true;
1499198090Srdivacky    int64_t CNVal = CN->getSExtValue();
1500198090Srdivacky    if (CNVal == 1)
1501198090Srdivacky      isInc = true;
1502198090Srdivacky    else if (CNVal == -1)
1503198090Srdivacky      isDec = true;
1504198090Srdivacky    else if (CNVal >= 0)
1505198090Srdivacky      Val = CurDAG->getTargetConstant(CNVal, NVT);
1506198090Srdivacky    else {
1507198090Srdivacky      isSub = true;
1508198090Srdivacky      Val = CurDAG->getTargetConstant(-CNVal, NVT);
1509198090Srdivacky    }
1510198090Srdivacky  } else if (Val.hasOneUse() &&
1511198090Srdivacky             Val.getOpcode() == ISD::SUB &&
1512198090Srdivacky             X86::isZeroNode(Val.getOperand(0))) {
1513198090Srdivacky    isSub = true;
1514198090Srdivacky    Val = Val.getOperand(1);
1515198090Srdivacky  }
1516198090Srdivacky
1517198090Srdivacky  unsigned Opc = 0;
1518198090Srdivacky  switch (NVT.getSimpleVT().SimpleTy) {
1519198090Srdivacky  default: return 0;
1520198090Srdivacky  case MVT::i8:
1521198090Srdivacky    if (isInc)
1522198090Srdivacky      Opc = X86::LOCK_INC8m;
1523198090Srdivacky    else if (isDec)
1524198090Srdivacky      Opc = X86::LOCK_DEC8m;
1525198090Srdivacky    else if (isSub) {
1526198090Srdivacky      if (isCN)
1527198090Srdivacky        Opc = X86::LOCK_SUB8mi;
1528198090Srdivacky      else
1529198090Srdivacky        Opc = X86::LOCK_SUB8mr;
1530198090Srdivacky    } else {
1531198090Srdivacky      if (isCN)
1532198090Srdivacky        Opc = X86::LOCK_ADD8mi;
1533198090Srdivacky      else
1534198090Srdivacky        Opc = X86::LOCK_ADD8mr;
1535198090Srdivacky    }
1536198090Srdivacky    break;
1537198090Srdivacky  case MVT::i16:
1538198090Srdivacky    if (isInc)
1539198090Srdivacky      Opc = X86::LOCK_INC16m;
1540198090Srdivacky    else if (isDec)
1541198090Srdivacky      Opc = X86::LOCK_DEC16m;
1542198090Srdivacky    else if (isSub) {
1543198090Srdivacky      if (isCN) {
1544198090Srdivacky        if (Predicate_i16immSExt8(Val.getNode()))
1545198090Srdivacky          Opc = X86::LOCK_SUB16mi8;
1546198090Srdivacky        else
1547198090Srdivacky          Opc = X86::LOCK_SUB16mi;
1548198090Srdivacky      } else
1549198090Srdivacky        Opc = X86::LOCK_SUB16mr;
1550198090Srdivacky    } else {
1551198090Srdivacky      if (isCN) {
1552198090Srdivacky        if (Predicate_i16immSExt8(Val.getNode()))
1553198090Srdivacky          Opc = X86::LOCK_ADD16mi8;
1554198090Srdivacky        else
1555198090Srdivacky          Opc = X86::LOCK_ADD16mi;
1556198090Srdivacky      } else
1557198090Srdivacky        Opc = X86::LOCK_ADD16mr;
1558198090Srdivacky    }
1559198090Srdivacky    break;
1560198090Srdivacky  case MVT::i32:
1561198090Srdivacky    if (isInc)
1562198090Srdivacky      Opc = X86::LOCK_INC32m;
1563198090Srdivacky    else if (isDec)
1564198090Srdivacky      Opc = X86::LOCK_DEC32m;
1565198090Srdivacky    else if (isSub) {
1566198090Srdivacky      if (isCN) {
1567198090Srdivacky        if (Predicate_i32immSExt8(Val.getNode()))
1568198090Srdivacky          Opc = X86::LOCK_SUB32mi8;
1569198090Srdivacky        else
1570198090Srdivacky          Opc = X86::LOCK_SUB32mi;
1571198090Srdivacky      } else
1572198090Srdivacky        Opc = X86::LOCK_SUB32mr;
1573198090Srdivacky    } else {
1574198090Srdivacky      if (isCN) {
1575198090Srdivacky        if (Predicate_i32immSExt8(Val.getNode()))
1576198090Srdivacky          Opc = X86::LOCK_ADD32mi8;
1577198090Srdivacky        else
1578198090Srdivacky          Opc = X86::LOCK_ADD32mi;
1579198090Srdivacky      } else
1580198090Srdivacky        Opc = X86::LOCK_ADD32mr;
1581198090Srdivacky    }
1582198090Srdivacky    break;
1583198090Srdivacky  case MVT::i64:
1584198090Srdivacky    if (isInc)
1585198090Srdivacky      Opc = X86::LOCK_INC64m;
1586198090Srdivacky    else if (isDec)
1587198090Srdivacky      Opc = X86::LOCK_DEC64m;
1588198090Srdivacky    else if (isSub) {
1589198090Srdivacky      Opc = X86::LOCK_SUB64mr;
1590198090Srdivacky      if (isCN) {
1591198090Srdivacky        if (Predicate_i64immSExt8(Val.getNode()))
1592198090Srdivacky          Opc = X86::LOCK_SUB64mi8;
1593198090Srdivacky        else if (Predicate_i64immSExt32(Val.getNode()))
1594198090Srdivacky          Opc = X86::LOCK_SUB64mi32;
1595198090Srdivacky      }
1596198090Srdivacky    } else {
1597198090Srdivacky      Opc = X86::LOCK_ADD64mr;
1598198090Srdivacky      if (isCN) {
1599198090Srdivacky        if (Predicate_i64immSExt8(Val.getNode()))
1600198090Srdivacky          Opc = X86::LOCK_ADD64mi8;
1601198090Srdivacky        else if (Predicate_i64immSExt32(Val.getNode()))
1602198090Srdivacky          Opc = X86::LOCK_ADD64mi32;
1603198090Srdivacky      }
1604198090Srdivacky    }
1605198090Srdivacky    break;
1606198090Srdivacky  }
1607198090Srdivacky
1608198090Srdivacky  DebugLoc dl = Node->getDebugLoc();
1609198090Srdivacky  SDValue Undef = SDValue(CurDAG->getMachineNode(TargetInstrInfo::IMPLICIT_DEF,
1610198090Srdivacky                                                 dl, NVT), 0);
1611198090Srdivacky  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1612198090Srdivacky  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1613198090Srdivacky  if (isInc || isDec) {
1614198090Srdivacky    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
1615198090Srdivacky    SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 6), 0);
1616198090Srdivacky    cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1617198090Srdivacky    SDValue RetVals[] = { Undef, Ret };
1618198090Srdivacky    return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1619198090Srdivacky  } else {
1620198090Srdivacky    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
1621198090Srdivacky    SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0);
1622198090Srdivacky    cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1623198090Srdivacky    SDValue RetVals[] = { Undef, Ret };
1624198090Srdivacky    return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1625198090Srdivacky  }
1626198090Srdivacky}
1627198090Srdivacky
1628198090Srdivacky/// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
1629198090Srdivacky/// any uses which require the SF or OF bits to be accurate.
1630198090Srdivackystatic bool HasNoSignedComparisonUses(SDNode *N) {
1631198090Srdivacky  // Examine each user of the node.
1632198090Srdivacky  for (SDNode::use_iterator UI = N->use_begin(),
1633198090Srdivacky         UE = N->use_end(); UI != UE; ++UI) {
1634198090Srdivacky    // Only examine CopyToReg uses.
1635198090Srdivacky    if (UI->getOpcode() != ISD::CopyToReg)
1636198090Srdivacky      return false;
1637198090Srdivacky    // Only examine CopyToReg uses that copy to EFLAGS.
1638198090Srdivacky    if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
1639198090Srdivacky          X86::EFLAGS)
1640198090Srdivacky      return false;
1641198090Srdivacky    // Examine each user of the CopyToReg use.
1642198090Srdivacky    for (SDNode::use_iterator FlagUI = UI->use_begin(),
1643198090Srdivacky           FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
1644198090Srdivacky      // Only examine the Flag result.
1645198090Srdivacky      if (FlagUI.getUse().getResNo() != 1) continue;
1646198090Srdivacky      // Anything unusual: assume conservatively.
1647198090Srdivacky      if (!FlagUI->isMachineOpcode()) return false;
1648198090Srdivacky      // Examine the opcode of the user.
1649198090Srdivacky      switch (FlagUI->getMachineOpcode()) {
1650198090Srdivacky      // These comparisons don't treat the most significant bit specially.
1651198090Srdivacky      case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
1652198090Srdivacky      case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
1653198090Srdivacky      case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
1654198090Srdivacky      case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
1655198090Srdivacky      case X86::JA: case X86::JAE: case X86::JB: case X86::JBE:
1656198090Srdivacky      case X86::JE: case X86::JNE: case X86::JP: case X86::JNP:
1657198090Srdivacky      case X86::CMOVA16rr: case X86::CMOVA16rm:
1658198090Srdivacky      case X86::CMOVA32rr: case X86::CMOVA32rm:
1659198090Srdivacky      case X86::CMOVA64rr: case X86::CMOVA64rm:
1660198090Srdivacky      case X86::CMOVAE16rr: case X86::CMOVAE16rm:
1661198090Srdivacky      case X86::CMOVAE32rr: case X86::CMOVAE32rm:
1662198090Srdivacky      case X86::CMOVAE64rr: case X86::CMOVAE64rm:
1663198090Srdivacky      case X86::CMOVB16rr: case X86::CMOVB16rm:
1664198090Srdivacky      case X86::CMOVB32rr: case X86::CMOVB32rm:
1665198090Srdivacky      case X86::CMOVB64rr: case X86::CMOVB64rm:
1666198090Srdivacky      case X86::CMOVBE16rr: case X86::CMOVBE16rm:
1667198090Srdivacky      case X86::CMOVBE32rr: case X86::CMOVBE32rm:
1668198090Srdivacky      case X86::CMOVBE64rr: case X86::CMOVBE64rm:
1669198090Srdivacky      case X86::CMOVE16rr: case X86::CMOVE16rm:
1670198090Srdivacky      case X86::CMOVE32rr: case X86::CMOVE32rm:
1671198090Srdivacky      case X86::CMOVE64rr: case X86::CMOVE64rm:
1672198090Srdivacky      case X86::CMOVNE16rr: case X86::CMOVNE16rm:
1673198090Srdivacky      case X86::CMOVNE32rr: case X86::CMOVNE32rm:
1674198090Srdivacky      case X86::CMOVNE64rr: case X86::CMOVNE64rm:
1675198090Srdivacky      case X86::CMOVNP16rr: case X86::CMOVNP16rm:
1676198090Srdivacky      case X86::CMOVNP32rr: case X86::CMOVNP32rm:
1677198090Srdivacky      case X86::CMOVNP64rr: case X86::CMOVNP64rm:
1678198090Srdivacky      case X86::CMOVP16rr: case X86::CMOVP16rm:
1679198090Srdivacky      case X86::CMOVP32rr: case X86::CMOVP32rm:
1680198090Srdivacky      case X86::CMOVP64rr: case X86::CMOVP64rm:
1681198090Srdivacky        continue;
1682198090Srdivacky      // Anything else: assume conservatively.
1683198090Srdivacky      default: return false;
1684198090Srdivacky      }
1685198090Srdivacky    }
1686198090Srdivacky  }
1687198090Srdivacky  return true;
1688198090Srdivacky}
1689198090Srdivacky
1690193323SedSDNode *X86DAGToDAGISel::Select(SDValue N) {
1691193323Sed  SDNode *Node = N.getNode();
1692198090Srdivacky  EVT NVT = Node->getValueType(0);
1693193323Sed  unsigned Opc, MOpc;
1694193323Sed  unsigned Opcode = Node->getOpcode();
1695193323Sed  DebugLoc dl = Node->getDebugLoc();
1696193323Sed
1697193323Sed#ifndef NDEBUG
1698198090Srdivacky  DEBUG({
1699198090Srdivacky      errs() << std::string(Indent, ' ') << "Selecting: ";
1700198090Srdivacky      Node->dump(CurDAG);
1701198090Srdivacky      errs() << '\n';
1702198090Srdivacky    });
1703193323Sed  Indent += 2;
1704193323Sed#endif
1705193323Sed
1706193323Sed  if (Node->isMachineOpcode()) {
1707193323Sed#ifndef NDEBUG
1708198090Srdivacky    DEBUG({
1709198090Srdivacky        errs() << std::string(Indent-2, ' ') << "== ";
1710198090Srdivacky        Node->dump(CurDAG);
1711198090Srdivacky        errs() << '\n';
1712198090Srdivacky      });
1713193323Sed    Indent -= 2;
1714193323Sed#endif
1715193323Sed    return NULL;   // Already selected.
1716193323Sed  }
1717193323Sed
1718193323Sed  switch (Opcode) {
1719198090Srdivacky  default: break;
1720198090Srdivacky  case X86ISD::GlobalBaseReg:
1721198090Srdivacky    return getGlobalBaseReg();
1722193323Sed
1723198090Srdivacky  case X86ISD::ATOMOR64_DAG:
1724198090Srdivacky    return SelectAtomic64(Node, X86::ATOMOR6432);
1725198090Srdivacky  case X86ISD::ATOMXOR64_DAG:
1726198090Srdivacky    return SelectAtomic64(Node, X86::ATOMXOR6432);
1727198090Srdivacky  case X86ISD::ATOMADD64_DAG:
1728198090Srdivacky    return SelectAtomic64(Node, X86::ATOMADD6432);
1729198090Srdivacky  case X86ISD::ATOMSUB64_DAG:
1730198090Srdivacky    return SelectAtomic64(Node, X86::ATOMSUB6432);
1731198090Srdivacky  case X86ISD::ATOMNAND64_DAG:
1732198090Srdivacky    return SelectAtomic64(Node, X86::ATOMNAND6432);
1733198090Srdivacky  case X86ISD::ATOMAND64_DAG:
1734198090Srdivacky    return SelectAtomic64(Node, X86::ATOMAND6432);
1735198090Srdivacky  case X86ISD::ATOMSWAP64_DAG:
1736198090Srdivacky    return SelectAtomic64(Node, X86::ATOMSWAP6432);
1737193323Sed
1738198090Srdivacky  case ISD::ATOMIC_LOAD_ADD: {
1739198090Srdivacky    SDNode *RetVal = SelectAtomicLoadAdd(Node, NVT);
1740198090Srdivacky    if (RetVal)
1741198090Srdivacky      return RetVal;
1742198090Srdivacky    break;
1743198090Srdivacky  }
1744193323Sed
1745198090Srdivacky  case ISD::SMUL_LOHI:
1746198090Srdivacky  case ISD::UMUL_LOHI: {
1747198090Srdivacky    SDValue N0 = Node->getOperand(0);
1748198090Srdivacky    SDValue N1 = Node->getOperand(1);
1749193323Sed
1750198090Srdivacky    bool isSigned = Opcode == ISD::SMUL_LOHI;
1751198090Srdivacky    if (!isSigned) {
1752198090Srdivacky      switch (NVT.getSimpleVT().SimpleTy) {
1753198090Srdivacky      default: llvm_unreachable("Unsupported VT!");
1754198090Srdivacky      case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
1755198090Srdivacky      case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
1756198090Srdivacky      case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
1757198090Srdivacky      case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
1758193323Sed      }
1759198090Srdivacky    } else {
1760198090Srdivacky      switch (NVT.getSimpleVT().SimpleTy) {
1761198090Srdivacky      default: llvm_unreachable("Unsupported VT!");
1762198090Srdivacky      case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
1763198090Srdivacky      case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
1764198090Srdivacky      case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
1765198090Srdivacky      case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
1766193323Sed      }
1767198090Srdivacky    }
1768193323Sed
1769198090Srdivacky    unsigned LoReg, HiReg;
1770198090Srdivacky    switch (NVT.getSimpleVT().SimpleTy) {
1771198090Srdivacky    default: llvm_unreachable("Unsupported VT!");
1772198090Srdivacky    case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  break;
1773198090Srdivacky    case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  break;
1774198090Srdivacky    case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
1775198090Srdivacky    case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
1776198090Srdivacky    }
1777193323Sed
1778198090Srdivacky    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1779198090Srdivacky    bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1780198090Srdivacky    // Multiply is commmutative.
1781198090Srdivacky    if (!foldedLoad) {
1782198090Srdivacky      foldedLoad = TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1783198090Srdivacky      if (foldedLoad)
1784198090Srdivacky        std::swap(N0, N1);
1785198090Srdivacky    }
1786193323Sed
1787198090Srdivacky    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
1788198090Srdivacky                                            N0, SDValue()).getValue(1);
1789198090Srdivacky
1790198090Srdivacky    if (foldedLoad) {
1791198090Srdivacky      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1792198090Srdivacky                        InFlag };
1793198090Srdivacky      SDNode *CNode =
1794198090Srdivacky        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
1795198090Srdivacky                               array_lengthof(Ops));
1796198090Srdivacky      InFlag = SDValue(CNode, 1);
1797198090Srdivacky      // Update the chain.
1798198090Srdivacky      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1799198090Srdivacky    } else {
1800198090Srdivacky      InFlag =
1801198090Srdivacky        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
1802198090Srdivacky    }
1803198090Srdivacky
1804198090Srdivacky    // Copy the low half of the result, if it is needed.
1805198090Srdivacky    if (!N.getValue(0).use_empty()) {
1806198090Srdivacky      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1807198090Srdivacky                                                LoReg, NVT, InFlag);
1808198090Srdivacky      InFlag = Result.getValue(2);
1809198090Srdivacky      ReplaceUses(N.getValue(0), Result);
1810193323Sed#ifndef NDEBUG
1811198090Srdivacky      DEBUG({
1812198090Srdivacky          errs() << std::string(Indent-2, ' ') << "=> ";
1813198090Srdivacky          Result.getNode()->dump(CurDAG);
1814198090Srdivacky          errs() << '\n';
1815198090Srdivacky        });
1816193323Sed#endif
1817198090Srdivacky    }
1818198090Srdivacky    // Copy the high half of the result, if it is needed.
1819198090Srdivacky    if (!N.getValue(1).use_empty()) {
1820198090Srdivacky      SDValue Result;
1821198090Srdivacky      if (HiReg == X86::AH && Subtarget->is64Bit()) {
1822198090Srdivacky        // Prevent use of AH in a REX instruction by referencing AX instead.
1823198090Srdivacky        // Shift it down 8 bits.
1824198090Srdivacky        Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1825198090Srdivacky                                        X86::AX, MVT::i16, InFlag);
1826198090Srdivacky        InFlag = Result.getValue(2);
1827198090Srdivacky        Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
1828198090Srdivacky                                                Result,
1829198090Srdivacky                                   CurDAG->getTargetConstant(8, MVT::i8)), 0);
1830198090Srdivacky        // Then truncate it down to i8.
1831198090Srdivacky        Result = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT, dl,
1832198090Srdivacky                                                MVT::i8, Result);
1833198090Srdivacky      } else {
1834198090Srdivacky        Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1835198090Srdivacky                                        HiReg, NVT, InFlag);
1836198090Srdivacky        InFlag = Result.getValue(2);
1837193323Sed      }
1838198090Srdivacky      ReplaceUses(N.getValue(1), Result);
1839193323Sed#ifndef NDEBUG
1840198090Srdivacky      DEBUG({
1841198090Srdivacky          errs() << std::string(Indent-2, ' ') << "=> ";
1842198090Srdivacky          Result.getNode()->dump(CurDAG);
1843198090Srdivacky          errs() << '\n';
1844198090Srdivacky        });
1845193323Sed#endif
1846198090Srdivacky    }
1847193323Sed
1848193323Sed#ifndef NDEBUG
1849198090Srdivacky    Indent -= 2;
1850193323Sed#endif
1851193323Sed
1852198090Srdivacky    return NULL;
1853198090Srdivacky  }
1854193323Sed
1855198090Srdivacky  case ISD::SDIVREM:
1856198090Srdivacky  case ISD::UDIVREM: {
1857198090Srdivacky    SDValue N0 = Node->getOperand(0);
1858198090Srdivacky    SDValue N1 = Node->getOperand(1);
1859193323Sed
1860198090Srdivacky    bool isSigned = Opcode == ISD::SDIVREM;
1861198090Srdivacky    if (!isSigned) {
1862198090Srdivacky      switch (NVT.getSimpleVT().SimpleTy) {
1863198090Srdivacky      default: llvm_unreachable("Unsupported VT!");
1864198090Srdivacky      case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
1865198090Srdivacky      case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
1866198090Srdivacky      case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
1867198090Srdivacky      case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
1868193323Sed      }
1869198090Srdivacky    } else {
1870198090Srdivacky      switch (NVT.getSimpleVT().SimpleTy) {
1871198090Srdivacky      default: llvm_unreachable("Unsupported VT!");
1872198090Srdivacky      case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
1873198090Srdivacky      case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
1874198090Srdivacky      case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
1875198090Srdivacky      case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
1876198090Srdivacky      }
1877198090Srdivacky    }
1878193323Sed
1879198090Srdivacky    unsigned LoReg, HiReg;
1880198090Srdivacky    unsigned ClrOpcode, SExtOpcode;
1881198090Srdivacky    switch (NVT.getSimpleVT().SimpleTy) {
1882198090Srdivacky    default: llvm_unreachable("Unsupported VT!");
1883198090Srdivacky    case MVT::i8:
1884198090Srdivacky      LoReg = X86::AL;  HiReg = X86::AH;
1885198090Srdivacky      ClrOpcode  = 0;
1886198090Srdivacky      SExtOpcode = X86::CBW;
1887198090Srdivacky      break;
1888198090Srdivacky    case MVT::i16:
1889198090Srdivacky      LoReg = X86::AX;  HiReg = X86::DX;
1890198090Srdivacky      ClrOpcode  = X86::MOV16r0;
1891198090Srdivacky      SExtOpcode = X86::CWD;
1892198090Srdivacky      break;
1893198090Srdivacky    case MVT::i32:
1894198090Srdivacky      LoReg = X86::EAX; HiReg = X86::EDX;
1895198090Srdivacky      ClrOpcode  = X86::MOV32r0;
1896198090Srdivacky      SExtOpcode = X86::CDQ;
1897198090Srdivacky      break;
1898198090Srdivacky    case MVT::i64:
1899198090Srdivacky      LoReg = X86::RAX; HiReg = X86::RDX;
1900198090Srdivacky      ClrOpcode  = ~0U; // NOT USED.
1901198090Srdivacky      SExtOpcode = X86::CQO;
1902198090Srdivacky      break;
1903198090Srdivacky    }
1904193323Sed
1905198090Srdivacky    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1906198090Srdivacky    bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1907198090Srdivacky    bool signBitIsZero = CurDAG->SignBitIsZero(N0);
1908198090Srdivacky
1909198090Srdivacky    SDValue InFlag;
1910198090Srdivacky    if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
1911198090Srdivacky      // Special case for div8, just use a move with zero extension to AX to
1912198090Srdivacky      // clear the upper 8 bits (AH).
1913198090Srdivacky      SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
1914198090Srdivacky      if (TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
1915198090Srdivacky        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
1916198090Srdivacky        Move =
1917198090Srdivacky          SDValue(CurDAG->getMachineNode(X86::MOVZX16rm8, dl, MVT::i16,
1918198090Srdivacky                                         MVT::Other, Ops,
1919198090Srdivacky                                         array_lengthof(Ops)), 0);
1920198090Srdivacky        Chain = Move.getValue(1);
1921198090Srdivacky        ReplaceUses(N0.getValue(1), Chain);
1922193323Sed      } else {
1923198090Srdivacky        Move =
1924198090Srdivacky          SDValue(CurDAG->getMachineNode(X86::MOVZX16rr8, dl, MVT::i16, N0),0);
1925198090Srdivacky        Chain = CurDAG->getEntryNode();
1926198090Srdivacky      }
1927198090Srdivacky      Chain  = CurDAG->getCopyToReg(Chain, dl, X86::AX, Move, SDValue());
1928198090Srdivacky      InFlag = Chain.getValue(1);
1929198090Srdivacky    } else {
1930198090Srdivacky      InFlag =
1931198090Srdivacky        CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
1932198090Srdivacky                             LoReg, N0, SDValue()).getValue(1);
1933198090Srdivacky      if (isSigned && !signBitIsZero) {
1934198090Srdivacky        // Sign extend the low part into the high part.
1935193323Sed        InFlag =
1936198090Srdivacky          SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Flag, InFlag),0);
1937198090Srdivacky      } else {
1938198090Srdivacky        // Zero out the high part, effectively zero extending the input.
1939198090Srdivacky        SDValue ClrNode;
1940198090Srdivacky
1941198090Srdivacky        if (NVT.getSimpleVT() == MVT::i64) {
1942198090Srdivacky          ClrNode = SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, MVT::i32),
1943198090Srdivacky                            0);
1944198090Srdivacky          // We just did a 32-bit clear, insert it into a 64-bit register to
1945198090Srdivacky          // clear the whole 64-bit reg.
1946198090Srdivacky          SDValue Undef =
1947198090Srdivacky            SDValue(CurDAG->getMachineNode(TargetInstrInfo::IMPLICIT_DEF,
1948198090Srdivacky                                           dl, MVT::i64), 0);
1949198090Srdivacky          SDValue SubRegNo =
1950198090Srdivacky            CurDAG->getTargetConstant(X86::SUBREG_32BIT, MVT::i32);
1951198090Srdivacky          ClrNode =
1952198090Srdivacky            SDValue(CurDAG->getMachineNode(TargetInstrInfo::INSERT_SUBREG, dl,
1953198090Srdivacky                                           MVT::i64, Undef, ClrNode, SubRegNo),
1954198090Srdivacky                    0);
1955193323Sed        } else {
1956198090Srdivacky          ClrNode = SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0);
1957193323Sed        }
1958193323Sed
1959198090Srdivacky        InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, HiReg,
1960198090Srdivacky                                      ClrNode, InFlag).getValue(1);
1961193323Sed      }
1962198090Srdivacky    }
1963193323Sed
1964198090Srdivacky    if (foldedLoad) {
1965198090Srdivacky      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1966198090Srdivacky                        InFlag };
1967198090Srdivacky      SDNode *CNode =
1968198090Srdivacky        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
1969198090Srdivacky                               array_lengthof(Ops));
1970198090Srdivacky      InFlag = SDValue(CNode, 1);
1971198090Srdivacky      // Update the chain.
1972198090Srdivacky      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1973198090Srdivacky    } else {
1974198090Srdivacky      InFlag =
1975198090Srdivacky        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
1976198090Srdivacky    }
1977198090Srdivacky
1978198090Srdivacky    // Copy the division (low) result, if it is needed.
1979198090Srdivacky    if (!N.getValue(0).use_empty()) {
1980198090Srdivacky      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1981198090Srdivacky                                                LoReg, NVT, InFlag);
1982198090Srdivacky      InFlag = Result.getValue(2);
1983198090Srdivacky      ReplaceUses(N.getValue(0), Result);
1984193323Sed#ifndef NDEBUG
1985198090Srdivacky      DEBUG({
1986198090Srdivacky          errs() << std::string(Indent-2, ' ') << "=> ";
1987198090Srdivacky          Result.getNode()->dump(CurDAG);
1988198090Srdivacky          errs() << '\n';
1989198090Srdivacky        });
1990193323Sed#endif
1991198090Srdivacky    }
1992198090Srdivacky    // Copy the remainder (high) result, if it is needed.
1993198090Srdivacky    if (!N.getValue(1).use_empty()) {
1994198090Srdivacky      SDValue Result;
1995198090Srdivacky      if (HiReg == X86::AH && Subtarget->is64Bit()) {
1996198090Srdivacky        // Prevent use of AH in a REX instruction by referencing AX instead.
1997198090Srdivacky        // Shift it down 8 bits.
1998198090Srdivacky        Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1999198090Srdivacky                                        X86::AX, MVT::i16, InFlag);
2000198090Srdivacky        InFlag = Result.getValue(2);
2001198090Srdivacky        Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2002198090Srdivacky                                      Result,
2003198090Srdivacky                                      CurDAG->getTargetConstant(8, MVT::i8)),
2004198090Srdivacky                         0);
2005198090Srdivacky        // Then truncate it down to i8.
2006198090Srdivacky        Result = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT, dl,
2007198090Srdivacky                                                MVT::i8, Result);
2008198090Srdivacky      } else {
2009198090Srdivacky        Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2010198090Srdivacky                                        HiReg, NVT, InFlag);
2011198090Srdivacky        InFlag = Result.getValue(2);
2012193323Sed      }
2013198090Srdivacky      ReplaceUses(N.getValue(1), Result);
2014193323Sed#ifndef NDEBUG
2015198090Srdivacky      DEBUG({
2016198090Srdivacky          errs() << std::string(Indent-2, ' ') << "=> ";
2017198090Srdivacky          Result.getNode()->dump(CurDAG);
2018198090Srdivacky          errs() << '\n';
2019198090Srdivacky        });
2020193323Sed#endif
2021198090Srdivacky    }
2022193323Sed
2023193323Sed#ifndef NDEBUG
2024198090Srdivacky    Indent -= 2;
2025193323Sed#endif
2026193323Sed
2027198090Srdivacky    return NULL;
2028198090Srdivacky  }
2029193323Sed
2030198090Srdivacky  case X86ISD::CMP: {
2031198090Srdivacky    SDValue N0 = Node->getOperand(0);
2032198090Srdivacky    SDValue N1 = Node->getOperand(1);
2033198090Srdivacky
2034198090Srdivacky    // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
2035198090Srdivacky    // use a smaller encoding.
2036198090Srdivacky    if (N0.getNode()->getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
2037198090Srdivacky        N0.getValueType() != MVT::i8 &&
2038198090Srdivacky        X86::isZeroNode(N1)) {
2039198090Srdivacky      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
2040198090Srdivacky      if (!C) break;
2041198090Srdivacky
2042198090Srdivacky      // For example, convert "testl %eax, $8" to "testb %al, $8"
2043198090Srdivacky      if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
2044198090Srdivacky          (!(C->getZExtValue() & 0x80) ||
2045198090Srdivacky           HasNoSignedComparisonUses(Node))) {
2046198090Srdivacky        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
2047198090Srdivacky        SDValue Reg = N0.getNode()->getOperand(0);
2048198090Srdivacky
2049198090Srdivacky        // On x86-32, only the ABCD registers have 8-bit subregisters.
2050198090Srdivacky        if (!Subtarget->is64Bit()) {
2051198090Srdivacky          TargetRegisterClass *TRC = 0;
2052198090Srdivacky          switch (N0.getValueType().getSimpleVT().SimpleTy) {
2053198090Srdivacky          case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2054198090Srdivacky          case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2055198090Srdivacky          default: llvm_unreachable("Unsupported TEST operand type!");
2056198090Srdivacky          }
2057198090Srdivacky          SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2058198090Srdivacky          Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2059198090Srdivacky                                               Reg.getValueType(), Reg, RC), 0);
2060198090Srdivacky        }
2061198090Srdivacky
2062198090Srdivacky        // Extract the l-register.
2063198090Srdivacky        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT, dl,
2064198090Srdivacky                                                        MVT::i8, Reg);
2065198090Srdivacky
2066198090Srdivacky        // Emit a testb.
2067198090Srdivacky        return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, Subreg, Imm);
2068193323Sed      }
2069198090Srdivacky
2070198090Srdivacky      // For example, "testl %eax, $2048" to "testb %ah, $8".
2071198090Srdivacky      if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
2072198090Srdivacky          (!(C->getZExtValue() & 0x8000) ||
2073198090Srdivacky           HasNoSignedComparisonUses(Node))) {
2074198090Srdivacky        // Shift the immediate right by 8 bits.
2075198090Srdivacky        SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
2076198090Srdivacky                                                       MVT::i8);
2077198090Srdivacky        SDValue Reg = N0.getNode()->getOperand(0);
2078198090Srdivacky
2079198090Srdivacky        // Put the value in an ABCD register.
2080198090Srdivacky        TargetRegisterClass *TRC = 0;
2081198090Srdivacky        switch (N0.getValueType().getSimpleVT().SimpleTy) {
2082198090Srdivacky        case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
2083198090Srdivacky        case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2084198090Srdivacky        case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2085198090Srdivacky        default: llvm_unreachable("Unsupported TEST operand type!");
2086198090Srdivacky        }
2087198090Srdivacky        SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2088198090Srdivacky        Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2089198090Srdivacky                                             Reg.getValueType(), Reg, RC), 0);
2090198090Srdivacky
2091198090Srdivacky        // Extract the h-register.
2092198090Srdivacky        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT_HI, dl,
2093198090Srdivacky                                                        MVT::i8, Reg);
2094198090Srdivacky
2095198090Srdivacky        // Emit a testb. No special NOREX tricks are needed since there's
2096198090Srdivacky        // only one GPR operand!
2097198090Srdivacky        return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
2098198090Srdivacky                                      Subreg, ShiftedImm);
2099193323Sed      }
2100198090Srdivacky
2101198090Srdivacky      // For example, "testl %eax, $32776" to "testw %ax, $32776".
2102198090Srdivacky      if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
2103198090Srdivacky          N0.getValueType() != MVT::i16 &&
2104198090Srdivacky          (!(C->getZExtValue() & 0x8000) ||
2105198090Srdivacky           HasNoSignedComparisonUses(Node))) {
2106198090Srdivacky        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
2107198090Srdivacky        SDValue Reg = N0.getNode()->getOperand(0);
2108198090Srdivacky
2109198090Srdivacky        // Extract the 16-bit subregister.
2110198090Srdivacky        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_16BIT, dl,
2111198090Srdivacky                                                        MVT::i16, Reg);
2112198090Srdivacky
2113198090Srdivacky        // Emit a testw.
2114198090Srdivacky        return CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32, Subreg, Imm);
2115193323Sed      }
2116198090Srdivacky
2117198090Srdivacky      // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
2118198090Srdivacky      if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
2119198090Srdivacky          N0.getValueType() == MVT::i64 &&
2120198090Srdivacky          (!(C->getZExtValue() & 0x80000000) ||
2121198090Srdivacky           HasNoSignedComparisonUses(Node))) {
2122198090Srdivacky        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
2123198090Srdivacky        SDValue Reg = N0.getNode()->getOperand(0);
2124198090Srdivacky
2125198090Srdivacky        // Extract the 32-bit subregister.
2126198090Srdivacky        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_32BIT, dl,
2127198090Srdivacky                                                        MVT::i32, Reg);
2128198090Srdivacky
2129198090Srdivacky        // Emit a testl.
2130198090Srdivacky        return CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32, Subreg, Imm);
2131198090Srdivacky      }
2132193323Sed    }
2133198090Srdivacky    break;
2134193323Sed  }
2135198090Srdivacky  }
2136193323Sed
2137193323Sed  SDNode *ResNode = SelectCode(N);
2138193323Sed
2139193323Sed#ifndef NDEBUG
2140198090Srdivacky  DEBUG({
2141198090Srdivacky      errs() << std::string(Indent-2, ' ') << "=> ";
2142198090Srdivacky      if (ResNode == NULL || ResNode == N.getNode())
2143198090Srdivacky        N.getNode()->dump(CurDAG);
2144198090Srdivacky      else
2145198090Srdivacky        ResNode->dump(CurDAG);
2146198090Srdivacky      errs() << '\n';
2147198090Srdivacky    });
2148193323Sed  Indent -= 2;
2149193323Sed#endif
2150193323Sed
2151193323Sed  return ResNode;
2152193323Sed}
2153193323Sed
2154193323Sedbool X86DAGToDAGISel::
2155193323SedSelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
2156193323Sed                             std::vector<SDValue> &OutOps) {
2157193323Sed  SDValue Op0, Op1, Op2, Op3, Op4;
2158193323Sed  switch (ConstraintCode) {
2159193323Sed  case 'o':   // offsetable        ??
2160193323Sed  case 'v':   // not offsetable    ??
2161193323Sed  default: return true;
2162193323Sed  case 'm':   // memory
2163193323Sed    if (!SelectAddr(Op, Op, Op0, Op1, Op2, Op3, Op4))
2164193323Sed      return true;
2165193323Sed    break;
2166193323Sed  }
2167193323Sed
2168193323Sed  OutOps.push_back(Op0);
2169193323Sed  OutOps.push_back(Op1);
2170193323Sed  OutOps.push_back(Op2);
2171193323Sed  OutOps.push_back(Op3);
2172193323Sed  OutOps.push_back(Op4);
2173193323Sed  return false;
2174193323Sed}
2175193323Sed
2176193323Sed/// createX86ISelDag - This pass converts a legalized DAG into a
2177193323Sed/// X86-specific DAG, ready for instruction scheduling.
2178193323Sed///
2179193323SedFunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
2180193323Sed                                     llvm::CodeGenOpt::Level OptLevel) {
2181193323Sed  return new X86DAGToDAGISel(TM, OptLevel);
2182193323Sed}
2183