X86ISelDAGToDAG.cpp revision 193323
1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a DAG pattern matching instruction selector for X86,
11// converting from a legalized dag to a X86 dag.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86MachineFunctionInfo.h"
20#include "X86RegisterInfo.h"
21#include "X86Subtarget.h"
22#include "X86TargetMachine.h"
23#include "llvm/GlobalValue.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/Support/CFG.h"
27#include "llvm/Type.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/SelectionDAGISel.h"
34#include "llvm/Target/TargetMachine.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/Support/Compiler.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/MathExtras.h"
39#include "llvm/Support/Streams.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include "llvm/ADT/Statistic.h"
42using namespace llvm;
43
44#include "llvm/Support/CommandLine.h"
45static cl::opt<bool> AvoidDupAddrCompute("x86-avoid-dup-address", cl::Hidden);
46
47STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
48
49//===----------------------------------------------------------------------===//
50//                      Pattern Matcher Implementation
51//===----------------------------------------------------------------------===//
52
53namespace {
54  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
55  /// SDValue's instead of register numbers for the leaves of the matched
56  /// tree.
57  struct X86ISelAddressMode {
58    enum {
59      RegBase,
60      FrameIndexBase
61    } BaseType;
62
63    struct {            // This is really a union, discriminated by BaseType!
64      SDValue Reg;
65      int FrameIndex;
66    } Base;
67
68    bool isRIPRel;     // RIP as base?
69    unsigned Scale;
70    SDValue IndexReg;
71    int32_t Disp;
72    SDValue Segment;
73    GlobalValue *GV;
74    Constant *CP;
75    const char *ES;
76    int JT;
77    unsigned Align;    // CP alignment.
78
79    X86ISelAddressMode()
80      : BaseType(RegBase), isRIPRel(false), Scale(1), IndexReg(), Disp(0),
81        Segment(), GV(0), CP(0), ES(0), JT(-1), Align(0) {
82    }
83
84    bool hasSymbolicDisplacement() const {
85      return GV != 0 || CP != 0 || ES != 0 || JT != -1;
86    }
87
88    void dump() {
89      cerr << "X86ISelAddressMode " << this << "\n";
90      cerr << "Base.Reg ";
91              if (Base.Reg.getNode() != 0) Base.Reg.getNode()->dump();
92              else cerr << "nul";
93      cerr << " Base.FrameIndex " << Base.FrameIndex << "\n";
94      cerr << "isRIPRel " << isRIPRel << " Scale" << Scale << "\n";
95      cerr << "IndexReg ";
96              if (IndexReg.getNode() != 0) IndexReg.getNode()->dump();
97              else cerr << "nul";
98      cerr << " Disp " << Disp << "\n";
99      cerr << "GV "; if (GV) GV->dump();
100                     else cerr << "nul";
101      cerr << " CP "; if (CP) CP->dump();
102                     else cerr << "nul";
103      cerr << "\n";
104      cerr << "ES "; if (ES) cerr << ES; else cerr << "nul";
105      cerr  << " JT" << JT << " Align" << Align << "\n";
106    }
107  };
108}
109
110namespace {
111  //===--------------------------------------------------------------------===//
112  /// ISel - X86 specific code to select X86 machine instructions for
113  /// SelectionDAG operations.
114  ///
115  class VISIBILITY_HIDDEN X86DAGToDAGISel : public SelectionDAGISel {
116    /// TM - Keep a reference to X86TargetMachine.
117    ///
118    X86TargetMachine &TM;
119
120    /// X86Lowering - This object fully describes how to lower LLVM code to an
121    /// X86-specific SelectionDAG.
122    X86TargetLowering &X86Lowering;
123
124    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
125    /// make the right decision when generating code for different targets.
126    const X86Subtarget *Subtarget;
127
128    /// CurBB - Current BB being isel'd.
129    ///
130    MachineBasicBlock *CurBB;
131
132    /// OptForSize - If true, selector should try to optimize for code size
133    /// instead of performance.
134    bool OptForSize;
135
136  public:
137    explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
138      : SelectionDAGISel(tm, OptLevel),
139        TM(tm), X86Lowering(*TM.getTargetLowering()),
140        Subtarget(&TM.getSubtarget<X86Subtarget>()),
141        OptForSize(false) {}
142
143    virtual const char *getPassName() const {
144      return "X86 DAG->DAG Instruction Selection";
145    }
146
147    /// InstructionSelect - This callback is invoked by
148    /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
149    virtual void InstructionSelect();
150
151    virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF);
152
153    virtual
154      bool IsLegalAndProfitableToFold(SDNode *N, SDNode *U, SDNode *Root) const;
155
156// Include the pieces autogenerated from the target description.
157#include "X86GenDAGISel.inc"
158
159  private:
160    SDNode *Select(SDValue N);
161    SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
162
163    bool MatchSegmentBaseAddress(SDValue N, X86ISelAddressMode &AM);
164    bool MatchLoad(SDValue N, X86ISelAddressMode &AM);
165    bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
166    bool MatchAddress(SDValue N, X86ISelAddressMode &AM,
167                      unsigned Depth = 0);
168    bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
169    bool SelectAddr(SDValue Op, SDValue N, SDValue &Base,
170                    SDValue &Scale, SDValue &Index, SDValue &Disp,
171                    SDValue &Segment);
172    bool SelectLEAAddr(SDValue Op, SDValue N, SDValue &Base,
173                       SDValue &Scale, SDValue &Index, SDValue &Disp);
174    bool SelectScalarSSELoad(SDValue Op, SDValue Pred,
175                             SDValue N, SDValue &Base, SDValue &Scale,
176                             SDValue &Index, SDValue &Disp,
177                             SDValue &Segment,
178                             SDValue &InChain, SDValue &OutChain);
179    bool TryFoldLoad(SDValue P, SDValue N,
180                     SDValue &Base, SDValue &Scale,
181                     SDValue &Index, SDValue &Disp,
182                     SDValue &Segment);
183    void PreprocessForRMW();
184    void PreprocessForFPConvert();
185
186    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
187    /// inline asm expressions.
188    virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
189                                              char ConstraintCode,
190                                              std::vector<SDValue> &OutOps);
191
192    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
193
194    inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
195                                   SDValue &Scale, SDValue &Index,
196                                   SDValue &Disp, SDValue &Segment) {
197      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
198        CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy()) :
199        AM.Base.Reg;
200      Scale = getI8Imm(AM.Scale);
201      Index = AM.IndexReg;
202      // These are 32-bit even in 64-bit mode since RIP relative offset
203      // is 32-bit.
204      if (AM.GV)
205        Disp = CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp);
206      else if (AM.CP)
207        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
208                                             AM.Align, AM.Disp);
209      else if (AM.ES)
210        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32);
211      else if (AM.JT != -1)
212        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32);
213      else
214        Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
215
216      if (AM.Segment.getNode())
217        Segment = AM.Segment;
218      else
219        Segment = CurDAG->getRegister(0, MVT::i32);
220    }
221
222    /// getI8Imm - Return a target constant with the specified value, of type
223    /// i8.
224    inline SDValue getI8Imm(unsigned Imm) {
225      return CurDAG->getTargetConstant(Imm, MVT::i8);
226    }
227
228    /// getI16Imm - Return a target constant with the specified value, of type
229    /// i16.
230    inline SDValue getI16Imm(unsigned Imm) {
231      return CurDAG->getTargetConstant(Imm, MVT::i16);
232    }
233
234    /// getI32Imm - Return a target constant with the specified value, of type
235    /// i32.
236    inline SDValue getI32Imm(unsigned Imm) {
237      return CurDAG->getTargetConstant(Imm, MVT::i32);
238    }
239
240    /// getGlobalBaseReg - Return an SDNode that returns the value of
241    /// the global base register. Output instructions required to
242    /// initialize the global base register, if necessary.
243    ///
244    SDNode *getGlobalBaseReg();
245
246#ifndef NDEBUG
247    unsigned Indent;
248#endif
249  };
250}
251
252
253bool X86DAGToDAGISel::IsLegalAndProfitableToFold(SDNode *N, SDNode *U,
254                                                 SDNode *Root) const {
255  if (OptLevel == CodeGenOpt::None) return false;
256
257  if (U == Root)
258    switch (U->getOpcode()) {
259    default: break;
260    case ISD::ADD:
261    case ISD::ADDC:
262    case ISD::ADDE:
263    case ISD::AND:
264    case ISD::OR:
265    case ISD::XOR: {
266      SDValue Op1 = U->getOperand(1);
267
268      // If the other operand is a 8-bit immediate we should fold the immediate
269      // instead. This reduces code size.
270      // e.g.
271      // movl 4(%esp), %eax
272      // addl $4, %eax
273      // vs.
274      // movl $4, %eax
275      // addl 4(%esp), %eax
276      // The former is 2 bytes shorter. In case where the increment is 1, then
277      // the saving can be 4 bytes (by using incl %eax).
278      if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
279        if (Imm->getAPIntValue().isSignedIntN(8))
280          return false;
281
282      // If the other operand is a TLS address, we should fold it instead.
283      // This produces
284      // movl    %gs:0, %eax
285      // leal    i@NTPOFF(%eax), %eax
286      // instead of
287      // movl    $i@NTPOFF, %eax
288      // addl    %gs:0, %eax
289      // if the block also has an access to a second TLS address this will save
290      // a load.
291      // FIXME: This is probably also true for non TLS addresses.
292      if (Op1.getOpcode() == X86ISD::Wrapper) {
293        SDValue Val = Op1.getOperand(0);
294        if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
295          return false;
296      }
297    }
298    }
299
300  // Proceed to 'generic' cycle finder code
301  return SelectionDAGISel::IsLegalAndProfitableToFold(N, U, Root);
302}
303
304/// MoveBelowTokenFactor - Replace TokenFactor operand with load's chain operand
305/// and move load below the TokenFactor. Replace store's chain operand with
306/// load's chain result.
307static void MoveBelowTokenFactor(SelectionDAG *CurDAG, SDValue Load,
308                                 SDValue Store, SDValue TF) {
309  SmallVector<SDValue, 4> Ops;
310  for (unsigned i = 0, e = TF.getNode()->getNumOperands(); i != e; ++i)
311    if (Load.getNode() == TF.getOperand(i).getNode())
312      Ops.push_back(Load.getOperand(0));
313    else
314      Ops.push_back(TF.getOperand(i));
315  CurDAG->UpdateNodeOperands(TF, &Ops[0], Ops.size());
316  CurDAG->UpdateNodeOperands(Load, TF, Load.getOperand(1), Load.getOperand(2));
317  CurDAG->UpdateNodeOperands(Store, Load.getValue(1), Store.getOperand(1),
318                             Store.getOperand(2), Store.getOperand(3));
319}
320
321/// isRMWLoad - Return true if N is a load that's part of RMW sub-DAG.
322///
323static bool isRMWLoad(SDValue N, SDValue Chain, SDValue Address,
324                      SDValue &Load) {
325  if (N.getOpcode() == ISD::BIT_CONVERT)
326    N = N.getOperand(0);
327
328  LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
329  if (!LD || LD->isVolatile())
330    return false;
331  if (LD->getAddressingMode() != ISD::UNINDEXED)
332    return false;
333
334  ISD::LoadExtType ExtType = LD->getExtensionType();
335  if (ExtType != ISD::NON_EXTLOAD && ExtType != ISD::EXTLOAD)
336    return false;
337
338  if (N.hasOneUse() &&
339      N.getOperand(1) == Address &&
340      N.getNode()->isOperandOf(Chain.getNode())) {
341    Load = N;
342    return true;
343  }
344  return false;
345}
346
347/// MoveBelowCallSeqStart - Replace CALLSEQ_START operand with load's chain
348/// operand and move load below the call's chain operand.
349static void MoveBelowCallSeqStart(SelectionDAG *CurDAG, SDValue Load,
350                                  SDValue Call, SDValue CallSeqStart) {
351  SmallVector<SDValue, 8> Ops;
352  SDValue Chain = CallSeqStart.getOperand(0);
353  if (Chain.getNode() == Load.getNode())
354    Ops.push_back(Load.getOperand(0));
355  else {
356    assert(Chain.getOpcode() == ISD::TokenFactor &&
357           "Unexpected CallSeqStart chain operand");
358    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
359      if (Chain.getOperand(i).getNode() == Load.getNode())
360        Ops.push_back(Load.getOperand(0));
361      else
362        Ops.push_back(Chain.getOperand(i));
363    SDValue NewChain =
364      CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
365                      MVT::Other, &Ops[0], Ops.size());
366    Ops.clear();
367    Ops.push_back(NewChain);
368  }
369  for (unsigned i = 1, e = CallSeqStart.getNumOperands(); i != e; ++i)
370    Ops.push_back(CallSeqStart.getOperand(i));
371  CurDAG->UpdateNodeOperands(CallSeqStart, &Ops[0], Ops.size());
372  CurDAG->UpdateNodeOperands(Load, Call.getOperand(0),
373                             Load.getOperand(1), Load.getOperand(2));
374  Ops.clear();
375  Ops.push_back(SDValue(Load.getNode(), 1));
376  for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
377    Ops.push_back(Call.getOperand(i));
378  CurDAG->UpdateNodeOperands(Call, &Ops[0], Ops.size());
379}
380
381/// isCalleeLoad - Return true if call address is a load and it can be
382/// moved below CALLSEQ_START and the chains leading up to the call.
383/// Return the CALLSEQ_START by reference as a second output.
384static bool isCalleeLoad(SDValue Callee, SDValue &Chain) {
385  if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
386    return false;
387  LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
388  if (!LD ||
389      LD->isVolatile() ||
390      LD->getAddressingMode() != ISD::UNINDEXED ||
391      LD->getExtensionType() != ISD::NON_EXTLOAD)
392    return false;
393
394  // Now let's find the callseq_start.
395  while (Chain.getOpcode() != ISD::CALLSEQ_START) {
396    if (!Chain.hasOneUse())
397      return false;
398    Chain = Chain.getOperand(0);
399  }
400
401  if (Chain.getOperand(0).getNode() == Callee.getNode())
402    return true;
403  if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
404      Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()))
405    return true;
406  return false;
407}
408
409
410/// PreprocessForRMW - Preprocess the DAG to make instruction selection better.
411/// This is only run if not in -O0 mode.
412/// This allows the instruction selector to pick more read-modify-write
413/// instructions. This is a common case:
414///
415///     [Load chain]
416///         ^
417///         |
418///       [Load]
419///       ^    ^
420///       |    |
421///      /      \-
422///     /         |
423/// [TokenFactor] [Op]
424///     ^          ^
425///     |          |
426///      \        /
427///       \      /
428///       [Store]
429///
430/// The fact the store's chain operand != load's chain will prevent the
431/// (store (op (load))) instruction from being selected. We can transform it to:
432///
433///     [Load chain]
434///         ^
435///         |
436///    [TokenFactor]
437///         ^
438///         |
439///       [Load]
440///       ^    ^
441///       |    |
442///       |     \-
443///       |       |
444///       |     [Op]
445///       |       ^
446///       |       |
447///       \      /
448///        \    /
449///       [Store]
450void X86DAGToDAGISel::PreprocessForRMW() {
451  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
452         E = CurDAG->allnodes_end(); I != E; ++I) {
453    if (I->getOpcode() == X86ISD::CALL) {
454      /// Also try moving call address load from outside callseq_start to just
455      /// before the call to allow it to be folded.
456      ///
457      ///     [Load chain]
458      ///         ^
459      ///         |
460      ///       [Load]
461      ///       ^    ^
462      ///       |    |
463      ///      /      \--
464      ///     /          |
465      ///[CALLSEQ_START] |
466      ///     ^          |
467      ///     |          |
468      /// [LOAD/C2Reg]   |
469      ///     |          |
470      ///      \        /
471      ///       \      /
472      ///       [CALL]
473      SDValue Chain = I->getOperand(0);
474      SDValue Load  = I->getOperand(1);
475      if (!isCalleeLoad(Load, Chain))
476        continue;
477      MoveBelowCallSeqStart(CurDAG, Load, SDValue(I, 0), Chain);
478      ++NumLoadMoved;
479      continue;
480    }
481
482    if (!ISD::isNON_TRUNCStore(I))
483      continue;
484    SDValue Chain = I->getOperand(0);
485
486    if (Chain.getNode()->getOpcode() != ISD::TokenFactor)
487      continue;
488
489    SDValue N1 = I->getOperand(1);
490    SDValue N2 = I->getOperand(2);
491    if ((N1.getValueType().isFloatingPoint() &&
492         !N1.getValueType().isVector()) ||
493        !N1.hasOneUse())
494      continue;
495
496    bool RModW = false;
497    SDValue Load;
498    unsigned Opcode = N1.getNode()->getOpcode();
499    switch (Opcode) {
500    case ISD::ADD:
501    case ISD::MUL:
502    case ISD::AND:
503    case ISD::OR:
504    case ISD::XOR:
505    case ISD::ADDC:
506    case ISD::ADDE:
507    case ISD::VECTOR_SHUFFLE: {
508      SDValue N10 = N1.getOperand(0);
509      SDValue N11 = N1.getOperand(1);
510      RModW = isRMWLoad(N10, Chain, N2, Load);
511      if (!RModW)
512        RModW = isRMWLoad(N11, Chain, N2, Load);
513      break;
514    }
515    case ISD::SUB:
516    case ISD::SHL:
517    case ISD::SRA:
518    case ISD::SRL:
519    case ISD::ROTL:
520    case ISD::ROTR:
521    case ISD::SUBC:
522    case ISD::SUBE:
523    case X86ISD::SHLD:
524    case X86ISD::SHRD: {
525      SDValue N10 = N1.getOperand(0);
526      RModW = isRMWLoad(N10, Chain, N2, Load);
527      break;
528    }
529    }
530
531    if (RModW) {
532      MoveBelowTokenFactor(CurDAG, Load, SDValue(I, 0), Chain);
533      ++NumLoadMoved;
534    }
535  }
536}
537
538
539/// PreprocessForFPConvert - Walk over the dag lowering fpround and fpextend
540/// nodes that target the FP stack to be store and load to the stack.  This is a
541/// gross hack.  We would like to simply mark these as being illegal, but when
542/// we do that, legalize produces these when it expands calls, then expands
543/// these in the same legalize pass.  We would like dag combine to be able to
544/// hack on these between the call expansion and the node legalization.  As such
545/// this pass basically does "really late" legalization of these inline with the
546/// X86 isel pass.
547void X86DAGToDAGISel::PreprocessForFPConvert() {
548  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
549       E = CurDAG->allnodes_end(); I != E; ) {
550    SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
551    if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
552      continue;
553
554    // If the source and destination are SSE registers, then this is a legal
555    // conversion that should not be lowered.
556    MVT SrcVT = N->getOperand(0).getValueType();
557    MVT DstVT = N->getValueType(0);
558    bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
559    bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
560    if (SrcIsSSE && DstIsSSE)
561      continue;
562
563    if (!SrcIsSSE && !DstIsSSE) {
564      // If this is an FPStack extension, it is a noop.
565      if (N->getOpcode() == ISD::FP_EXTEND)
566        continue;
567      // If this is a value-preserving FPStack truncation, it is a noop.
568      if (N->getConstantOperandVal(1))
569        continue;
570    }
571
572    // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
573    // FPStack has extload and truncstore.  SSE can fold direct loads into other
574    // operations.  Based on this, decide what we want to do.
575    MVT MemVT;
576    if (N->getOpcode() == ISD::FP_ROUND)
577      MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
578    else
579      MemVT = SrcIsSSE ? SrcVT : DstVT;
580
581    SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
582    DebugLoc dl = N->getDebugLoc();
583
584    // FIXME: optimize the case where the src/dest is a load or store?
585    SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
586                                          N->getOperand(0),
587                                          MemTmp, NULL, 0, MemVT);
588    SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
589                                        NULL, 0, MemVT);
590
591    // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
592    // extload we created.  This will cause general havok on the dag because
593    // anything below the conversion could be folded into other existing nodes.
594    // To avoid invalidating 'I', back it up to the convert node.
595    --I;
596    CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
597
598    // Now that we did that, the node is dead.  Increment the iterator to the
599    // next node to process, then delete N.
600    ++I;
601    CurDAG->DeleteNode(N);
602  }
603}
604
605/// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
606/// when it has created a SelectionDAG for us to codegen.
607void X86DAGToDAGISel::InstructionSelect() {
608  CurBB = BB;  // BB can change as result of isel.
609  const Function *F = CurDAG->getMachineFunction().getFunction();
610  OptForSize = F->hasFnAttr(Attribute::OptimizeForSize);
611
612  DEBUG(BB->dump());
613  if (OptLevel != CodeGenOpt::None)
614    PreprocessForRMW();
615
616  // FIXME: This should only happen when not compiled with -O0.
617  PreprocessForFPConvert();
618
619  // Codegen the basic block.
620#ifndef NDEBUG
621  DOUT << "===== Instruction selection begins:\n";
622  Indent = 0;
623#endif
624  SelectRoot(*CurDAG);
625#ifndef NDEBUG
626  DOUT << "===== Instruction selection ends:\n";
627#endif
628
629  CurDAG->RemoveDeadNodes();
630}
631
632/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
633/// the main function.
634void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
635                                             MachineFrameInfo *MFI) {
636  const TargetInstrInfo *TII = TM.getInstrInfo();
637  if (Subtarget->isTargetCygMing())
638    BuildMI(BB, DebugLoc::getUnknownLoc(),
639            TII->get(X86::CALLpcrel32)).addExternalSymbol("__main");
640}
641
642void X86DAGToDAGISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) {
643  // If this is main, emit special code for main.
644  MachineBasicBlock *BB = MF.begin();
645  if (Fn.hasExternalLinkage() && Fn.getName() == "main")
646    EmitSpecialCodeForMain(BB, MF.getFrameInfo());
647}
648
649
650bool X86DAGToDAGISel::MatchSegmentBaseAddress(SDValue N,
651                                              X86ISelAddressMode &AM) {
652  assert(N.getOpcode() == X86ISD::SegmentBaseAddress);
653  SDValue Segment = N.getOperand(0);
654
655  if (AM.Segment.getNode() == 0) {
656    AM.Segment = Segment;
657    return false;
658  }
659
660  return true;
661}
662
663bool X86DAGToDAGISel::MatchLoad(SDValue N, X86ISelAddressMode &AM) {
664  // This optimization is valid because the GNU TLS model defines that
665  // gs:0 (or fs:0 on X86-64) contains its own address.
666  // For more information see http://people.redhat.com/drepper/tls.pdf
667
668  SDValue Address = N.getOperand(1);
669  if (Address.getOpcode() == X86ISD::SegmentBaseAddress &&
670      !MatchSegmentBaseAddress (Address, AM))
671    return false;
672
673  return true;
674}
675
676bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
677  bool is64Bit = Subtarget->is64Bit();
678  DOUT << "Wrapper: 64bit " << is64Bit;
679  DOUT << " AM "; DEBUG(AM.dump()); DOUT << "\n";
680
681  // Under X86-64 non-small code model, GV (and friends) are 64-bits.
682  if (is64Bit && (TM.getCodeModel() != CodeModel::Small))
683    return true;
684
685  // Base and index reg must be 0 in order to use rip as base.
686  bool canUsePICRel = !AM.Base.Reg.getNode() && !AM.IndexReg.getNode();
687  if (is64Bit && !canUsePICRel && TM.symbolicAddressesAreRIPRel())
688    return true;
689
690  if (AM.hasSymbolicDisplacement())
691    return true;
692  // If value is available in a register both base and index components have
693  // been picked, we can't fit the result available in the register in the
694  // addressing mode. Duplicate GlobalAddress or ConstantPool as displacement.
695
696  SDValue N0 = N.getOperand(0);
697  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
698    uint64_t Offset = G->getOffset();
699    if (!is64Bit || isInt32(AM.Disp + Offset)) {
700      GlobalValue *GV = G->getGlobal();
701      bool isRIPRel = TM.symbolicAddressesAreRIPRel();
702      if (N0.getOpcode() == llvm::ISD::TargetGlobalTLSAddress) {
703        TLSModel::Model model =
704          getTLSModel (GV, TM.getRelocationModel());
705        if (is64Bit && model == TLSModel::InitialExec)
706          isRIPRel = true;
707      }
708      AM.GV = GV;
709      AM.Disp += Offset;
710      AM.isRIPRel = isRIPRel;
711      return false;
712    }
713  } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
714    uint64_t Offset = CP->getOffset();
715    if (!is64Bit || isInt32(AM.Disp + Offset)) {
716      AM.CP = CP->getConstVal();
717      AM.Align = CP->getAlignment();
718      AM.Disp += Offset;
719      AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
720      return false;
721    }
722  } else if (ExternalSymbolSDNode *S =dyn_cast<ExternalSymbolSDNode>(N0)) {
723    AM.ES = S->getSymbol();
724    AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
725    return false;
726  } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
727    AM.JT = J->getIndex();
728    AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
729    return false;
730  }
731
732  return true;
733}
734
735/// MatchAddress - Add the specified node to the specified addressing mode,
736/// returning true if it cannot be done.  This just pattern matches for the
737/// addressing mode.
738bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM,
739                                   unsigned Depth) {
740  bool is64Bit = Subtarget->is64Bit();
741  DebugLoc dl = N.getDebugLoc();
742  DOUT << "MatchAddress: "; DEBUG(AM.dump());
743  // Limit recursion.
744  if (Depth > 5)
745    return MatchAddressBase(N, AM);
746
747  // RIP relative addressing: %rip + 32-bit displacement!
748  if (AM.isRIPRel) {
749    if (!AM.ES && AM.JT != -1 && N.getOpcode() == ISD::Constant) {
750      uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
751      if (!is64Bit || isInt32(AM.Disp + Val)) {
752        AM.Disp += Val;
753        return false;
754      }
755    }
756    return true;
757  }
758
759  switch (N.getOpcode()) {
760  default: break;
761  case ISD::Constant: {
762    uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
763    if (!is64Bit || isInt32(AM.Disp + Val)) {
764      AM.Disp += Val;
765      return false;
766    }
767    break;
768  }
769
770  case X86ISD::SegmentBaseAddress:
771    if (!MatchSegmentBaseAddress(N, AM))
772      return false;
773    break;
774
775  case X86ISD::Wrapper:
776    if (!MatchWrapper(N, AM))
777      return false;
778    break;
779
780  case ISD::LOAD:
781    if (!MatchLoad(N, AM))
782      return false;
783    break;
784
785  case ISD::FrameIndex:
786    if (AM.BaseType == X86ISelAddressMode::RegBase
787        && AM.Base.Reg.getNode() == 0) {
788      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
789      AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
790      return false;
791    }
792    break;
793
794  case ISD::SHL:
795    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1 || AM.isRIPRel)
796      break;
797
798    if (ConstantSDNode
799          *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
800      unsigned Val = CN->getZExtValue();
801      if (Val == 1 || Val == 2 || Val == 3) {
802        AM.Scale = 1 << Val;
803        SDValue ShVal = N.getNode()->getOperand(0);
804
805        // Okay, we know that we have a scale by now.  However, if the scaled
806        // value is an add of something and a constant, we can fold the
807        // constant into the disp field here.
808        if (ShVal.getNode()->getOpcode() == ISD::ADD && ShVal.hasOneUse() &&
809            isa<ConstantSDNode>(ShVal.getNode()->getOperand(1))) {
810          AM.IndexReg = ShVal.getNode()->getOperand(0);
811          ConstantSDNode *AddVal =
812            cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
813          uint64_t Disp = AM.Disp + (AddVal->getSExtValue() << Val);
814          if (!is64Bit || isInt32(Disp))
815            AM.Disp = Disp;
816          else
817            AM.IndexReg = ShVal;
818        } else {
819          AM.IndexReg = ShVal;
820        }
821        return false;
822      }
823    break;
824    }
825
826  case ISD::SMUL_LOHI:
827  case ISD::UMUL_LOHI:
828    // A mul_lohi where we need the low part can be folded as a plain multiply.
829    if (N.getResNo() != 0) break;
830    // FALL THROUGH
831  case ISD::MUL:
832  case X86ISD::MUL_IMM:
833    // X*[3,5,9] -> X+X*[2,4,8]
834    if (AM.BaseType == X86ISelAddressMode::RegBase &&
835        AM.Base.Reg.getNode() == 0 &&
836        AM.IndexReg.getNode() == 0 &&
837        !AM.isRIPRel) {
838      if (ConstantSDNode
839            *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
840        if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
841            CN->getZExtValue() == 9) {
842          AM.Scale = unsigned(CN->getZExtValue())-1;
843
844          SDValue MulVal = N.getNode()->getOperand(0);
845          SDValue Reg;
846
847          // Okay, we know that we have a scale by now.  However, if the scaled
848          // value is an add of something and a constant, we can fold the
849          // constant into the disp field here.
850          if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
851              isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
852            Reg = MulVal.getNode()->getOperand(0);
853            ConstantSDNode *AddVal =
854              cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
855            uint64_t Disp = AM.Disp + AddVal->getSExtValue() *
856                                      CN->getZExtValue();
857            if (!is64Bit || isInt32(Disp))
858              AM.Disp = Disp;
859            else
860              Reg = N.getNode()->getOperand(0);
861          } else {
862            Reg = N.getNode()->getOperand(0);
863          }
864
865          AM.IndexReg = AM.Base.Reg = Reg;
866          return false;
867        }
868    }
869    break;
870
871  case ISD::SUB: {
872    // Given A-B, if A can be completely folded into the address and
873    // the index field with the index field unused, use -B as the index.
874    // This is a win if a has multiple parts that can be folded into
875    // the address. Also, this saves a mov if the base register has
876    // other uses, since it avoids a two-address sub instruction, however
877    // it costs an additional mov if the index register has other uses.
878
879    // Test if the LHS of the sub can be folded.
880    X86ISelAddressMode Backup = AM;
881    if (MatchAddress(N.getNode()->getOperand(0), AM, Depth+1)) {
882      AM = Backup;
883      break;
884    }
885    // Test if the index field is free for use.
886    if (AM.IndexReg.getNode() || AM.isRIPRel) {
887      AM = Backup;
888      break;
889    }
890    int Cost = 0;
891    SDValue RHS = N.getNode()->getOperand(1);
892    // If the RHS involves a register with multiple uses, this
893    // transformation incurs an extra mov, due to the neg instruction
894    // clobbering its operand.
895    if (!RHS.getNode()->hasOneUse() ||
896        RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
897        RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
898        RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
899        (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
900         RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
901      ++Cost;
902    // If the base is a register with multiple uses, this
903    // transformation may save a mov.
904    if ((AM.BaseType == X86ISelAddressMode::RegBase &&
905         AM.Base.Reg.getNode() &&
906         !AM.Base.Reg.getNode()->hasOneUse()) ||
907        AM.BaseType == X86ISelAddressMode::FrameIndexBase)
908      --Cost;
909    // If the folded LHS was interesting, this transformation saves
910    // address arithmetic.
911    if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
912        ((AM.Disp != 0) && (Backup.Disp == 0)) +
913        (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
914      --Cost;
915    // If it doesn't look like it may be an overall win, don't do it.
916    if (Cost >= 0) {
917      AM = Backup;
918      break;
919    }
920
921    // Ok, the transformation is legal and appears profitable. Go for it.
922    SDValue Zero = CurDAG->getConstant(0, N.getValueType());
923    SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
924    AM.IndexReg = Neg;
925    AM.Scale = 1;
926
927    // Insert the new nodes into the topological ordering.
928    if (Zero.getNode()->getNodeId() == -1 ||
929        Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) {
930      CurDAG->RepositionNode(N.getNode(), Zero.getNode());
931      Zero.getNode()->setNodeId(N.getNode()->getNodeId());
932    }
933    if (Neg.getNode()->getNodeId() == -1 ||
934        Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) {
935      CurDAG->RepositionNode(N.getNode(), Neg.getNode());
936      Neg.getNode()->setNodeId(N.getNode()->getNodeId());
937    }
938    return false;
939  }
940
941  case ISD::ADD: {
942    X86ISelAddressMode Backup = AM;
943    if (!MatchAddress(N.getNode()->getOperand(0), AM, Depth+1) &&
944        !MatchAddress(N.getNode()->getOperand(1), AM, Depth+1))
945      return false;
946    AM = Backup;
947    if (!MatchAddress(N.getNode()->getOperand(1), AM, Depth+1) &&
948        !MatchAddress(N.getNode()->getOperand(0), AM, Depth+1))
949      return false;
950    AM = Backup;
951
952    // If we couldn't fold both operands into the address at the same time,
953    // see if we can just put each operand into a register and fold at least
954    // the add.
955    if (AM.BaseType == X86ISelAddressMode::RegBase &&
956        !AM.Base.Reg.getNode() &&
957        !AM.IndexReg.getNode() &&
958        !AM.isRIPRel) {
959      AM.Base.Reg = N.getNode()->getOperand(0);
960      AM.IndexReg = N.getNode()->getOperand(1);
961      AM.Scale = 1;
962      return false;
963    }
964    break;
965  }
966
967  case ISD::OR:
968    // Handle "X | C" as "X + C" iff X is known to have C bits clear.
969    if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
970      X86ISelAddressMode Backup = AM;
971      uint64_t Offset = CN->getSExtValue();
972      // Start with the LHS as an addr mode.
973      if (!MatchAddress(N.getOperand(0), AM, Depth+1) &&
974          // Address could not have picked a GV address for the displacement.
975          AM.GV == NULL &&
976          // On x86-64, the resultant disp must fit in 32-bits.
977          (!is64Bit || isInt32(AM.Disp + Offset)) &&
978          // Check to see if the LHS & C is zero.
979          CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getAPIntValue())) {
980        AM.Disp += Offset;
981        return false;
982      }
983      AM = Backup;
984    }
985    break;
986
987  case ISD::AND: {
988    // Perform some heroic transforms on an and of a constant-count shift
989    // with a constant to enable use of the scaled offset field.
990
991    SDValue Shift = N.getOperand(0);
992    if (Shift.getNumOperands() != 2) break;
993
994    // Scale must not be used already.
995    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
996
997    // Not when RIP is used as the base.
998    if (AM.isRIPRel) break;
999
1000    SDValue X = Shift.getOperand(0);
1001    ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1));
1002    ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
1003    if (!C1 || !C2) break;
1004
1005    // Handle "(X >> (8-C1)) & C2" as "(X >> 8) & 0xff)" if safe. This
1006    // allows us to convert the shift and and into an h-register extract and
1007    // a scaled index.
1008    if (Shift.getOpcode() == ISD::SRL && Shift.hasOneUse()) {
1009      unsigned ScaleLog = 8 - C1->getZExtValue();
1010      if (ScaleLog > 0 && ScaleLog < 4 &&
1011          C2->getZExtValue() == (UINT64_C(0xff) << ScaleLog)) {
1012        SDValue Eight = CurDAG->getConstant(8, MVT::i8);
1013        SDValue Mask = CurDAG->getConstant(0xff, N.getValueType());
1014        SDValue Srl = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1015                                      X, Eight);
1016        SDValue And = CurDAG->getNode(ISD::AND, dl, N.getValueType(),
1017                                      Srl, Mask);
1018        SDValue ShlCount = CurDAG->getConstant(ScaleLog, MVT::i8);
1019        SDValue Shl = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1020                                      And, ShlCount);
1021
1022        // Insert the new nodes into the topological ordering.
1023        if (Eight.getNode()->getNodeId() == -1 ||
1024            Eight.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1025          CurDAG->RepositionNode(X.getNode(), Eight.getNode());
1026          Eight.getNode()->setNodeId(X.getNode()->getNodeId());
1027        }
1028        if (Mask.getNode()->getNodeId() == -1 ||
1029            Mask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1030          CurDAG->RepositionNode(X.getNode(), Mask.getNode());
1031          Mask.getNode()->setNodeId(X.getNode()->getNodeId());
1032        }
1033        if (Srl.getNode()->getNodeId() == -1 ||
1034            Srl.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1035          CurDAG->RepositionNode(Shift.getNode(), Srl.getNode());
1036          Srl.getNode()->setNodeId(Shift.getNode()->getNodeId());
1037        }
1038        if (And.getNode()->getNodeId() == -1 ||
1039            And.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1040          CurDAG->RepositionNode(N.getNode(), And.getNode());
1041          And.getNode()->setNodeId(N.getNode()->getNodeId());
1042        }
1043        if (ShlCount.getNode()->getNodeId() == -1 ||
1044            ShlCount.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1045          CurDAG->RepositionNode(X.getNode(), ShlCount.getNode());
1046          ShlCount.getNode()->setNodeId(N.getNode()->getNodeId());
1047        }
1048        if (Shl.getNode()->getNodeId() == -1 ||
1049            Shl.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1050          CurDAG->RepositionNode(N.getNode(), Shl.getNode());
1051          Shl.getNode()->setNodeId(N.getNode()->getNodeId());
1052        }
1053        CurDAG->ReplaceAllUsesWith(N, Shl);
1054        AM.IndexReg = And;
1055        AM.Scale = (1 << ScaleLog);
1056        return false;
1057      }
1058    }
1059
1060    // Handle "(X << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this
1061    // allows us to fold the shift into this addressing mode.
1062    if (Shift.getOpcode() != ISD::SHL) break;
1063
1064    // Not likely to be profitable if either the AND or SHIFT node has more
1065    // than one use (unless all uses are for address computation). Besides,
1066    // isel mechanism requires their node ids to be reused.
1067    if (!N.hasOneUse() || !Shift.hasOneUse())
1068      break;
1069
1070    // Verify that the shift amount is something we can fold.
1071    unsigned ShiftCst = C1->getZExtValue();
1072    if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3)
1073      break;
1074
1075    // Get the new AND mask, this folds to a constant.
1076    SDValue NewANDMask = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1077                                         SDValue(C2, 0), SDValue(C1, 0));
1078    SDValue NewAND = CurDAG->getNode(ISD::AND, dl, N.getValueType(), X,
1079                                     NewANDMask);
1080    SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1081                                       NewAND, SDValue(C1, 0));
1082
1083    // Insert the new nodes into the topological ordering.
1084    if (C1->getNodeId() > X.getNode()->getNodeId()) {
1085      CurDAG->RepositionNode(X.getNode(), C1);
1086      C1->setNodeId(X.getNode()->getNodeId());
1087    }
1088    if (NewANDMask.getNode()->getNodeId() == -1 ||
1089        NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1090      CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode());
1091      NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId());
1092    }
1093    if (NewAND.getNode()->getNodeId() == -1 ||
1094        NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1095      CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode());
1096      NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId());
1097    }
1098    if (NewSHIFT.getNode()->getNodeId() == -1 ||
1099        NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1100      CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode());
1101      NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId());
1102    }
1103
1104    CurDAG->ReplaceAllUsesWith(N, NewSHIFT);
1105
1106    AM.Scale = 1 << ShiftCst;
1107    AM.IndexReg = NewAND;
1108    return false;
1109  }
1110  }
1111
1112  return MatchAddressBase(N, AM);
1113}
1114
1115/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1116/// specified addressing mode without any further recursion.
1117bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1118  // Is the base register already occupied?
1119  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.getNode()) {
1120    // If so, check to see if the scale index register is set.
1121    if (AM.IndexReg.getNode() == 0 && !AM.isRIPRel) {
1122      AM.IndexReg = N;
1123      AM.Scale = 1;
1124      return false;
1125    }
1126
1127    // Otherwise, we cannot select it.
1128    return true;
1129  }
1130
1131  // Default, generate it as a register.
1132  AM.BaseType = X86ISelAddressMode::RegBase;
1133  AM.Base.Reg = N;
1134  return false;
1135}
1136
1137/// SelectAddr - returns true if it is able pattern match an addressing mode.
1138/// It returns the operands which make up the maximal addressing mode it can
1139/// match by reference.
1140bool X86DAGToDAGISel::SelectAddr(SDValue Op, SDValue N, SDValue &Base,
1141                                 SDValue &Scale, SDValue &Index,
1142                                 SDValue &Disp, SDValue &Segment) {
1143  X86ISelAddressMode AM;
1144  bool Done = false;
1145  if (AvoidDupAddrCompute && !N.hasOneUse()) {
1146    unsigned Opcode = N.getOpcode();
1147    if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex &&
1148        Opcode != X86ISD::Wrapper) {
1149      // If we are able to fold N into addressing mode, then we'll allow it even
1150      // if N has multiple uses. In general, addressing computation is used as
1151      // addresses by all of its uses. But watch out for CopyToReg uses, that
1152      // means the address computation is liveout. It will be computed by a LEA
1153      // so we want to avoid computing the address twice.
1154      for (SDNode::use_iterator UI = N.getNode()->use_begin(),
1155             UE = N.getNode()->use_end(); UI != UE; ++UI) {
1156        if (UI->getOpcode() == ISD::CopyToReg) {
1157          MatchAddressBase(N, AM);
1158          Done = true;
1159          break;
1160        }
1161      }
1162    }
1163  }
1164
1165  if (!Done && MatchAddress(N, AM))
1166    return false;
1167
1168  MVT VT = N.getValueType();
1169  if (AM.BaseType == X86ISelAddressMode::RegBase) {
1170    if (!AM.Base.Reg.getNode())
1171      AM.Base.Reg = CurDAG->getRegister(0, VT);
1172  }
1173
1174  if (!AM.IndexReg.getNode())
1175    AM.IndexReg = CurDAG->getRegister(0, VT);
1176
1177  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1178  return true;
1179}
1180
1181/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
1182/// match a load whose top elements are either undef or zeros.  The load flavor
1183/// is derived from the type of N, which is either v4f32 or v2f64.
1184bool X86DAGToDAGISel::SelectScalarSSELoad(SDValue Op, SDValue Pred,
1185                                          SDValue N, SDValue &Base,
1186                                          SDValue &Scale, SDValue &Index,
1187                                          SDValue &Disp, SDValue &Segment,
1188                                          SDValue &InChain,
1189                                          SDValue &OutChain) {
1190  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1191    InChain = N.getOperand(0).getValue(1);
1192    if (ISD::isNON_EXTLoad(InChain.getNode()) &&
1193        InChain.getValue(0).hasOneUse() &&
1194        N.hasOneUse() &&
1195        IsLegalAndProfitableToFold(N.getNode(), Pred.getNode(), Op.getNode())) {
1196      LoadSDNode *LD = cast<LoadSDNode>(InChain);
1197      if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1198        return false;
1199      OutChain = LD->getChain();
1200      return true;
1201    }
1202  }
1203
1204  // Also handle the case where we explicitly require zeros in the top
1205  // elements.  This is a vector shuffle from the zero vector.
1206  if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1207      // Check to see if the top elements are all zeros (or bitcast of zeros).
1208      N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1209      N.getOperand(0).getNode()->hasOneUse() &&
1210      ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1211      N.getOperand(0).getOperand(0).hasOneUse()) {
1212    // Okay, this is a zero extending load.  Fold it.
1213    LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1214    if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1215      return false;
1216    OutChain = LD->getChain();
1217    InChain = SDValue(LD, 1);
1218    return true;
1219  }
1220  return false;
1221}
1222
1223
1224/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1225/// mode it matches can be cost effectively emitted as an LEA instruction.
1226bool X86DAGToDAGISel::SelectLEAAddr(SDValue Op, SDValue N,
1227                                    SDValue &Base, SDValue &Scale,
1228                                    SDValue &Index, SDValue &Disp) {
1229  X86ISelAddressMode AM;
1230
1231  // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1232  // segments.
1233  SDValue Copy = AM.Segment;
1234  SDValue T = CurDAG->getRegister(0, MVT::i32);
1235  AM.Segment = T;
1236  if (MatchAddress(N, AM))
1237    return false;
1238  assert (T == AM.Segment);
1239  AM.Segment = Copy;
1240
1241  MVT VT = N.getValueType();
1242  unsigned Complexity = 0;
1243  if (AM.BaseType == X86ISelAddressMode::RegBase)
1244    if (AM.Base.Reg.getNode())
1245      Complexity = 1;
1246    else
1247      AM.Base.Reg = CurDAG->getRegister(0, VT);
1248  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1249    Complexity = 4;
1250
1251  if (AM.IndexReg.getNode())
1252    Complexity++;
1253  else
1254    AM.IndexReg = CurDAG->getRegister(0, VT);
1255
1256  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1257  // a simple shift.
1258  if (AM.Scale > 1)
1259    Complexity++;
1260
1261  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1262  // to a LEA. This is determined with some expermentation but is by no means
1263  // optimal (especially for code size consideration). LEA is nice because of
1264  // its three-address nature. Tweak the cost function again when we can run
1265  // convertToThreeAddress() at register allocation time.
1266  if (AM.hasSymbolicDisplacement()) {
1267    // For X86-64, we should always use lea to materialize RIP relative
1268    // addresses.
1269    if (Subtarget->is64Bit())
1270      Complexity = 4;
1271    else
1272      Complexity += 2;
1273  }
1274
1275  if (AM.Disp && (AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
1276    Complexity++;
1277
1278  if (Complexity > 2) {
1279    SDValue Segment;
1280    getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1281    return true;
1282  }
1283  return false;
1284}
1285
1286bool X86DAGToDAGISel::TryFoldLoad(SDValue P, SDValue N,
1287                                  SDValue &Base, SDValue &Scale,
1288                                  SDValue &Index, SDValue &Disp,
1289                                  SDValue &Segment) {
1290  if (ISD::isNON_EXTLoad(N.getNode()) &&
1291      N.hasOneUse() &&
1292      IsLegalAndProfitableToFold(N.getNode(), P.getNode(), P.getNode()))
1293    return SelectAddr(P, N.getOperand(1), Base, Scale, Index, Disp, Segment);
1294  return false;
1295}
1296
1297/// getGlobalBaseReg - Return an SDNode that returns the value of
1298/// the global base register. Output instructions required to
1299/// initialize the global base register, if necessary.
1300///
1301SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1302  MachineFunction *MF = CurBB->getParent();
1303  unsigned GlobalBaseReg = TM.getInstrInfo()->getGlobalBaseReg(MF);
1304  return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
1305}
1306
1307static SDNode *FindCallStartFromCall(SDNode *Node) {
1308  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
1309    assert(Node->getOperand(0).getValueType() == MVT::Other &&
1310         "Node doesn't have a token chain argument!");
1311  return FindCallStartFromCall(Node->getOperand(0).getNode());
1312}
1313
1314SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1315  SDValue Chain = Node->getOperand(0);
1316  SDValue In1 = Node->getOperand(1);
1317  SDValue In2L = Node->getOperand(2);
1318  SDValue In2H = Node->getOperand(3);
1319  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1320  if (!SelectAddr(In1, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1321    return NULL;
1322  SDValue LSI = Node->getOperand(4);    // MemOperand
1323  const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, LSI, Chain};
1324  return CurDAG->getTargetNode(Opc, Node->getDebugLoc(),
1325                               MVT::i32, MVT::i32, MVT::Other, Ops,
1326                               array_lengthof(Ops));
1327}
1328
1329SDNode *X86DAGToDAGISel::Select(SDValue N) {
1330  SDNode *Node = N.getNode();
1331  MVT NVT = Node->getValueType(0);
1332  unsigned Opc, MOpc;
1333  unsigned Opcode = Node->getOpcode();
1334  DebugLoc dl = Node->getDebugLoc();
1335
1336#ifndef NDEBUG
1337  DOUT << std::string(Indent, ' ') << "Selecting: ";
1338  DEBUG(Node->dump(CurDAG));
1339  DOUT << "\n";
1340  Indent += 2;
1341#endif
1342
1343  if (Node->isMachineOpcode()) {
1344#ifndef NDEBUG
1345    DOUT << std::string(Indent-2, ' ') << "== ";
1346    DEBUG(Node->dump(CurDAG));
1347    DOUT << "\n";
1348    Indent -= 2;
1349#endif
1350    return NULL;   // Already selected.
1351  }
1352
1353  switch (Opcode) {
1354    default: break;
1355    case X86ISD::GlobalBaseReg:
1356      return getGlobalBaseReg();
1357
1358    case X86ISD::ATOMOR64_DAG:
1359      return SelectAtomic64(Node, X86::ATOMOR6432);
1360    case X86ISD::ATOMXOR64_DAG:
1361      return SelectAtomic64(Node, X86::ATOMXOR6432);
1362    case X86ISD::ATOMADD64_DAG:
1363      return SelectAtomic64(Node, X86::ATOMADD6432);
1364    case X86ISD::ATOMSUB64_DAG:
1365      return SelectAtomic64(Node, X86::ATOMSUB6432);
1366    case X86ISD::ATOMNAND64_DAG:
1367      return SelectAtomic64(Node, X86::ATOMNAND6432);
1368    case X86ISD::ATOMAND64_DAG:
1369      return SelectAtomic64(Node, X86::ATOMAND6432);
1370    case X86ISD::ATOMSWAP64_DAG:
1371      return SelectAtomic64(Node, X86::ATOMSWAP6432);
1372
1373    case ISD::SMUL_LOHI:
1374    case ISD::UMUL_LOHI: {
1375      SDValue N0 = Node->getOperand(0);
1376      SDValue N1 = Node->getOperand(1);
1377
1378      bool isSigned = Opcode == ISD::SMUL_LOHI;
1379      if (!isSigned)
1380        switch (NVT.getSimpleVT()) {
1381        default: assert(0 && "Unsupported VT!");
1382        case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
1383        case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
1384        case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
1385        case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
1386        }
1387      else
1388        switch (NVT.getSimpleVT()) {
1389        default: assert(0 && "Unsupported VT!");
1390        case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
1391        case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
1392        case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
1393        case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
1394        }
1395
1396      unsigned LoReg, HiReg;
1397      switch (NVT.getSimpleVT()) {
1398      default: assert(0 && "Unsupported VT!");
1399      case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  break;
1400      case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  break;
1401      case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
1402      case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
1403      }
1404
1405      SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1406      bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1407      // multiplty is commmutative
1408      if (!foldedLoad) {
1409        foldedLoad = TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1410        if (foldedLoad)
1411          std::swap(N0, N1);
1412      }
1413
1414      SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
1415                                              N0, SDValue()).getValue(1);
1416
1417      if (foldedLoad) {
1418        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1419                          InFlag };
1420        SDNode *CNode =
1421          CurDAG->getTargetNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
1422                                array_lengthof(Ops));
1423        InFlag = SDValue(CNode, 1);
1424        // Update the chain.
1425        ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1426      } else {
1427        InFlag =
1428          SDValue(CurDAG->getTargetNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
1429      }
1430
1431      // Copy the low half of the result, if it is needed.
1432      if (!N.getValue(0).use_empty()) {
1433        SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1434                                                  LoReg, NVT, InFlag);
1435        InFlag = Result.getValue(2);
1436        ReplaceUses(N.getValue(0), Result);
1437#ifndef NDEBUG
1438        DOUT << std::string(Indent-2, ' ') << "=> ";
1439        DEBUG(Result.getNode()->dump(CurDAG));
1440        DOUT << "\n";
1441#endif
1442      }
1443      // Copy the high half of the result, if it is needed.
1444      if (!N.getValue(1).use_empty()) {
1445        SDValue Result;
1446        if (HiReg == X86::AH && Subtarget->is64Bit()) {
1447          // Prevent use of AH in a REX instruction by referencing AX instead.
1448          // Shift it down 8 bits.
1449          Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1450                                          X86::AX, MVT::i16, InFlag);
1451          InFlag = Result.getValue(2);
1452          Result = SDValue(CurDAG->getTargetNode(X86::SHR16ri, dl, MVT::i16,
1453                                                 Result,
1454                                     CurDAG->getTargetConstant(8, MVT::i8)), 0);
1455          // Then truncate it down to i8.
1456          SDValue SRIdx = CurDAG->getTargetConstant(X86::SUBREG_8BIT, MVT::i32);
1457          Result = SDValue(CurDAG->getTargetNode(X86::EXTRACT_SUBREG, dl,
1458                                                   MVT::i8, Result, SRIdx), 0);
1459        } else {
1460          Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1461                                          HiReg, NVT, InFlag);
1462          InFlag = Result.getValue(2);
1463        }
1464        ReplaceUses(N.getValue(1), Result);
1465#ifndef NDEBUG
1466        DOUT << std::string(Indent-2, ' ') << "=> ";
1467        DEBUG(Result.getNode()->dump(CurDAG));
1468        DOUT << "\n";
1469#endif
1470      }
1471
1472#ifndef NDEBUG
1473      Indent -= 2;
1474#endif
1475
1476      return NULL;
1477    }
1478
1479    case ISD::SDIVREM:
1480    case ISD::UDIVREM: {
1481      SDValue N0 = Node->getOperand(0);
1482      SDValue N1 = Node->getOperand(1);
1483
1484      bool isSigned = Opcode == ISD::SDIVREM;
1485      if (!isSigned)
1486        switch (NVT.getSimpleVT()) {
1487        default: assert(0 && "Unsupported VT!");
1488        case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
1489        case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
1490        case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
1491        case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
1492        }
1493      else
1494        switch (NVT.getSimpleVT()) {
1495        default: assert(0 && "Unsupported VT!");
1496        case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
1497        case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
1498        case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
1499        case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
1500        }
1501
1502      unsigned LoReg, HiReg;
1503      unsigned ClrOpcode, SExtOpcode;
1504      switch (NVT.getSimpleVT()) {
1505      default: assert(0 && "Unsupported VT!");
1506      case MVT::i8:
1507        LoReg = X86::AL;  HiReg = X86::AH;
1508        ClrOpcode  = 0;
1509        SExtOpcode = X86::CBW;
1510        break;
1511      case MVT::i16:
1512        LoReg = X86::AX;  HiReg = X86::DX;
1513        ClrOpcode  = X86::MOV16r0;
1514        SExtOpcode = X86::CWD;
1515        break;
1516      case MVT::i32:
1517        LoReg = X86::EAX; HiReg = X86::EDX;
1518        ClrOpcode  = X86::MOV32r0;
1519        SExtOpcode = X86::CDQ;
1520        break;
1521      case MVT::i64:
1522        LoReg = X86::RAX; HiReg = X86::RDX;
1523        ClrOpcode  = X86::MOV64r0;
1524        SExtOpcode = X86::CQO;
1525        break;
1526      }
1527
1528      SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1529      bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1530      bool signBitIsZero = CurDAG->SignBitIsZero(N0);
1531
1532      SDValue InFlag;
1533      if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
1534        // Special case for div8, just use a move with zero extension to AX to
1535        // clear the upper 8 bits (AH).
1536        SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
1537        if (TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
1538          SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
1539          Move =
1540            SDValue(CurDAG->getTargetNode(X86::MOVZX16rm8, dl, MVT::i16,
1541                                          MVT::Other, Ops,
1542                                          array_lengthof(Ops)), 0);
1543          Chain = Move.getValue(1);
1544          ReplaceUses(N0.getValue(1), Chain);
1545        } else {
1546          Move =
1547            SDValue(CurDAG->getTargetNode(X86::MOVZX16rr8, dl, MVT::i16, N0),0);
1548          Chain = CurDAG->getEntryNode();
1549        }
1550        Chain  = CurDAG->getCopyToReg(Chain, dl, X86::AX, Move, SDValue());
1551        InFlag = Chain.getValue(1);
1552      } else {
1553        InFlag =
1554          CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
1555                               LoReg, N0, SDValue()).getValue(1);
1556        if (isSigned && !signBitIsZero) {
1557          // Sign extend the low part into the high part.
1558          InFlag =
1559            SDValue(CurDAG->getTargetNode(SExtOpcode, dl, MVT::Flag, InFlag),0);
1560        } else {
1561          // Zero out the high part, effectively zero extending the input.
1562          SDValue ClrNode = SDValue(CurDAG->getTargetNode(ClrOpcode, dl, NVT),
1563                                    0);
1564          InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, HiReg,
1565                                        ClrNode, InFlag).getValue(1);
1566        }
1567      }
1568
1569      if (foldedLoad) {
1570        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1571                          InFlag };
1572        SDNode *CNode =
1573          CurDAG->getTargetNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
1574                                array_lengthof(Ops));
1575        InFlag = SDValue(CNode, 1);
1576        // Update the chain.
1577        ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1578      } else {
1579        InFlag =
1580          SDValue(CurDAG->getTargetNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
1581      }
1582
1583      // Copy the division (low) result, if it is needed.
1584      if (!N.getValue(0).use_empty()) {
1585        SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1586                                                  LoReg, NVT, InFlag);
1587        InFlag = Result.getValue(2);
1588        ReplaceUses(N.getValue(0), Result);
1589#ifndef NDEBUG
1590        DOUT << std::string(Indent-2, ' ') << "=> ";
1591        DEBUG(Result.getNode()->dump(CurDAG));
1592        DOUT << "\n";
1593#endif
1594      }
1595      // Copy the remainder (high) result, if it is needed.
1596      if (!N.getValue(1).use_empty()) {
1597        SDValue Result;
1598        if (HiReg == X86::AH && Subtarget->is64Bit()) {
1599          // Prevent use of AH in a REX instruction by referencing AX instead.
1600          // Shift it down 8 bits.
1601          Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1602                                          X86::AX, MVT::i16, InFlag);
1603          InFlag = Result.getValue(2);
1604          Result = SDValue(CurDAG->getTargetNode(X86::SHR16ri, dl, MVT::i16,
1605                                        Result,
1606                                        CurDAG->getTargetConstant(8, MVT::i8)),
1607                           0);
1608          // Then truncate it down to i8.
1609          SDValue SRIdx = CurDAG->getTargetConstant(X86::SUBREG_8BIT, MVT::i32);
1610          Result = SDValue(CurDAG->getTargetNode(X86::EXTRACT_SUBREG, dl,
1611                                                   MVT::i8, Result, SRIdx), 0);
1612        } else {
1613          Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1614                                          HiReg, NVT, InFlag);
1615          InFlag = Result.getValue(2);
1616        }
1617        ReplaceUses(N.getValue(1), Result);
1618#ifndef NDEBUG
1619        DOUT << std::string(Indent-2, ' ') << "=> ";
1620        DEBUG(Result.getNode()->dump(CurDAG));
1621        DOUT << "\n";
1622#endif
1623      }
1624
1625#ifndef NDEBUG
1626      Indent -= 2;
1627#endif
1628
1629      return NULL;
1630    }
1631
1632    case ISD::DECLARE: {
1633      // Handle DECLARE nodes here because the second operand may have been
1634      // wrapped in X86ISD::Wrapper.
1635      SDValue Chain = Node->getOperand(0);
1636      SDValue N1 = Node->getOperand(1);
1637      SDValue N2 = Node->getOperand(2);
1638      FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N1);
1639
1640      // FIXME: We need to handle this for VLAs.
1641      if (!FINode) {
1642        ReplaceUses(N.getValue(0), Chain);
1643        return NULL;
1644      }
1645
1646      if (N2.getOpcode() == ISD::ADD &&
1647          N2.getOperand(0).getOpcode() == X86ISD::GlobalBaseReg)
1648        N2 = N2.getOperand(1);
1649
1650      // If N2 is not Wrapper(decriptor) then the llvm.declare is mangled
1651      // somehow, just ignore it.
1652      if (N2.getOpcode() != X86ISD::Wrapper) {
1653        ReplaceUses(N.getValue(0), Chain);
1654        return NULL;
1655      }
1656      GlobalAddressSDNode *GVNode =
1657        dyn_cast<GlobalAddressSDNode>(N2.getOperand(0));
1658      if (GVNode == 0) {
1659        ReplaceUses(N.getValue(0), Chain);
1660        return NULL;
1661      }
1662      SDValue Tmp1 = CurDAG->getTargetFrameIndex(FINode->getIndex(),
1663                                                 TLI.getPointerTy());
1664      SDValue Tmp2 = CurDAG->getTargetGlobalAddress(GVNode->getGlobal(),
1665                                                    TLI.getPointerTy());
1666      SDValue Ops[] = { Tmp1, Tmp2, Chain };
1667      return CurDAG->getTargetNode(TargetInstrInfo::DECLARE, dl,
1668                                   MVT::Other, Ops,
1669                                   array_lengthof(Ops));
1670    }
1671  }
1672
1673  SDNode *ResNode = SelectCode(N);
1674
1675#ifndef NDEBUG
1676  DOUT << std::string(Indent-2, ' ') << "=> ";
1677  if (ResNode == NULL || ResNode == N.getNode())
1678    DEBUG(N.getNode()->dump(CurDAG));
1679  else
1680    DEBUG(ResNode->dump(CurDAG));
1681  DOUT << "\n";
1682  Indent -= 2;
1683#endif
1684
1685  return ResNode;
1686}
1687
1688bool X86DAGToDAGISel::
1689SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
1690                             std::vector<SDValue> &OutOps) {
1691  SDValue Op0, Op1, Op2, Op3, Op4;
1692  switch (ConstraintCode) {
1693  case 'o':   // offsetable        ??
1694  case 'v':   // not offsetable    ??
1695  default: return true;
1696  case 'm':   // memory
1697    if (!SelectAddr(Op, Op, Op0, Op1, Op2, Op3, Op4))
1698      return true;
1699    break;
1700  }
1701
1702  OutOps.push_back(Op0);
1703  OutOps.push_back(Op1);
1704  OutOps.push_back(Op2);
1705  OutOps.push_back(Op3);
1706  OutOps.push_back(Op4);
1707  return false;
1708}
1709
1710/// createX86ISelDag - This pass converts a legalized DAG into a
1711/// X86-specific DAG, ready for instruction scheduling.
1712///
1713FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
1714                                     llvm::CodeGenOpt::Level OptLevel) {
1715  return new X86DAGToDAGISel(TM, OptLevel);
1716}
1717