X86FloatingPoint.cpp revision 234353
1//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which converts floating point instructions from
11// pseudo registers into register stack instructions.  This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// The x87 hardware tracks liveness of the stack registers, so it is necessary
16// to implement exact liveness tracking between basic blocks. The CFG edges are
17// partitioned into bundles where the same FP registers must be live in
18// identical stack positions. Instructions are inserted at the end of each basic
19// block to rearrange the live registers to match the outgoing bundle.
20//
21// This approach avoids splitting critical edges at the potential cost of more
22// live register shuffling instructions when critical edges are present.
23//
24//===----------------------------------------------------------------------===//
25
26#define DEBUG_TYPE "x86-codegen"
27#include "X86.h"
28#include "X86InstrInfo.h"
29#include "llvm/InlineAsm.h"
30#include "llvm/ADT/DepthFirstIterator.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
35#include "llvm/CodeGen/EdgeBundles.h"
36#include "llvm/CodeGen/MachineFunctionPass.h"
37#include "llvm/CodeGen/MachineInstrBuilder.h"
38#include "llvm/CodeGen/MachineRegisterInfo.h"
39#include "llvm/CodeGen/Passes.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/Target/TargetInstrInfo.h"
44#include "llvm/Target/TargetMachine.h"
45#include <algorithm>
46using namespace llvm;
47
48STATISTIC(NumFXCH, "Number of fxch instructions inserted");
49STATISTIC(NumFP  , "Number of floating point instructions");
50
51namespace {
52  struct FPS : public MachineFunctionPass {
53    static char ID;
54    FPS() : MachineFunctionPass(ID) {
55      initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
56      // This is really only to keep valgrind quiet.
57      // The logic in isLive() is too much for it.
58      memset(Stack, 0, sizeof(Stack));
59      memset(RegMap, 0, sizeof(RegMap));
60    }
61
62    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
63      AU.setPreservesCFG();
64      AU.addRequired<EdgeBundles>();
65      AU.addPreservedID(MachineLoopInfoID);
66      AU.addPreservedID(MachineDominatorsID);
67      MachineFunctionPass::getAnalysisUsage(AU);
68    }
69
70    virtual bool runOnMachineFunction(MachineFunction &MF);
71
72    virtual const char *getPassName() const { return "X86 FP Stackifier"; }
73
74  private:
75    const TargetInstrInfo *TII; // Machine instruction info.
76
77    // Two CFG edges are related if they leave the same block, or enter the same
78    // block. The transitive closure of an edge under this relation is a
79    // LiveBundle. It represents a set of CFG edges where the live FP stack
80    // registers must be allocated identically in the x87 stack.
81    //
82    // A LiveBundle is usually all the edges leaving a block, or all the edges
83    // entering a block, but it can contain more edges if critical edges are
84    // present.
85    //
86    // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
87    // but the exact mapping of FP registers to stack slots is fixed later.
88    struct LiveBundle {
89      // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
90      unsigned Mask;
91
92      // Number of pre-assigned live registers in FixStack. This is 0 when the
93      // stack order has not yet been fixed.
94      unsigned FixCount;
95
96      // Assigned stack order for live-in registers.
97      // FixStack[i] == getStackEntry(i) for all i < FixCount.
98      unsigned char FixStack[8];
99
100      LiveBundle() : Mask(0), FixCount(0) {}
101
102      // Have the live registers been assigned a stack order yet?
103      bool isFixed() const { return !Mask || FixCount; }
104    };
105
106    // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
107    // with no live FP registers.
108    SmallVector<LiveBundle, 8> LiveBundles;
109
110    // The edge bundle analysis provides indices into the LiveBundles vector.
111    EdgeBundles *Bundles;
112
113    // Return a bitmask of FP registers in block's live-in list.
114    unsigned calcLiveInMask(MachineBasicBlock *MBB) {
115      unsigned Mask = 0;
116      for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
117           E = MBB->livein_end(); I != E; ++I) {
118        unsigned Reg = *I - X86::FP0;
119        if (Reg < 8)
120          Mask |= 1 << Reg;
121      }
122      return Mask;
123    }
124
125    // Partition all the CFG edges into LiveBundles.
126    void bundleCFG(MachineFunction &MF);
127
128    MachineBasicBlock *MBB;     // Current basic block
129
130    // The hardware keeps track of how many FP registers are live, so we have
131    // to model that exactly. Usually, each live register corresponds to an
132    // FP<n> register, but when dealing with calls, returns, and inline
133    // assembly, it is sometimes neccesary to have live scratch registers.
134    unsigned Stack[8];          // FP<n> Registers in each stack slot...
135    unsigned StackTop;          // The current top of the FP stack.
136
137    enum {
138      NumFPRegs = 16            // Including scratch pseudo-registers.
139    };
140
141    // For each live FP<n> register, point to its Stack[] entry.
142    // The first entries correspond to FP0-FP6, the rest are scratch registers
143    // used when we need slightly different live registers than what the
144    // register allocator thinks.
145    unsigned RegMap[NumFPRegs];
146
147    // Pending fixed registers - Inline assembly needs FP registers to appear
148    // in fixed stack slot positions. This is handled by copying FP registers
149    // to ST registers before the instruction, and copying back after the
150    // instruction.
151    //
152    // This is modeled with pending ST registers. NumPendingSTs is the number
153    // of ST registers (ST0-STn) we are tracking. PendingST[n] points to an FP
154    // register that holds the ST value. The ST registers are not moved into
155    // place until immediately before the instruction that needs them.
156    //
157    // It can happen that we need an ST register to be live when no FP register
158    // holds the value:
159    //
160    //   %ST0 = COPY %FP4<kill>
161    //
162    // When that happens, we allocate a scratch FP register to hold the ST
163    // value. That means every register in PendingST must be live.
164
165    unsigned NumPendingSTs;
166    unsigned char PendingST[8];
167
168    // Set up our stack model to match the incoming registers to MBB.
169    void setupBlockStack();
170
171    // Shuffle live registers to match the expectations of successor blocks.
172    void finishBlockStack();
173
174    void dumpStack() const {
175      dbgs() << "Stack contents:";
176      for (unsigned i = 0; i != StackTop; ++i) {
177        dbgs() << " FP" << Stack[i];
178        assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
179      }
180      for (unsigned i = 0; i != NumPendingSTs; ++i)
181        dbgs() << ", ST" << i << " in FP" << unsigned(PendingST[i]);
182      dbgs() << "\n";
183    }
184
185    /// getSlot - Return the stack slot number a particular register number is
186    /// in.
187    unsigned getSlot(unsigned RegNo) const {
188      assert(RegNo < NumFPRegs && "Regno out of range!");
189      return RegMap[RegNo];
190    }
191
192    /// isLive - Is RegNo currently live in the stack?
193    bool isLive(unsigned RegNo) const {
194      unsigned Slot = getSlot(RegNo);
195      return Slot < StackTop && Stack[Slot] == RegNo;
196    }
197
198    /// getScratchReg - Return an FP register that is not currently in use.
199    unsigned getScratchReg() {
200      for (int i = NumFPRegs - 1; i >= 8; --i)
201        if (!isLive(i))
202          return i;
203      llvm_unreachable("Ran out of scratch FP registers");
204    }
205
206    /// isScratchReg - Returns trus if RegNo is a scratch FP register.
207    bool isScratchReg(unsigned RegNo) {
208      return RegNo > 8 && RegNo < NumFPRegs;
209    }
210
211    /// getStackEntry - Return the X86::FP<n> register in register ST(i).
212    unsigned getStackEntry(unsigned STi) const {
213      if (STi >= StackTop)
214        report_fatal_error("Access past stack top!");
215      return Stack[StackTop-1-STi];
216    }
217
218    /// getSTReg - Return the X86::ST(i) register which contains the specified
219    /// FP<RegNo> register.
220    unsigned getSTReg(unsigned RegNo) const {
221      return StackTop - 1 - getSlot(RegNo) + X86::ST0;
222    }
223
224    // pushReg - Push the specified FP<n> register onto the stack.
225    void pushReg(unsigned Reg) {
226      assert(Reg < NumFPRegs && "Register number out of range!");
227      if (StackTop >= 8)
228        report_fatal_error("Stack overflow!");
229      Stack[StackTop] = Reg;
230      RegMap[Reg] = StackTop++;
231    }
232
233    bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
234    void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
235      DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
236      if (isAtTop(RegNo)) return;
237
238      unsigned STReg = getSTReg(RegNo);
239      unsigned RegOnTop = getStackEntry(0);
240
241      // Swap the slots the regs are in.
242      std::swap(RegMap[RegNo], RegMap[RegOnTop]);
243
244      // Swap stack slot contents.
245      if (RegMap[RegOnTop] >= StackTop)
246        report_fatal_error("Access past stack top!");
247      std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
248
249      // Emit an fxch to update the runtime processors version of the state.
250      BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
251      ++NumFXCH;
252    }
253
254    void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
255      DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
256      unsigned STReg = getSTReg(RegNo);
257      pushReg(AsReg);   // New register on top of stack
258
259      BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
260    }
261
262    /// duplicatePendingSTBeforeKill - The instruction at I is about to kill
263    /// RegNo. If any PendingST registers still need the RegNo value, duplicate
264    /// them to new scratch registers.
265    void duplicatePendingSTBeforeKill(unsigned RegNo, MachineInstr *I) {
266      for (unsigned i = 0; i != NumPendingSTs; ++i) {
267        if (PendingST[i] != RegNo)
268          continue;
269        unsigned SR = getScratchReg();
270        DEBUG(dbgs() << "Duplicating pending ST" << i
271                     << " in FP" << RegNo << " to FP" << SR << '\n');
272        duplicateToTop(RegNo, SR, I);
273        PendingST[i] = SR;
274      }
275    }
276
277    /// popStackAfter - Pop the current value off of the top of the FP stack
278    /// after the specified instruction.
279    void popStackAfter(MachineBasicBlock::iterator &I);
280
281    /// freeStackSlotAfter - Free the specified register from the register
282    /// stack, so that it is no longer in a register.  If the register is
283    /// currently at the top of the stack, we just pop the current instruction,
284    /// otherwise we store the current top-of-stack into the specified slot,
285    /// then pop the top of stack.
286    void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
287
288    /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
289    /// instruction.
290    MachineBasicBlock::iterator
291    freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
292
293    /// Adjust the live registers to be the set in Mask.
294    void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
295
296    /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
297    /// st(0), FP reg FixStack[1] is st(1) etc.
298    void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
299                         MachineBasicBlock::iterator I);
300
301    bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
302
303    void handleZeroArgFP(MachineBasicBlock::iterator &I);
304    void handleOneArgFP(MachineBasicBlock::iterator &I);
305    void handleOneArgFPRW(MachineBasicBlock::iterator &I);
306    void handleTwoArgFP(MachineBasicBlock::iterator &I);
307    void handleCompareFP(MachineBasicBlock::iterator &I);
308    void handleCondMovFP(MachineBasicBlock::iterator &I);
309    void handleSpecialFP(MachineBasicBlock::iterator &I);
310
311    // Check if a COPY instruction is using FP registers.
312    bool isFPCopy(MachineInstr *MI) {
313      unsigned DstReg = MI->getOperand(0).getReg();
314      unsigned SrcReg = MI->getOperand(1).getReg();
315
316      return X86::RFP80RegClass.contains(DstReg) ||
317        X86::RFP80RegClass.contains(SrcReg);
318    }
319  };
320  char FPS::ID = 0;
321}
322
323FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
324
325/// getFPReg - Return the X86::FPx register number for the specified operand.
326/// For example, this returns 3 for X86::FP3.
327static unsigned getFPReg(const MachineOperand &MO) {
328  assert(MO.isReg() && "Expected an FP register!");
329  unsigned Reg = MO.getReg();
330  assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
331  return Reg - X86::FP0;
332}
333
334/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
335/// register references into FP stack references.
336///
337bool FPS::runOnMachineFunction(MachineFunction &MF) {
338  // We only need to run this pass if there are any FP registers used in this
339  // function.  If it is all integer, there is nothing for us to do!
340  bool FPIsUsed = false;
341
342  assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
343  for (unsigned i = 0; i <= 6; ++i)
344    if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
345      FPIsUsed = true;
346      break;
347    }
348
349  // Early exit.
350  if (!FPIsUsed) return false;
351
352  Bundles = &getAnalysis<EdgeBundles>();
353  TII = MF.getTarget().getInstrInfo();
354
355  // Prepare cross-MBB liveness.
356  bundleCFG(MF);
357
358  StackTop = 0;
359
360  // Process the function in depth first order so that we process at least one
361  // of the predecessors for every reachable block in the function.
362  SmallPtrSet<MachineBasicBlock*, 8> Processed;
363  MachineBasicBlock *Entry = MF.begin();
364
365  bool Changed = false;
366  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
367         I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
368       I != E; ++I)
369    Changed |= processBasicBlock(MF, **I);
370
371  // Process any unreachable blocks in arbitrary order now.
372  if (MF.size() != Processed.size())
373    for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
374      if (Processed.insert(BB))
375        Changed |= processBasicBlock(MF, *BB);
376
377  LiveBundles.clear();
378
379  return Changed;
380}
381
382/// bundleCFG - Scan all the basic blocks to determine consistent live-in and
383/// live-out sets for the FP registers. Consistent means that the set of
384/// registers live-out from a block is identical to the live-in set of all
385/// successors. This is not enforced by the normal live-in lists since
386/// registers may be implicitly defined, or not used by all successors.
387void FPS::bundleCFG(MachineFunction &MF) {
388  assert(LiveBundles.empty() && "Stale data in LiveBundles");
389  LiveBundles.resize(Bundles->getNumBundles());
390
391  // Gather the actual live-in masks for all MBBs.
392  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
393    MachineBasicBlock *MBB = I;
394    const unsigned Mask = calcLiveInMask(MBB);
395    if (!Mask)
396      continue;
397    // Update MBB ingoing bundle mask.
398    LiveBundles[Bundles->getBundle(MBB->getNumber(), false)].Mask |= Mask;
399  }
400}
401
402/// processBasicBlock - Loop over all of the instructions in the basic block,
403/// transforming FP instructions into their stack form.
404///
405bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
406  bool Changed = false;
407  MBB = &BB;
408  NumPendingSTs = 0;
409
410  setupBlockStack();
411
412  for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
413    MachineInstr *MI = I;
414    uint64_t Flags = MI->getDesc().TSFlags;
415
416    unsigned FPInstClass = Flags & X86II::FPTypeMask;
417    if (MI->isInlineAsm())
418      FPInstClass = X86II::SpecialFP;
419
420    if (MI->isCopy() && isFPCopy(MI))
421      FPInstClass = X86II::SpecialFP;
422
423    if (MI->isImplicitDef() &&
424        X86::RFP80RegClass.contains(MI->getOperand(0).getReg()))
425      FPInstClass = X86II::SpecialFP;
426
427    if (FPInstClass == X86II::NotFP)
428      continue;  // Efficiently ignore non-fp insts!
429
430    MachineInstr *PrevMI = 0;
431    if (I != BB.begin())
432      PrevMI = prior(I);
433
434    ++NumFP;  // Keep track of # of pseudo instrs
435    DEBUG(dbgs() << "\nFPInst:\t" << *MI);
436
437    // Get dead variables list now because the MI pointer may be deleted as part
438    // of processing!
439    SmallVector<unsigned, 8> DeadRegs;
440    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
441      const MachineOperand &MO = MI->getOperand(i);
442      if (MO.isReg() && MO.isDead())
443        DeadRegs.push_back(MO.getReg());
444    }
445
446    switch (FPInstClass) {
447    case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
448    case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
449    case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
450    case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
451    case X86II::CompareFP:  handleCompareFP(I); break;
452    case X86II::CondMovFP:  handleCondMovFP(I); break;
453    case X86II::SpecialFP:  handleSpecialFP(I); break;
454    default: llvm_unreachable("Unknown FP Type!");
455    }
456
457    // Check to see if any of the values defined by this instruction are dead
458    // after definition.  If so, pop them.
459    for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
460      unsigned Reg = DeadRegs[i];
461      if (Reg >= X86::FP0 && Reg <= X86::FP6) {
462        DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
463        freeStackSlotAfter(I, Reg-X86::FP0);
464      }
465    }
466
467    // Print out all of the instructions expanded to if -debug
468    DEBUG(
469      MachineBasicBlock::iterator PrevI(PrevMI);
470      if (I == PrevI) {
471        dbgs() << "Just deleted pseudo instruction\n";
472      } else {
473        MachineBasicBlock::iterator Start = I;
474        // Rewind to first instruction newly inserted.
475        while (Start != BB.begin() && prior(Start) != PrevI) --Start;
476        dbgs() << "Inserted instructions:\n\t";
477        Start->print(dbgs(), &MF.getTarget());
478        while (++Start != llvm::next(I)) {}
479      }
480      dumpStack();
481    );
482    (void)PrevMI;
483
484    Changed = true;
485  }
486
487  finishBlockStack();
488
489  return Changed;
490}
491
492/// setupBlockStack - Use the live bundles to set up our model of the stack
493/// to match predecessors' live out stack.
494void FPS::setupBlockStack() {
495  DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
496               << " derived from " << MBB->getName() << ".\n");
497  StackTop = 0;
498  // Get the live-in bundle for MBB.
499  const LiveBundle &Bundle =
500    LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
501
502  if (!Bundle.Mask) {
503    DEBUG(dbgs() << "Block has no FP live-ins.\n");
504    return;
505  }
506
507  // Depth-first iteration should ensure that we always have an assigned stack.
508  assert(Bundle.isFixed() && "Reached block before any predecessors");
509
510  // Push the fixed live-in registers.
511  for (unsigned i = Bundle.FixCount; i > 0; --i) {
512    MBB->addLiveIn(X86::ST0+i-1);
513    DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
514                 << unsigned(Bundle.FixStack[i-1]) << '\n');
515    pushReg(Bundle.FixStack[i-1]);
516  }
517
518  // Kill off unwanted live-ins. This can happen with a critical edge.
519  // FIXME: We could keep these live registers around as zombies. They may need
520  // to be revived at the end of a short block. It might save a few instrs.
521  adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
522  DEBUG(MBB->dump());
523}
524
525/// finishBlockStack - Revive live-outs that are implicitly defined out of
526/// MBB. Shuffle live registers to match the expected fixed stack of any
527/// predecessors, and ensure that all predecessors are expecting the same
528/// stack.
529void FPS::finishBlockStack() {
530  // The RET handling below takes care of return blocks for us.
531  if (MBB->succ_empty())
532    return;
533
534  DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
535               << " derived from " << MBB->getName() << ".\n");
536
537  // Get MBB's live-out bundle.
538  unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
539  LiveBundle &Bundle = LiveBundles[BundleIdx];
540
541  // We may need to kill and define some registers to match successors.
542  // FIXME: This can probably be combined with the shuffle below.
543  MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
544  adjustLiveRegs(Bundle.Mask, Term);
545
546  if (!Bundle.Mask) {
547    DEBUG(dbgs() << "No live-outs.\n");
548    return;
549  }
550
551  // Has the stack order been fixed yet?
552  DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
553  if (Bundle.isFixed()) {
554    DEBUG(dbgs() << "Shuffling stack to match.\n");
555    shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
556  } else {
557    // Not fixed yet, we get to choose.
558    DEBUG(dbgs() << "Fixing stack order now.\n");
559    Bundle.FixCount = StackTop;
560    for (unsigned i = 0; i < StackTop; ++i)
561      Bundle.FixStack[i] = getStackEntry(i);
562  }
563}
564
565
566//===----------------------------------------------------------------------===//
567// Efficient Lookup Table Support
568//===----------------------------------------------------------------------===//
569
570namespace {
571  struct TableEntry {
572    uint16_t from;
573    uint16_t to;
574    bool operator<(const TableEntry &TE) const { return from < TE.from; }
575    friend bool operator<(const TableEntry &TE, unsigned V) {
576      return TE.from < V;
577    }
578    friend bool LLVM_ATTRIBUTE_USED operator<(unsigned V,
579                                              const TableEntry &TE) {
580      return V < TE.from;
581    }
582  };
583}
584
585#ifndef NDEBUG
586static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
587  for (unsigned i = 0; i != NumEntries-1; ++i)
588    if (!(Table[i] < Table[i+1])) return false;
589  return true;
590}
591#endif
592
593static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
594  const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
595  if (I != Table+N && I->from == Opcode)
596    return I->to;
597  return -1;
598}
599
600#ifdef NDEBUG
601#define ASSERT_SORTED(TABLE)
602#else
603#define ASSERT_SORTED(TABLE)                                              \
604  { static bool TABLE##Checked = false;                                   \
605    if (!TABLE##Checked) {                                                \
606       assert(TableIsSorted(TABLE, array_lengthof(TABLE)) &&              \
607              "All lookup tables must be sorted for efficient access!");  \
608       TABLE##Checked = true;                                             \
609    }                                                                     \
610  }
611#endif
612
613//===----------------------------------------------------------------------===//
614// Register File -> Register Stack Mapping Methods
615//===----------------------------------------------------------------------===//
616
617// OpcodeTable - Sorted map of register instructions to their stack version.
618// The first element is an register file pseudo instruction, the second is the
619// concrete X86 instruction which uses the register stack.
620//
621static const TableEntry OpcodeTable[] = {
622  { X86::ABS_Fp32     , X86::ABS_F     },
623  { X86::ABS_Fp64     , X86::ABS_F     },
624  { X86::ABS_Fp80     , X86::ABS_F     },
625  { X86::ADD_Fp32m    , X86::ADD_F32m  },
626  { X86::ADD_Fp64m    , X86::ADD_F64m  },
627  { X86::ADD_Fp64m32  , X86::ADD_F32m  },
628  { X86::ADD_Fp80m32  , X86::ADD_F32m  },
629  { X86::ADD_Fp80m64  , X86::ADD_F64m  },
630  { X86::ADD_FpI16m32 , X86::ADD_FI16m },
631  { X86::ADD_FpI16m64 , X86::ADD_FI16m },
632  { X86::ADD_FpI16m80 , X86::ADD_FI16m },
633  { X86::ADD_FpI32m32 , X86::ADD_FI32m },
634  { X86::ADD_FpI32m64 , X86::ADD_FI32m },
635  { X86::ADD_FpI32m80 , X86::ADD_FI32m },
636  { X86::CHS_Fp32     , X86::CHS_F     },
637  { X86::CHS_Fp64     , X86::CHS_F     },
638  { X86::CHS_Fp80     , X86::CHS_F     },
639  { X86::CMOVBE_Fp32  , X86::CMOVBE_F  },
640  { X86::CMOVBE_Fp64  , X86::CMOVBE_F  },
641  { X86::CMOVBE_Fp80  , X86::CMOVBE_F  },
642  { X86::CMOVB_Fp32   , X86::CMOVB_F   },
643  { X86::CMOVB_Fp64   , X86::CMOVB_F  },
644  { X86::CMOVB_Fp80   , X86::CMOVB_F  },
645  { X86::CMOVE_Fp32   , X86::CMOVE_F  },
646  { X86::CMOVE_Fp64   , X86::CMOVE_F   },
647  { X86::CMOVE_Fp80   , X86::CMOVE_F   },
648  { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
649  { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
650  { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
651  { X86::CMOVNB_Fp32  , X86::CMOVNB_F  },
652  { X86::CMOVNB_Fp64  , X86::CMOVNB_F  },
653  { X86::CMOVNB_Fp80  , X86::CMOVNB_F  },
654  { X86::CMOVNE_Fp32  , X86::CMOVNE_F  },
655  { X86::CMOVNE_Fp64  , X86::CMOVNE_F  },
656  { X86::CMOVNE_Fp80  , X86::CMOVNE_F  },
657  { X86::CMOVNP_Fp32  , X86::CMOVNP_F  },
658  { X86::CMOVNP_Fp64  , X86::CMOVNP_F  },
659  { X86::CMOVNP_Fp80  , X86::CMOVNP_F  },
660  { X86::CMOVP_Fp32   , X86::CMOVP_F   },
661  { X86::CMOVP_Fp64   , X86::CMOVP_F   },
662  { X86::CMOVP_Fp80   , X86::CMOVP_F   },
663  { X86::COS_Fp32     , X86::COS_F     },
664  { X86::COS_Fp64     , X86::COS_F     },
665  { X86::COS_Fp80     , X86::COS_F     },
666  { X86::DIVR_Fp32m   , X86::DIVR_F32m },
667  { X86::DIVR_Fp64m   , X86::DIVR_F64m },
668  { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
669  { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
670  { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
671  { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
672  { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
673  { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
674  { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
675  { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
676  { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
677  { X86::DIV_Fp32m    , X86::DIV_F32m  },
678  { X86::DIV_Fp64m    , X86::DIV_F64m  },
679  { X86::DIV_Fp64m32  , X86::DIV_F32m  },
680  { X86::DIV_Fp80m32  , X86::DIV_F32m  },
681  { X86::DIV_Fp80m64  , X86::DIV_F64m  },
682  { X86::DIV_FpI16m32 , X86::DIV_FI16m },
683  { X86::DIV_FpI16m64 , X86::DIV_FI16m },
684  { X86::DIV_FpI16m80 , X86::DIV_FI16m },
685  { X86::DIV_FpI32m32 , X86::DIV_FI32m },
686  { X86::DIV_FpI32m64 , X86::DIV_FI32m },
687  { X86::DIV_FpI32m80 , X86::DIV_FI32m },
688  { X86::ILD_Fp16m32  , X86::ILD_F16m  },
689  { X86::ILD_Fp16m64  , X86::ILD_F16m  },
690  { X86::ILD_Fp16m80  , X86::ILD_F16m  },
691  { X86::ILD_Fp32m32  , X86::ILD_F32m  },
692  { X86::ILD_Fp32m64  , X86::ILD_F32m  },
693  { X86::ILD_Fp32m80  , X86::ILD_F32m  },
694  { X86::ILD_Fp64m32  , X86::ILD_F64m  },
695  { X86::ILD_Fp64m64  , X86::ILD_F64m  },
696  { X86::ILD_Fp64m80  , X86::ILD_F64m  },
697  { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
698  { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
699  { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
700  { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
701  { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
702  { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
703  { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
704  { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
705  { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
706  { X86::IST_Fp16m32  , X86::IST_F16m  },
707  { X86::IST_Fp16m64  , X86::IST_F16m  },
708  { X86::IST_Fp16m80  , X86::IST_F16m  },
709  { X86::IST_Fp32m32  , X86::IST_F32m  },
710  { X86::IST_Fp32m64  , X86::IST_F32m  },
711  { X86::IST_Fp32m80  , X86::IST_F32m  },
712  { X86::IST_Fp64m32  , X86::IST_FP64m },
713  { X86::IST_Fp64m64  , X86::IST_FP64m },
714  { X86::IST_Fp64m80  , X86::IST_FP64m },
715  { X86::LD_Fp032     , X86::LD_F0     },
716  { X86::LD_Fp064     , X86::LD_F0     },
717  { X86::LD_Fp080     , X86::LD_F0     },
718  { X86::LD_Fp132     , X86::LD_F1     },
719  { X86::LD_Fp164     , X86::LD_F1     },
720  { X86::LD_Fp180     , X86::LD_F1     },
721  { X86::LD_Fp32m     , X86::LD_F32m   },
722  { X86::LD_Fp32m64   , X86::LD_F32m   },
723  { X86::LD_Fp32m80   , X86::LD_F32m   },
724  { X86::LD_Fp64m     , X86::LD_F64m   },
725  { X86::LD_Fp64m80   , X86::LD_F64m   },
726  { X86::LD_Fp80m     , X86::LD_F80m   },
727  { X86::MUL_Fp32m    , X86::MUL_F32m  },
728  { X86::MUL_Fp64m    , X86::MUL_F64m  },
729  { X86::MUL_Fp64m32  , X86::MUL_F32m  },
730  { X86::MUL_Fp80m32  , X86::MUL_F32m  },
731  { X86::MUL_Fp80m64  , X86::MUL_F64m  },
732  { X86::MUL_FpI16m32 , X86::MUL_FI16m },
733  { X86::MUL_FpI16m64 , X86::MUL_FI16m },
734  { X86::MUL_FpI16m80 , X86::MUL_FI16m },
735  { X86::MUL_FpI32m32 , X86::MUL_FI32m },
736  { X86::MUL_FpI32m64 , X86::MUL_FI32m },
737  { X86::MUL_FpI32m80 , X86::MUL_FI32m },
738  { X86::SIN_Fp32     , X86::SIN_F     },
739  { X86::SIN_Fp64     , X86::SIN_F     },
740  { X86::SIN_Fp80     , X86::SIN_F     },
741  { X86::SQRT_Fp32    , X86::SQRT_F    },
742  { X86::SQRT_Fp64    , X86::SQRT_F    },
743  { X86::SQRT_Fp80    , X86::SQRT_F    },
744  { X86::ST_Fp32m     , X86::ST_F32m   },
745  { X86::ST_Fp64m     , X86::ST_F64m   },
746  { X86::ST_Fp64m32   , X86::ST_F32m   },
747  { X86::ST_Fp80m32   , X86::ST_F32m   },
748  { X86::ST_Fp80m64   , X86::ST_F64m   },
749  { X86::ST_FpP80m    , X86::ST_FP80m  },
750  { X86::SUBR_Fp32m   , X86::SUBR_F32m },
751  { X86::SUBR_Fp64m   , X86::SUBR_F64m },
752  { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
753  { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
754  { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
755  { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
756  { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
757  { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
758  { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
759  { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
760  { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
761  { X86::SUB_Fp32m    , X86::SUB_F32m  },
762  { X86::SUB_Fp64m    , X86::SUB_F64m  },
763  { X86::SUB_Fp64m32  , X86::SUB_F32m  },
764  { X86::SUB_Fp80m32  , X86::SUB_F32m  },
765  { X86::SUB_Fp80m64  , X86::SUB_F64m  },
766  { X86::SUB_FpI16m32 , X86::SUB_FI16m },
767  { X86::SUB_FpI16m64 , X86::SUB_FI16m },
768  { X86::SUB_FpI16m80 , X86::SUB_FI16m },
769  { X86::SUB_FpI32m32 , X86::SUB_FI32m },
770  { X86::SUB_FpI32m64 , X86::SUB_FI32m },
771  { X86::SUB_FpI32m80 , X86::SUB_FI32m },
772  { X86::TST_Fp32     , X86::TST_F     },
773  { X86::TST_Fp64     , X86::TST_F     },
774  { X86::TST_Fp80     , X86::TST_F     },
775  { X86::UCOM_FpIr32  , X86::UCOM_FIr  },
776  { X86::UCOM_FpIr64  , X86::UCOM_FIr  },
777  { X86::UCOM_FpIr80  , X86::UCOM_FIr  },
778  { X86::UCOM_Fpr32   , X86::UCOM_Fr   },
779  { X86::UCOM_Fpr64   , X86::UCOM_Fr   },
780  { X86::UCOM_Fpr80   , X86::UCOM_Fr   },
781};
782
783static unsigned getConcreteOpcode(unsigned Opcode) {
784  ASSERT_SORTED(OpcodeTable);
785  int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
786  assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
787  return Opc;
788}
789
790//===----------------------------------------------------------------------===//
791// Helper Methods
792//===----------------------------------------------------------------------===//
793
794// PopTable - Sorted map of instructions to their popping version.  The first
795// element is an instruction, the second is the version which pops.
796//
797static const TableEntry PopTable[] = {
798  { X86::ADD_FrST0 , X86::ADD_FPrST0  },
799
800  { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
801  { X86::DIV_FrST0 , X86::DIV_FPrST0  },
802
803  { X86::IST_F16m  , X86::IST_FP16m   },
804  { X86::IST_F32m  , X86::IST_FP32m   },
805
806  { X86::MUL_FrST0 , X86::MUL_FPrST0  },
807
808  { X86::ST_F32m   , X86::ST_FP32m    },
809  { X86::ST_F64m   , X86::ST_FP64m    },
810  { X86::ST_Frr    , X86::ST_FPrr     },
811
812  { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
813  { X86::SUB_FrST0 , X86::SUB_FPrST0  },
814
815  { X86::UCOM_FIr  , X86::UCOM_FIPr   },
816
817  { X86::UCOM_FPr  , X86::UCOM_FPPr   },
818  { X86::UCOM_Fr   , X86::UCOM_FPr    },
819};
820
821/// popStackAfter - Pop the current value off of the top of the FP stack after
822/// the specified instruction.  This attempts to be sneaky and combine the pop
823/// into the instruction itself if possible.  The iterator is left pointing to
824/// the last instruction, be it a new pop instruction inserted, or the old
825/// instruction if it was modified in place.
826///
827void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
828  MachineInstr* MI = I;
829  DebugLoc dl = MI->getDebugLoc();
830  ASSERT_SORTED(PopTable);
831  if (StackTop == 0)
832    report_fatal_error("Cannot pop empty stack!");
833  RegMap[Stack[--StackTop]] = ~0;     // Update state
834
835  // Check to see if there is a popping version of this instruction...
836  int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
837  if (Opcode != -1) {
838    I->setDesc(TII->get(Opcode));
839    if (Opcode == X86::UCOM_FPPr)
840      I->RemoveOperand(0);
841  } else {    // Insert an explicit pop
842    I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
843  }
844}
845
846/// freeStackSlotAfter - Free the specified register from the register stack, so
847/// that it is no longer in a register.  If the register is currently at the top
848/// of the stack, we just pop the current instruction, otherwise we store the
849/// current top-of-stack into the specified slot, then pop the top of stack.
850void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
851  if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
852    popStackAfter(I);
853    return;
854  }
855
856  // Otherwise, store the top of stack into the dead slot, killing the operand
857  // without having to add in an explicit xchg then pop.
858  //
859  I = freeStackSlotBefore(++I, FPRegNo);
860}
861
862/// freeStackSlotBefore - Free the specified register without trying any
863/// folding.
864MachineBasicBlock::iterator
865FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
866  unsigned STReg    = getSTReg(FPRegNo);
867  unsigned OldSlot  = getSlot(FPRegNo);
868  unsigned TopReg   = Stack[StackTop-1];
869  Stack[OldSlot]    = TopReg;
870  RegMap[TopReg]    = OldSlot;
871  RegMap[FPRegNo]   = ~0;
872  Stack[--StackTop] = ~0;
873  return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg);
874}
875
876/// adjustLiveRegs - Kill and revive registers such that exactly the FP
877/// registers with a bit in Mask are live.
878void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
879  unsigned Defs = Mask;
880  unsigned Kills = 0;
881  for (unsigned i = 0; i < StackTop; ++i) {
882    unsigned RegNo = Stack[i];
883    if (!(Defs & (1 << RegNo)))
884      // This register is live, but we don't want it.
885      Kills |= (1 << RegNo);
886    else
887      // We don't need to imp-def this live register.
888      Defs &= ~(1 << RegNo);
889  }
890  assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
891
892  // Produce implicit-defs for free by using killed registers.
893  while (Kills && Defs) {
894    unsigned KReg = CountTrailingZeros_32(Kills);
895    unsigned DReg = CountTrailingZeros_32(Defs);
896    DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
897    std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
898    std::swap(RegMap[KReg], RegMap[DReg]);
899    Kills &= ~(1 << KReg);
900    Defs &= ~(1 << DReg);
901  }
902
903  // Kill registers by popping.
904  if (Kills && I != MBB->begin()) {
905    MachineBasicBlock::iterator I2 = llvm::prior(I);
906    while (StackTop) {
907      unsigned KReg = getStackEntry(0);
908      if (!(Kills & (1 << KReg)))
909        break;
910      DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
911      popStackAfter(I2);
912      Kills &= ~(1 << KReg);
913    }
914  }
915
916  // Manually kill the rest.
917  while (Kills) {
918    unsigned KReg = CountTrailingZeros_32(Kills);
919    DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
920    freeStackSlotBefore(I, KReg);
921    Kills &= ~(1 << KReg);
922  }
923
924  // Load zeros for all the imp-defs.
925  while(Defs) {
926    unsigned DReg = CountTrailingZeros_32(Defs);
927    DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
928    BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
929    pushReg(DReg);
930    Defs &= ~(1 << DReg);
931  }
932
933  // Now we should have the correct registers live.
934  DEBUG(dumpStack());
935  assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch");
936}
937
938/// shuffleStackTop - emit fxch instructions before I to shuffle the top
939/// FixCount entries into the order given by FixStack.
940/// FIXME: Is there a better algorithm than insertion sort?
941void FPS::shuffleStackTop(const unsigned char *FixStack,
942                          unsigned FixCount,
943                          MachineBasicBlock::iterator I) {
944  // Move items into place, starting from the desired stack bottom.
945  while (FixCount--) {
946    // Old register at position FixCount.
947    unsigned OldReg = getStackEntry(FixCount);
948    // Desired register at position FixCount.
949    unsigned Reg = FixStack[FixCount];
950    if (Reg == OldReg)
951      continue;
952    // (Reg st0) (OldReg st0) = (Reg OldReg st0)
953    moveToTop(Reg, I);
954    if (FixCount > 0)
955      moveToTop(OldReg, I);
956  }
957  DEBUG(dumpStack());
958}
959
960
961//===----------------------------------------------------------------------===//
962// Instruction transformation implementation
963//===----------------------------------------------------------------------===//
964
965/// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
966///
967void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
968  MachineInstr *MI = I;
969  unsigned DestReg = getFPReg(MI->getOperand(0));
970
971  // Change from the pseudo instruction to the concrete instruction.
972  MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
973  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
974
975  // Result gets pushed on the stack.
976  pushReg(DestReg);
977}
978
979/// handleOneArgFP - fst <mem>, ST(0)
980///
981void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
982  MachineInstr *MI = I;
983  unsigned NumOps = MI->getDesc().getNumOperands();
984  assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
985         "Can only handle fst* & ftst instructions!");
986
987  // Is this the last use of the source register?
988  unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
989  bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
990
991  if (KillsSrc)
992    duplicatePendingSTBeforeKill(Reg, I);
993
994  // FISTP64m is strange because there isn't a non-popping versions.
995  // If we have one _and_ we don't want to pop the operand, duplicate the value
996  // on the stack instead of moving it.  This ensure that popping the value is
997  // always ok.
998  // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
999  //
1000  if (!KillsSrc &&
1001      (MI->getOpcode() == X86::IST_Fp64m32 ||
1002       MI->getOpcode() == X86::ISTT_Fp16m32 ||
1003       MI->getOpcode() == X86::ISTT_Fp32m32 ||
1004       MI->getOpcode() == X86::ISTT_Fp64m32 ||
1005       MI->getOpcode() == X86::IST_Fp64m64 ||
1006       MI->getOpcode() == X86::ISTT_Fp16m64 ||
1007       MI->getOpcode() == X86::ISTT_Fp32m64 ||
1008       MI->getOpcode() == X86::ISTT_Fp64m64 ||
1009       MI->getOpcode() == X86::IST_Fp64m80 ||
1010       MI->getOpcode() == X86::ISTT_Fp16m80 ||
1011       MI->getOpcode() == X86::ISTT_Fp32m80 ||
1012       MI->getOpcode() == X86::ISTT_Fp64m80 ||
1013       MI->getOpcode() == X86::ST_FpP80m)) {
1014    duplicateToTop(Reg, getScratchReg(), I);
1015  } else {
1016    moveToTop(Reg, I);            // Move to the top of the stack...
1017  }
1018
1019  // Convert from the pseudo instruction to the concrete instruction.
1020  MI->RemoveOperand(NumOps-1);    // Remove explicit ST(0) operand
1021  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1022
1023  if (MI->getOpcode() == X86::IST_FP64m ||
1024      MI->getOpcode() == X86::ISTT_FP16m ||
1025      MI->getOpcode() == X86::ISTT_FP32m ||
1026      MI->getOpcode() == X86::ISTT_FP64m ||
1027      MI->getOpcode() == X86::ST_FP80m) {
1028    if (StackTop == 0)
1029      report_fatal_error("Stack empty??");
1030    --StackTop;
1031  } else if (KillsSrc) { // Last use of operand?
1032    popStackAfter(I);
1033  }
1034}
1035
1036
1037/// handleOneArgFPRW: Handle instructions that read from the top of stack and
1038/// replace the value with a newly computed value.  These instructions may have
1039/// non-fp operands after their FP operands.
1040///
1041///  Examples:
1042///     R1 = fchs R2
1043///     R1 = fadd R2, [mem]
1044///
1045void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
1046  MachineInstr *MI = I;
1047#ifndef NDEBUG
1048  unsigned NumOps = MI->getDesc().getNumOperands();
1049  assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
1050#endif
1051
1052  // Is this the last use of the source register?
1053  unsigned Reg = getFPReg(MI->getOperand(1));
1054  bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
1055
1056  if (KillsSrc) {
1057    duplicatePendingSTBeforeKill(Reg, I);
1058    // If this is the last use of the source register, just make sure it's on
1059    // the top of the stack.
1060    moveToTop(Reg, I);
1061    if (StackTop == 0)
1062      report_fatal_error("Stack cannot be empty!");
1063    --StackTop;
1064    pushReg(getFPReg(MI->getOperand(0)));
1065  } else {
1066    // If this is not the last use of the source register, _copy_ it to the top
1067    // of the stack.
1068    duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
1069  }
1070
1071  // Change from the pseudo instruction to the concrete instruction.
1072  MI->RemoveOperand(1);   // Drop the source operand.
1073  MI->RemoveOperand(0);   // Drop the destination operand.
1074  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1075}
1076
1077
1078//===----------------------------------------------------------------------===//
1079// Define tables of various ways to map pseudo instructions
1080//
1081
1082// ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
1083static const TableEntry ForwardST0Table[] = {
1084  { X86::ADD_Fp32  , X86::ADD_FST0r },
1085  { X86::ADD_Fp64  , X86::ADD_FST0r },
1086  { X86::ADD_Fp80  , X86::ADD_FST0r },
1087  { X86::DIV_Fp32  , X86::DIV_FST0r },
1088  { X86::DIV_Fp64  , X86::DIV_FST0r },
1089  { X86::DIV_Fp80  , X86::DIV_FST0r },
1090  { X86::MUL_Fp32  , X86::MUL_FST0r },
1091  { X86::MUL_Fp64  , X86::MUL_FST0r },
1092  { X86::MUL_Fp80  , X86::MUL_FST0r },
1093  { X86::SUB_Fp32  , X86::SUB_FST0r },
1094  { X86::SUB_Fp64  , X86::SUB_FST0r },
1095  { X86::SUB_Fp80  , X86::SUB_FST0r },
1096};
1097
1098// ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
1099static const TableEntry ReverseST0Table[] = {
1100  { X86::ADD_Fp32  , X86::ADD_FST0r  },   // commutative
1101  { X86::ADD_Fp64  , X86::ADD_FST0r  },   // commutative
1102  { X86::ADD_Fp80  , X86::ADD_FST0r  },   // commutative
1103  { X86::DIV_Fp32  , X86::DIVR_FST0r },
1104  { X86::DIV_Fp64  , X86::DIVR_FST0r },
1105  { X86::DIV_Fp80  , X86::DIVR_FST0r },
1106  { X86::MUL_Fp32  , X86::MUL_FST0r  },   // commutative
1107  { X86::MUL_Fp64  , X86::MUL_FST0r  },   // commutative
1108  { X86::MUL_Fp80  , X86::MUL_FST0r  },   // commutative
1109  { X86::SUB_Fp32  , X86::SUBR_FST0r },
1110  { X86::SUB_Fp64  , X86::SUBR_FST0r },
1111  { X86::SUB_Fp80  , X86::SUBR_FST0r },
1112};
1113
1114// ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
1115static const TableEntry ForwardSTiTable[] = {
1116  { X86::ADD_Fp32  , X86::ADD_FrST0  },   // commutative
1117  { X86::ADD_Fp64  , X86::ADD_FrST0  },   // commutative
1118  { X86::ADD_Fp80  , X86::ADD_FrST0  },   // commutative
1119  { X86::DIV_Fp32  , X86::DIVR_FrST0 },
1120  { X86::DIV_Fp64  , X86::DIVR_FrST0 },
1121  { X86::DIV_Fp80  , X86::DIVR_FrST0 },
1122  { X86::MUL_Fp32  , X86::MUL_FrST0  },   // commutative
1123  { X86::MUL_Fp64  , X86::MUL_FrST0  },   // commutative
1124  { X86::MUL_Fp80  , X86::MUL_FrST0  },   // commutative
1125  { X86::SUB_Fp32  , X86::SUBR_FrST0 },
1126  { X86::SUB_Fp64  , X86::SUBR_FrST0 },
1127  { X86::SUB_Fp80  , X86::SUBR_FrST0 },
1128};
1129
1130// ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
1131static const TableEntry ReverseSTiTable[] = {
1132  { X86::ADD_Fp32  , X86::ADD_FrST0 },
1133  { X86::ADD_Fp64  , X86::ADD_FrST0 },
1134  { X86::ADD_Fp80  , X86::ADD_FrST0 },
1135  { X86::DIV_Fp32  , X86::DIV_FrST0 },
1136  { X86::DIV_Fp64  , X86::DIV_FrST0 },
1137  { X86::DIV_Fp80  , X86::DIV_FrST0 },
1138  { X86::MUL_Fp32  , X86::MUL_FrST0 },
1139  { X86::MUL_Fp64  , X86::MUL_FrST0 },
1140  { X86::MUL_Fp80  , X86::MUL_FrST0 },
1141  { X86::SUB_Fp32  , X86::SUB_FrST0 },
1142  { X86::SUB_Fp64  , X86::SUB_FrST0 },
1143  { X86::SUB_Fp80  , X86::SUB_FrST0 },
1144};
1145
1146
1147/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1148/// instructions which need to be simplified and possibly transformed.
1149///
1150/// Result: ST(0) = fsub  ST(0), ST(i)
1151///         ST(i) = fsub  ST(0), ST(i)
1152///         ST(0) = fsubr ST(0), ST(i)
1153///         ST(i) = fsubr ST(0), ST(i)
1154///
1155void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1156  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1157  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1158  MachineInstr *MI = I;
1159
1160  unsigned NumOperands = MI->getDesc().getNumOperands();
1161  assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
1162  unsigned Dest = getFPReg(MI->getOperand(0));
1163  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1164  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
1165  bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1166  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1167  DebugLoc dl = MI->getDebugLoc();
1168
1169  unsigned TOS = getStackEntry(0);
1170
1171  // One of our operands must be on the top of the stack.  If neither is yet, we
1172  // need to move one.
1173  if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
1174    // We can choose to move either operand to the top of the stack.  If one of
1175    // the operands is killed by this instruction, we want that one so that we
1176    // can update right on top of the old version.
1177    if (KillsOp0) {
1178      moveToTop(Op0, I);         // Move dead operand to TOS.
1179      TOS = Op0;
1180    } else if (KillsOp1) {
1181      moveToTop(Op1, I);
1182      TOS = Op1;
1183    } else {
1184      // All of the operands are live after this instruction executes, so we
1185      // cannot update on top of any operand.  Because of this, we must
1186      // duplicate one of the stack elements to the top.  It doesn't matter
1187      // which one we pick.
1188      //
1189      duplicateToTop(Op0, Dest, I);
1190      Op0 = TOS = Dest;
1191      KillsOp0 = true;
1192    }
1193  } else if (!KillsOp0 && !KillsOp1) {
1194    // If we DO have one of our operands at the top of the stack, but we don't
1195    // have a dead operand, we must duplicate one of the operands to a new slot
1196    // on the stack.
1197    duplicateToTop(Op0, Dest, I);
1198    Op0 = TOS = Dest;
1199    KillsOp0 = true;
1200  }
1201
1202  // Now we know that one of our operands is on the top of the stack, and at
1203  // least one of our operands is killed by this instruction.
1204  assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1205         "Stack conditions not set up right!");
1206
1207  // We decide which form to use based on what is on the top of the stack, and
1208  // which operand is killed by this instruction.
1209  const TableEntry *InstTable;
1210  bool isForward = TOS == Op0;
1211  bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1212  if (updateST0) {
1213    if (isForward)
1214      InstTable = ForwardST0Table;
1215    else
1216      InstTable = ReverseST0Table;
1217  } else {
1218    if (isForward)
1219      InstTable = ForwardSTiTable;
1220    else
1221      InstTable = ReverseSTiTable;
1222  }
1223
1224  int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
1225                      MI->getOpcode());
1226  assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1227
1228  // NotTOS - The register which is not on the top of stack...
1229  unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1230
1231  // Replace the old instruction with a new instruction
1232  MBB->remove(I++);
1233  I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
1234
1235  // If both operands are killed, pop one off of the stack in addition to
1236  // overwriting the other one.
1237  if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1238    assert(!updateST0 && "Should have updated other operand!");
1239    popStackAfter(I);   // Pop the top of stack
1240  }
1241
1242  // Update stack information so that we know the destination register is now on
1243  // the stack.
1244  unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1245  assert(UpdatedSlot < StackTop && Dest < 7);
1246  Stack[UpdatedSlot]   = Dest;
1247  RegMap[Dest]         = UpdatedSlot;
1248  MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
1249}
1250
1251/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
1252/// register arguments and no explicit destinations.
1253///
1254void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1255  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1256  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1257  MachineInstr *MI = I;
1258
1259  unsigned NumOperands = MI->getDesc().getNumOperands();
1260  assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
1261  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1262  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
1263  bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1264  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1265
1266  // Make sure the first operand is on the top of stack, the other one can be
1267  // anywhere.
1268  moveToTop(Op0, I);
1269
1270  // Change from the pseudo instruction to the concrete instruction.
1271  MI->getOperand(0).setReg(getSTReg(Op1));
1272  MI->RemoveOperand(1);
1273  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1274
1275  // If any of the operands are killed by this instruction, free them.
1276  if (KillsOp0) freeStackSlotAfter(I, Op0);
1277  if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
1278}
1279
1280/// handleCondMovFP - Handle two address conditional move instructions.  These
1281/// instructions move a st(i) register to st(0) iff a condition is true.  These
1282/// instructions require that the first operand is at the top of the stack, but
1283/// otherwise don't modify the stack at all.
1284void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1285  MachineInstr *MI = I;
1286
1287  unsigned Op0 = getFPReg(MI->getOperand(0));
1288  unsigned Op1 = getFPReg(MI->getOperand(2));
1289  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1290
1291  // The first operand *must* be on the top of the stack.
1292  moveToTop(Op0, I);
1293
1294  // Change the second operand to the stack register that the operand is in.
1295  // Change from the pseudo instruction to the concrete instruction.
1296  MI->RemoveOperand(0);
1297  MI->RemoveOperand(1);
1298  MI->getOperand(0).setReg(getSTReg(Op1));
1299  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1300
1301  // If we kill the second operand, make sure to pop it from the stack.
1302  if (Op0 != Op1 && KillsOp1) {
1303    // Get this value off of the register stack.
1304    freeStackSlotAfter(I, Op1);
1305  }
1306}
1307
1308
1309/// handleSpecialFP - Handle special instructions which behave unlike other
1310/// floating point instructions.  This is primarily intended for use by pseudo
1311/// instructions.
1312///
1313void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
1314  MachineInstr *MI = I;
1315  switch (MI->getOpcode()) {
1316  default: llvm_unreachable("Unknown SpecialFP instruction!");
1317  case TargetOpcode::COPY: {
1318    // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
1319    const MachineOperand &MO1 = MI->getOperand(1);
1320    const MachineOperand &MO0 = MI->getOperand(0);
1321    unsigned DstST = MO0.getReg() - X86::ST0;
1322    unsigned SrcST = MO1.getReg() - X86::ST0;
1323    bool KillsSrc = MI->killsRegister(MO1.getReg());
1324
1325    // ST = COPY FP. Set up a pending ST register.
1326    if (DstST < 8) {
1327      unsigned SrcFP = getFPReg(MO1);
1328      assert(isLive(SrcFP) && "Cannot copy dead register");
1329      assert(!MO0.isDead() && "Cannot copy to dead ST register");
1330
1331      // Unallocated STs are marked as the nonexistent FP255.
1332      while (NumPendingSTs <= DstST)
1333        PendingST[NumPendingSTs++] = NumFPRegs;
1334
1335      // STi could still be live from a previous inline asm.
1336      if (isScratchReg(PendingST[DstST])) {
1337        DEBUG(dbgs() << "Clobbering old ST in FP" << unsigned(PendingST[DstST])
1338                     << '\n');
1339        freeStackSlotBefore(MI, PendingST[DstST]);
1340      }
1341
1342      // When the source is killed, allocate a scratch FP register.
1343      if (KillsSrc) {
1344        duplicatePendingSTBeforeKill(SrcFP, I);
1345        unsigned Slot = getSlot(SrcFP);
1346        unsigned SR = getScratchReg();
1347        PendingST[DstST] = SR;
1348        Stack[Slot] = SR;
1349        RegMap[SR] = Slot;
1350      } else
1351        PendingST[DstST] = SrcFP;
1352      break;
1353    }
1354
1355    // FP = COPY ST. Extract fixed stack value.
1356    // Any instruction defining ST registers must have assigned them to a
1357    // scratch register.
1358    if (SrcST < 8) {
1359      unsigned DstFP = getFPReg(MO0);
1360      assert(!isLive(DstFP) && "Cannot copy ST to live FP register");
1361      assert(NumPendingSTs > SrcST && "Cannot copy from dead ST register");
1362      unsigned SrcFP = PendingST[SrcST];
1363      assert(isScratchReg(SrcFP) && "Expected ST in a scratch register");
1364      assert(isLive(SrcFP) && "Scratch holding ST is dead");
1365
1366      // DstFP steals the stack slot from SrcFP.
1367      unsigned Slot = getSlot(SrcFP);
1368      Stack[Slot] = DstFP;
1369      RegMap[DstFP] = Slot;
1370
1371      // Always treat the ST as killed.
1372      PendingST[SrcST] = NumFPRegs;
1373      while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
1374        --NumPendingSTs;
1375      break;
1376    }
1377
1378    // FP <- FP copy.
1379    unsigned DstFP = getFPReg(MO0);
1380    unsigned SrcFP = getFPReg(MO1);
1381    assert(isLive(SrcFP) && "Cannot copy dead register");
1382    if (KillsSrc) {
1383      // If the input operand is killed, we can just change the owner of the
1384      // incoming stack slot into the result.
1385      unsigned Slot = getSlot(SrcFP);
1386      Stack[Slot] = DstFP;
1387      RegMap[DstFP] = Slot;
1388    } else {
1389      // For COPY we just duplicate the specified value to a new stack slot.
1390      // This could be made better, but would require substantial changes.
1391      duplicateToTop(SrcFP, DstFP, I);
1392    }
1393    break;
1394  }
1395
1396  case TargetOpcode::IMPLICIT_DEF: {
1397    // All FP registers must be explicitly defined, so load a 0 instead.
1398    unsigned Reg = MI->getOperand(0).getReg() - X86::FP0;
1399    DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
1400    BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
1401    pushReg(Reg);
1402    break;
1403  }
1404
1405  case X86::FpPOP_RETVAL: {
1406    // The FpPOP_RETVAL instruction is used after calls that return a value on
1407    // the floating point stack. We cannot model this with ST defs since CALL
1408    // instructions have fixed clobber lists. This instruction is interpreted
1409    // to mean that there is one more live register on the stack than we
1410    // thought.
1411    //
1412    // This means that StackTop does not match the hardware stack between a
1413    // call and the FpPOP_RETVAL instructions.  We do tolerate FP instructions
1414    // between CALL and FpPOP_RETVAL as long as they don't overflow the
1415    // hardware stack.
1416    unsigned DstFP = getFPReg(MI->getOperand(0));
1417
1418    // Move existing stack elements up to reflect reality.
1419    assert(StackTop < 8 && "Stack overflowed before FpPOP_RETVAL");
1420    if (StackTop) {
1421      std::copy_backward(Stack, Stack + StackTop, Stack + StackTop + 1);
1422      for (unsigned i = 0; i != NumFPRegs; ++i)
1423        ++RegMap[i];
1424    }
1425    ++StackTop;
1426
1427    // DstFP is the new bottom of the stack.
1428    Stack[0] = DstFP;
1429    RegMap[DstFP] = 0;
1430
1431    // DstFP will be killed by processBasicBlock if this was a dead def.
1432    break;
1433  }
1434
1435  case TargetOpcode::INLINEASM: {
1436    // The inline asm MachineInstr currently only *uses* FP registers for the
1437    // 'f' constraint.  These should be turned into the current ST(x) register
1438    // in the machine instr.
1439    //
1440    // There are special rules for x87 inline assembly. The compiler must know
1441    // exactly how many registers are popped and pushed implicitly by the asm.
1442    // Otherwise it is not possible to restore the stack state after the inline
1443    // asm.
1444    //
1445    // There are 3 kinds of input operands:
1446    //
1447    // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
1448    //    popped input operand must be in a fixed stack slot, and it is either
1449    //    tied to an output operand, or in the clobber list. The MI has ST use
1450    //    and def operands for these inputs.
1451    //
1452    // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
1453    //    preserved by the inline asm. The fixed stack slots must be STn-STm
1454    //    following the popped inputs. A fixed input operand cannot be tied to
1455    //    an output or appear in the clobber list. The MI has ST use operands
1456    //    and no defs for these inputs.
1457    //
1458    // 3. Preserved inputs. These inputs use the "f" constraint which is
1459    //    represented as an FP register. The inline asm won't change these
1460    //    stack slots.
1461    //
1462    // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
1463    // registers do not count as output operands. The inline asm changes the
1464    // stack as if it popped all the popped inputs and then pushed all the
1465    // output operands.
1466
1467    // Scan the assembly for ST registers used, defined and clobbered. We can
1468    // only tell clobbers from defs by looking at the asm descriptor.
1469    unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0;
1470    unsigned NumOps = 0;
1471    for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands();
1472         i != e && MI->getOperand(i).isImm(); i += 1 + NumOps) {
1473      unsigned Flags = MI->getOperand(i).getImm();
1474      NumOps = InlineAsm::getNumOperandRegisters(Flags);
1475      if (NumOps != 1)
1476        continue;
1477      const MachineOperand &MO = MI->getOperand(i + 1);
1478      if (!MO.isReg())
1479        continue;
1480      unsigned STReg = MO.getReg() - X86::ST0;
1481      if (STReg >= 8)
1482        continue;
1483
1484      switch (InlineAsm::getKind(Flags)) {
1485      case InlineAsm::Kind_RegUse:
1486        STUses |= (1u << STReg);
1487        break;
1488      case InlineAsm::Kind_RegDef:
1489      case InlineAsm::Kind_RegDefEarlyClobber:
1490        STDefs |= (1u << STReg);
1491        if (MO.isDead())
1492          STDeadDefs |= (1u << STReg);
1493        break;
1494      case InlineAsm::Kind_Clobber:
1495        STClobbers |= (1u << STReg);
1496        break;
1497      default:
1498        break;
1499      }
1500    }
1501
1502    if (STUses && !isMask_32(STUses))
1503      MI->emitError("fixed input regs must be last on the x87 stack");
1504    unsigned NumSTUses = CountTrailingOnes_32(STUses);
1505
1506    // Defs must be contiguous from the stack top. ST0-STn.
1507    if (STDefs && !isMask_32(STDefs)) {
1508      MI->emitError("output regs must be last on the x87 stack");
1509      STDefs = NextPowerOf2(STDefs) - 1;
1510    }
1511    unsigned NumSTDefs = CountTrailingOnes_32(STDefs);
1512
1513    // So must the clobbered stack slots. ST0-STm, m >= n.
1514    if (STClobbers && !isMask_32(STDefs | STClobbers))
1515      MI->emitError("clobbers must be last on the x87 stack");
1516
1517    // Popped inputs are the ones that are also clobbered or defined.
1518    unsigned STPopped = STUses & (STDefs | STClobbers);
1519    if (STPopped && !isMask_32(STPopped))
1520      MI->emitError("implicitly popped regs must be last on the x87 stack");
1521    unsigned NumSTPopped = CountTrailingOnes_32(STPopped);
1522
1523    DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
1524                 << NumSTPopped << ", and defines " << NumSTDefs << " regs.\n");
1525
1526    // Scan the instruction for FP uses corresponding to "f" constraints.
1527    // Collect FP registers to kill afer the instruction.
1528    // Always kill all the scratch regs.
1529    unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
1530    unsigned FPUsed = 0;
1531    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1532      MachineOperand &Op = MI->getOperand(i);
1533      if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1534        continue;
1535      if (!Op.isUse())
1536        MI->emitError("illegal \"f\" output constraint");
1537      unsigned FPReg = getFPReg(Op);
1538      FPUsed |= 1U << FPReg;
1539
1540      // If we kill this operand, make sure to pop it from the stack after the
1541      // asm.  We just remember it for now, and pop them all off at the end in
1542      // a batch.
1543      if (Op.isKill())
1544        FPKills |= 1U << FPReg;
1545    }
1546
1547    // The popped inputs will be killed by the instruction, so duplicate them
1548    // if the FP register needs to be live after the instruction, or if it is
1549    // used in the instruction itself. We effectively treat the popped inputs
1550    // as early clobbers.
1551    for (unsigned i = 0; i < NumSTPopped; ++i) {
1552      if ((FPKills & ~FPUsed) & (1u << PendingST[i]))
1553        continue;
1554      unsigned SR = getScratchReg();
1555      duplicateToTop(PendingST[i], SR, I);
1556      DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
1557                   << unsigned(PendingST[i]) << " to avoid clobbering it.\n");
1558      PendingST[i] = SR;
1559    }
1560
1561    // Make sure we have a unique live register for every fixed use. Some of
1562    // them could be undef uses, and we need to emit LD_F0 instructions.
1563    for (unsigned i = 0; i < NumSTUses; ++i) {
1564      if (i < NumPendingSTs && PendingST[i] < NumFPRegs) {
1565        // Check for shared assignments.
1566        for (unsigned j = 0; j < i; ++j) {
1567          if (PendingST[j] != PendingST[i])
1568            continue;
1569          // STi and STj are inn the same register, create a copy.
1570          unsigned SR = getScratchReg();
1571          duplicateToTop(PendingST[i], SR, I);
1572          DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
1573                       << unsigned(PendingST[i])
1574                       << " to avoid collision with ST" << j << '\n');
1575          PendingST[i] = SR;
1576        }
1577        continue;
1578      }
1579      unsigned SR = getScratchReg();
1580      DEBUG(dbgs() << "Emitting LD_F0 for ST" << i << " in FP" << SR << '\n');
1581      BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
1582      pushReg(SR);
1583      PendingST[i] = SR;
1584      if (NumPendingSTs == i)
1585        ++NumPendingSTs;
1586    }
1587    assert(NumPendingSTs >= NumSTUses && "Fixed registers should be assigned");
1588
1589    // Now we can rearrange the live registers to match what was requested.
1590    shuffleStackTop(PendingST, NumPendingSTs, I);
1591    DEBUG({dbgs() << "Before asm: "; dumpStack();});
1592
1593    // With the stack layout fixed, rewrite the FP registers.
1594    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1595      MachineOperand &Op = MI->getOperand(i);
1596      if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1597        continue;
1598      unsigned FPReg = getFPReg(Op);
1599      Op.setReg(getSTReg(FPReg));
1600    }
1601
1602    // Simulate the inline asm popping its inputs and pushing its outputs.
1603    StackTop -= NumSTPopped;
1604
1605    // Hold the fixed output registers in scratch FP registers. They will be
1606    // transferred to real FP registers by copies.
1607    NumPendingSTs = 0;
1608    for (unsigned i = 0; i < NumSTDefs; ++i) {
1609      unsigned SR = getScratchReg();
1610      pushReg(SR);
1611      FPKills &= ~(1u << SR);
1612    }
1613    for (unsigned i = 0; i < NumSTDefs; ++i)
1614      PendingST[NumPendingSTs++] = getStackEntry(i);
1615    DEBUG({dbgs() << "After asm: "; dumpStack();});
1616
1617    // If any of the ST defs were dead, pop them immediately. Our caller only
1618    // handles dead FP defs.
1619    MachineBasicBlock::iterator InsertPt = MI;
1620    for (unsigned i = 0; STDefs & (1u << i); ++i) {
1621      if (!(STDeadDefs & (1u << i)))
1622        continue;
1623      freeStackSlotAfter(InsertPt, PendingST[i]);
1624      PendingST[i] = NumFPRegs;
1625    }
1626    while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
1627      --NumPendingSTs;
1628
1629    // If this asm kills any FP registers (is the last use of them) we must
1630    // explicitly emit pop instructions for them.  Do this now after the asm has
1631    // executed so that the ST(x) numbers are not off (which would happen if we
1632    // did this inline with operand rewriting).
1633    //
1634    // Note: this might be a non-optimal pop sequence.  We might be able to do
1635    // better by trying to pop in stack order or something.
1636    while (FPKills) {
1637      unsigned FPReg = CountTrailingZeros_32(FPKills);
1638      if (isLive(FPReg))
1639        freeStackSlotAfter(InsertPt, FPReg);
1640      FPKills &= ~(1U << FPReg);
1641    }
1642    // Don't delete the inline asm!
1643    return;
1644  }
1645
1646  case X86::WIN_FTOL_32:
1647  case X86::WIN_FTOL_64: {
1648    // Push the operand into ST0.
1649    MachineOperand &Op = MI->getOperand(0);
1650    assert(Op.isUse() && Op.isReg() &&
1651      Op.getReg() >= X86::FP0 && Op.getReg() <= X86::FP6);
1652    unsigned FPReg = getFPReg(Op);
1653    if (Op.isKill())
1654      moveToTop(FPReg, I);
1655    else
1656      duplicateToTop(FPReg, FPReg, I);
1657
1658    // Emit the call. This will pop the operand.
1659    BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::CALLpcrel32))
1660      .addExternalSymbol("_ftol2")
1661      .addReg(X86::ST0, RegState::ImplicitKill)
1662      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
1663      .addReg(X86::EDX, RegState::Define | RegState::Implicit)
1664      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
1665    --StackTop;
1666
1667    break;
1668  }
1669
1670  case X86::RET:
1671  case X86::RETI:
1672    // If RET has an FP register use operand, pass the first one in ST(0) and
1673    // the second one in ST(1).
1674
1675    // Find the register operands.
1676    unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1677    unsigned LiveMask = 0;
1678
1679    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1680      MachineOperand &Op = MI->getOperand(i);
1681      if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1682        continue;
1683      // FP Register uses must be kills unless there are two uses of the same
1684      // register, in which case only one will be a kill.
1685      assert(Op.isUse() &&
1686             (Op.isKill() ||                        // Marked kill.
1687              getFPReg(Op) == FirstFPRegOp ||       // Second instance.
1688              MI->killsRegister(Op.getReg())) &&    // Later use is marked kill.
1689             "Ret only defs operands, and values aren't live beyond it");
1690
1691      if (FirstFPRegOp == ~0U)
1692        FirstFPRegOp = getFPReg(Op);
1693      else {
1694        assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1695        SecondFPRegOp = getFPReg(Op);
1696      }
1697      LiveMask |= (1 << getFPReg(Op));
1698
1699      // Remove the operand so that later passes don't see it.
1700      MI->RemoveOperand(i);
1701      --i, --e;
1702    }
1703
1704    // We may have been carrying spurious live-ins, so make sure only the returned
1705    // registers are left live.
1706    adjustLiveRegs(LiveMask, MI);
1707    if (!LiveMask) return;  // Quick check to see if any are possible.
1708
1709    // There are only four possibilities here:
1710    // 1) we are returning a single FP value.  In this case, it has to be in
1711    //    ST(0) already, so just declare success by removing the value from the
1712    //    FP Stack.
1713    if (SecondFPRegOp == ~0U) {
1714      // Assert that the top of stack contains the right FP register.
1715      assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1716             "Top of stack not the right register for RET!");
1717
1718      // Ok, everything is good, mark the value as not being on the stack
1719      // anymore so that our assertion about the stack being empty at end of
1720      // block doesn't fire.
1721      StackTop = 0;
1722      return;
1723    }
1724
1725    // Otherwise, we are returning two values:
1726    // 2) If returning the same value for both, we only have one thing in the FP
1727    //    stack.  Consider:  RET FP1, FP1
1728    if (StackTop == 1) {
1729      assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1730             "Stack misconfiguration for RET!");
1731
1732      // Duplicate the TOS so that we return it twice.  Just pick some other FPx
1733      // register to hold it.
1734      unsigned NewReg = getScratchReg();
1735      duplicateToTop(FirstFPRegOp, NewReg, MI);
1736      FirstFPRegOp = NewReg;
1737    }
1738
1739    /// Okay we know we have two different FPx operands now:
1740    assert(StackTop == 2 && "Must have two values live!");
1741
1742    /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1743    ///    in ST(1).  In this case, emit an fxch.
1744    if (getStackEntry(0) == SecondFPRegOp) {
1745      assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1746      moveToTop(FirstFPRegOp, MI);
1747    }
1748
1749    /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1750    /// ST(1).  Just remove both from our understanding of the stack and return.
1751    assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
1752    assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
1753    StackTop = 0;
1754    return;
1755  }
1756
1757  I = MBB->erase(I);  // Remove the pseudo instruction
1758
1759  // We want to leave I pointing to the previous instruction, but what if we
1760  // just erased the first instruction?
1761  if (I == MBB->begin()) {
1762    DEBUG(dbgs() << "Inserting dummy KILL\n");
1763    I = BuildMI(*MBB, I, DebugLoc(), TII->get(TargetOpcode::KILL));
1764  } else
1765    --I;
1766}
1767