X86FloatingPoint.cpp revision 200581
1//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which converts floating point instructions from
11// virtual registers into register stack instructions.  This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// This pass is hampered by the lack of decent CFG manipulation routines for
16// machine code.  In particular, this wants to be able to split critical edges
17// as necessary, traverse the machine basic block CFG in depth-first order, and
18// allow there to be multiple machine basic blocks for each LLVM basicblock
19// (needed for critical edge splitting).
20//
21// In particular, this pass currently barfs on critical edges.  Because of this,
22// it requires the instruction selector to insert FP_REG_KILL instructions on
23// the exits of any basic block that has critical edges going from it, or which
24// branch to a critical basic block.
25//
26// FIXME: this is not implemented yet.  The stackifier pass only works on local
27// basic blocks.
28//
29//===----------------------------------------------------------------------===//
30
31#define DEBUG_TYPE "x86-codegen"
32#include "X86.h"
33#include "X86InstrInfo.h"
34#include "llvm/ADT/DepthFirstIterator.h"
35#include "llvm/ADT/SmallPtrSet.h"
36#include "llvm/ADT/SmallVector.h"
37#include "llvm/ADT/Statistic.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/CodeGen/MachineFunctionPass.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineRegisterInfo.h"
42#include "llvm/CodeGen/Passes.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/Target/TargetInstrInfo.h"
47#include "llvm/Target/TargetMachine.h"
48#include <algorithm>
49using namespace llvm;
50
51STATISTIC(NumFXCH, "Number of fxch instructions inserted");
52STATISTIC(NumFP  , "Number of floating point instructions");
53
54namespace {
55  struct FPS : public MachineFunctionPass {
56    static char ID;
57    FPS() : MachineFunctionPass(&ID) {}
58
59    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
60      AU.setPreservesCFG();
61      AU.addPreservedID(MachineLoopInfoID);
62      AU.addPreservedID(MachineDominatorsID);
63      MachineFunctionPass::getAnalysisUsage(AU);
64    }
65
66    virtual bool runOnMachineFunction(MachineFunction &MF);
67
68    virtual const char *getPassName() const { return "X86 FP Stackifier"; }
69
70  private:
71    const TargetInstrInfo *TII; // Machine instruction info.
72    MachineBasicBlock *MBB;     // Current basic block
73    unsigned Stack[8];          // FP<n> Registers in each stack slot...
74    unsigned RegMap[8];         // Track which stack slot contains each register
75    unsigned StackTop;          // The current top of the FP stack.
76
77    void dumpStack() const {
78      errs() << "Stack contents:";
79      for (unsigned i = 0; i != StackTop; ++i) {
80        errs() << " FP" << Stack[i];
81        assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
82      }
83      errs() << "\n";
84    }
85  private:
86    /// isStackEmpty - Return true if the FP stack is empty.
87    bool isStackEmpty() const {
88      return StackTop == 0;
89    }
90
91    // getSlot - Return the stack slot number a particular register number is
92    // in.
93    unsigned getSlot(unsigned RegNo) const {
94      assert(RegNo < 8 && "Regno out of range!");
95      return RegMap[RegNo];
96    }
97
98    // getStackEntry - Return the X86::FP<n> register in register ST(i).
99    unsigned getStackEntry(unsigned STi) const {
100      assert(STi < StackTop && "Access past stack top!");
101      return Stack[StackTop-1-STi];
102    }
103
104    // getSTReg - Return the X86::ST(i) register which contains the specified
105    // FP<RegNo> register.
106    unsigned getSTReg(unsigned RegNo) const {
107      return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
108    }
109
110    // pushReg - Push the specified FP<n> register onto the stack.
111    void pushReg(unsigned Reg) {
112      assert(Reg < 8 && "Register number out of range!");
113      assert(StackTop < 8 && "Stack overflow!");
114      Stack[StackTop] = Reg;
115      RegMap[Reg] = StackTop++;
116    }
117
118    bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
119    void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
120      MachineInstr *MI = I;
121      DebugLoc dl = MI->getDebugLoc();
122      if (isAtTop(RegNo)) return;
123
124      unsigned STReg = getSTReg(RegNo);
125      unsigned RegOnTop = getStackEntry(0);
126
127      // Swap the slots the regs are in.
128      std::swap(RegMap[RegNo], RegMap[RegOnTop]);
129
130      // Swap stack slot contents.
131      assert(RegMap[RegOnTop] < StackTop);
132      std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
133
134      // Emit an fxch to update the runtime processors version of the state.
135      BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
136      NumFXCH++;
137    }
138
139    void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
140      DebugLoc dl = I->getDebugLoc();
141      unsigned STReg = getSTReg(RegNo);
142      pushReg(AsReg);   // New register on top of stack
143
144      BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
145    }
146
147    // popStackAfter - Pop the current value off of the top of the FP stack
148    // after the specified instruction.
149    void popStackAfter(MachineBasicBlock::iterator &I);
150
151    // freeStackSlotAfter - Free the specified register from the register stack,
152    // so that it is no longer in a register.  If the register is currently at
153    // the top of the stack, we just pop the current instruction, otherwise we
154    // store the current top-of-stack into the specified slot, then pop the top
155    // of stack.
156    void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
157
158    bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
159
160    void handleZeroArgFP(MachineBasicBlock::iterator &I);
161    void handleOneArgFP(MachineBasicBlock::iterator &I);
162    void handleOneArgFPRW(MachineBasicBlock::iterator &I);
163    void handleTwoArgFP(MachineBasicBlock::iterator &I);
164    void handleCompareFP(MachineBasicBlock::iterator &I);
165    void handleCondMovFP(MachineBasicBlock::iterator &I);
166    void handleSpecialFP(MachineBasicBlock::iterator &I);
167  };
168  char FPS::ID = 0;
169}
170
171FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
172
173/// getFPReg - Return the X86::FPx register number for the specified operand.
174/// For example, this returns 3 for X86::FP3.
175static unsigned getFPReg(const MachineOperand &MO) {
176  assert(MO.isReg() && "Expected an FP register!");
177  unsigned Reg = MO.getReg();
178  assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
179  return Reg - X86::FP0;
180}
181
182
183/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
184/// register references into FP stack references.
185///
186bool FPS::runOnMachineFunction(MachineFunction &MF) {
187  // We only need to run this pass if there are any FP registers used in this
188  // function.  If it is all integer, there is nothing for us to do!
189  bool FPIsUsed = false;
190
191  assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
192  for (unsigned i = 0; i <= 6; ++i)
193    if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
194      FPIsUsed = true;
195      break;
196    }
197
198  // Early exit.
199  if (!FPIsUsed) return false;
200
201  TII = MF.getTarget().getInstrInfo();
202  StackTop = 0;
203
204  // Process the function in depth first order so that we process at least one
205  // of the predecessors for every reachable block in the function.
206  SmallPtrSet<MachineBasicBlock*, 8> Processed;
207  MachineBasicBlock *Entry = MF.begin();
208
209  bool Changed = false;
210  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
211         I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
212       I != E; ++I)
213    Changed |= processBasicBlock(MF, **I);
214
215  // Process any unreachable blocks in arbitrary order now.
216  if (MF.size() == Processed.size())
217    return Changed;
218
219  for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
220    if (Processed.insert(BB))
221      Changed |= processBasicBlock(MF, *BB);
222
223  return Changed;
224}
225
226/// processBasicBlock - Loop over all of the instructions in the basic block,
227/// transforming FP instructions into their stack form.
228///
229bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
230  bool Changed = false;
231  MBB = &BB;
232
233  for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
234    MachineInstr *MI = I;
235    unsigned Flags = MI->getDesc().TSFlags;
236
237    unsigned FPInstClass = Flags & X86II::FPTypeMask;
238    if (MI->getOpcode() == TargetInstrInfo::INLINEASM)
239      FPInstClass = X86II::SpecialFP;
240
241    if (FPInstClass == X86II::NotFP)
242      continue;  // Efficiently ignore non-fp insts!
243
244    MachineInstr *PrevMI = 0;
245    if (I != BB.begin())
246      PrevMI = prior(I);
247
248    ++NumFP;  // Keep track of # of pseudo instrs
249    DEBUG(errs() << "\nFPInst:\t" << *MI);
250
251    // Get dead variables list now because the MI pointer may be deleted as part
252    // of processing!
253    SmallVector<unsigned, 8> DeadRegs;
254    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
255      const MachineOperand &MO = MI->getOperand(i);
256      if (MO.isReg() && MO.isDead())
257        DeadRegs.push_back(MO.getReg());
258    }
259
260    switch (FPInstClass) {
261    case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
262    case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
263    case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
264    case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
265    case X86II::CompareFP:  handleCompareFP(I); break;
266    case X86II::CondMovFP:  handleCondMovFP(I); break;
267    case X86II::SpecialFP:  handleSpecialFP(I); break;
268    default: llvm_unreachable("Unknown FP Type!");
269    }
270
271    // Check to see if any of the values defined by this instruction are dead
272    // after definition.  If so, pop them.
273    for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
274      unsigned Reg = DeadRegs[i];
275      if (Reg >= X86::FP0 && Reg <= X86::FP6) {
276        DEBUG(errs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
277        freeStackSlotAfter(I, Reg-X86::FP0);
278      }
279    }
280
281    // Print out all of the instructions expanded to if -debug
282    DEBUG(
283      MachineBasicBlock::iterator PrevI(PrevMI);
284      if (I == PrevI) {
285        errs() << "Just deleted pseudo instruction\n";
286      } else {
287        MachineBasicBlock::iterator Start = I;
288        // Rewind to first instruction newly inserted.
289        while (Start != BB.begin() && prior(Start) != PrevI) --Start;
290        errs() << "Inserted instructions:\n\t";
291        Start->print(errs(), &MF.getTarget());
292        while (++Start != llvm::next(I)) {}
293      }
294      dumpStack();
295    );
296
297    Changed = true;
298  }
299
300  assert(isStackEmpty() && "Stack not empty at end of basic block?");
301  return Changed;
302}
303
304//===----------------------------------------------------------------------===//
305// Efficient Lookup Table Support
306//===----------------------------------------------------------------------===//
307
308namespace {
309  struct TableEntry {
310    unsigned from;
311    unsigned to;
312    bool operator<(const TableEntry &TE) const { return from < TE.from; }
313    friend bool operator<(const TableEntry &TE, unsigned V) {
314      return TE.from < V;
315    }
316    friend bool operator<(unsigned V, const TableEntry &TE) {
317      return V < TE.from;
318    }
319  };
320}
321
322#ifndef NDEBUG
323static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
324  for (unsigned i = 0; i != NumEntries-1; ++i)
325    if (!(Table[i] < Table[i+1])) return false;
326  return true;
327}
328#endif
329
330static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
331  const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
332  if (I != Table+N && I->from == Opcode)
333    return I->to;
334  return -1;
335}
336
337#ifdef NDEBUG
338#define ASSERT_SORTED(TABLE)
339#else
340#define ASSERT_SORTED(TABLE)                                              \
341  { static bool TABLE##Checked = false;                                   \
342    if (!TABLE##Checked) {                                                \
343       assert(TableIsSorted(TABLE, array_lengthof(TABLE)) &&              \
344              "All lookup tables must be sorted for efficient access!");  \
345       TABLE##Checked = true;                                             \
346    }                                                                     \
347  }
348#endif
349
350//===----------------------------------------------------------------------===//
351// Register File -> Register Stack Mapping Methods
352//===----------------------------------------------------------------------===//
353
354// OpcodeTable - Sorted map of register instructions to their stack version.
355// The first element is an register file pseudo instruction, the second is the
356// concrete X86 instruction which uses the register stack.
357//
358static const TableEntry OpcodeTable[] = {
359  { X86::ABS_Fp32     , X86::ABS_F     },
360  { X86::ABS_Fp64     , X86::ABS_F     },
361  { X86::ABS_Fp80     , X86::ABS_F     },
362  { X86::ADD_Fp32m    , X86::ADD_F32m  },
363  { X86::ADD_Fp64m    , X86::ADD_F64m  },
364  { X86::ADD_Fp64m32  , X86::ADD_F32m  },
365  { X86::ADD_Fp80m32  , X86::ADD_F32m  },
366  { X86::ADD_Fp80m64  , X86::ADD_F64m  },
367  { X86::ADD_FpI16m32 , X86::ADD_FI16m },
368  { X86::ADD_FpI16m64 , X86::ADD_FI16m },
369  { X86::ADD_FpI16m80 , X86::ADD_FI16m },
370  { X86::ADD_FpI32m32 , X86::ADD_FI32m },
371  { X86::ADD_FpI32m64 , X86::ADD_FI32m },
372  { X86::ADD_FpI32m80 , X86::ADD_FI32m },
373  { X86::CHS_Fp32     , X86::CHS_F     },
374  { X86::CHS_Fp64     , X86::CHS_F     },
375  { X86::CHS_Fp80     , X86::CHS_F     },
376  { X86::CMOVBE_Fp32  , X86::CMOVBE_F  },
377  { X86::CMOVBE_Fp64  , X86::CMOVBE_F  },
378  { X86::CMOVBE_Fp80  , X86::CMOVBE_F  },
379  { X86::CMOVB_Fp32   , X86::CMOVB_F   },
380  { X86::CMOVB_Fp64   , X86::CMOVB_F  },
381  { X86::CMOVB_Fp80   , X86::CMOVB_F  },
382  { X86::CMOVE_Fp32   , X86::CMOVE_F  },
383  { X86::CMOVE_Fp64   , X86::CMOVE_F   },
384  { X86::CMOVE_Fp80   , X86::CMOVE_F   },
385  { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
386  { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
387  { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
388  { X86::CMOVNB_Fp32  , X86::CMOVNB_F  },
389  { X86::CMOVNB_Fp64  , X86::CMOVNB_F  },
390  { X86::CMOVNB_Fp80  , X86::CMOVNB_F  },
391  { X86::CMOVNE_Fp32  , X86::CMOVNE_F  },
392  { X86::CMOVNE_Fp64  , X86::CMOVNE_F  },
393  { X86::CMOVNE_Fp80  , X86::CMOVNE_F  },
394  { X86::CMOVNP_Fp32  , X86::CMOVNP_F  },
395  { X86::CMOVNP_Fp64  , X86::CMOVNP_F  },
396  { X86::CMOVNP_Fp80  , X86::CMOVNP_F  },
397  { X86::CMOVP_Fp32   , X86::CMOVP_F   },
398  { X86::CMOVP_Fp64   , X86::CMOVP_F   },
399  { X86::CMOVP_Fp80   , X86::CMOVP_F   },
400  { X86::COS_Fp32     , X86::COS_F     },
401  { X86::COS_Fp64     , X86::COS_F     },
402  { X86::COS_Fp80     , X86::COS_F     },
403  { X86::DIVR_Fp32m   , X86::DIVR_F32m },
404  { X86::DIVR_Fp64m   , X86::DIVR_F64m },
405  { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
406  { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
407  { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
408  { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
409  { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
410  { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
411  { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
412  { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
413  { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
414  { X86::DIV_Fp32m    , X86::DIV_F32m  },
415  { X86::DIV_Fp64m    , X86::DIV_F64m  },
416  { X86::DIV_Fp64m32  , X86::DIV_F32m  },
417  { X86::DIV_Fp80m32  , X86::DIV_F32m  },
418  { X86::DIV_Fp80m64  , X86::DIV_F64m  },
419  { X86::DIV_FpI16m32 , X86::DIV_FI16m },
420  { X86::DIV_FpI16m64 , X86::DIV_FI16m },
421  { X86::DIV_FpI16m80 , X86::DIV_FI16m },
422  { X86::DIV_FpI32m32 , X86::DIV_FI32m },
423  { X86::DIV_FpI32m64 , X86::DIV_FI32m },
424  { X86::DIV_FpI32m80 , X86::DIV_FI32m },
425  { X86::ILD_Fp16m32  , X86::ILD_F16m  },
426  { X86::ILD_Fp16m64  , X86::ILD_F16m  },
427  { X86::ILD_Fp16m80  , X86::ILD_F16m  },
428  { X86::ILD_Fp32m32  , X86::ILD_F32m  },
429  { X86::ILD_Fp32m64  , X86::ILD_F32m  },
430  { X86::ILD_Fp32m80  , X86::ILD_F32m  },
431  { X86::ILD_Fp64m32  , X86::ILD_F64m  },
432  { X86::ILD_Fp64m64  , X86::ILD_F64m  },
433  { X86::ILD_Fp64m80  , X86::ILD_F64m  },
434  { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
435  { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
436  { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
437  { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
438  { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
439  { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
440  { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
441  { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
442  { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
443  { X86::IST_Fp16m32  , X86::IST_F16m  },
444  { X86::IST_Fp16m64  , X86::IST_F16m  },
445  { X86::IST_Fp16m80  , X86::IST_F16m  },
446  { X86::IST_Fp32m32  , X86::IST_F32m  },
447  { X86::IST_Fp32m64  , X86::IST_F32m  },
448  { X86::IST_Fp32m80  , X86::IST_F32m  },
449  { X86::IST_Fp64m32  , X86::IST_FP64m },
450  { X86::IST_Fp64m64  , X86::IST_FP64m },
451  { X86::IST_Fp64m80  , X86::IST_FP64m },
452  { X86::LD_Fp032     , X86::LD_F0     },
453  { X86::LD_Fp064     , X86::LD_F0     },
454  { X86::LD_Fp080     , X86::LD_F0     },
455  { X86::LD_Fp132     , X86::LD_F1     },
456  { X86::LD_Fp164     , X86::LD_F1     },
457  { X86::LD_Fp180     , X86::LD_F1     },
458  { X86::LD_Fp32m     , X86::LD_F32m   },
459  { X86::LD_Fp32m64   , X86::LD_F32m   },
460  { X86::LD_Fp32m80   , X86::LD_F32m   },
461  { X86::LD_Fp64m     , X86::LD_F64m   },
462  { X86::LD_Fp64m80   , X86::LD_F64m   },
463  { X86::LD_Fp80m     , X86::LD_F80m   },
464  { X86::MUL_Fp32m    , X86::MUL_F32m  },
465  { X86::MUL_Fp64m    , X86::MUL_F64m  },
466  { X86::MUL_Fp64m32  , X86::MUL_F32m  },
467  { X86::MUL_Fp80m32  , X86::MUL_F32m  },
468  { X86::MUL_Fp80m64  , X86::MUL_F64m  },
469  { X86::MUL_FpI16m32 , X86::MUL_FI16m },
470  { X86::MUL_FpI16m64 , X86::MUL_FI16m },
471  { X86::MUL_FpI16m80 , X86::MUL_FI16m },
472  { X86::MUL_FpI32m32 , X86::MUL_FI32m },
473  { X86::MUL_FpI32m64 , X86::MUL_FI32m },
474  { X86::MUL_FpI32m80 , X86::MUL_FI32m },
475  { X86::SIN_Fp32     , X86::SIN_F     },
476  { X86::SIN_Fp64     , X86::SIN_F     },
477  { X86::SIN_Fp80     , X86::SIN_F     },
478  { X86::SQRT_Fp32    , X86::SQRT_F    },
479  { X86::SQRT_Fp64    , X86::SQRT_F    },
480  { X86::SQRT_Fp80    , X86::SQRT_F    },
481  { X86::ST_Fp32m     , X86::ST_F32m   },
482  { X86::ST_Fp64m     , X86::ST_F64m   },
483  { X86::ST_Fp64m32   , X86::ST_F32m   },
484  { X86::ST_Fp80m32   , X86::ST_F32m   },
485  { X86::ST_Fp80m64   , X86::ST_F64m   },
486  { X86::ST_FpP80m    , X86::ST_FP80m  },
487  { X86::SUBR_Fp32m   , X86::SUBR_F32m },
488  { X86::SUBR_Fp64m   , X86::SUBR_F64m },
489  { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
490  { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
491  { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
492  { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
493  { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
494  { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
495  { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
496  { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
497  { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
498  { X86::SUB_Fp32m    , X86::SUB_F32m  },
499  { X86::SUB_Fp64m    , X86::SUB_F64m  },
500  { X86::SUB_Fp64m32  , X86::SUB_F32m  },
501  { X86::SUB_Fp80m32  , X86::SUB_F32m  },
502  { X86::SUB_Fp80m64  , X86::SUB_F64m  },
503  { X86::SUB_FpI16m32 , X86::SUB_FI16m },
504  { X86::SUB_FpI16m64 , X86::SUB_FI16m },
505  { X86::SUB_FpI16m80 , X86::SUB_FI16m },
506  { X86::SUB_FpI32m32 , X86::SUB_FI32m },
507  { X86::SUB_FpI32m64 , X86::SUB_FI32m },
508  { X86::SUB_FpI32m80 , X86::SUB_FI32m },
509  { X86::TST_Fp32     , X86::TST_F     },
510  { X86::TST_Fp64     , X86::TST_F     },
511  { X86::TST_Fp80     , X86::TST_F     },
512  { X86::UCOM_FpIr32  , X86::UCOM_FIr  },
513  { X86::UCOM_FpIr64  , X86::UCOM_FIr  },
514  { X86::UCOM_FpIr80  , X86::UCOM_FIr  },
515  { X86::UCOM_Fpr32   , X86::UCOM_Fr   },
516  { X86::UCOM_Fpr64   , X86::UCOM_Fr   },
517  { X86::UCOM_Fpr80   , X86::UCOM_Fr   },
518};
519
520static unsigned getConcreteOpcode(unsigned Opcode) {
521  ASSERT_SORTED(OpcodeTable);
522  int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
523  assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
524  return Opc;
525}
526
527//===----------------------------------------------------------------------===//
528// Helper Methods
529//===----------------------------------------------------------------------===//
530
531// PopTable - Sorted map of instructions to their popping version.  The first
532// element is an instruction, the second is the version which pops.
533//
534static const TableEntry PopTable[] = {
535  { X86::ADD_FrST0 , X86::ADD_FPrST0  },
536
537  { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
538  { X86::DIV_FrST0 , X86::DIV_FPrST0  },
539
540  { X86::IST_F16m  , X86::IST_FP16m   },
541  { X86::IST_F32m  , X86::IST_FP32m   },
542
543  { X86::MUL_FrST0 , X86::MUL_FPrST0  },
544
545  { X86::ST_F32m   , X86::ST_FP32m    },
546  { X86::ST_F64m   , X86::ST_FP64m    },
547  { X86::ST_Frr    , X86::ST_FPrr     },
548
549  { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
550  { X86::SUB_FrST0 , X86::SUB_FPrST0  },
551
552  { X86::UCOM_FIr  , X86::UCOM_FIPr   },
553
554  { X86::UCOM_FPr  , X86::UCOM_FPPr   },
555  { X86::UCOM_Fr   , X86::UCOM_FPr    },
556};
557
558/// popStackAfter - Pop the current value off of the top of the FP stack after
559/// the specified instruction.  This attempts to be sneaky and combine the pop
560/// into the instruction itself if possible.  The iterator is left pointing to
561/// the last instruction, be it a new pop instruction inserted, or the old
562/// instruction if it was modified in place.
563///
564void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
565  MachineInstr* MI = I;
566  DebugLoc dl = MI->getDebugLoc();
567  ASSERT_SORTED(PopTable);
568  assert(StackTop > 0 && "Cannot pop empty stack!");
569  RegMap[Stack[--StackTop]] = ~0;     // Update state
570
571  // Check to see if there is a popping version of this instruction...
572  int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
573  if (Opcode != -1) {
574    I->setDesc(TII->get(Opcode));
575    if (Opcode == X86::UCOM_FPPr)
576      I->RemoveOperand(0);
577  } else {    // Insert an explicit pop
578    I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
579  }
580}
581
582/// freeStackSlotAfter - Free the specified register from the register stack, so
583/// that it is no longer in a register.  If the register is currently at the top
584/// of the stack, we just pop the current instruction, otherwise we store the
585/// current top-of-stack into the specified slot, then pop the top of stack.
586void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
587  if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
588    popStackAfter(I);
589    return;
590  }
591
592  // Otherwise, store the top of stack into the dead slot, killing the operand
593  // without having to add in an explicit xchg then pop.
594  //
595  unsigned STReg    = getSTReg(FPRegNo);
596  unsigned OldSlot  = getSlot(FPRegNo);
597  unsigned TopReg   = Stack[StackTop-1];
598  Stack[OldSlot]    = TopReg;
599  RegMap[TopReg]    = OldSlot;
600  RegMap[FPRegNo]   = ~0;
601  Stack[--StackTop] = ~0;
602  MachineInstr *MI  = I;
603  DebugLoc dl = MI->getDebugLoc();
604  I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(STReg);
605}
606
607
608//===----------------------------------------------------------------------===//
609// Instruction transformation implementation
610//===----------------------------------------------------------------------===//
611
612/// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
613///
614void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
615  MachineInstr *MI = I;
616  unsigned DestReg = getFPReg(MI->getOperand(0));
617
618  // Change from the pseudo instruction to the concrete instruction.
619  MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
620  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
621
622  // Result gets pushed on the stack.
623  pushReg(DestReg);
624}
625
626/// handleOneArgFP - fst <mem>, ST(0)
627///
628void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
629  MachineInstr *MI = I;
630  unsigned NumOps = MI->getDesc().getNumOperands();
631  assert((NumOps == X86AddrNumOperands + 1 || NumOps == 1) &&
632         "Can only handle fst* & ftst instructions!");
633
634  // Is this the last use of the source register?
635  unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
636  bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
637
638  // FISTP64m is strange because there isn't a non-popping versions.
639  // If we have one _and_ we don't want to pop the operand, duplicate the value
640  // on the stack instead of moving it.  This ensure that popping the value is
641  // always ok.
642  // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
643  //
644  if (!KillsSrc &&
645      (MI->getOpcode() == X86::IST_Fp64m32 ||
646       MI->getOpcode() == X86::ISTT_Fp16m32 ||
647       MI->getOpcode() == X86::ISTT_Fp32m32 ||
648       MI->getOpcode() == X86::ISTT_Fp64m32 ||
649       MI->getOpcode() == X86::IST_Fp64m64 ||
650       MI->getOpcode() == X86::ISTT_Fp16m64 ||
651       MI->getOpcode() == X86::ISTT_Fp32m64 ||
652       MI->getOpcode() == X86::ISTT_Fp64m64 ||
653       MI->getOpcode() == X86::IST_Fp64m80 ||
654       MI->getOpcode() == X86::ISTT_Fp16m80 ||
655       MI->getOpcode() == X86::ISTT_Fp32m80 ||
656       MI->getOpcode() == X86::ISTT_Fp64m80 ||
657       MI->getOpcode() == X86::ST_FpP80m)) {
658    duplicateToTop(Reg, 7 /*temp register*/, I);
659  } else {
660    moveToTop(Reg, I);            // Move to the top of the stack...
661  }
662
663  // Convert from the pseudo instruction to the concrete instruction.
664  MI->RemoveOperand(NumOps-1);    // Remove explicit ST(0) operand
665  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
666
667  if (MI->getOpcode() == X86::IST_FP64m ||
668      MI->getOpcode() == X86::ISTT_FP16m ||
669      MI->getOpcode() == X86::ISTT_FP32m ||
670      MI->getOpcode() == X86::ISTT_FP64m ||
671      MI->getOpcode() == X86::ST_FP80m) {
672    assert(StackTop > 0 && "Stack empty??");
673    --StackTop;
674  } else if (KillsSrc) { // Last use of operand?
675    popStackAfter(I);
676  }
677}
678
679
680/// handleOneArgFPRW: Handle instructions that read from the top of stack and
681/// replace the value with a newly computed value.  These instructions may have
682/// non-fp operands after their FP operands.
683///
684///  Examples:
685///     R1 = fchs R2
686///     R1 = fadd R2, [mem]
687///
688void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
689  MachineInstr *MI = I;
690#ifndef NDEBUG
691  unsigned NumOps = MI->getDesc().getNumOperands();
692  assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
693#endif
694
695  // Is this the last use of the source register?
696  unsigned Reg = getFPReg(MI->getOperand(1));
697  bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
698
699  if (KillsSrc) {
700    // If this is the last use of the source register, just make sure it's on
701    // the top of the stack.
702    moveToTop(Reg, I);
703    assert(StackTop > 0 && "Stack cannot be empty!");
704    --StackTop;
705    pushReg(getFPReg(MI->getOperand(0)));
706  } else {
707    // If this is not the last use of the source register, _copy_ it to the top
708    // of the stack.
709    duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
710  }
711
712  // Change from the pseudo instruction to the concrete instruction.
713  MI->RemoveOperand(1);   // Drop the source operand.
714  MI->RemoveOperand(0);   // Drop the destination operand.
715  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
716}
717
718
719//===----------------------------------------------------------------------===//
720// Define tables of various ways to map pseudo instructions
721//
722
723// ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
724static const TableEntry ForwardST0Table[] = {
725  { X86::ADD_Fp32  , X86::ADD_FST0r },
726  { X86::ADD_Fp64  , X86::ADD_FST0r },
727  { X86::ADD_Fp80  , X86::ADD_FST0r },
728  { X86::DIV_Fp32  , X86::DIV_FST0r },
729  { X86::DIV_Fp64  , X86::DIV_FST0r },
730  { X86::DIV_Fp80  , X86::DIV_FST0r },
731  { X86::MUL_Fp32  , X86::MUL_FST0r },
732  { X86::MUL_Fp64  , X86::MUL_FST0r },
733  { X86::MUL_Fp80  , X86::MUL_FST0r },
734  { X86::SUB_Fp32  , X86::SUB_FST0r },
735  { X86::SUB_Fp64  , X86::SUB_FST0r },
736  { X86::SUB_Fp80  , X86::SUB_FST0r },
737};
738
739// ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
740static const TableEntry ReverseST0Table[] = {
741  { X86::ADD_Fp32  , X86::ADD_FST0r  },   // commutative
742  { X86::ADD_Fp64  , X86::ADD_FST0r  },   // commutative
743  { X86::ADD_Fp80  , X86::ADD_FST0r  },   // commutative
744  { X86::DIV_Fp32  , X86::DIVR_FST0r },
745  { X86::DIV_Fp64  , X86::DIVR_FST0r },
746  { X86::DIV_Fp80  , X86::DIVR_FST0r },
747  { X86::MUL_Fp32  , X86::MUL_FST0r  },   // commutative
748  { X86::MUL_Fp64  , X86::MUL_FST0r  },   // commutative
749  { X86::MUL_Fp80  , X86::MUL_FST0r  },   // commutative
750  { X86::SUB_Fp32  , X86::SUBR_FST0r },
751  { X86::SUB_Fp64  , X86::SUBR_FST0r },
752  { X86::SUB_Fp80  , X86::SUBR_FST0r },
753};
754
755// ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
756static const TableEntry ForwardSTiTable[] = {
757  { X86::ADD_Fp32  , X86::ADD_FrST0  },   // commutative
758  { X86::ADD_Fp64  , X86::ADD_FrST0  },   // commutative
759  { X86::ADD_Fp80  , X86::ADD_FrST0  },   // commutative
760  { X86::DIV_Fp32  , X86::DIVR_FrST0 },
761  { X86::DIV_Fp64  , X86::DIVR_FrST0 },
762  { X86::DIV_Fp80  , X86::DIVR_FrST0 },
763  { X86::MUL_Fp32  , X86::MUL_FrST0  },   // commutative
764  { X86::MUL_Fp64  , X86::MUL_FrST0  },   // commutative
765  { X86::MUL_Fp80  , X86::MUL_FrST0  },   // commutative
766  { X86::SUB_Fp32  , X86::SUBR_FrST0 },
767  { X86::SUB_Fp64  , X86::SUBR_FrST0 },
768  { X86::SUB_Fp80  , X86::SUBR_FrST0 },
769};
770
771// ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
772static const TableEntry ReverseSTiTable[] = {
773  { X86::ADD_Fp32  , X86::ADD_FrST0 },
774  { X86::ADD_Fp64  , X86::ADD_FrST0 },
775  { X86::ADD_Fp80  , X86::ADD_FrST0 },
776  { X86::DIV_Fp32  , X86::DIV_FrST0 },
777  { X86::DIV_Fp64  , X86::DIV_FrST0 },
778  { X86::DIV_Fp80  , X86::DIV_FrST0 },
779  { X86::MUL_Fp32  , X86::MUL_FrST0 },
780  { X86::MUL_Fp64  , X86::MUL_FrST0 },
781  { X86::MUL_Fp80  , X86::MUL_FrST0 },
782  { X86::SUB_Fp32  , X86::SUB_FrST0 },
783  { X86::SUB_Fp64  , X86::SUB_FrST0 },
784  { X86::SUB_Fp80  , X86::SUB_FrST0 },
785};
786
787
788/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
789/// instructions which need to be simplified and possibly transformed.
790///
791/// Result: ST(0) = fsub  ST(0), ST(i)
792///         ST(i) = fsub  ST(0), ST(i)
793///         ST(0) = fsubr ST(0), ST(i)
794///         ST(i) = fsubr ST(0), ST(i)
795///
796void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
797  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
798  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
799  MachineInstr *MI = I;
800
801  unsigned NumOperands = MI->getDesc().getNumOperands();
802  assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
803  unsigned Dest = getFPReg(MI->getOperand(0));
804  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
805  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
806  bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
807  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
808  DebugLoc dl = MI->getDebugLoc();
809
810  unsigned TOS = getStackEntry(0);
811
812  // One of our operands must be on the top of the stack.  If neither is yet, we
813  // need to move one.
814  if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
815    // We can choose to move either operand to the top of the stack.  If one of
816    // the operands is killed by this instruction, we want that one so that we
817    // can update right on top of the old version.
818    if (KillsOp0) {
819      moveToTop(Op0, I);         // Move dead operand to TOS.
820      TOS = Op0;
821    } else if (KillsOp1) {
822      moveToTop(Op1, I);
823      TOS = Op1;
824    } else {
825      // All of the operands are live after this instruction executes, so we
826      // cannot update on top of any operand.  Because of this, we must
827      // duplicate one of the stack elements to the top.  It doesn't matter
828      // which one we pick.
829      //
830      duplicateToTop(Op0, Dest, I);
831      Op0 = TOS = Dest;
832      KillsOp0 = true;
833    }
834  } else if (!KillsOp0 && !KillsOp1) {
835    // If we DO have one of our operands at the top of the stack, but we don't
836    // have a dead operand, we must duplicate one of the operands to a new slot
837    // on the stack.
838    duplicateToTop(Op0, Dest, I);
839    Op0 = TOS = Dest;
840    KillsOp0 = true;
841  }
842
843  // Now we know that one of our operands is on the top of the stack, and at
844  // least one of our operands is killed by this instruction.
845  assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
846         "Stack conditions not set up right!");
847
848  // We decide which form to use based on what is on the top of the stack, and
849  // which operand is killed by this instruction.
850  const TableEntry *InstTable;
851  bool isForward = TOS == Op0;
852  bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
853  if (updateST0) {
854    if (isForward)
855      InstTable = ForwardST0Table;
856    else
857      InstTable = ReverseST0Table;
858  } else {
859    if (isForward)
860      InstTable = ForwardSTiTable;
861    else
862      InstTable = ReverseSTiTable;
863  }
864
865  int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
866                      MI->getOpcode());
867  assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
868
869  // NotTOS - The register which is not on the top of stack...
870  unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
871
872  // Replace the old instruction with a new instruction
873  MBB->remove(I++);
874  I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
875
876  // If both operands are killed, pop one off of the stack in addition to
877  // overwriting the other one.
878  if (KillsOp0 && KillsOp1 && Op0 != Op1) {
879    assert(!updateST0 && "Should have updated other operand!");
880    popStackAfter(I);   // Pop the top of stack
881  }
882
883  // Update stack information so that we know the destination register is now on
884  // the stack.
885  unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
886  assert(UpdatedSlot < StackTop && Dest < 7);
887  Stack[UpdatedSlot]   = Dest;
888  RegMap[Dest]         = UpdatedSlot;
889  MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
890}
891
892/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
893/// register arguments and no explicit destinations.
894///
895void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
896  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
897  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
898  MachineInstr *MI = I;
899
900  unsigned NumOperands = MI->getDesc().getNumOperands();
901  assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
902  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
903  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
904  bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
905  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
906
907  // Make sure the first operand is on the top of stack, the other one can be
908  // anywhere.
909  moveToTop(Op0, I);
910
911  // Change from the pseudo instruction to the concrete instruction.
912  MI->getOperand(0).setReg(getSTReg(Op1));
913  MI->RemoveOperand(1);
914  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
915
916  // If any of the operands are killed by this instruction, free them.
917  if (KillsOp0) freeStackSlotAfter(I, Op0);
918  if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
919}
920
921/// handleCondMovFP - Handle two address conditional move instructions.  These
922/// instructions move a st(i) register to st(0) iff a condition is true.  These
923/// instructions require that the first operand is at the top of the stack, but
924/// otherwise don't modify the stack at all.
925void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
926  MachineInstr *MI = I;
927
928  unsigned Op0 = getFPReg(MI->getOperand(0));
929  unsigned Op1 = getFPReg(MI->getOperand(2));
930  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
931
932  // The first operand *must* be on the top of the stack.
933  moveToTop(Op0, I);
934
935  // Change the second operand to the stack register that the operand is in.
936  // Change from the pseudo instruction to the concrete instruction.
937  MI->RemoveOperand(0);
938  MI->RemoveOperand(1);
939  MI->getOperand(0).setReg(getSTReg(Op1));
940  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
941
942  // If we kill the second operand, make sure to pop it from the stack.
943  if (Op0 != Op1 && KillsOp1) {
944    // Get this value off of the register stack.
945    freeStackSlotAfter(I, Op1);
946  }
947}
948
949
950/// handleSpecialFP - Handle special instructions which behave unlike other
951/// floating point instructions.  This is primarily intended for use by pseudo
952/// instructions.
953///
954void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
955  MachineInstr *MI = I;
956  DebugLoc dl = MI->getDebugLoc();
957  switch (MI->getOpcode()) {
958  default: llvm_unreachable("Unknown SpecialFP instruction!");
959  case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type!
960  case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type!
961  case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type!
962    assert(StackTop == 0 && "Stack should be empty after a call!");
963    pushReg(getFPReg(MI->getOperand(0)));
964    break;
965  case X86::FpGET_ST1_32:// Appears immediately after a call returning FP type!
966  case X86::FpGET_ST1_64:// Appears immediately after a call returning FP type!
967  case X86::FpGET_ST1_80:{// Appears immediately after a call returning FP type!
968    // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm.
969    // The pattern we expect is:
970    //  CALL
971    //  FP1 = FpGET_ST0
972    //  FP4 = FpGET_ST1
973    //
974    // At this point, we've pushed FP1 on the top of stack, so it should be
975    // present if it isn't dead.  If it was dead, we already emitted a pop to
976    // remove it from the stack and StackTop = 0.
977
978    // Push FP4 as top of stack next.
979    pushReg(getFPReg(MI->getOperand(0)));
980
981    // If StackTop was 0 before we pushed our operand, then ST(0) must have been
982    // dead.  In this case, the ST(1) value is the only thing that is live, so
983    // it should be on the TOS (after the pop that was emitted) and is.  Just
984    // continue in this case.
985    if (StackTop == 1)
986      break;
987
988    // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top
989    // elements so that our accounting is correct.
990    unsigned RegOnTop = getStackEntry(0);
991    unsigned RegNo = getStackEntry(1);
992
993    // Swap the slots the regs are in.
994    std::swap(RegMap[RegNo], RegMap[RegOnTop]);
995
996    // Swap stack slot contents.
997    assert(RegMap[RegOnTop] < StackTop);
998    std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
999    break;
1000  }
1001  case X86::FpSET_ST0_32:
1002  case X86::FpSET_ST0_64:
1003  case X86::FpSET_ST0_80: {
1004    unsigned Op0 = getFPReg(MI->getOperand(0));
1005
1006    // FpSET_ST0_80 is generated by copyRegToReg for both function return
1007    // and inline assembly with the "st" constrain. In the latter case,
1008    // it is possible for ST(0) to be alive after this instruction.
1009    if (!MI->killsRegister(X86::FP0 + Op0)) {
1010      // Duplicate Op0
1011      duplicateToTop(0, 7 /*temp register*/, I);
1012    } else {
1013      moveToTop(Op0, I);
1014    }
1015    --StackTop;   // "Forget" we have something on the top of stack!
1016    break;
1017  }
1018  case X86::FpSET_ST1_32:
1019  case X86::FpSET_ST1_64:
1020  case X86::FpSET_ST1_80:
1021    // StackTop can be 1 if a FpSET_ST0_* was before this. Exchange them.
1022    if (StackTop == 1) {
1023      BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(X86::ST1);
1024      NumFXCH++;
1025      StackTop = 0;
1026      break;
1027    }
1028    assert(StackTop == 2 && "Stack should have two element on it to return!");
1029    --StackTop;   // "Forget" we have something on the top of stack!
1030    break;
1031  case X86::MOV_Fp3232:
1032  case X86::MOV_Fp3264:
1033  case X86::MOV_Fp6432:
1034  case X86::MOV_Fp6464:
1035  case X86::MOV_Fp3280:
1036  case X86::MOV_Fp6480:
1037  case X86::MOV_Fp8032:
1038  case X86::MOV_Fp8064:
1039  case X86::MOV_Fp8080: {
1040    const MachineOperand &MO1 = MI->getOperand(1);
1041    unsigned SrcReg = getFPReg(MO1);
1042
1043    const MachineOperand &MO0 = MI->getOperand(0);
1044    // These can be created due to inline asm. Two address pass can introduce
1045    // copies from RFP registers to virtual registers.
1046    if (MO0.getReg() == X86::ST0 && SrcReg == 0) {
1047      assert(MO1.isKill());
1048      // Treat %ST0<def> = MOV_Fp8080 %FP0<kill>
1049      // like  FpSET_ST0_80 %FP0<kill>, %ST0<imp-def>
1050      assert((StackTop == 1 || StackTop == 2)
1051             && "Stack should have one or two element on it to return!");
1052      --StackTop;   // "Forget" we have something on the top of stack!
1053      break;
1054    } else if (MO0.getReg() == X86::ST1 && SrcReg == 1) {
1055      assert(MO1.isKill());
1056      // Treat %ST1<def> = MOV_Fp8080 %FP1<kill>
1057      // like  FpSET_ST1_80 %FP0<kill>, %ST1<imp-def>
1058      // StackTop can be 1 if a FpSET_ST0_* was before this. Exchange them.
1059      if (StackTop == 1) {
1060        BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(X86::ST1);
1061        NumFXCH++;
1062        StackTop = 0;
1063        break;
1064      }
1065      assert(StackTop == 2 && "Stack should have two element on it to return!");
1066      --StackTop;   // "Forget" we have something on the top of stack!
1067      break;
1068    }
1069
1070    unsigned DestReg = getFPReg(MO0);
1071    if (MI->killsRegister(X86::FP0+SrcReg)) {
1072      // If the input operand is killed, we can just change the owner of the
1073      // incoming stack slot into the result.
1074      unsigned Slot = getSlot(SrcReg);
1075      assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
1076      Stack[Slot] = DestReg;
1077      RegMap[DestReg] = Slot;
1078
1079    } else {
1080      // For FMOV we just duplicate the specified value to a new stack slot.
1081      // This could be made better, but would require substantial changes.
1082      duplicateToTop(SrcReg, DestReg, I);
1083    }
1084    }
1085    break;
1086  case TargetInstrInfo::INLINEASM: {
1087    // The inline asm MachineInstr currently only *uses* FP registers for the
1088    // 'f' constraint.  These should be turned into the current ST(x) register
1089    // in the machine instr.  Also, any kills should be explicitly popped after
1090    // the inline asm.
1091    unsigned Kills[7];
1092    unsigned NumKills = 0;
1093    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1094      MachineOperand &Op = MI->getOperand(i);
1095      if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1096        continue;
1097      assert(Op.isUse() && "Only handle inline asm uses right now");
1098
1099      unsigned FPReg = getFPReg(Op);
1100      Op.setReg(getSTReg(FPReg));
1101
1102      // If we kill this operand, make sure to pop it from the stack after the
1103      // asm.  We just remember it for now, and pop them all off at the end in
1104      // a batch.
1105      if (Op.isKill())
1106        Kills[NumKills++] = FPReg;
1107    }
1108
1109    // If this asm kills any FP registers (is the last use of them) we must
1110    // explicitly emit pop instructions for them.  Do this now after the asm has
1111    // executed so that the ST(x) numbers are not off (which would happen if we
1112    // did this inline with operand rewriting).
1113    //
1114    // Note: this might be a non-optimal pop sequence.  We might be able to do
1115    // better by trying to pop in stack order or something.
1116    MachineBasicBlock::iterator InsertPt = MI;
1117    while (NumKills)
1118      freeStackSlotAfter(InsertPt, Kills[--NumKills]);
1119
1120    // Don't delete the inline asm!
1121    return;
1122  }
1123
1124  case X86::RET:
1125  case X86::RETI:
1126    // If RET has an FP register use operand, pass the first one in ST(0) and
1127    // the second one in ST(1).
1128    if (isStackEmpty()) return;  // Quick check to see if any are possible.
1129
1130    // Find the register operands.
1131    unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1132
1133    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1134      MachineOperand &Op = MI->getOperand(i);
1135      if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1136        continue;
1137      // FP Register uses must be kills unless there are two uses of the same
1138      // register, in which case only one will be a kill.
1139      assert(Op.isUse() &&
1140             (Op.isKill() ||                        // Marked kill.
1141              getFPReg(Op) == FirstFPRegOp ||       // Second instance.
1142              MI->killsRegister(Op.getReg())) &&    // Later use is marked kill.
1143             "Ret only defs operands, and values aren't live beyond it");
1144
1145      if (FirstFPRegOp == ~0U)
1146        FirstFPRegOp = getFPReg(Op);
1147      else {
1148        assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1149        SecondFPRegOp = getFPReg(Op);
1150      }
1151
1152      // Remove the operand so that later passes don't see it.
1153      MI->RemoveOperand(i);
1154      --i, --e;
1155    }
1156
1157    // There are only four possibilities here:
1158    // 1) we are returning a single FP value.  In this case, it has to be in
1159    //    ST(0) already, so just declare success by removing the value from the
1160    //    FP Stack.
1161    if (SecondFPRegOp == ~0U) {
1162      // Assert that the top of stack contains the right FP register.
1163      assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1164             "Top of stack not the right register for RET!");
1165
1166      // Ok, everything is good, mark the value as not being on the stack
1167      // anymore so that our assertion about the stack being empty at end of
1168      // block doesn't fire.
1169      StackTop = 0;
1170      return;
1171    }
1172
1173    // Otherwise, we are returning two values:
1174    // 2) If returning the same value for both, we only have one thing in the FP
1175    //    stack.  Consider:  RET FP1, FP1
1176    if (StackTop == 1) {
1177      assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1178             "Stack misconfiguration for RET!");
1179
1180      // Duplicate the TOS so that we return it twice.  Just pick some other FPx
1181      // register to hold it.
1182      unsigned NewReg = (FirstFPRegOp+1)%7;
1183      duplicateToTop(FirstFPRegOp, NewReg, MI);
1184      FirstFPRegOp = NewReg;
1185    }
1186
1187    /// Okay we know we have two different FPx operands now:
1188    assert(StackTop == 2 && "Must have two values live!");
1189
1190    /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1191    ///    in ST(1).  In this case, emit an fxch.
1192    if (getStackEntry(0) == SecondFPRegOp) {
1193      assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1194      moveToTop(FirstFPRegOp, MI);
1195    }
1196
1197    /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1198    /// ST(1).  Just remove both from our understanding of the stack and return.
1199    assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
1200    assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
1201    StackTop = 0;
1202    return;
1203  }
1204
1205  I = MBB->erase(I);  // Remove the pseudo instruction
1206  --I;
1207}
1208