X86FloatingPoint.cpp revision 198090
1//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which converts floating point instructions from
11// virtual registers into register stack instructions.  This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// This pass is hampered by the lack of decent CFG manipulation routines for
16// machine code.  In particular, this wants to be able to split critical edges
17// as necessary, traverse the machine basic block CFG in depth-first order, and
18// allow there to be multiple machine basic blocks for each LLVM basicblock
19// (needed for critical edge splitting).
20//
21// In particular, this pass currently barfs on critical edges.  Because of this,
22// it requires the instruction selector to insert FP_REG_KILL instructions on
23// the exits of any basic block that has critical edges going from it, or which
24// branch to a critical basic block.
25//
26// FIXME: this is not implemented yet.  The stackifier pass only works on local
27// basic blocks.
28//
29//===----------------------------------------------------------------------===//
30
31#define DEBUG_TYPE "x86-codegen"
32#include "X86.h"
33#include "X86InstrInfo.h"
34#include "llvm/ADT/DepthFirstIterator.h"
35#include "llvm/ADT/SmallPtrSet.h"
36#include "llvm/ADT/SmallVector.h"
37#include "llvm/ADT/Statistic.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/CodeGen/MachineFunctionPass.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineRegisterInfo.h"
42#include "llvm/CodeGen/Passes.h"
43#include "llvm/Support/Compiler.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/Target/TargetInstrInfo.h"
48#include "llvm/Target/TargetMachine.h"
49#include <algorithm>
50using namespace llvm;
51
52STATISTIC(NumFXCH, "Number of fxch instructions inserted");
53STATISTIC(NumFP  , "Number of floating point instructions");
54
55namespace {
56  struct VISIBILITY_HIDDEN FPS : public MachineFunctionPass {
57    static char ID;
58    FPS() : MachineFunctionPass(&ID) {}
59
60    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
61      AU.setPreservesCFG();
62      AU.addPreservedID(MachineLoopInfoID);
63      AU.addPreservedID(MachineDominatorsID);
64      MachineFunctionPass::getAnalysisUsage(AU);
65    }
66
67    virtual bool runOnMachineFunction(MachineFunction &MF);
68
69    virtual const char *getPassName() const { return "X86 FP Stackifier"; }
70
71  private:
72    const TargetInstrInfo *TII; // Machine instruction info.
73    MachineBasicBlock *MBB;     // Current basic block
74    unsigned Stack[8];          // FP<n> Registers in each stack slot...
75    unsigned RegMap[8];         // Track which stack slot contains each register
76    unsigned StackTop;          // The current top of the FP stack.
77
78    void dumpStack() const {
79      errs() << "Stack contents:";
80      for (unsigned i = 0; i != StackTop; ++i) {
81        errs() << " FP" << Stack[i];
82        assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
83      }
84      errs() << "\n";
85    }
86  private:
87    /// isStackEmpty - Return true if the FP stack is empty.
88    bool isStackEmpty() const {
89      return StackTop == 0;
90    }
91
92    // getSlot - Return the stack slot number a particular register number is
93    // in.
94    unsigned getSlot(unsigned RegNo) const {
95      assert(RegNo < 8 && "Regno out of range!");
96      return RegMap[RegNo];
97    }
98
99    // getStackEntry - Return the X86::FP<n> register in register ST(i).
100    unsigned getStackEntry(unsigned STi) const {
101      assert(STi < StackTop && "Access past stack top!");
102      return Stack[StackTop-1-STi];
103    }
104
105    // getSTReg - Return the X86::ST(i) register which contains the specified
106    // FP<RegNo> register.
107    unsigned getSTReg(unsigned RegNo) const {
108      return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
109    }
110
111    // pushReg - Push the specified FP<n> register onto the stack.
112    void pushReg(unsigned Reg) {
113      assert(Reg < 8 && "Register number out of range!");
114      assert(StackTop < 8 && "Stack overflow!");
115      Stack[StackTop] = Reg;
116      RegMap[Reg] = StackTop++;
117    }
118
119    bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
120    void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
121      MachineInstr *MI = I;
122      DebugLoc dl = MI->getDebugLoc();
123      if (isAtTop(RegNo)) return;
124
125      unsigned STReg = getSTReg(RegNo);
126      unsigned RegOnTop = getStackEntry(0);
127
128      // Swap the slots the regs are in.
129      std::swap(RegMap[RegNo], RegMap[RegOnTop]);
130
131      // Swap stack slot contents.
132      assert(RegMap[RegOnTop] < StackTop);
133      std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
134
135      // Emit an fxch to update the runtime processors version of the state.
136      BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
137      NumFXCH++;
138    }
139
140    void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
141      DebugLoc dl = I->getDebugLoc();
142      unsigned STReg = getSTReg(RegNo);
143      pushReg(AsReg);   // New register on top of stack
144
145      BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
146    }
147
148    // popStackAfter - Pop the current value off of the top of the FP stack
149    // after the specified instruction.
150    void popStackAfter(MachineBasicBlock::iterator &I);
151
152    // freeStackSlotAfter - Free the specified register from the register stack,
153    // so that it is no longer in a register.  If the register is currently at
154    // the top of the stack, we just pop the current instruction, otherwise we
155    // store the current top-of-stack into the specified slot, then pop the top
156    // of stack.
157    void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
158
159    bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
160
161    void handleZeroArgFP(MachineBasicBlock::iterator &I);
162    void handleOneArgFP(MachineBasicBlock::iterator &I);
163    void handleOneArgFPRW(MachineBasicBlock::iterator &I);
164    void handleTwoArgFP(MachineBasicBlock::iterator &I);
165    void handleCompareFP(MachineBasicBlock::iterator &I);
166    void handleCondMovFP(MachineBasicBlock::iterator &I);
167    void handleSpecialFP(MachineBasicBlock::iterator &I);
168  };
169  char FPS::ID = 0;
170}
171
172FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
173
174/// getFPReg - Return the X86::FPx register number for the specified operand.
175/// For example, this returns 3 for X86::FP3.
176static unsigned getFPReg(const MachineOperand &MO) {
177  assert(MO.isReg() && "Expected an FP register!");
178  unsigned Reg = MO.getReg();
179  assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
180  return Reg - X86::FP0;
181}
182
183
184/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
185/// register references into FP stack references.
186///
187bool FPS::runOnMachineFunction(MachineFunction &MF) {
188  // We only need to run this pass if there are any FP registers used in this
189  // function.  If it is all integer, there is nothing for us to do!
190  bool FPIsUsed = false;
191
192  assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
193  for (unsigned i = 0; i <= 6; ++i)
194    if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
195      FPIsUsed = true;
196      break;
197    }
198
199  // Early exit.
200  if (!FPIsUsed) return false;
201
202  TII = MF.getTarget().getInstrInfo();
203  StackTop = 0;
204
205  // Process the function in depth first order so that we process at least one
206  // of the predecessors for every reachable block in the function.
207  SmallPtrSet<MachineBasicBlock*, 8> Processed;
208  MachineBasicBlock *Entry = MF.begin();
209
210  bool Changed = false;
211  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
212         I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
213       I != E; ++I)
214    Changed |= processBasicBlock(MF, **I);
215
216  // Process any unreachable blocks in arbitrary order now.
217  if (MF.size() == Processed.size())
218    return Changed;
219
220  for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
221    if (Processed.insert(BB))
222      Changed |= processBasicBlock(MF, *BB);
223
224  return Changed;
225}
226
227/// processBasicBlock - Loop over all of the instructions in the basic block,
228/// transforming FP instructions into their stack form.
229///
230bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
231  bool Changed = false;
232  MBB = &BB;
233
234  for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
235    MachineInstr *MI = I;
236    unsigned Flags = MI->getDesc().TSFlags;
237
238    unsigned FPInstClass = Flags & X86II::FPTypeMask;
239    if (MI->getOpcode() == TargetInstrInfo::INLINEASM)
240      FPInstClass = X86II::SpecialFP;
241
242    if (FPInstClass == X86II::NotFP)
243      continue;  // Efficiently ignore non-fp insts!
244
245    MachineInstr *PrevMI = 0;
246    if (I != BB.begin())
247      PrevMI = prior(I);
248
249    ++NumFP;  // Keep track of # of pseudo instrs
250    DEBUG(errs() << "\nFPInst:\t" << *MI);
251
252    // Get dead variables list now because the MI pointer may be deleted as part
253    // of processing!
254    SmallVector<unsigned, 8> DeadRegs;
255    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
256      const MachineOperand &MO = MI->getOperand(i);
257      if (MO.isReg() && MO.isDead())
258        DeadRegs.push_back(MO.getReg());
259    }
260
261    switch (FPInstClass) {
262    case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
263    case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
264    case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
265    case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
266    case X86II::CompareFP:  handleCompareFP(I); break;
267    case X86II::CondMovFP:  handleCondMovFP(I); break;
268    case X86II::SpecialFP:  handleSpecialFP(I); break;
269    default: llvm_unreachable("Unknown FP Type!");
270    }
271
272    // Check to see if any of the values defined by this instruction are dead
273    // after definition.  If so, pop them.
274    for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
275      unsigned Reg = DeadRegs[i];
276      if (Reg >= X86::FP0 && Reg <= X86::FP6) {
277        DEBUG(errs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
278        freeStackSlotAfter(I, Reg-X86::FP0);
279      }
280    }
281
282    // Print out all of the instructions expanded to if -debug
283    DEBUG(
284      MachineBasicBlock::iterator PrevI(PrevMI);
285      if (I == PrevI) {
286        errs() << "Just deleted pseudo instruction\n";
287      } else {
288        MachineBasicBlock::iterator Start = I;
289        // Rewind to first instruction newly inserted.
290        while (Start != BB.begin() && prior(Start) != PrevI) --Start;
291        errs() << "Inserted instructions:\n\t";
292        Start->print(errs(), &MF.getTarget());
293        while (++Start != next(I)) {}
294      }
295      dumpStack();
296    );
297
298    Changed = true;
299  }
300
301  assert(isStackEmpty() && "Stack not empty at end of basic block?");
302  return Changed;
303}
304
305//===----------------------------------------------------------------------===//
306// Efficient Lookup Table Support
307//===----------------------------------------------------------------------===//
308
309namespace {
310  struct TableEntry {
311    unsigned from;
312    unsigned to;
313    bool operator<(const TableEntry &TE) const { return from < TE.from; }
314    friend bool operator<(const TableEntry &TE, unsigned V) {
315      return TE.from < V;
316    }
317    friend bool operator<(unsigned V, const TableEntry &TE) {
318      return V < TE.from;
319    }
320  };
321}
322
323#ifndef NDEBUG
324static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
325  for (unsigned i = 0; i != NumEntries-1; ++i)
326    if (!(Table[i] < Table[i+1])) return false;
327  return true;
328}
329#endif
330
331static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
332  const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
333  if (I != Table+N && I->from == Opcode)
334    return I->to;
335  return -1;
336}
337
338#ifdef NDEBUG
339#define ASSERT_SORTED(TABLE)
340#else
341#define ASSERT_SORTED(TABLE)                                              \
342  { static bool TABLE##Checked = false;                                   \
343    if (!TABLE##Checked) {                                                \
344       assert(TableIsSorted(TABLE, array_lengthof(TABLE)) &&              \
345              "All lookup tables must be sorted for efficient access!");  \
346       TABLE##Checked = true;                                             \
347    }                                                                     \
348  }
349#endif
350
351//===----------------------------------------------------------------------===//
352// Register File -> Register Stack Mapping Methods
353//===----------------------------------------------------------------------===//
354
355// OpcodeTable - Sorted map of register instructions to their stack version.
356// The first element is an register file pseudo instruction, the second is the
357// concrete X86 instruction which uses the register stack.
358//
359static const TableEntry OpcodeTable[] = {
360  { X86::ABS_Fp32     , X86::ABS_F     },
361  { X86::ABS_Fp64     , X86::ABS_F     },
362  { X86::ABS_Fp80     , X86::ABS_F     },
363  { X86::ADD_Fp32m    , X86::ADD_F32m  },
364  { X86::ADD_Fp64m    , X86::ADD_F64m  },
365  { X86::ADD_Fp64m32  , X86::ADD_F32m  },
366  { X86::ADD_Fp80m32  , X86::ADD_F32m  },
367  { X86::ADD_Fp80m64  , X86::ADD_F64m  },
368  { X86::ADD_FpI16m32 , X86::ADD_FI16m },
369  { X86::ADD_FpI16m64 , X86::ADD_FI16m },
370  { X86::ADD_FpI16m80 , X86::ADD_FI16m },
371  { X86::ADD_FpI32m32 , X86::ADD_FI32m },
372  { X86::ADD_FpI32m64 , X86::ADD_FI32m },
373  { X86::ADD_FpI32m80 , X86::ADD_FI32m },
374  { X86::CHS_Fp32     , X86::CHS_F     },
375  { X86::CHS_Fp64     , X86::CHS_F     },
376  { X86::CHS_Fp80     , X86::CHS_F     },
377  { X86::CMOVBE_Fp32  , X86::CMOVBE_F  },
378  { X86::CMOVBE_Fp64  , X86::CMOVBE_F  },
379  { X86::CMOVBE_Fp80  , X86::CMOVBE_F  },
380  { X86::CMOVB_Fp32   , X86::CMOVB_F   },
381  { X86::CMOVB_Fp64   , X86::CMOVB_F  },
382  { X86::CMOVB_Fp80   , X86::CMOVB_F  },
383  { X86::CMOVE_Fp32   , X86::CMOVE_F  },
384  { X86::CMOVE_Fp64   , X86::CMOVE_F   },
385  { X86::CMOVE_Fp80   , X86::CMOVE_F   },
386  { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
387  { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
388  { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
389  { X86::CMOVNB_Fp32  , X86::CMOVNB_F  },
390  { X86::CMOVNB_Fp64  , X86::CMOVNB_F  },
391  { X86::CMOVNB_Fp80  , X86::CMOVNB_F  },
392  { X86::CMOVNE_Fp32  , X86::CMOVNE_F  },
393  { X86::CMOVNE_Fp64  , X86::CMOVNE_F  },
394  { X86::CMOVNE_Fp80  , X86::CMOVNE_F  },
395  { X86::CMOVNP_Fp32  , X86::CMOVNP_F  },
396  { X86::CMOVNP_Fp64  , X86::CMOVNP_F  },
397  { X86::CMOVNP_Fp80  , X86::CMOVNP_F  },
398  { X86::CMOVP_Fp32   , X86::CMOVP_F   },
399  { X86::CMOVP_Fp64   , X86::CMOVP_F   },
400  { X86::CMOVP_Fp80   , X86::CMOVP_F   },
401  { X86::COS_Fp32     , X86::COS_F     },
402  { X86::COS_Fp64     , X86::COS_F     },
403  { X86::COS_Fp80     , X86::COS_F     },
404  { X86::DIVR_Fp32m   , X86::DIVR_F32m },
405  { X86::DIVR_Fp64m   , X86::DIVR_F64m },
406  { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
407  { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
408  { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
409  { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
410  { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
411  { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
412  { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
413  { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
414  { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
415  { X86::DIV_Fp32m    , X86::DIV_F32m  },
416  { X86::DIV_Fp64m    , X86::DIV_F64m  },
417  { X86::DIV_Fp64m32  , X86::DIV_F32m  },
418  { X86::DIV_Fp80m32  , X86::DIV_F32m  },
419  { X86::DIV_Fp80m64  , X86::DIV_F64m  },
420  { X86::DIV_FpI16m32 , X86::DIV_FI16m },
421  { X86::DIV_FpI16m64 , X86::DIV_FI16m },
422  { X86::DIV_FpI16m80 , X86::DIV_FI16m },
423  { X86::DIV_FpI32m32 , X86::DIV_FI32m },
424  { X86::DIV_FpI32m64 , X86::DIV_FI32m },
425  { X86::DIV_FpI32m80 , X86::DIV_FI32m },
426  { X86::ILD_Fp16m32  , X86::ILD_F16m  },
427  { X86::ILD_Fp16m64  , X86::ILD_F16m  },
428  { X86::ILD_Fp16m80  , X86::ILD_F16m  },
429  { X86::ILD_Fp32m32  , X86::ILD_F32m  },
430  { X86::ILD_Fp32m64  , X86::ILD_F32m  },
431  { X86::ILD_Fp32m80  , X86::ILD_F32m  },
432  { X86::ILD_Fp64m32  , X86::ILD_F64m  },
433  { X86::ILD_Fp64m64  , X86::ILD_F64m  },
434  { X86::ILD_Fp64m80  , X86::ILD_F64m  },
435  { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
436  { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
437  { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
438  { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
439  { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
440  { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
441  { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
442  { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
443  { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
444  { X86::IST_Fp16m32  , X86::IST_F16m  },
445  { X86::IST_Fp16m64  , X86::IST_F16m  },
446  { X86::IST_Fp16m80  , X86::IST_F16m  },
447  { X86::IST_Fp32m32  , X86::IST_F32m  },
448  { X86::IST_Fp32m64  , X86::IST_F32m  },
449  { X86::IST_Fp32m80  , X86::IST_F32m  },
450  { X86::IST_Fp64m32  , X86::IST_FP64m },
451  { X86::IST_Fp64m64  , X86::IST_FP64m },
452  { X86::IST_Fp64m80  , X86::IST_FP64m },
453  { X86::LD_Fp032     , X86::LD_F0     },
454  { X86::LD_Fp064     , X86::LD_F0     },
455  { X86::LD_Fp080     , X86::LD_F0     },
456  { X86::LD_Fp132     , X86::LD_F1     },
457  { X86::LD_Fp164     , X86::LD_F1     },
458  { X86::LD_Fp180     , X86::LD_F1     },
459  { X86::LD_Fp32m     , X86::LD_F32m   },
460  { X86::LD_Fp32m64   , X86::LD_F32m   },
461  { X86::LD_Fp32m80   , X86::LD_F32m   },
462  { X86::LD_Fp64m     , X86::LD_F64m   },
463  { X86::LD_Fp64m80   , X86::LD_F64m   },
464  { X86::LD_Fp80m     , X86::LD_F80m   },
465  { X86::MUL_Fp32m    , X86::MUL_F32m  },
466  { X86::MUL_Fp64m    , X86::MUL_F64m  },
467  { X86::MUL_Fp64m32  , X86::MUL_F32m  },
468  { X86::MUL_Fp80m32  , X86::MUL_F32m  },
469  { X86::MUL_Fp80m64  , X86::MUL_F64m  },
470  { X86::MUL_FpI16m32 , X86::MUL_FI16m },
471  { X86::MUL_FpI16m64 , X86::MUL_FI16m },
472  { X86::MUL_FpI16m80 , X86::MUL_FI16m },
473  { X86::MUL_FpI32m32 , X86::MUL_FI32m },
474  { X86::MUL_FpI32m64 , X86::MUL_FI32m },
475  { X86::MUL_FpI32m80 , X86::MUL_FI32m },
476  { X86::SIN_Fp32     , X86::SIN_F     },
477  { X86::SIN_Fp64     , X86::SIN_F     },
478  { X86::SIN_Fp80     , X86::SIN_F     },
479  { X86::SQRT_Fp32    , X86::SQRT_F    },
480  { X86::SQRT_Fp64    , X86::SQRT_F    },
481  { X86::SQRT_Fp80    , X86::SQRT_F    },
482  { X86::ST_Fp32m     , X86::ST_F32m   },
483  { X86::ST_Fp64m     , X86::ST_F64m   },
484  { X86::ST_Fp64m32   , X86::ST_F32m   },
485  { X86::ST_Fp80m32   , X86::ST_F32m   },
486  { X86::ST_Fp80m64   , X86::ST_F64m   },
487  { X86::ST_FpP80m    , X86::ST_FP80m  },
488  { X86::SUBR_Fp32m   , X86::SUBR_F32m },
489  { X86::SUBR_Fp64m   , X86::SUBR_F64m },
490  { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
491  { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
492  { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
493  { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
494  { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
495  { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
496  { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
497  { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
498  { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
499  { X86::SUB_Fp32m    , X86::SUB_F32m  },
500  { X86::SUB_Fp64m    , X86::SUB_F64m  },
501  { X86::SUB_Fp64m32  , X86::SUB_F32m  },
502  { X86::SUB_Fp80m32  , X86::SUB_F32m  },
503  { X86::SUB_Fp80m64  , X86::SUB_F64m  },
504  { X86::SUB_FpI16m32 , X86::SUB_FI16m },
505  { X86::SUB_FpI16m64 , X86::SUB_FI16m },
506  { X86::SUB_FpI16m80 , X86::SUB_FI16m },
507  { X86::SUB_FpI32m32 , X86::SUB_FI32m },
508  { X86::SUB_FpI32m64 , X86::SUB_FI32m },
509  { X86::SUB_FpI32m80 , X86::SUB_FI32m },
510  { X86::TST_Fp32     , X86::TST_F     },
511  { X86::TST_Fp64     , X86::TST_F     },
512  { X86::TST_Fp80     , X86::TST_F     },
513  { X86::UCOM_FpIr32  , X86::UCOM_FIr  },
514  { X86::UCOM_FpIr64  , X86::UCOM_FIr  },
515  { X86::UCOM_FpIr80  , X86::UCOM_FIr  },
516  { X86::UCOM_Fpr32   , X86::UCOM_Fr   },
517  { X86::UCOM_Fpr64   , X86::UCOM_Fr   },
518  { X86::UCOM_Fpr80   , X86::UCOM_Fr   },
519};
520
521static unsigned getConcreteOpcode(unsigned Opcode) {
522  ASSERT_SORTED(OpcodeTable);
523  int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
524  assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
525  return Opc;
526}
527
528//===----------------------------------------------------------------------===//
529// Helper Methods
530//===----------------------------------------------------------------------===//
531
532// PopTable - Sorted map of instructions to their popping version.  The first
533// element is an instruction, the second is the version which pops.
534//
535static const TableEntry PopTable[] = {
536  { X86::ADD_FrST0 , X86::ADD_FPrST0  },
537
538  { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
539  { X86::DIV_FrST0 , X86::DIV_FPrST0  },
540
541  { X86::IST_F16m  , X86::IST_FP16m   },
542  { X86::IST_F32m  , X86::IST_FP32m   },
543
544  { X86::MUL_FrST0 , X86::MUL_FPrST0  },
545
546  { X86::ST_F32m   , X86::ST_FP32m    },
547  { X86::ST_F64m   , X86::ST_FP64m    },
548  { X86::ST_Frr    , X86::ST_FPrr     },
549
550  { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
551  { X86::SUB_FrST0 , X86::SUB_FPrST0  },
552
553  { X86::UCOM_FIr  , X86::UCOM_FIPr   },
554
555  { X86::UCOM_FPr  , X86::UCOM_FPPr   },
556  { X86::UCOM_Fr   , X86::UCOM_FPr    },
557};
558
559/// popStackAfter - Pop the current value off of the top of the FP stack after
560/// the specified instruction.  This attempts to be sneaky and combine the pop
561/// into the instruction itself if possible.  The iterator is left pointing to
562/// the last instruction, be it a new pop instruction inserted, or the old
563/// instruction if it was modified in place.
564///
565void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
566  MachineInstr* MI = I;
567  DebugLoc dl = MI->getDebugLoc();
568  ASSERT_SORTED(PopTable);
569  assert(StackTop > 0 && "Cannot pop empty stack!");
570  RegMap[Stack[--StackTop]] = ~0;     // Update state
571
572  // Check to see if there is a popping version of this instruction...
573  int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
574  if (Opcode != -1) {
575    I->setDesc(TII->get(Opcode));
576    if (Opcode == X86::UCOM_FPPr)
577      I->RemoveOperand(0);
578  } else {    // Insert an explicit pop
579    I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
580  }
581}
582
583/// freeStackSlotAfter - Free the specified register from the register stack, so
584/// that it is no longer in a register.  If the register is currently at the top
585/// of the stack, we just pop the current instruction, otherwise we store the
586/// current top-of-stack into the specified slot, then pop the top of stack.
587void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
588  if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
589    popStackAfter(I);
590    return;
591  }
592
593  // Otherwise, store the top of stack into the dead slot, killing the operand
594  // without having to add in an explicit xchg then pop.
595  //
596  unsigned STReg    = getSTReg(FPRegNo);
597  unsigned OldSlot  = getSlot(FPRegNo);
598  unsigned TopReg   = Stack[StackTop-1];
599  Stack[OldSlot]    = TopReg;
600  RegMap[TopReg]    = OldSlot;
601  RegMap[FPRegNo]   = ~0;
602  Stack[--StackTop] = ~0;
603  MachineInstr *MI  = I;
604  DebugLoc dl = MI->getDebugLoc();
605  I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(STReg);
606}
607
608
609//===----------------------------------------------------------------------===//
610// Instruction transformation implementation
611//===----------------------------------------------------------------------===//
612
613/// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
614///
615void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
616  MachineInstr *MI = I;
617  unsigned DestReg = getFPReg(MI->getOperand(0));
618
619  // Change from the pseudo instruction to the concrete instruction.
620  MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
621  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
622
623  // Result gets pushed on the stack.
624  pushReg(DestReg);
625}
626
627/// handleOneArgFP - fst <mem>, ST(0)
628///
629void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
630  MachineInstr *MI = I;
631  unsigned NumOps = MI->getDesc().getNumOperands();
632  assert((NumOps == X86AddrNumOperands + 1 || NumOps == 1) &&
633         "Can only handle fst* & ftst instructions!");
634
635  // Is this the last use of the source register?
636  unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
637  bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
638
639  // FISTP64m is strange because there isn't a non-popping versions.
640  // If we have one _and_ we don't want to pop the operand, duplicate the value
641  // on the stack instead of moving it.  This ensure that popping the value is
642  // always ok.
643  // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
644  //
645  if (!KillsSrc &&
646      (MI->getOpcode() == X86::IST_Fp64m32 ||
647       MI->getOpcode() == X86::ISTT_Fp16m32 ||
648       MI->getOpcode() == X86::ISTT_Fp32m32 ||
649       MI->getOpcode() == X86::ISTT_Fp64m32 ||
650       MI->getOpcode() == X86::IST_Fp64m64 ||
651       MI->getOpcode() == X86::ISTT_Fp16m64 ||
652       MI->getOpcode() == X86::ISTT_Fp32m64 ||
653       MI->getOpcode() == X86::ISTT_Fp64m64 ||
654       MI->getOpcode() == X86::IST_Fp64m80 ||
655       MI->getOpcode() == X86::ISTT_Fp16m80 ||
656       MI->getOpcode() == X86::ISTT_Fp32m80 ||
657       MI->getOpcode() == X86::ISTT_Fp64m80 ||
658       MI->getOpcode() == X86::ST_FpP80m)) {
659    duplicateToTop(Reg, 7 /*temp register*/, I);
660  } else {
661    moveToTop(Reg, I);            // Move to the top of the stack...
662  }
663
664  // Convert from the pseudo instruction to the concrete instruction.
665  MI->RemoveOperand(NumOps-1);    // Remove explicit ST(0) operand
666  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
667
668  if (MI->getOpcode() == X86::IST_FP64m ||
669      MI->getOpcode() == X86::ISTT_FP16m ||
670      MI->getOpcode() == X86::ISTT_FP32m ||
671      MI->getOpcode() == X86::ISTT_FP64m ||
672      MI->getOpcode() == X86::ST_FP80m) {
673    assert(StackTop > 0 && "Stack empty??");
674    --StackTop;
675  } else if (KillsSrc) { // Last use of operand?
676    popStackAfter(I);
677  }
678}
679
680
681/// handleOneArgFPRW: Handle instructions that read from the top of stack and
682/// replace the value with a newly computed value.  These instructions may have
683/// non-fp operands after their FP operands.
684///
685///  Examples:
686///     R1 = fchs R2
687///     R1 = fadd R2, [mem]
688///
689void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
690  MachineInstr *MI = I;
691#ifndef NDEBUG
692  unsigned NumOps = MI->getDesc().getNumOperands();
693  assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
694#endif
695
696  // Is this the last use of the source register?
697  unsigned Reg = getFPReg(MI->getOperand(1));
698  bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
699
700  if (KillsSrc) {
701    // If this is the last use of the source register, just make sure it's on
702    // the top of the stack.
703    moveToTop(Reg, I);
704    assert(StackTop > 0 && "Stack cannot be empty!");
705    --StackTop;
706    pushReg(getFPReg(MI->getOperand(0)));
707  } else {
708    // If this is not the last use of the source register, _copy_ it to the top
709    // of the stack.
710    duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
711  }
712
713  // Change from the pseudo instruction to the concrete instruction.
714  MI->RemoveOperand(1);   // Drop the source operand.
715  MI->RemoveOperand(0);   // Drop the destination operand.
716  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
717}
718
719
720//===----------------------------------------------------------------------===//
721// Define tables of various ways to map pseudo instructions
722//
723
724// ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
725static const TableEntry ForwardST0Table[] = {
726  { X86::ADD_Fp32  , X86::ADD_FST0r },
727  { X86::ADD_Fp64  , X86::ADD_FST0r },
728  { X86::ADD_Fp80  , X86::ADD_FST0r },
729  { X86::DIV_Fp32  , X86::DIV_FST0r },
730  { X86::DIV_Fp64  , X86::DIV_FST0r },
731  { X86::DIV_Fp80  , X86::DIV_FST0r },
732  { X86::MUL_Fp32  , X86::MUL_FST0r },
733  { X86::MUL_Fp64  , X86::MUL_FST0r },
734  { X86::MUL_Fp80  , X86::MUL_FST0r },
735  { X86::SUB_Fp32  , X86::SUB_FST0r },
736  { X86::SUB_Fp64  , X86::SUB_FST0r },
737  { X86::SUB_Fp80  , X86::SUB_FST0r },
738};
739
740// ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
741static const TableEntry ReverseST0Table[] = {
742  { X86::ADD_Fp32  , X86::ADD_FST0r  },   // commutative
743  { X86::ADD_Fp64  , X86::ADD_FST0r  },   // commutative
744  { X86::ADD_Fp80  , X86::ADD_FST0r  },   // commutative
745  { X86::DIV_Fp32  , X86::DIVR_FST0r },
746  { X86::DIV_Fp64  , X86::DIVR_FST0r },
747  { X86::DIV_Fp80  , X86::DIVR_FST0r },
748  { X86::MUL_Fp32  , X86::MUL_FST0r  },   // commutative
749  { X86::MUL_Fp64  , X86::MUL_FST0r  },   // commutative
750  { X86::MUL_Fp80  , X86::MUL_FST0r  },   // commutative
751  { X86::SUB_Fp32  , X86::SUBR_FST0r },
752  { X86::SUB_Fp64  , X86::SUBR_FST0r },
753  { X86::SUB_Fp80  , X86::SUBR_FST0r },
754};
755
756// ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
757static const TableEntry ForwardSTiTable[] = {
758  { X86::ADD_Fp32  , X86::ADD_FrST0  },   // commutative
759  { X86::ADD_Fp64  , X86::ADD_FrST0  },   // commutative
760  { X86::ADD_Fp80  , X86::ADD_FrST0  },   // commutative
761  { X86::DIV_Fp32  , X86::DIVR_FrST0 },
762  { X86::DIV_Fp64  , X86::DIVR_FrST0 },
763  { X86::DIV_Fp80  , X86::DIVR_FrST0 },
764  { X86::MUL_Fp32  , X86::MUL_FrST0  },   // commutative
765  { X86::MUL_Fp64  , X86::MUL_FrST0  },   // commutative
766  { X86::MUL_Fp80  , X86::MUL_FrST0  },   // commutative
767  { X86::SUB_Fp32  , X86::SUBR_FrST0 },
768  { X86::SUB_Fp64  , X86::SUBR_FrST0 },
769  { X86::SUB_Fp80  , X86::SUBR_FrST0 },
770};
771
772// ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
773static const TableEntry ReverseSTiTable[] = {
774  { X86::ADD_Fp32  , X86::ADD_FrST0 },
775  { X86::ADD_Fp64  , X86::ADD_FrST0 },
776  { X86::ADD_Fp80  , X86::ADD_FrST0 },
777  { X86::DIV_Fp32  , X86::DIV_FrST0 },
778  { X86::DIV_Fp64  , X86::DIV_FrST0 },
779  { X86::DIV_Fp80  , X86::DIV_FrST0 },
780  { X86::MUL_Fp32  , X86::MUL_FrST0 },
781  { X86::MUL_Fp64  , X86::MUL_FrST0 },
782  { X86::MUL_Fp80  , X86::MUL_FrST0 },
783  { X86::SUB_Fp32  , X86::SUB_FrST0 },
784  { X86::SUB_Fp64  , X86::SUB_FrST0 },
785  { X86::SUB_Fp80  , X86::SUB_FrST0 },
786};
787
788
789/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
790/// instructions which need to be simplified and possibly transformed.
791///
792/// Result: ST(0) = fsub  ST(0), ST(i)
793///         ST(i) = fsub  ST(0), ST(i)
794///         ST(0) = fsubr ST(0), ST(i)
795///         ST(i) = fsubr ST(0), ST(i)
796///
797void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
798  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
799  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
800  MachineInstr *MI = I;
801
802  unsigned NumOperands = MI->getDesc().getNumOperands();
803  assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
804  unsigned Dest = getFPReg(MI->getOperand(0));
805  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
806  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
807  bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
808  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
809  DebugLoc dl = MI->getDebugLoc();
810
811  unsigned TOS = getStackEntry(0);
812
813  // One of our operands must be on the top of the stack.  If neither is yet, we
814  // need to move one.
815  if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
816    // We can choose to move either operand to the top of the stack.  If one of
817    // the operands is killed by this instruction, we want that one so that we
818    // can update right on top of the old version.
819    if (KillsOp0) {
820      moveToTop(Op0, I);         // Move dead operand to TOS.
821      TOS = Op0;
822    } else if (KillsOp1) {
823      moveToTop(Op1, I);
824      TOS = Op1;
825    } else {
826      // All of the operands are live after this instruction executes, so we
827      // cannot update on top of any operand.  Because of this, we must
828      // duplicate one of the stack elements to the top.  It doesn't matter
829      // which one we pick.
830      //
831      duplicateToTop(Op0, Dest, I);
832      Op0 = TOS = Dest;
833      KillsOp0 = true;
834    }
835  } else if (!KillsOp0 && !KillsOp1) {
836    // If we DO have one of our operands at the top of the stack, but we don't
837    // have a dead operand, we must duplicate one of the operands to a new slot
838    // on the stack.
839    duplicateToTop(Op0, Dest, I);
840    Op0 = TOS = Dest;
841    KillsOp0 = true;
842  }
843
844  // Now we know that one of our operands is on the top of the stack, and at
845  // least one of our operands is killed by this instruction.
846  assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
847         "Stack conditions not set up right!");
848
849  // We decide which form to use based on what is on the top of the stack, and
850  // which operand is killed by this instruction.
851  const TableEntry *InstTable;
852  bool isForward = TOS == Op0;
853  bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
854  if (updateST0) {
855    if (isForward)
856      InstTable = ForwardST0Table;
857    else
858      InstTable = ReverseST0Table;
859  } else {
860    if (isForward)
861      InstTable = ForwardSTiTable;
862    else
863      InstTable = ReverseSTiTable;
864  }
865
866  int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
867                      MI->getOpcode());
868  assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
869
870  // NotTOS - The register which is not on the top of stack...
871  unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
872
873  // Replace the old instruction with a new instruction
874  MBB->remove(I++);
875  I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
876
877  // If both operands are killed, pop one off of the stack in addition to
878  // overwriting the other one.
879  if (KillsOp0 && KillsOp1 && Op0 != Op1) {
880    assert(!updateST0 && "Should have updated other operand!");
881    popStackAfter(I);   // Pop the top of stack
882  }
883
884  // Update stack information so that we know the destination register is now on
885  // the stack.
886  unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
887  assert(UpdatedSlot < StackTop && Dest < 7);
888  Stack[UpdatedSlot]   = Dest;
889  RegMap[Dest]         = UpdatedSlot;
890  MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
891}
892
893/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
894/// register arguments and no explicit destinations.
895///
896void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
897  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
898  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
899  MachineInstr *MI = I;
900
901  unsigned NumOperands = MI->getDesc().getNumOperands();
902  assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
903  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
904  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
905  bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
906  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
907
908  // Make sure the first operand is on the top of stack, the other one can be
909  // anywhere.
910  moveToTop(Op0, I);
911
912  // Change from the pseudo instruction to the concrete instruction.
913  MI->getOperand(0).setReg(getSTReg(Op1));
914  MI->RemoveOperand(1);
915  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
916
917  // If any of the operands are killed by this instruction, free them.
918  if (KillsOp0) freeStackSlotAfter(I, Op0);
919  if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
920}
921
922/// handleCondMovFP - Handle two address conditional move instructions.  These
923/// instructions move a st(i) register to st(0) iff a condition is true.  These
924/// instructions require that the first operand is at the top of the stack, but
925/// otherwise don't modify the stack at all.
926void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
927  MachineInstr *MI = I;
928
929  unsigned Op0 = getFPReg(MI->getOperand(0));
930  unsigned Op1 = getFPReg(MI->getOperand(2));
931  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
932
933  // The first operand *must* be on the top of the stack.
934  moveToTop(Op0, I);
935
936  // Change the second operand to the stack register that the operand is in.
937  // Change from the pseudo instruction to the concrete instruction.
938  MI->RemoveOperand(0);
939  MI->RemoveOperand(1);
940  MI->getOperand(0).setReg(getSTReg(Op1));
941  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
942
943  // If we kill the second operand, make sure to pop it from the stack.
944  if (Op0 != Op1 && KillsOp1) {
945    // Get this value off of the register stack.
946    freeStackSlotAfter(I, Op1);
947  }
948}
949
950
951/// handleSpecialFP - Handle special instructions which behave unlike other
952/// floating point instructions.  This is primarily intended for use by pseudo
953/// instructions.
954///
955void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
956  MachineInstr *MI = I;
957  DebugLoc dl = MI->getDebugLoc();
958  switch (MI->getOpcode()) {
959  default: llvm_unreachable("Unknown SpecialFP instruction!");
960  case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type!
961  case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type!
962  case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type!
963    assert(StackTop == 0 && "Stack should be empty after a call!");
964    pushReg(getFPReg(MI->getOperand(0)));
965    break;
966  case X86::FpGET_ST1_32:// Appears immediately after a call returning FP type!
967  case X86::FpGET_ST1_64:// Appears immediately after a call returning FP type!
968  case X86::FpGET_ST1_80:{// Appears immediately after a call returning FP type!
969    // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm.
970    // The pattern we expect is:
971    //  CALL
972    //  FP1 = FpGET_ST0
973    //  FP4 = FpGET_ST1
974    //
975    // At this point, we've pushed FP1 on the top of stack, so it should be
976    // present if it isn't dead.  If it was dead, we already emitted a pop to
977    // remove it from the stack and StackTop = 0.
978
979    // Push FP4 as top of stack next.
980    pushReg(getFPReg(MI->getOperand(0)));
981
982    // If StackTop was 0 before we pushed our operand, then ST(0) must have been
983    // dead.  In this case, the ST(1) value is the only thing that is live, so
984    // it should be on the TOS (after the pop that was emitted) and is.  Just
985    // continue in this case.
986    if (StackTop == 1)
987      break;
988
989    // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top
990    // elements so that our accounting is correct.
991    unsigned RegOnTop = getStackEntry(0);
992    unsigned RegNo = getStackEntry(1);
993
994    // Swap the slots the regs are in.
995    std::swap(RegMap[RegNo], RegMap[RegOnTop]);
996
997    // Swap stack slot contents.
998    assert(RegMap[RegOnTop] < StackTop);
999    std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
1000    break;
1001  }
1002  case X86::FpSET_ST0_32:
1003  case X86::FpSET_ST0_64:
1004  case X86::FpSET_ST0_80: {
1005    unsigned Op0 = getFPReg(MI->getOperand(0));
1006
1007    // FpSET_ST0_80 is generated by copyRegToReg for both function return
1008    // and inline assembly with the "st" constrain. In the latter case,
1009    // it is possible for ST(0) to be alive after this instruction.
1010    if (!MI->killsRegister(X86::FP0 + Op0)) {
1011      // Duplicate Op0
1012      duplicateToTop(0, 7 /*temp register*/, I);
1013    } else {
1014      moveToTop(Op0, I);
1015    }
1016    --StackTop;   // "Forget" we have something on the top of stack!
1017    break;
1018  }
1019  case X86::FpSET_ST1_32:
1020  case X86::FpSET_ST1_64:
1021  case X86::FpSET_ST1_80:
1022    // StackTop can be 1 if a FpSET_ST0_* was before this. Exchange them.
1023    if (StackTop == 1) {
1024      BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(X86::ST1);
1025      NumFXCH++;
1026      StackTop = 0;
1027      break;
1028    }
1029    assert(StackTop == 2 && "Stack should have two element on it to return!");
1030    --StackTop;   // "Forget" we have something on the top of stack!
1031    break;
1032  case X86::MOV_Fp3232:
1033  case X86::MOV_Fp3264:
1034  case X86::MOV_Fp6432:
1035  case X86::MOV_Fp6464:
1036  case X86::MOV_Fp3280:
1037  case X86::MOV_Fp6480:
1038  case X86::MOV_Fp8032:
1039  case X86::MOV_Fp8064:
1040  case X86::MOV_Fp8080: {
1041    const MachineOperand &MO1 = MI->getOperand(1);
1042    unsigned SrcReg = getFPReg(MO1);
1043
1044    const MachineOperand &MO0 = MI->getOperand(0);
1045    // These can be created due to inline asm. Two address pass can introduce
1046    // copies from RFP registers to virtual registers.
1047    if (MO0.getReg() == X86::ST0 && SrcReg == 0) {
1048      assert(MO1.isKill());
1049      // Treat %ST0<def> = MOV_Fp8080 %FP0<kill>
1050      // like  FpSET_ST0_80 %FP0<kill>, %ST0<imp-def>
1051      assert((StackTop == 1 || StackTop == 2)
1052             && "Stack should have one or two element on it to return!");
1053      --StackTop;   // "Forget" we have something on the top of stack!
1054      break;
1055    } else if (MO0.getReg() == X86::ST1 && SrcReg == 1) {
1056      assert(MO1.isKill());
1057      // Treat %ST1<def> = MOV_Fp8080 %FP1<kill>
1058      // like  FpSET_ST1_80 %FP0<kill>, %ST1<imp-def>
1059      // StackTop can be 1 if a FpSET_ST0_* was before this. Exchange them.
1060      if (StackTop == 1) {
1061        BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(X86::ST1);
1062        NumFXCH++;
1063        StackTop = 0;
1064        break;
1065      }
1066      assert(StackTop == 2 && "Stack should have two element on it to return!");
1067      --StackTop;   // "Forget" we have something on the top of stack!
1068      break;
1069    }
1070
1071    unsigned DestReg = getFPReg(MO0);
1072    if (MI->killsRegister(X86::FP0+SrcReg)) {
1073      // If the input operand is killed, we can just change the owner of the
1074      // incoming stack slot into the result.
1075      unsigned Slot = getSlot(SrcReg);
1076      assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
1077      Stack[Slot] = DestReg;
1078      RegMap[DestReg] = Slot;
1079
1080    } else {
1081      // For FMOV we just duplicate the specified value to a new stack slot.
1082      // This could be made better, but would require substantial changes.
1083      duplicateToTop(SrcReg, DestReg, I);
1084    }
1085    }
1086    break;
1087  case TargetInstrInfo::INLINEASM: {
1088    // The inline asm MachineInstr currently only *uses* FP registers for the
1089    // 'f' constraint.  These should be turned into the current ST(x) register
1090    // in the machine instr.  Also, any kills should be explicitly popped after
1091    // the inline asm.
1092    unsigned Kills[7];
1093    unsigned NumKills = 0;
1094    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1095      MachineOperand &Op = MI->getOperand(i);
1096      if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1097        continue;
1098      assert(Op.isUse() && "Only handle inline asm uses right now");
1099
1100      unsigned FPReg = getFPReg(Op);
1101      Op.setReg(getSTReg(FPReg));
1102
1103      // If we kill this operand, make sure to pop it from the stack after the
1104      // asm.  We just remember it for now, and pop them all off at the end in
1105      // a batch.
1106      if (Op.isKill())
1107        Kills[NumKills++] = FPReg;
1108    }
1109
1110    // If this asm kills any FP registers (is the last use of them) we must
1111    // explicitly emit pop instructions for them.  Do this now after the asm has
1112    // executed so that the ST(x) numbers are not off (which would happen if we
1113    // did this inline with operand rewriting).
1114    //
1115    // Note: this might be a non-optimal pop sequence.  We might be able to do
1116    // better by trying to pop in stack order or something.
1117    MachineBasicBlock::iterator InsertPt = MI;
1118    while (NumKills)
1119      freeStackSlotAfter(InsertPt, Kills[--NumKills]);
1120
1121    // Don't delete the inline asm!
1122    return;
1123  }
1124
1125  case X86::RET:
1126  case X86::RETI:
1127    // If RET has an FP register use operand, pass the first one in ST(0) and
1128    // the second one in ST(1).
1129    if (isStackEmpty()) return;  // Quick check to see if any are possible.
1130
1131    // Find the register operands.
1132    unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1133
1134    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1135      MachineOperand &Op = MI->getOperand(i);
1136      if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1137        continue;
1138      // FP Register uses must be kills unless there are two uses of the same
1139      // register, in which case only one will be a kill.
1140      assert(Op.isUse() &&
1141             (Op.isKill() ||                        // Marked kill.
1142              getFPReg(Op) == FirstFPRegOp ||       // Second instance.
1143              MI->killsRegister(Op.getReg())) &&    // Later use is marked kill.
1144             "Ret only defs operands, and values aren't live beyond it");
1145
1146      if (FirstFPRegOp == ~0U)
1147        FirstFPRegOp = getFPReg(Op);
1148      else {
1149        assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1150        SecondFPRegOp = getFPReg(Op);
1151      }
1152
1153      // Remove the operand so that later passes don't see it.
1154      MI->RemoveOperand(i);
1155      --i, --e;
1156    }
1157
1158    // There are only four possibilities here:
1159    // 1) we are returning a single FP value.  In this case, it has to be in
1160    //    ST(0) already, so just declare success by removing the value from the
1161    //    FP Stack.
1162    if (SecondFPRegOp == ~0U) {
1163      // Assert that the top of stack contains the right FP register.
1164      assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1165             "Top of stack not the right register for RET!");
1166
1167      // Ok, everything is good, mark the value as not being on the stack
1168      // anymore so that our assertion about the stack being empty at end of
1169      // block doesn't fire.
1170      StackTop = 0;
1171      return;
1172    }
1173
1174    // Otherwise, we are returning two values:
1175    // 2) If returning the same value for both, we only have one thing in the FP
1176    //    stack.  Consider:  RET FP1, FP1
1177    if (StackTop == 1) {
1178      assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1179             "Stack misconfiguration for RET!");
1180
1181      // Duplicate the TOS so that we return it twice.  Just pick some other FPx
1182      // register to hold it.
1183      unsigned NewReg = (FirstFPRegOp+1)%7;
1184      duplicateToTop(FirstFPRegOp, NewReg, MI);
1185      FirstFPRegOp = NewReg;
1186    }
1187
1188    /// Okay we know we have two different FPx operands now:
1189    assert(StackTop == 2 && "Must have two values live!");
1190
1191    /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1192    ///    in ST(1).  In this case, emit an fxch.
1193    if (getStackEntry(0) == SecondFPRegOp) {
1194      assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1195      moveToTop(FirstFPRegOp, MI);
1196    }
1197
1198    /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1199    /// ST(1).  Just remove both from our understanding of the stack and return.
1200    assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
1201    assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
1202    StackTop = 0;
1203    return;
1204  }
1205
1206  I = MBB->erase(I);  // Remove the pseudo instruction
1207  --I;
1208}
1209