SystemZISelLowering.cpp revision 302408
1//===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SystemZTargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "SystemZISelLowering.h"
15#include "SystemZCallingConv.h"
16#include "SystemZConstantPoolValue.h"
17#include "SystemZMachineFunctionInfo.h"
18#include "SystemZTargetMachine.h"
19#include "llvm/CodeGen/CallingConvLower.h"
20#include "llvm/CodeGen/MachineInstrBuilder.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
23#include "llvm/IR/Intrinsics.h"
24#include <cctype>
25
26using namespace llvm;
27
28#define DEBUG_TYPE "systemz-lower"
29
30namespace {
31// Represents a sequence for extracting a 0/1 value from an IPM result:
32// (((X ^ XORValue) + AddValue) >> Bit)
33struct IPMConversion {
34  IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
35    : XORValue(xorValue), AddValue(addValue), Bit(bit) {}
36
37  int64_t XORValue;
38  int64_t AddValue;
39  unsigned Bit;
40};
41
42// Represents information about a comparison.
43struct Comparison {
44  Comparison(SDValue Op0In, SDValue Op1In)
45    : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
46
47  // The operands to the comparison.
48  SDValue Op0, Op1;
49
50  // The opcode that should be used to compare Op0 and Op1.
51  unsigned Opcode;
52
53  // A SystemZICMP value.  Only used for integer comparisons.
54  unsigned ICmpType;
55
56  // The mask of CC values that Opcode can produce.
57  unsigned CCValid;
58
59  // The mask of CC values for which the original condition is true.
60  unsigned CCMask;
61};
62} // end anonymous namespace
63
64// Classify VT as either 32 or 64 bit.
65static bool is32Bit(EVT VT) {
66  switch (VT.getSimpleVT().SimpleTy) {
67  case MVT::i32:
68    return true;
69  case MVT::i64:
70    return false;
71  default:
72    llvm_unreachable("Unsupported type");
73  }
74}
75
76// Return a version of MachineOperand that can be safely used before the
77// final use.
78static MachineOperand earlyUseOperand(MachineOperand Op) {
79  if (Op.isReg())
80    Op.setIsKill(false);
81  return Op;
82}
83
84SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
85                                             const SystemZSubtarget &STI)
86    : TargetLowering(TM), Subtarget(STI) {
87  MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize());
88
89  // Set up the register classes.
90  if (Subtarget.hasHighWord())
91    addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
92  else
93    addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
94  addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
95  if (Subtarget.hasVector()) {
96    addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
97    addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
98  } else {
99    addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
100    addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
101  }
102  addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
103
104  if (Subtarget.hasVector()) {
105    addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
106    addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
107    addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
108    addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
109    addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
110    addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
111  }
112
113  // Compute derived properties from the register classes
114  computeRegisterProperties(Subtarget.getRegisterInfo());
115
116  // Set up special registers.
117  setStackPointerRegisterToSaveRestore(SystemZ::R15D);
118
119  // TODO: It may be better to default to latency-oriented scheduling, however
120  // LLVM's current latency-oriented scheduler can't handle physreg definitions
121  // such as SystemZ has with CC, so set this to the register-pressure
122  // scheduler, because it can.
123  setSchedulingPreference(Sched::RegPressure);
124
125  setBooleanContents(ZeroOrOneBooleanContent);
126  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
127
128  // Instructions are strings of 2-byte aligned 2-byte values.
129  setMinFunctionAlignment(2);
130
131  // Handle operations that are handled in a similar way for all types.
132  for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
133       I <= MVT::LAST_FP_VALUETYPE;
134       ++I) {
135    MVT VT = MVT::SimpleValueType(I);
136    if (isTypeLegal(VT)) {
137      // Lower SET_CC into an IPM-based sequence.
138      setOperationAction(ISD::SETCC, VT, Custom);
139
140      // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
141      setOperationAction(ISD::SELECT, VT, Expand);
142
143      // Lower SELECT_CC and BR_CC into separate comparisons and branches.
144      setOperationAction(ISD::SELECT_CC, VT, Custom);
145      setOperationAction(ISD::BR_CC,     VT, Custom);
146    }
147  }
148
149  // Expand jump table branches as address arithmetic followed by an
150  // indirect jump.
151  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
152
153  // Expand BRCOND into a BR_CC (see above).
154  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
155
156  // Handle integer types.
157  for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
158       I <= MVT::LAST_INTEGER_VALUETYPE;
159       ++I) {
160    MVT VT = MVT::SimpleValueType(I);
161    if (isTypeLegal(VT)) {
162      // Expand individual DIV and REMs into DIVREMs.
163      setOperationAction(ISD::SDIV, VT, Expand);
164      setOperationAction(ISD::UDIV, VT, Expand);
165      setOperationAction(ISD::SREM, VT, Expand);
166      setOperationAction(ISD::UREM, VT, Expand);
167      setOperationAction(ISD::SDIVREM, VT, Custom);
168      setOperationAction(ISD::UDIVREM, VT, Custom);
169
170      // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
171      // stores, putting a serialization instruction after the stores.
172      setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
173      setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
174
175      // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
176      // available, or if the operand is constant.
177      setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
178
179      // Use POPCNT on z196 and above.
180      if (Subtarget.hasPopulationCount())
181        setOperationAction(ISD::CTPOP, VT, Custom);
182      else
183        setOperationAction(ISD::CTPOP, VT, Expand);
184
185      // No special instructions for these.
186      setOperationAction(ISD::CTTZ,            VT, Expand);
187      setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
188      setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
189      setOperationAction(ISD::ROTR,            VT, Expand);
190
191      // Use *MUL_LOHI where possible instead of MULH*.
192      setOperationAction(ISD::MULHS, VT, Expand);
193      setOperationAction(ISD::MULHU, VT, Expand);
194      setOperationAction(ISD::SMUL_LOHI, VT, Custom);
195      setOperationAction(ISD::UMUL_LOHI, VT, Custom);
196
197      // Only z196 and above have native support for conversions to unsigned.
198      if (!Subtarget.hasFPExtension())
199        setOperationAction(ISD::FP_TO_UINT, VT, Expand);
200    }
201  }
202
203  // Type legalization will convert 8- and 16-bit atomic operations into
204  // forms that operate on i32s (but still keeping the original memory VT).
205  // Lower them into full i32 operations.
206  setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
207  setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
208  setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
209  setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
210  setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
211  setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
212  setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
213  setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
214  setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
215  setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
216  setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
217  setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Custom);
218
219  // z10 has instructions for signed but not unsigned FP conversion.
220  // Handle unsigned 32-bit types as signed 64-bit types.
221  if (!Subtarget.hasFPExtension()) {
222    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
223    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
224  }
225
226  // We have native support for a 64-bit CTLZ, via FLOGR.
227  setOperationAction(ISD::CTLZ, MVT::i32, Promote);
228  setOperationAction(ISD::CTLZ, MVT::i64, Legal);
229
230  // Give LowerOperation the chance to replace 64-bit ORs with subregs.
231  setOperationAction(ISD::OR, MVT::i64, Custom);
232
233  // FIXME: Can we support these natively?
234  setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
235  setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
236  setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
237
238  // We have native instructions for i8, i16 and i32 extensions, but not i1.
239  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
240  for (MVT VT : MVT::integer_valuetypes()) {
241    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
242    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
243    setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
244  }
245
246  // Handle the various types of symbolic address.
247  setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
248  setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
249  setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
250  setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
251  setOperationAction(ISD::JumpTable,        PtrVT, Custom);
252
253  // We need to handle dynamic allocations specially because of the
254  // 160-byte area at the bottom of the stack.
255  setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
256
257  // Use custom expanders so that we can force the function to use
258  // a frame pointer.
259  setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
260  setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
261
262  // Handle prefetches with PFD or PFDRL.
263  setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
264
265  for (MVT VT : MVT::vector_valuetypes()) {
266    // Assume by default that all vector operations need to be expanded.
267    for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
268      if (getOperationAction(Opcode, VT) == Legal)
269        setOperationAction(Opcode, VT, Expand);
270
271    // Likewise all truncating stores and extending loads.
272    for (MVT InnerVT : MVT::vector_valuetypes()) {
273      setTruncStoreAction(VT, InnerVT, Expand);
274      setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
275      setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
276      setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
277    }
278
279    if (isTypeLegal(VT)) {
280      // These operations are legal for anything that can be stored in a
281      // vector register, even if there is no native support for the format
282      // as such.  In particular, we can do these for v4f32 even though there
283      // are no specific instructions for that format.
284      setOperationAction(ISD::LOAD, VT, Legal);
285      setOperationAction(ISD::STORE, VT, Legal);
286      setOperationAction(ISD::VSELECT, VT, Legal);
287      setOperationAction(ISD::BITCAST, VT, Legal);
288      setOperationAction(ISD::UNDEF, VT, Legal);
289
290      // Likewise, except that we need to replace the nodes with something
291      // more specific.
292      setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
293      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
294    }
295  }
296
297  // Handle integer vector types.
298  for (MVT VT : MVT::integer_vector_valuetypes()) {
299    if (isTypeLegal(VT)) {
300      // These operations have direct equivalents.
301      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
302      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
303      setOperationAction(ISD::ADD, VT, Legal);
304      setOperationAction(ISD::SUB, VT, Legal);
305      if (VT != MVT::v2i64)
306        setOperationAction(ISD::MUL, VT, Legal);
307      setOperationAction(ISD::AND, VT, Legal);
308      setOperationAction(ISD::OR, VT, Legal);
309      setOperationAction(ISD::XOR, VT, Legal);
310      setOperationAction(ISD::CTPOP, VT, Custom);
311      setOperationAction(ISD::CTTZ, VT, Legal);
312      setOperationAction(ISD::CTLZ, VT, Legal);
313      setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
314      setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
315
316      // Convert a GPR scalar to a vector by inserting it into element 0.
317      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
318
319      // Use a series of unpacks for extensions.
320      setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
321      setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
322
323      // Detect shifts by a scalar amount and convert them into
324      // V*_BY_SCALAR.
325      setOperationAction(ISD::SHL, VT, Custom);
326      setOperationAction(ISD::SRA, VT, Custom);
327      setOperationAction(ISD::SRL, VT, Custom);
328
329      // At present ROTL isn't matched by DAGCombiner.  ROTR should be
330      // converted into ROTL.
331      setOperationAction(ISD::ROTL, VT, Expand);
332      setOperationAction(ISD::ROTR, VT, Expand);
333
334      // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
335      // and inverting the result as necessary.
336      setOperationAction(ISD::SETCC, VT, Custom);
337    }
338  }
339
340  if (Subtarget.hasVector()) {
341    // There should be no need to check for float types other than v2f64
342    // since <2 x f32> isn't a legal type.
343    setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
344    setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
345    setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
346    setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
347  }
348
349  // Handle floating-point types.
350  for (unsigned I = MVT::FIRST_FP_VALUETYPE;
351       I <= MVT::LAST_FP_VALUETYPE;
352       ++I) {
353    MVT VT = MVT::SimpleValueType(I);
354    if (isTypeLegal(VT)) {
355      // We can use FI for FRINT.
356      setOperationAction(ISD::FRINT, VT, Legal);
357
358      // We can use the extended form of FI for other rounding operations.
359      if (Subtarget.hasFPExtension()) {
360        setOperationAction(ISD::FNEARBYINT, VT, Legal);
361        setOperationAction(ISD::FFLOOR, VT, Legal);
362        setOperationAction(ISD::FCEIL, VT, Legal);
363        setOperationAction(ISD::FTRUNC, VT, Legal);
364        setOperationAction(ISD::FROUND, VT, Legal);
365      }
366
367      // No special instructions for these.
368      setOperationAction(ISD::FSIN, VT, Expand);
369      setOperationAction(ISD::FCOS, VT, Expand);
370      setOperationAction(ISD::FSINCOS, VT, Expand);
371      setOperationAction(ISD::FREM, VT, Expand);
372      setOperationAction(ISD::FPOW, VT, Expand);
373    }
374  }
375
376  // Handle floating-point vector types.
377  if (Subtarget.hasVector()) {
378    // Scalar-to-vector conversion is just a subreg.
379    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
380    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
381
382    // Some insertions and extractions can be done directly but others
383    // need to go via integers.
384    setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
385    setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
386    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
387    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
388
389    // These operations have direct equivalents.
390    setOperationAction(ISD::FADD, MVT::v2f64, Legal);
391    setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
392    setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
393    setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
394    setOperationAction(ISD::FMA, MVT::v2f64, Legal);
395    setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
396    setOperationAction(ISD::FABS, MVT::v2f64, Legal);
397    setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
398    setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
399    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
400    setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
401    setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
402    setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
403    setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
404  }
405
406  // We have fused multiply-addition for f32 and f64 but not f128.
407  setOperationAction(ISD::FMA, MVT::f32,  Legal);
408  setOperationAction(ISD::FMA, MVT::f64,  Legal);
409  setOperationAction(ISD::FMA, MVT::f128, Expand);
410
411  // Needed so that we don't try to implement f128 constant loads using
412  // a load-and-extend of a f80 constant (in cases where the constant
413  // would fit in an f80).
414  for (MVT VT : MVT::fp_valuetypes())
415    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
416
417  // Floating-point truncation and stores need to be done separately.
418  setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
419  setTruncStoreAction(MVT::f128, MVT::f32, Expand);
420  setTruncStoreAction(MVT::f128, MVT::f64, Expand);
421
422  // We have 64-bit FPR<->GPR moves, but need special handling for
423  // 32-bit forms.
424  if (!Subtarget.hasVector()) {
425    setOperationAction(ISD::BITCAST, MVT::i32, Custom);
426    setOperationAction(ISD::BITCAST, MVT::f32, Custom);
427  }
428
429  // VASTART and VACOPY need to deal with the SystemZ-specific varargs
430  // structure, but VAEND is a no-op.
431  setOperationAction(ISD::VASTART, MVT::Other, Custom);
432  setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
433  setOperationAction(ISD::VAEND,   MVT::Other, Expand);
434
435  // Codes for which we want to perform some z-specific combinations.
436  setTargetDAGCombine(ISD::SIGN_EXTEND);
437  setTargetDAGCombine(ISD::STORE);
438  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
439  setTargetDAGCombine(ISD::FP_ROUND);
440
441  // Handle intrinsics.
442  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
443  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
444
445  // We want to use MVC in preference to even a single load/store pair.
446  MaxStoresPerMemcpy = 0;
447  MaxStoresPerMemcpyOptSize = 0;
448
449  // The main memset sequence is a byte store followed by an MVC.
450  // Two STC or MV..I stores win over that, but the kind of fused stores
451  // generated by target-independent code don't when the byte value is
452  // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
453  // than "STC;MVC".  Handle the choice in target-specific code instead.
454  MaxStoresPerMemset = 0;
455  MaxStoresPerMemsetOptSize = 0;
456}
457
458EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
459                                              LLVMContext &, EVT VT) const {
460  if (!VT.isVector())
461    return MVT::i32;
462  return VT.changeVectorElementTypeToInteger();
463}
464
465bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
466  VT = VT.getScalarType();
467
468  if (!VT.isSimple())
469    return false;
470
471  switch (VT.getSimpleVT().SimpleTy) {
472  case MVT::f32:
473  case MVT::f64:
474    return true;
475  case MVT::f128:
476    return false;
477  default:
478    break;
479  }
480
481  return false;
482}
483
484bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
485  // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
486  return Imm.isZero() || Imm.isNegZero();
487}
488
489bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
490  // We can use CGFI or CLGFI.
491  return isInt<32>(Imm) || isUInt<32>(Imm);
492}
493
494bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
495  // We can use ALGFI or SLGFI.
496  return isUInt<32>(Imm) || isUInt<32>(-Imm);
497}
498
499bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
500                                                           unsigned,
501                                                           unsigned,
502                                                           bool *Fast) const {
503  // Unaligned accesses should never be slower than the expanded version.
504  // We check specifically for aligned accesses in the few cases where
505  // they are required.
506  if (Fast)
507    *Fast = true;
508  return true;
509}
510
511bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
512                                                  const AddrMode &AM, Type *Ty,
513                                                  unsigned AS) const {
514  // Punt on globals for now, although they can be used in limited
515  // RELATIVE LONG cases.
516  if (AM.BaseGV)
517    return false;
518
519  // Require a 20-bit signed offset.
520  if (!isInt<20>(AM.BaseOffs))
521    return false;
522
523  // Indexing is OK but no scale factor can be applied.
524  return AM.Scale == 0 || AM.Scale == 1;
525}
526
527bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
528  if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
529    return false;
530  unsigned FromBits = FromType->getPrimitiveSizeInBits();
531  unsigned ToBits = ToType->getPrimitiveSizeInBits();
532  return FromBits > ToBits;
533}
534
535bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
536  if (!FromVT.isInteger() || !ToVT.isInteger())
537    return false;
538  unsigned FromBits = FromVT.getSizeInBits();
539  unsigned ToBits = ToVT.getSizeInBits();
540  return FromBits > ToBits;
541}
542
543//===----------------------------------------------------------------------===//
544// Inline asm support
545//===----------------------------------------------------------------------===//
546
547TargetLowering::ConstraintType
548SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
549  if (Constraint.size() == 1) {
550    switch (Constraint[0]) {
551    case 'a': // Address register
552    case 'd': // Data register (equivalent to 'r')
553    case 'f': // Floating-point register
554    case 'h': // High-part register
555    case 'r': // General-purpose register
556      return C_RegisterClass;
557
558    case 'Q': // Memory with base and unsigned 12-bit displacement
559    case 'R': // Likewise, plus an index
560    case 'S': // Memory with base and signed 20-bit displacement
561    case 'T': // Likewise, plus an index
562    case 'm': // Equivalent to 'T'.
563      return C_Memory;
564
565    case 'I': // Unsigned 8-bit constant
566    case 'J': // Unsigned 12-bit constant
567    case 'K': // Signed 16-bit constant
568    case 'L': // Signed 20-bit displacement (on all targets we support)
569    case 'M': // 0x7fffffff
570      return C_Other;
571
572    default:
573      break;
574    }
575  }
576  return TargetLowering::getConstraintType(Constraint);
577}
578
579TargetLowering::ConstraintWeight SystemZTargetLowering::
580getSingleConstraintMatchWeight(AsmOperandInfo &info,
581                               const char *constraint) const {
582  ConstraintWeight weight = CW_Invalid;
583  Value *CallOperandVal = info.CallOperandVal;
584  // If we don't have a value, we can't do a match,
585  // but allow it at the lowest weight.
586  if (!CallOperandVal)
587    return CW_Default;
588  Type *type = CallOperandVal->getType();
589  // Look at the constraint type.
590  switch (*constraint) {
591  default:
592    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
593    break;
594
595  case 'a': // Address register
596  case 'd': // Data register (equivalent to 'r')
597  case 'h': // High-part register
598  case 'r': // General-purpose register
599    if (CallOperandVal->getType()->isIntegerTy())
600      weight = CW_Register;
601    break;
602
603  case 'f': // Floating-point register
604    if (type->isFloatingPointTy())
605      weight = CW_Register;
606    break;
607
608  case 'I': // Unsigned 8-bit constant
609    if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
610      if (isUInt<8>(C->getZExtValue()))
611        weight = CW_Constant;
612    break;
613
614  case 'J': // Unsigned 12-bit constant
615    if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
616      if (isUInt<12>(C->getZExtValue()))
617        weight = CW_Constant;
618    break;
619
620  case 'K': // Signed 16-bit constant
621    if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
622      if (isInt<16>(C->getSExtValue()))
623        weight = CW_Constant;
624    break;
625
626  case 'L': // Signed 20-bit displacement (on all targets we support)
627    if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
628      if (isInt<20>(C->getSExtValue()))
629        weight = CW_Constant;
630    break;
631
632  case 'M': // 0x7fffffff
633    if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
634      if (C->getZExtValue() == 0x7fffffff)
635        weight = CW_Constant;
636    break;
637  }
638  return weight;
639}
640
641// Parse a "{tNNN}" register constraint for which the register type "t"
642// has already been verified.  MC is the class associated with "t" and
643// Map maps 0-based register numbers to LLVM register numbers.
644static std::pair<unsigned, const TargetRegisterClass *>
645parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
646                    const unsigned *Map) {
647  assert(*(Constraint.end()-1) == '}' && "Missing '}'");
648  if (isdigit(Constraint[2])) {
649    unsigned Index;
650    bool Failed =
651        Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
652    if (!Failed && Index < 16 && Map[Index])
653      return std::make_pair(Map[Index], RC);
654  }
655  return std::make_pair(0U, nullptr);
656}
657
658std::pair<unsigned, const TargetRegisterClass *>
659SystemZTargetLowering::getRegForInlineAsmConstraint(
660    const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
661  if (Constraint.size() == 1) {
662    // GCC Constraint Letters
663    switch (Constraint[0]) {
664    default: break;
665    case 'd': // Data register (equivalent to 'r')
666    case 'r': // General-purpose register
667      if (VT == MVT::i64)
668        return std::make_pair(0U, &SystemZ::GR64BitRegClass);
669      else if (VT == MVT::i128)
670        return std::make_pair(0U, &SystemZ::GR128BitRegClass);
671      return std::make_pair(0U, &SystemZ::GR32BitRegClass);
672
673    case 'a': // Address register
674      if (VT == MVT::i64)
675        return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
676      else if (VT == MVT::i128)
677        return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
678      return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
679
680    case 'h': // High-part register (an LLVM extension)
681      return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
682
683    case 'f': // Floating-point register
684      if (VT == MVT::f64)
685        return std::make_pair(0U, &SystemZ::FP64BitRegClass);
686      else if (VT == MVT::f128)
687        return std::make_pair(0U, &SystemZ::FP128BitRegClass);
688      return std::make_pair(0U, &SystemZ::FP32BitRegClass);
689    }
690  }
691  if (Constraint.size() > 0 && Constraint[0] == '{') {
692    // We need to override the default register parsing for GPRs and FPRs
693    // because the interpretation depends on VT.  The internal names of
694    // the registers are also different from the external names
695    // (F0D and F0S instead of F0, etc.).
696    if (Constraint[1] == 'r') {
697      if (VT == MVT::i32)
698        return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
699                                   SystemZMC::GR32Regs);
700      if (VT == MVT::i128)
701        return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
702                                   SystemZMC::GR128Regs);
703      return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
704                                 SystemZMC::GR64Regs);
705    }
706    if (Constraint[1] == 'f') {
707      if (VT == MVT::f32)
708        return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
709                                   SystemZMC::FP32Regs);
710      if (VT == MVT::f128)
711        return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
712                                   SystemZMC::FP128Regs);
713      return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
714                                 SystemZMC::FP64Regs);
715    }
716  }
717  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
718}
719
720void SystemZTargetLowering::
721LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
722                             std::vector<SDValue> &Ops,
723                             SelectionDAG &DAG) const {
724  // Only support length 1 constraints for now.
725  if (Constraint.length() == 1) {
726    switch (Constraint[0]) {
727    case 'I': // Unsigned 8-bit constant
728      if (auto *C = dyn_cast<ConstantSDNode>(Op))
729        if (isUInt<8>(C->getZExtValue()))
730          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
731                                              Op.getValueType()));
732      return;
733
734    case 'J': // Unsigned 12-bit constant
735      if (auto *C = dyn_cast<ConstantSDNode>(Op))
736        if (isUInt<12>(C->getZExtValue()))
737          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
738                                              Op.getValueType()));
739      return;
740
741    case 'K': // Signed 16-bit constant
742      if (auto *C = dyn_cast<ConstantSDNode>(Op))
743        if (isInt<16>(C->getSExtValue()))
744          Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
745                                              Op.getValueType()));
746      return;
747
748    case 'L': // Signed 20-bit displacement (on all targets we support)
749      if (auto *C = dyn_cast<ConstantSDNode>(Op))
750        if (isInt<20>(C->getSExtValue()))
751          Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
752                                              Op.getValueType()));
753      return;
754
755    case 'M': // 0x7fffffff
756      if (auto *C = dyn_cast<ConstantSDNode>(Op))
757        if (C->getZExtValue() == 0x7fffffff)
758          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
759                                              Op.getValueType()));
760      return;
761    }
762  }
763  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
764}
765
766//===----------------------------------------------------------------------===//
767// Calling conventions
768//===----------------------------------------------------------------------===//
769
770#include "SystemZGenCallingConv.inc"
771
772bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
773                                                     Type *ToType) const {
774  return isTruncateFree(FromType, ToType);
775}
776
777bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
778  return CI->isTailCall();
779}
780
781// We do not yet support 128-bit single-element vector types.  If the user
782// attempts to use such types as function argument or return type, prefer
783// to error out instead of emitting code violating the ABI.
784static void VerifyVectorType(MVT VT, EVT ArgVT) {
785  if (ArgVT.isVector() && !VT.isVector())
786    report_fatal_error("Unsupported vector argument or return type");
787}
788
789static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
790  for (unsigned i = 0; i < Ins.size(); ++i)
791    VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
792}
793
794static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
795  for (unsigned i = 0; i < Outs.size(); ++i)
796    VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
797}
798
799// Value is a value that has been passed to us in the location described by VA
800// (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
801// any loads onto Chain.
802static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL,
803                                   CCValAssign &VA, SDValue Chain,
804                                   SDValue Value) {
805  // If the argument has been promoted from a smaller type, insert an
806  // assertion to capture this.
807  if (VA.getLocInfo() == CCValAssign::SExt)
808    Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
809                        DAG.getValueType(VA.getValVT()));
810  else if (VA.getLocInfo() == CCValAssign::ZExt)
811    Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
812                        DAG.getValueType(VA.getValVT()));
813
814  if (VA.isExtInLoc())
815    Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
816  else if (VA.getLocInfo() == CCValAssign::Indirect)
817    Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value,
818                        MachinePointerInfo(), false, false, false, 0);
819  else if (VA.getLocInfo() == CCValAssign::BCvt) {
820    // If this is a short vector argument loaded from the stack,
821    // extend from i64 to full vector size and then bitcast.
822    assert(VA.getLocVT() == MVT::i64);
823    assert(VA.getValVT().isVector());
824    Value = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i64,
825                        Value, DAG.getUNDEF(MVT::i64));
826    Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
827  } else
828    assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
829  return Value;
830}
831
832// Value is a value of type VA.getValVT() that we need to copy into
833// the location described by VA.  Return a copy of Value converted to
834// VA.getValVT().  The caller is responsible for handling indirect values.
835static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL,
836                                   CCValAssign &VA, SDValue Value) {
837  switch (VA.getLocInfo()) {
838  case CCValAssign::SExt:
839    return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
840  case CCValAssign::ZExt:
841    return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
842  case CCValAssign::AExt:
843    return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
844  case CCValAssign::BCvt:
845    // If this is a short vector argument to be stored to the stack,
846    // bitcast to v2i64 and then extract first element.
847    assert(VA.getLocVT() == MVT::i64);
848    assert(VA.getValVT().isVector());
849    Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
850    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
851                       DAG.getConstant(0, DL, MVT::i32));
852  case CCValAssign::Full:
853    return Value;
854  default:
855    llvm_unreachable("Unhandled getLocInfo()");
856  }
857}
858
859SDValue SystemZTargetLowering::
860LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
861                     const SmallVectorImpl<ISD::InputArg> &Ins,
862                     SDLoc DL, SelectionDAG &DAG,
863                     SmallVectorImpl<SDValue> &InVals) const {
864  MachineFunction &MF = DAG.getMachineFunction();
865  MachineFrameInfo *MFI = MF.getFrameInfo();
866  MachineRegisterInfo &MRI = MF.getRegInfo();
867  SystemZMachineFunctionInfo *FuncInfo =
868      MF.getInfo<SystemZMachineFunctionInfo>();
869  auto *TFL =
870      static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
871
872  // Detect unsupported vector argument types.
873  if (Subtarget.hasVector())
874    VerifyVectorTypes(Ins);
875
876  // Assign locations to all of the incoming arguments.
877  SmallVector<CCValAssign, 16> ArgLocs;
878  SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
879  CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
880
881  unsigned NumFixedGPRs = 0;
882  unsigned NumFixedFPRs = 0;
883  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
884    SDValue ArgValue;
885    CCValAssign &VA = ArgLocs[I];
886    EVT LocVT = VA.getLocVT();
887    if (VA.isRegLoc()) {
888      // Arguments passed in registers
889      const TargetRegisterClass *RC;
890      switch (LocVT.getSimpleVT().SimpleTy) {
891      default:
892        // Integers smaller than i64 should be promoted to i64.
893        llvm_unreachable("Unexpected argument type");
894      case MVT::i32:
895        NumFixedGPRs += 1;
896        RC = &SystemZ::GR32BitRegClass;
897        break;
898      case MVT::i64:
899        NumFixedGPRs += 1;
900        RC = &SystemZ::GR64BitRegClass;
901        break;
902      case MVT::f32:
903        NumFixedFPRs += 1;
904        RC = &SystemZ::FP32BitRegClass;
905        break;
906      case MVT::f64:
907        NumFixedFPRs += 1;
908        RC = &SystemZ::FP64BitRegClass;
909        break;
910      case MVT::v16i8:
911      case MVT::v8i16:
912      case MVT::v4i32:
913      case MVT::v2i64:
914      case MVT::v4f32:
915      case MVT::v2f64:
916        RC = &SystemZ::VR128BitRegClass;
917        break;
918      }
919
920      unsigned VReg = MRI.createVirtualRegister(RC);
921      MRI.addLiveIn(VA.getLocReg(), VReg);
922      ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
923    } else {
924      assert(VA.isMemLoc() && "Argument not register or memory");
925
926      // Create the frame index object for this incoming parameter.
927      int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8,
928                                      VA.getLocMemOffset(), true);
929
930      // Create the SelectionDAG nodes corresponding to a load
931      // from this parameter.  Unpromoted ints and floats are
932      // passed as right-justified 8-byte values.
933      EVT PtrVT = getPointerTy(DAG.getDataLayout());
934      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
935      if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
936        FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
937                          DAG.getIntPtrConstant(4, DL));
938      ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
939                             MachinePointerInfo::getFixedStack(MF, FI), false,
940                             false, false, 0);
941    }
942
943    // Convert the value of the argument register into the value that's
944    // being passed.
945    InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
946  }
947
948  if (IsVarArg) {
949    // Save the number of non-varargs registers for later use by va_start, etc.
950    FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
951    FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
952
953    // Likewise the address (in the form of a frame index) of where the
954    // first stack vararg would be.  The 1-byte size here is arbitrary.
955    int64_t StackSize = CCInfo.getNextStackOffset();
956    FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true));
957
958    // ...and a similar frame index for the caller-allocated save area
959    // that will be used to store the incoming registers.
960    int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
961    unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true);
962    FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
963
964    // Store the FPR varargs in the reserved frame slots.  (We store the
965    // GPRs as part of the prologue.)
966    if (NumFixedFPRs < SystemZ::NumArgFPRs) {
967      SDValue MemOps[SystemZ::NumArgFPRs];
968      for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
969        unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
970        int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true);
971        SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
972        unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
973                                     &SystemZ::FP64BitRegClass);
974        SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
975        MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
976                                 MachinePointerInfo::getFixedStack(MF, FI),
977                                 false, false, 0);
978      }
979      // Join the stores, which are independent of one another.
980      Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
981                          makeArrayRef(&MemOps[NumFixedFPRs],
982                                       SystemZ::NumArgFPRs-NumFixedFPRs));
983    }
984  }
985
986  return Chain;
987}
988
989static bool canUseSiblingCall(const CCState &ArgCCInfo,
990                              SmallVectorImpl<CCValAssign> &ArgLocs) {
991  // Punt if there are any indirect or stack arguments, or if the call
992  // needs the call-saved argument register R6.
993  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
994    CCValAssign &VA = ArgLocs[I];
995    if (VA.getLocInfo() == CCValAssign::Indirect)
996      return false;
997    if (!VA.isRegLoc())
998      return false;
999    unsigned Reg = VA.getLocReg();
1000    if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1001      return false;
1002  }
1003  return true;
1004}
1005
1006SDValue
1007SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1008                                 SmallVectorImpl<SDValue> &InVals) const {
1009  SelectionDAG &DAG = CLI.DAG;
1010  SDLoc &DL = CLI.DL;
1011  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1012  SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1013  SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1014  SDValue Chain = CLI.Chain;
1015  SDValue Callee = CLI.Callee;
1016  bool &IsTailCall = CLI.IsTailCall;
1017  CallingConv::ID CallConv = CLI.CallConv;
1018  bool IsVarArg = CLI.IsVarArg;
1019  MachineFunction &MF = DAG.getMachineFunction();
1020  EVT PtrVT = getPointerTy(MF.getDataLayout());
1021
1022  // Detect unsupported vector argument and return types.
1023  if (Subtarget.hasVector()) {
1024    VerifyVectorTypes(Outs);
1025    VerifyVectorTypes(Ins);
1026  }
1027
1028  // Analyze the operands of the call, assigning locations to each operand.
1029  SmallVector<CCValAssign, 16> ArgLocs;
1030  SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1031  ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1032
1033  // We don't support GuaranteedTailCallOpt, only automatically-detected
1034  // sibling calls.
1035  if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs))
1036    IsTailCall = false;
1037
1038  // Get a count of how many bytes are to be pushed on the stack.
1039  unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1040
1041  // Mark the start of the call.
1042  if (!IsTailCall)
1043    Chain = DAG.getCALLSEQ_START(Chain,
1044                                 DAG.getConstant(NumBytes, DL, PtrVT, true),
1045                                 DL);
1046
1047  // Copy argument values to their designated locations.
1048  SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1049  SmallVector<SDValue, 8> MemOpChains;
1050  SDValue StackPtr;
1051  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1052    CCValAssign &VA = ArgLocs[I];
1053    SDValue ArgValue = OutVals[I];
1054
1055    if (VA.getLocInfo() == CCValAssign::Indirect) {
1056      // Store the argument in a stack slot and pass its address.
1057      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1058      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1059      MemOpChains.push_back(DAG.getStore(
1060          Chain, DL, ArgValue, SpillSlot,
1061          MachinePointerInfo::getFixedStack(MF, FI), false, false, 0));
1062      ArgValue = SpillSlot;
1063    } else
1064      ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1065
1066    if (VA.isRegLoc())
1067      // Queue up the argument copies and emit them at the end.
1068      RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1069    else {
1070      assert(VA.isMemLoc() && "Argument not register or memory");
1071
1072      // Work out the address of the stack slot.  Unpromoted ints and
1073      // floats are passed as right-justified 8-byte values.
1074      if (!StackPtr.getNode())
1075        StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1076      unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1077      if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1078        Offset += 4;
1079      SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1080                                    DAG.getIntPtrConstant(Offset, DL));
1081
1082      // Emit the store.
1083      MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address,
1084                                         MachinePointerInfo(),
1085                                         false, false, 0));
1086    }
1087  }
1088
1089  // Join the stores, which are independent of one another.
1090  if (!MemOpChains.empty())
1091    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1092
1093  // Accept direct calls by converting symbolic call addresses to the
1094  // associated Target* opcodes.  Force %r1 to be used for indirect
1095  // tail calls.
1096  SDValue Glue;
1097  if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1098    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1099    Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1100  } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1101    Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1102    Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1103  } else if (IsTailCall) {
1104    Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1105    Glue = Chain.getValue(1);
1106    Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1107  }
1108
1109  // Build a sequence of copy-to-reg nodes, chained and glued together.
1110  for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1111    Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1112                             RegsToPass[I].second, Glue);
1113    Glue = Chain.getValue(1);
1114  }
1115
1116  // The first call operand is the chain and the second is the target address.
1117  SmallVector<SDValue, 8> Ops;
1118  Ops.push_back(Chain);
1119  Ops.push_back(Callee);
1120
1121  // Add argument registers to the end of the list so that they are
1122  // known live into the call.
1123  for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1124    Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1125                                  RegsToPass[I].second.getValueType()));
1126
1127  // Add a register mask operand representing the call-preserved registers.
1128  const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1129  const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1130  assert(Mask && "Missing call preserved mask for calling convention");
1131  Ops.push_back(DAG.getRegisterMask(Mask));
1132
1133  // Glue the call to the argument copies, if any.
1134  if (Glue.getNode())
1135    Ops.push_back(Glue);
1136
1137  // Emit the call.
1138  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1139  if (IsTailCall)
1140    return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1141  Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1142  Glue = Chain.getValue(1);
1143
1144  // Mark the end of the call, which is glued to the call itself.
1145  Chain = DAG.getCALLSEQ_END(Chain,
1146                             DAG.getConstant(NumBytes, DL, PtrVT, true),
1147                             DAG.getConstant(0, DL, PtrVT, true),
1148                             Glue, DL);
1149  Glue = Chain.getValue(1);
1150
1151  // Assign locations to each value returned by this call.
1152  SmallVector<CCValAssign, 16> RetLocs;
1153  CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1154  RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1155
1156  // Copy all of the result registers out of their specified physreg.
1157  for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1158    CCValAssign &VA = RetLocs[I];
1159
1160    // Copy the value out, gluing the copy to the end of the call sequence.
1161    SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1162                                          VA.getLocVT(), Glue);
1163    Chain = RetValue.getValue(1);
1164    Glue = RetValue.getValue(2);
1165
1166    // Convert the value of the return register into the value that's
1167    // being returned.
1168    InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1169  }
1170
1171  return Chain;
1172}
1173
1174bool SystemZTargetLowering::
1175CanLowerReturn(CallingConv::ID CallConv,
1176               MachineFunction &MF, bool isVarArg,
1177               const SmallVectorImpl<ISD::OutputArg> &Outs,
1178               LLVMContext &Context) const {
1179  // Detect unsupported vector return types.
1180  if (Subtarget.hasVector())
1181    VerifyVectorTypes(Outs);
1182
1183  SmallVector<CCValAssign, 16> RetLocs;
1184  CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1185  return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1186}
1187
1188SDValue
1189SystemZTargetLowering::LowerReturn(SDValue Chain,
1190                                   CallingConv::ID CallConv, bool IsVarArg,
1191                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
1192                                   const SmallVectorImpl<SDValue> &OutVals,
1193                                   SDLoc DL, SelectionDAG &DAG) const {
1194  MachineFunction &MF = DAG.getMachineFunction();
1195
1196  // Detect unsupported vector return types.
1197  if (Subtarget.hasVector())
1198    VerifyVectorTypes(Outs);
1199
1200  // Assign locations to each returned value.
1201  SmallVector<CCValAssign, 16> RetLocs;
1202  CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1203  RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1204
1205  // Quick exit for void returns
1206  if (RetLocs.empty())
1207    return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1208
1209  // Copy the result values into the output registers.
1210  SDValue Glue;
1211  SmallVector<SDValue, 4> RetOps;
1212  RetOps.push_back(Chain);
1213  for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1214    CCValAssign &VA = RetLocs[I];
1215    SDValue RetValue = OutVals[I];
1216
1217    // Make the return register live on exit.
1218    assert(VA.isRegLoc() && "Can only return in registers!");
1219
1220    // Promote the value as required.
1221    RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1222
1223    // Chain and glue the copies together.
1224    unsigned Reg = VA.getLocReg();
1225    Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1226    Glue = Chain.getValue(1);
1227    RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1228  }
1229
1230  // Update chain and glue.
1231  RetOps[0] = Chain;
1232  if (Glue.getNode())
1233    RetOps.push_back(Glue);
1234
1235  return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1236}
1237
1238SDValue SystemZTargetLowering::
1239prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL, SelectionDAG &DAG) const {
1240  return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain);
1241}
1242
1243// Return true if Op is an intrinsic node with chain that returns the CC value
1244// as its only (other) argument.  Provide the associated SystemZISD opcode and
1245// the mask of valid CC values if so.
1246static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1247                                      unsigned &CCValid) {
1248  unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1249  switch (Id) {
1250  case Intrinsic::s390_tbegin:
1251    Opcode = SystemZISD::TBEGIN;
1252    CCValid = SystemZ::CCMASK_TBEGIN;
1253    return true;
1254
1255  case Intrinsic::s390_tbegin_nofloat:
1256    Opcode = SystemZISD::TBEGIN_NOFLOAT;
1257    CCValid = SystemZ::CCMASK_TBEGIN;
1258    return true;
1259
1260  case Intrinsic::s390_tend:
1261    Opcode = SystemZISD::TEND;
1262    CCValid = SystemZ::CCMASK_TEND;
1263    return true;
1264
1265  default:
1266    return false;
1267  }
1268}
1269
1270// Return true if Op is an intrinsic node without chain that returns the
1271// CC value as its final argument.  Provide the associated SystemZISD
1272// opcode and the mask of valid CC values if so.
1273static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1274  unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1275  switch (Id) {
1276  case Intrinsic::s390_vpkshs:
1277  case Intrinsic::s390_vpksfs:
1278  case Intrinsic::s390_vpksgs:
1279    Opcode = SystemZISD::PACKS_CC;
1280    CCValid = SystemZ::CCMASK_VCMP;
1281    return true;
1282
1283  case Intrinsic::s390_vpklshs:
1284  case Intrinsic::s390_vpklsfs:
1285  case Intrinsic::s390_vpklsgs:
1286    Opcode = SystemZISD::PACKLS_CC;
1287    CCValid = SystemZ::CCMASK_VCMP;
1288    return true;
1289
1290  case Intrinsic::s390_vceqbs:
1291  case Intrinsic::s390_vceqhs:
1292  case Intrinsic::s390_vceqfs:
1293  case Intrinsic::s390_vceqgs:
1294    Opcode = SystemZISD::VICMPES;
1295    CCValid = SystemZ::CCMASK_VCMP;
1296    return true;
1297
1298  case Intrinsic::s390_vchbs:
1299  case Intrinsic::s390_vchhs:
1300  case Intrinsic::s390_vchfs:
1301  case Intrinsic::s390_vchgs:
1302    Opcode = SystemZISD::VICMPHS;
1303    CCValid = SystemZ::CCMASK_VCMP;
1304    return true;
1305
1306  case Intrinsic::s390_vchlbs:
1307  case Intrinsic::s390_vchlhs:
1308  case Intrinsic::s390_vchlfs:
1309  case Intrinsic::s390_vchlgs:
1310    Opcode = SystemZISD::VICMPHLS;
1311    CCValid = SystemZ::CCMASK_VCMP;
1312    return true;
1313
1314  case Intrinsic::s390_vtm:
1315    Opcode = SystemZISD::VTM;
1316    CCValid = SystemZ::CCMASK_VCMP;
1317    return true;
1318
1319  case Intrinsic::s390_vfaebs:
1320  case Intrinsic::s390_vfaehs:
1321  case Intrinsic::s390_vfaefs:
1322    Opcode = SystemZISD::VFAE_CC;
1323    CCValid = SystemZ::CCMASK_ANY;
1324    return true;
1325
1326  case Intrinsic::s390_vfaezbs:
1327  case Intrinsic::s390_vfaezhs:
1328  case Intrinsic::s390_vfaezfs:
1329    Opcode = SystemZISD::VFAEZ_CC;
1330    CCValid = SystemZ::CCMASK_ANY;
1331    return true;
1332
1333  case Intrinsic::s390_vfeebs:
1334  case Intrinsic::s390_vfeehs:
1335  case Intrinsic::s390_vfeefs:
1336    Opcode = SystemZISD::VFEE_CC;
1337    CCValid = SystemZ::CCMASK_ANY;
1338    return true;
1339
1340  case Intrinsic::s390_vfeezbs:
1341  case Intrinsic::s390_vfeezhs:
1342  case Intrinsic::s390_vfeezfs:
1343    Opcode = SystemZISD::VFEEZ_CC;
1344    CCValid = SystemZ::CCMASK_ANY;
1345    return true;
1346
1347  case Intrinsic::s390_vfenebs:
1348  case Intrinsic::s390_vfenehs:
1349  case Intrinsic::s390_vfenefs:
1350    Opcode = SystemZISD::VFENE_CC;
1351    CCValid = SystemZ::CCMASK_ANY;
1352    return true;
1353
1354  case Intrinsic::s390_vfenezbs:
1355  case Intrinsic::s390_vfenezhs:
1356  case Intrinsic::s390_vfenezfs:
1357    Opcode = SystemZISD::VFENEZ_CC;
1358    CCValid = SystemZ::CCMASK_ANY;
1359    return true;
1360
1361  case Intrinsic::s390_vistrbs:
1362  case Intrinsic::s390_vistrhs:
1363  case Intrinsic::s390_vistrfs:
1364    Opcode = SystemZISD::VISTR_CC;
1365    CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1366    return true;
1367
1368  case Intrinsic::s390_vstrcbs:
1369  case Intrinsic::s390_vstrchs:
1370  case Intrinsic::s390_vstrcfs:
1371    Opcode = SystemZISD::VSTRC_CC;
1372    CCValid = SystemZ::CCMASK_ANY;
1373    return true;
1374
1375  case Intrinsic::s390_vstrczbs:
1376  case Intrinsic::s390_vstrczhs:
1377  case Intrinsic::s390_vstrczfs:
1378    Opcode = SystemZISD::VSTRCZ_CC;
1379    CCValid = SystemZ::CCMASK_ANY;
1380    return true;
1381
1382  case Intrinsic::s390_vfcedbs:
1383    Opcode = SystemZISD::VFCMPES;
1384    CCValid = SystemZ::CCMASK_VCMP;
1385    return true;
1386
1387  case Intrinsic::s390_vfchdbs:
1388    Opcode = SystemZISD::VFCMPHS;
1389    CCValid = SystemZ::CCMASK_VCMP;
1390    return true;
1391
1392  case Intrinsic::s390_vfchedbs:
1393    Opcode = SystemZISD::VFCMPHES;
1394    CCValid = SystemZ::CCMASK_VCMP;
1395    return true;
1396
1397  case Intrinsic::s390_vftcidb:
1398    Opcode = SystemZISD::VFTCI;
1399    CCValid = SystemZ::CCMASK_VCMP;
1400    return true;
1401
1402  default:
1403    return false;
1404  }
1405}
1406
1407// Emit an intrinsic with chain with a glued value instead of its CC result.
1408static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op,
1409                                             unsigned Opcode) {
1410  // Copy all operands except the intrinsic ID.
1411  unsigned NumOps = Op.getNumOperands();
1412  SmallVector<SDValue, 6> Ops;
1413  Ops.reserve(NumOps - 1);
1414  Ops.push_back(Op.getOperand(0));
1415  for (unsigned I = 2; I < NumOps; ++I)
1416    Ops.push_back(Op.getOperand(I));
1417
1418  assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
1419  SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1420  SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1421  SDValue OldChain = SDValue(Op.getNode(), 1);
1422  SDValue NewChain = SDValue(Intr.getNode(), 0);
1423  DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
1424  return Intr;
1425}
1426
1427// Emit an intrinsic with a glued value instead of its CC result.
1428static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op,
1429                                     unsigned Opcode) {
1430  // Copy all operands except the intrinsic ID.
1431  unsigned NumOps = Op.getNumOperands();
1432  SmallVector<SDValue, 6> Ops;
1433  Ops.reserve(NumOps - 1);
1434  for (unsigned I = 1; I < NumOps; ++I)
1435    Ops.push_back(Op.getOperand(I));
1436
1437  if (Op->getNumValues() == 1)
1438    return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops);
1439  assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result");
1440  SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue);
1441  return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1442}
1443
1444// CC is a comparison that will be implemented using an integer or
1445// floating-point comparison.  Return the condition code mask for
1446// a branch on true.  In the integer case, CCMASK_CMP_UO is set for
1447// unsigned comparisons and clear for signed ones.  In the floating-point
1448// case, CCMASK_CMP_UO has its normal mask meaning (unordered).
1449static unsigned CCMaskForCondCode(ISD::CondCode CC) {
1450#define CONV(X) \
1451  case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
1452  case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
1453  case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
1454
1455  switch (CC) {
1456  default:
1457    llvm_unreachable("Invalid integer condition!");
1458
1459  CONV(EQ);
1460  CONV(NE);
1461  CONV(GT);
1462  CONV(GE);
1463  CONV(LT);
1464  CONV(LE);
1465
1466  case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
1467  case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
1468  }
1469#undef CONV
1470}
1471
1472// Return a sequence for getting a 1 from an IPM result when CC has a
1473// value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
1474// The handling of CC values outside CCValid doesn't matter.
1475static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
1476  // Deal with cases where the result can be taken directly from a bit
1477  // of the IPM result.
1478  if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
1479    return IPMConversion(0, 0, SystemZ::IPM_CC);
1480  if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
1481    return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
1482
1483  // Deal with cases where we can add a value to force the sign bit
1484  // to contain the right value.  Putting the bit in 31 means we can
1485  // use SRL rather than RISBG(L), and also makes it easier to get a
1486  // 0/-1 value, so it has priority over the other tests below.
1487  //
1488  // These sequences rely on the fact that the upper two bits of the
1489  // IPM result are zero.
1490  uint64_t TopBit = uint64_t(1) << 31;
1491  if (CCMask == (CCValid & SystemZ::CCMASK_0))
1492    return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
1493  if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
1494    return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
1495  if (CCMask == (CCValid & (SystemZ::CCMASK_0
1496                            | SystemZ::CCMASK_1
1497                            | SystemZ::CCMASK_2)))
1498    return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
1499  if (CCMask == (CCValid & SystemZ::CCMASK_3))
1500    return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
1501  if (CCMask == (CCValid & (SystemZ::CCMASK_1
1502                            | SystemZ::CCMASK_2
1503                            | SystemZ::CCMASK_3)))
1504    return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
1505
1506  // Next try inverting the value and testing a bit.  0/1 could be
1507  // handled this way too, but we dealt with that case above.
1508  if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
1509    return IPMConversion(-1, 0, SystemZ::IPM_CC);
1510
1511  // Handle cases where adding a value forces a non-sign bit to contain
1512  // the right value.
1513  if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
1514    return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
1515  if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
1516    return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
1517
1518  // The remaining cases are 1, 2, 0/1/3 and 0/2/3.  All these are
1519  // can be done by inverting the low CC bit and applying one of the
1520  // sign-based extractions above.
1521  if (CCMask == (CCValid & SystemZ::CCMASK_1))
1522    return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
1523  if (CCMask == (CCValid & SystemZ::CCMASK_2))
1524    return IPMConversion(1 << SystemZ::IPM_CC,
1525                         TopBit - (3 << SystemZ::IPM_CC), 31);
1526  if (CCMask == (CCValid & (SystemZ::CCMASK_0
1527                            | SystemZ::CCMASK_1
1528                            | SystemZ::CCMASK_3)))
1529    return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
1530  if (CCMask == (CCValid & (SystemZ::CCMASK_0
1531                            | SystemZ::CCMASK_2
1532                            | SystemZ::CCMASK_3)))
1533    return IPMConversion(1 << SystemZ::IPM_CC,
1534                         TopBit - (1 << SystemZ::IPM_CC), 31);
1535
1536  llvm_unreachable("Unexpected CC combination");
1537}
1538
1539// If C can be converted to a comparison against zero, adjust the operands
1540// as necessary.
1541static void adjustZeroCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) {
1542  if (C.ICmpType == SystemZICMP::UnsignedOnly)
1543    return;
1544
1545  auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
1546  if (!ConstOp1)
1547    return;
1548
1549  int64_t Value = ConstOp1->getSExtValue();
1550  if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
1551      (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
1552      (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
1553      (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
1554    C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1555    C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
1556  }
1557}
1558
1559// If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
1560// adjust the operands as necessary.
1561static void adjustSubwordCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) {
1562  // For us to make any changes, it must a comparison between a single-use
1563  // load and a constant.
1564  if (!C.Op0.hasOneUse() ||
1565      C.Op0.getOpcode() != ISD::LOAD ||
1566      C.Op1.getOpcode() != ISD::Constant)
1567    return;
1568
1569  // We must have an 8- or 16-bit load.
1570  auto *Load = cast<LoadSDNode>(C.Op0);
1571  unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1572  if (NumBits != 8 && NumBits != 16)
1573    return;
1574
1575  // The load must be an extending one and the constant must be within the
1576  // range of the unextended value.
1577  auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
1578  uint64_t Value = ConstOp1->getZExtValue();
1579  uint64_t Mask = (1 << NumBits) - 1;
1580  if (Load->getExtensionType() == ISD::SEXTLOAD) {
1581    // Make sure that ConstOp1 is in range of C.Op0.
1582    int64_t SignedValue = ConstOp1->getSExtValue();
1583    if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
1584      return;
1585    if (C.ICmpType != SystemZICMP::SignedOnly) {
1586      // Unsigned comparison between two sign-extended values is equivalent
1587      // to unsigned comparison between two zero-extended values.
1588      Value &= Mask;
1589    } else if (NumBits == 8) {
1590      // Try to treat the comparison as unsigned, so that we can use CLI.
1591      // Adjust CCMask and Value as necessary.
1592      if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
1593        // Test whether the high bit of the byte is set.
1594        Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
1595      else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
1596        // Test whether the high bit of the byte is clear.
1597        Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
1598      else
1599        // No instruction exists for this combination.
1600        return;
1601      C.ICmpType = SystemZICMP::UnsignedOnly;
1602    }
1603  } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
1604    if (Value > Mask)
1605      return;
1606    // If the constant is in range, we can use any comparison.
1607    C.ICmpType = SystemZICMP::Any;
1608  } else
1609    return;
1610
1611  // Make sure that the first operand is an i32 of the right extension type.
1612  ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
1613                              ISD::SEXTLOAD :
1614                              ISD::ZEXTLOAD);
1615  if (C.Op0.getValueType() != MVT::i32 ||
1616      Load->getExtensionType() != ExtType)
1617    C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32,
1618                           Load->getChain(), Load->getBasePtr(),
1619                           Load->getPointerInfo(), Load->getMemoryVT(),
1620                           Load->isVolatile(), Load->isNonTemporal(),
1621                           Load->isInvariant(), Load->getAlignment());
1622
1623  // Make sure that the second operand is an i32 with the right value.
1624  if (C.Op1.getValueType() != MVT::i32 ||
1625      Value != ConstOp1->getZExtValue())
1626    C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
1627}
1628
1629// Return true if Op is either an unextended load, or a load suitable
1630// for integer register-memory comparisons of type ICmpType.
1631static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
1632  auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
1633  if (Load) {
1634    // There are no instructions to compare a register with a memory byte.
1635    if (Load->getMemoryVT() == MVT::i8)
1636      return false;
1637    // Otherwise decide on extension type.
1638    switch (Load->getExtensionType()) {
1639    case ISD::NON_EXTLOAD:
1640      return true;
1641    case ISD::SEXTLOAD:
1642      return ICmpType != SystemZICMP::UnsignedOnly;
1643    case ISD::ZEXTLOAD:
1644      return ICmpType != SystemZICMP::SignedOnly;
1645    default:
1646      break;
1647    }
1648  }
1649  return false;
1650}
1651
1652// Return true if it is better to swap the operands of C.
1653static bool shouldSwapCmpOperands(const Comparison &C) {
1654  // Leave f128 comparisons alone, since they have no memory forms.
1655  if (C.Op0.getValueType() == MVT::f128)
1656    return false;
1657
1658  // Always keep a floating-point constant second, since comparisons with
1659  // zero can use LOAD TEST and comparisons with other constants make a
1660  // natural memory operand.
1661  if (isa<ConstantFPSDNode>(C.Op1))
1662    return false;
1663
1664  // Never swap comparisons with zero since there are many ways to optimize
1665  // those later.
1666  auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
1667  if (ConstOp1 && ConstOp1->getZExtValue() == 0)
1668    return false;
1669
1670  // Also keep natural memory operands second if the loaded value is
1671  // only used here.  Several comparisons have memory forms.
1672  if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
1673    return false;
1674
1675  // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
1676  // In that case we generally prefer the memory to be second.
1677  if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
1678    // The only exceptions are when the second operand is a constant and
1679    // we can use things like CHHSI.
1680    if (!ConstOp1)
1681      return true;
1682    // The unsigned memory-immediate instructions can handle 16-bit
1683    // unsigned integers.
1684    if (C.ICmpType != SystemZICMP::SignedOnly &&
1685        isUInt<16>(ConstOp1->getZExtValue()))
1686      return false;
1687    // The signed memory-immediate instructions can handle 16-bit
1688    // signed integers.
1689    if (C.ICmpType != SystemZICMP::UnsignedOnly &&
1690        isInt<16>(ConstOp1->getSExtValue()))
1691      return false;
1692    return true;
1693  }
1694
1695  // Try to promote the use of CGFR and CLGFR.
1696  unsigned Opcode0 = C.Op0.getOpcode();
1697  if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
1698    return true;
1699  if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
1700    return true;
1701  if (C.ICmpType != SystemZICMP::SignedOnly &&
1702      Opcode0 == ISD::AND &&
1703      C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
1704      cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
1705    return true;
1706
1707  return false;
1708}
1709
1710// Return a version of comparison CC mask CCMask in which the LT and GT
1711// actions are swapped.
1712static unsigned reverseCCMask(unsigned CCMask) {
1713  return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1714          (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1715          (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1716          (CCMask & SystemZ::CCMASK_CMP_UO));
1717}
1718
1719// Check whether C tests for equality between X and Y and whether X - Y
1720// or Y - X is also computed.  In that case it's better to compare the
1721// result of the subtraction against zero.
1722static void adjustForSubtraction(SelectionDAG &DAG, SDLoc DL, Comparison &C) {
1723  if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
1724      C.CCMask == SystemZ::CCMASK_CMP_NE) {
1725    for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1726      SDNode *N = *I;
1727      if (N->getOpcode() == ISD::SUB &&
1728          ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
1729           (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
1730        C.Op0 = SDValue(N, 0);
1731        C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
1732        return;
1733      }
1734    }
1735  }
1736}
1737
1738// Check whether C compares a floating-point value with zero and if that
1739// floating-point value is also negated.  In this case we can use the
1740// negation to set CC, so avoiding separate LOAD AND TEST and
1741// LOAD (NEGATIVE/COMPLEMENT) instructions.
1742static void adjustForFNeg(Comparison &C) {
1743  auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
1744  if (C1 && C1->isZero()) {
1745    for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1746      SDNode *N = *I;
1747      if (N->getOpcode() == ISD::FNEG) {
1748        C.Op0 = SDValue(N, 0);
1749        C.CCMask = reverseCCMask(C.CCMask);
1750        return;
1751      }
1752    }
1753  }
1754}
1755
1756// Check whether C compares (shl X, 32) with 0 and whether X is
1757// also sign-extended.  In that case it is better to test the result
1758// of the sign extension using LTGFR.
1759//
1760// This case is important because InstCombine transforms a comparison
1761// with (sext (trunc X)) into a comparison with (shl X, 32).
1762static void adjustForLTGFR(Comparison &C) {
1763  // Check for a comparison between (shl X, 32) and 0.
1764  if (C.Op0.getOpcode() == ISD::SHL &&
1765      C.Op0.getValueType() == MVT::i64 &&
1766      C.Op1.getOpcode() == ISD::Constant &&
1767      cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1768    auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
1769    if (C1 && C1->getZExtValue() == 32) {
1770      SDValue ShlOp0 = C.Op0.getOperand(0);
1771      // See whether X has any SIGN_EXTEND_INREG uses.
1772      for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
1773        SDNode *N = *I;
1774        if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
1775            cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
1776          C.Op0 = SDValue(N, 0);
1777          return;
1778        }
1779      }
1780    }
1781  }
1782}
1783
1784// If C compares the truncation of an extending load, try to compare
1785// the untruncated value instead.  This exposes more opportunities to
1786// reuse CC.
1787static void adjustICmpTruncate(SelectionDAG &DAG, SDLoc DL, Comparison &C) {
1788  if (C.Op0.getOpcode() == ISD::TRUNCATE &&
1789      C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
1790      C.Op1.getOpcode() == ISD::Constant &&
1791      cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1792    auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
1793    if (L->getMemoryVT().getStoreSizeInBits()
1794        <= C.Op0.getValueType().getSizeInBits()) {
1795      unsigned Type = L->getExtensionType();
1796      if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
1797          (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
1798        C.Op0 = C.Op0.getOperand(0);
1799        C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
1800      }
1801    }
1802  }
1803}
1804
1805// Return true if shift operation N has an in-range constant shift value.
1806// Store it in ShiftVal if so.
1807static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
1808  auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
1809  if (!Shift)
1810    return false;
1811
1812  uint64_t Amount = Shift->getZExtValue();
1813  if (Amount >= N.getValueType().getSizeInBits())
1814    return false;
1815
1816  ShiftVal = Amount;
1817  return true;
1818}
1819
1820// Check whether an AND with Mask is suitable for a TEST UNDER MASK
1821// instruction and whether the CC value is descriptive enough to handle
1822// a comparison of type Opcode between the AND result and CmpVal.
1823// CCMask says which comparison result is being tested and BitSize is
1824// the number of bits in the operands.  If TEST UNDER MASK can be used,
1825// return the corresponding CC mask, otherwise return 0.
1826static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
1827                                     uint64_t Mask, uint64_t CmpVal,
1828                                     unsigned ICmpType) {
1829  assert(Mask != 0 && "ANDs with zero should have been removed by now");
1830
1831  // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
1832  if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
1833      !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
1834    return 0;
1835
1836  // Work out the masks for the lowest and highest bits.
1837  unsigned HighShift = 63 - countLeadingZeros(Mask);
1838  uint64_t High = uint64_t(1) << HighShift;
1839  uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
1840
1841  // Signed ordered comparisons are effectively unsigned if the sign
1842  // bit is dropped.
1843  bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
1844
1845  // Check for equality comparisons with 0, or the equivalent.
1846  if (CmpVal == 0) {
1847    if (CCMask == SystemZ::CCMASK_CMP_EQ)
1848      return SystemZ::CCMASK_TM_ALL_0;
1849    if (CCMask == SystemZ::CCMASK_CMP_NE)
1850      return SystemZ::CCMASK_TM_SOME_1;
1851  }
1852  if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
1853    if (CCMask == SystemZ::CCMASK_CMP_LT)
1854      return SystemZ::CCMASK_TM_ALL_0;
1855    if (CCMask == SystemZ::CCMASK_CMP_GE)
1856      return SystemZ::CCMASK_TM_SOME_1;
1857  }
1858  if (EffectivelyUnsigned && CmpVal < Low) {
1859    if (CCMask == SystemZ::CCMASK_CMP_LE)
1860      return SystemZ::CCMASK_TM_ALL_0;
1861    if (CCMask == SystemZ::CCMASK_CMP_GT)
1862      return SystemZ::CCMASK_TM_SOME_1;
1863  }
1864
1865  // Check for equality comparisons with the mask, or the equivalent.
1866  if (CmpVal == Mask) {
1867    if (CCMask == SystemZ::CCMASK_CMP_EQ)
1868      return SystemZ::CCMASK_TM_ALL_1;
1869    if (CCMask == SystemZ::CCMASK_CMP_NE)
1870      return SystemZ::CCMASK_TM_SOME_0;
1871  }
1872  if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
1873    if (CCMask == SystemZ::CCMASK_CMP_GT)
1874      return SystemZ::CCMASK_TM_ALL_1;
1875    if (CCMask == SystemZ::CCMASK_CMP_LE)
1876      return SystemZ::CCMASK_TM_SOME_0;
1877  }
1878  if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
1879    if (CCMask == SystemZ::CCMASK_CMP_GE)
1880      return SystemZ::CCMASK_TM_ALL_1;
1881    if (CCMask == SystemZ::CCMASK_CMP_LT)
1882      return SystemZ::CCMASK_TM_SOME_0;
1883  }
1884
1885  // Check for ordered comparisons with the top bit.
1886  if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
1887    if (CCMask == SystemZ::CCMASK_CMP_LE)
1888      return SystemZ::CCMASK_TM_MSB_0;
1889    if (CCMask == SystemZ::CCMASK_CMP_GT)
1890      return SystemZ::CCMASK_TM_MSB_1;
1891  }
1892  if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
1893    if (CCMask == SystemZ::CCMASK_CMP_LT)
1894      return SystemZ::CCMASK_TM_MSB_0;
1895    if (CCMask == SystemZ::CCMASK_CMP_GE)
1896      return SystemZ::CCMASK_TM_MSB_1;
1897  }
1898
1899  // If there are just two bits, we can do equality checks for Low and High
1900  // as well.
1901  if (Mask == Low + High) {
1902    if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
1903      return SystemZ::CCMASK_TM_MIXED_MSB_0;
1904    if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
1905      return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
1906    if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
1907      return SystemZ::CCMASK_TM_MIXED_MSB_1;
1908    if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
1909      return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
1910  }
1911
1912  // Looks like we've exhausted our options.
1913  return 0;
1914}
1915
1916// See whether C can be implemented as a TEST UNDER MASK instruction.
1917// Update the arguments with the TM version if so.
1918static void adjustForTestUnderMask(SelectionDAG &DAG, SDLoc DL, Comparison &C) {
1919  // Check that we have a comparison with a constant.
1920  auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
1921  if (!ConstOp1)
1922    return;
1923  uint64_t CmpVal = ConstOp1->getZExtValue();
1924
1925  // Check whether the nonconstant input is an AND with a constant mask.
1926  Comparison NewC(C);
1927  uint64_t MaskVal;
1928  ConstantSDNode *Mask = nullptr;
1929  if (C.Op0.getOpcode() == ISD::AND) {
1930    NewC.Op0 = C.Op0.getOperand(0);
1931    NewC.Op1 = C.Op0.getOperand(1);
1932    Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
1933    if (!Mask)
1934      return;
1935    MaskVal = Mask->getZExtValue();
1936  } else {
1937    // There is no instruction to compare with a 64-bit immediate
1938    // so use TMHH instead if possible.  We need an unsigned ordered
1939    // comparison with an i64 immediate.
1940    if (NewC.Op0.getValueType() != MVT::i64 ||
1941        NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
1942        NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
1943        NewC.ICmpType == SystemZICMP::SignedOnly)
1944      return;
1945    // Convert LE and GT comparisons into LT and GE.
1946    if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
1947        NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
1948      if (CmpVal == uint64_t(-1))
1949        return;
1950      CmpVal += 1;
1951      NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1952    }
1953    // If the low N bits of Op1 are zero than the low N bits of Op0 can
1954    // be masked off without changing the result.
1955    MaskVal = -(CmpVal & -CmpVal);
1956    NewC.ICmpType = SystemZICMP::UnsignedOnly;
1957  }
1958  if (!MaskVal)
1959    return;
1960
1961  // Check whether the combination of mask, comparison value and comparison
1962  // type are suitable.
1963  unsigned BitSize = NewC.Op0.getValueType().getSizeInBits();
1964  unsigned NewCCMask, ShiftVal;
1965  if (NewC.ICmpType != SystemZICMP::SignedOnly &&
1966      NewC.Op0.getOpcode() == ISD::SHL &&
1967      isSimpleShift(NewC.Op0, ShiftVal) &&
1968      (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
1969                                        MaskVal >> ShiftVal,
1970                                        CmpVal >> ShiftVal,
1971                                        SystemZICMP::Any))) {
1972    NewC.Op0 = NewC.Op0.getOperand(0);
1973    MaskVal >>= ShiftVal;
1974  } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
1975             NewC.Op0.getOpcode() == ISD::SRL &&
1976             isSimpleShift(NewC.Op0, ShiftVal) &&
1977             (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
1978                                               MaskVal << ShiftVal,
1979                                               CmpVal << ShiftVal,
1980                                               SystemZICMP::UnsignedOnly))) {
1981    NewC.Op0 = NewC.Op0.getOperand(0);
1982    MaskVal <<= ShiftVal;
1983  } else {
1984    NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
1985                                     NewC.ICmpType);
1986    if (!NewCCMask)
1987      return;
1988  }
1989
1990  // Go ahead and make the change.
1991  C.Opcode = SystemZISD::TM;
1992  C.Op0 = NewC.Op0;
1993  if (Mask && Mask->getZExtValue() == MaskVal)
1994    C.Op1 = SDValue(Mask, 0);
1995  else
1996    C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
1997  C.CCValid = SystemZ::CCMASK_TM;
1998  C.CCMask = NewCCMask;
1999}
2000
2001// Return a Comparison that tests the condition-code result of intrinsic
2002// node Call against constant integer CC using comparison code Cond.
2003// Opcode is the opcode of the SystemZISD operation for the intrinsic
2004// and CCValid is the set of possible condition-code results.
2005static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2006                                  SDValue Call, unsigned CCValid, uint64_t CC,
2007                                  ISD::CondCode Cond) {
2008  Comparison C(Call, SDValue());
2009  C.Opcode = Opcode;
2010  C.CCValid = CCValid;
2011  if (Cond == ISD::SETEQ)
2012    // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2013    C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2014  else if (Cond == ISD::SETNE)
2015    // ...and the inverse of that.
2016    C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2017  else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2018    // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2019    // always true for CC>3.
2020    C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2021  else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2022    // ...and the inverse of that.
2023    C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2024  else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2025    // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2026    // always true for CC>3.
2027    C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2028  else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2029    // ...and the inverse of that.
2030    C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2031  else
2032    llvm_unreachable("Unexpected integer comparison type");
2033  C.CCMask &= CCValid;
2034  return C;
2035}
2036
2037// Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2038static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2039                         ISD::CondCode Cond, SDLoc DL) {
2040  if (CmpOp1.getOpcode() == ISD::Constant) {
2041    uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2042    unsigned Opcode, CCValid;
2043    if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2044        CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2045        isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2046      return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2047    if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2048        CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2049        isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2050      return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2051  }
2052  Comparison C(CmpOp0, CmpOp1);
2053  C.CCMask = CCMaskForCondCode(Cond);
2054  if (C.Op0.getValueType().isFloatingPoint()) {
2055    C.CCValid = SystemZ::CCMASK_FCMP;
2056    C.Opcode = SystemZISD::FCMP;
2057    adjustForFNeg(C);
2058  } else {
2059    C.CCValid = SystemZ::CCMASK_ICMP;
2060    C.Opcode = SystemZISD::ICMP;
2061    // Choose the type of comparison.  Equality and inequality tests can
2062    // use either signed or unsigned comparisons.  The choice also doesn't
2063    // matter if both sign bits are known to be clear.  In those cases we
2064    // want to give the main isel code the freedom to choose whichever
2065    // form fits best.
2066    if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2067        C.CCMask == SystemZ::CCMASK_CMP_NE ||
2068        (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2069      C.ICmpType = SystemZICMP::Any;
2070    else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2071      C.ICmpType = SystemZICMP::UnsignedOnly;
2072    else
2073      C.ICmpType = SystemZICMP::SignedOnly;
2074    C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2075    adjustZeroCmp(DAG, DL, C);
2076    adjustSubwordCmp(DAG, DL, C);
2077    adjustForSubtraction(DAG, DL, C);
2078    adjustForLTGFR(C);
2079    adjustICmpTruncate(DAG, DL, C);
2080  }
2081
2082  if (shouldSwapCmpOperands(C)) {
2083    std::swap(C.Op0, C.Op1);
2084    C.CCMask = reverseCCMask(C.CCMask);
2085  }
2086
2087  adjustForTestUnderMask(DAG, DL, C);
2088  return C;
2089}
2090
2091// Emit the comparison instruction described by C.
2092static SDValue emitCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) {
2093  if (!C.Op1.getNode()) {
2094    SDValue Op;
2095    switch (C.Op0.getOpcode()) {
2096    case ISD::INTRINSIC_W_CHAIN:
2097      Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode);
2098      break;
2099    case ISD::INTRINSIC_WO_CHAIN:
2100      Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode);
2101      break;
2102    default:
2103      llvm_unreachable("Invalid comparison operands");
2104    }
2105    return SDValue(Op.getNode(), Op->getNumValues() - 1);
2106  }
2107  if (C.Opcode == SystemZISD::ICMP)
2108    return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1,
2109                       DAG.getConstant(C.ICmpType, DL, MVT::i32));
2110  if (C.Opcode == SystemZISD::TM) {
2111    bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2112                         bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2113    return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1,
2114                       DAG.getConstant(RegisterOnly, DL, MVT::i32));
2115  }
2116  return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1);
2117}
2118
2119// Implement a 32-bit *MUL_LOHI operation by extending both operands to
2120// 64 bits.  Extend is the extension type to use.  Store the high part
2121// in Hi and the low part in Lo.
2122static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL,
2123                            unsigned Extend, SDValue Op0, SDValue Op1,
2124                            SDValue &Hi, SDValue &Lo) {
2125  Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2126  Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2127  SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2128  Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2129                   DAG.getConstant(32, DL, MVT::i64));
2130  Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2131  Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2132}
2133
2134// Lower a binary operation that produces two VT results, one in each
2135// half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2136// Extend extends Op0 to a GR128, and Opcode performs the GR128 operation
2137// on the extended Op0 and (unextended) Op1.  Store the even register result
2138// in Even and the odd register result in Odd.
2139static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT,
2140                             unsigned Extend, unsigned Opcode,
2141                             SDValue Op0, SDValue Op1,
2142                             SDValue &Even, SDValue &Odd) {
2143  SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0);
2144  SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped,
2145                               SDValue(In128, 0), Op1);
2146  bool Is32Bit = is32Bit(VT);
2147  Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2148  Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2149}
2150
2151// Return an i32 value that is 1 if the CC value produced by Glue is
2152// in the mask CCMask and 0 otherwise.  CC is known to have a value
2153// in CCValid, so other values can be ignored.
2154static SDValue emitSETCC(SelectionDAG &DAG, SDLoc DL, SDValue Glue,
2155                         unsigned CCValid, unsigned CCMask) {
2156  IPMConversion Conversion = getIPMConversion(CCValid, CCMask);
2157  SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
2158
2159  if (Conversion.XORValue)
2160    Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result,
2161                         DAG.getConstant(Conversion.XORValue, DL, MVT::i32));
2162
2163  if (Conversion.AddValue)
2164    Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result,
2165                         DAG.getConstant(Conversion.AddValue, DL, MVT::i32));
2166
2167  // The SHR/AND sequence should get optimized to an RISBG.
2168  Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result,
2169                       DAG.getConstant(Conversion.Bit, DL, MVT::i32));
2170  if (Conversion.Bit != 31)
2171    Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result,
2172                         DAG.getConstant(1, DL, MVT::i32));
2173  return Result;
2174}
2175
2176// Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2177// be done directly.  IsFP is true if CC is for a floating-point rather than
2178// integer comparison.
2179static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) {
2180  switch (CC) {
2181  case ISD::SETOEQ:
2182  case ISD::SETEQ:
2183    return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE;
2184
2185  case ISD::SETOGE:
2186  case ISD::SETGE:
2187    return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0);
2188
2189  case ISD::SETOGT:
2190  case ISD::SETGT:
2191    return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH;
2192
2193  case ISD::SETUGT:
2194    return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL;
2195
2196  default:
2197    return 0;
2198  }
2199}
2200
2201// Return the SystemZISD vector comparison operation for CC or its inverse,
2202// or 0 if neither can be done directly.  Indicate in Invert whether the
2203// result is for the inverse of CC.  IsFP is true if CC is for a
2204// floating-point rather than integer comparison.
2205static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP,
2206                                            bool &Invert) {
2207  if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2208    Invert = false;
2209    return Opcode;
2210  }
2211
2212  CC = ISD::getSetCCInverse(CC, !IsFP);
2213  if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2214    Invert = true;
2215    return Opcode;
2216  }
2217
2218  return 0;
2219}
2220
2221// Return a v2f64 that contains the extended form of elements Start and Start+1
2222// of v4f32 value Op.
2223static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, SDLoc DL,
2224                                  SDValue Op) {
2225  int Mask[] = { Start, -1, Start + 1, -1 };
2226  Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2227  return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2228}
2229
2230// Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2231// producing a result of type VT.
2232static SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode, SDLoc DL,
2233                            EVT VT, SDValue CmpOp0, SDValue CmpOp1) {
2234  // There is no hardware support for v4f32, so extend the vector into
2235  // two v2f64s and compare those.
2236  if (CmpOp0.getValueType() == MVT::v4f32) {
2237    SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0);
2238    SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0);
2239    SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1);
2240    SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1);
2241    SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2242    SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2243    return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2244  }
2245  return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2246}
2247
2248// Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2249// an integer mask of type VT.
2250static SDValue lowerVectorSETCC(SelectionDAG &DAG, SDLoc DL, EVT VT,
2251                                ISD::CondCode CC, SDValue CmpOp0,
2252                                SDValue CmpOp1) {
2253  bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2254  bool Invert = false;
2255  SDValue Cmp;
2256  switch (CC) {
2257    // Handle tests for order using (or (ogt y x) (oge x y)).
2258  case ISD::SETUO:
2259    Invert = true;
2260  case ISD::SETO: {
2261    assert(IsFP && "Unexpected integer comparison");
2262    SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2263    SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1);
2264    Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2265    break;
2266  }
2267
2268    // Handle <> tests using (or (ogt y x) (ogt x y)).
2269  case ISD::SETUEQ:
2270    Invert = true;
2271  case ISD::SETONE: {
2272    assert(IsFP && "Unexpected integer comparison");
2273    SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2274    SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1);
2275    Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2276    break;
2277  }
2278
2279    // Otherwise a single comparison is enough.  It doesn't really
2280    // matter whether we try the inversion or the swap first, since
2281    // there are no cases where both work.
2282  default:
2283    if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2284      Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1);
2285    else {
2286      CC = ISD::getSetCCSwappedOperands(CC);
2287      if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2288        Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0);
2289      else
2290        llvm_unreachable("Unhandled comparison");
2291    }
2292    break;
2293  }
2294  if (Invert) {
2295    SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
2296                               DAG.getConstant(65535, DL, MVT::i32));
2297    Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask);
2298    Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2299  }
2300  return Cmp;
2301}
2302
2303SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2304                                          SelectionDAG &DAG) const {
2305  SDValue CmpOp0   = Op.getOperand(0);
2306  SDValue CmpOp1   = Op.getOperand(1);
2307  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2308  SDLoc DL(Op);
2309  EVT VT = Op.getValueType();
2310  if (VT.isVector())
2311    return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2312
2313  Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2314  SDValue Glue = emitCmp(DAG, DL, C);
2315  return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
2316}
2317
2318SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2319  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2320  SDValue CmpOp0   = Op.getOperand(2);
2321  SDValue CmpOp1   = Op.getOperand(3);
2322  SDValue Dest     = Op.getOperand(4);
2323  SDLoc DL(Op);
2324
2325  Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2326  SDValue Glue = emitCmp(DAG, DL, C);
2327  return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
2328                     Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32),
2329                     DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue);
2330}
2331
2332// Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2333// allowing Pos and Neg to be wider than CmpOp.
2334static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2335  return (Neg.getOpcode() == ISD::SUB &&
2336          Neg.getOperand(0).getOpcode() == ISD::Constant &&
2337          cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2338          Neg.getOperand(1) == Pos &&
2339          (Pos == CmpOp ||
2340           (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2341            Pos.getOperand(0) == CmpOp)));
2342}
2343
2344// Return the absolute or negative absolute of Op; IsNegative decides which.
2345static SDValue getAbsolute(SelectionDAG &DAG, SDLoc DL, SDValue Op,
2346                           bool IsNegative) {
2347  Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
2348  if (IsNegative)
2349    Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
2350                     DAG.getConstant(0, DL, Op.getValueType()), Op);
2351  return Op;
2352}
2353
2354SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2355                                              SelectionDAG &DAG) const {
2356  SDValue CmpOp0   = Op.getOperand(0);
2357  SDValue CmpOp1   = Op.getOperand(1);
2358  SDValue TrueOp   = Op.getOperand(2);
2359  SDValue FalseOp  = Op.getOperand(3);
2360  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2361  SDLoc DL(Op);
2362
2363  Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2364
2365  // Check for absolute and negative-absolute selections, including those
2366  // where the comparison value is sign-extended (for LPGFR and LNGFR).
2367  // This check supplements the one in DAGCombiner.
2368  if (C.Opcode == SystemZISD::ICMP &&
2369      C.CCMask != SystemZ::CCMASK_CMP_EQ &&
2370      C.CCMask != SystemZ::CCMASK_CMP_NE &&
2371      C.Op1.getOpcode() == ISD::Constant &&
2372      cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2373    if (isAbsolute(C.Op0, TrueOp, FalseOp))
2374      return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
2375    if (isAbsolute(C.Op0, FalseOp, TrueOp))
2376      return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
2377  }
2378
2379  SDValue Glue = emitCmp(DAG, DL, C);
2380
2381  // Special case for handling -1/0 results.  The shifts we use here
2382  // should get optimized with the IPM conversion sequence.
2383  auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp);
2384  auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp);
2385  if (TrueC && FalseC) {
2386    int64_t TrueVal = TrueC->getSExtValue();
2387    int64_t FalseVal = FalseC->getSExtValue();
2388    if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) {
2389      // Invert the condition if we want -1 on false.
2390      if (TrueVal == 0)
2391        C.CCMask ^= C.CCValid;
2392      SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
2393      EVT VT = Op.getValueType();
2394      // Extend the result to VT.  Upper bits are ignored.
2395      if (!is32Bit(VT))
2396        Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result);
2397      // Sign-extend from the low bit.
2398      SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, DL, MVT::i32);
2399      SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt);
2400      return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt);
2401    }
2402  }
2403
2404  SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32),
2405                   DAG.getConstant(C.CCMask, DL, MVT::i32), Glue};
2406
2407  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
2408  return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops);
2409}
2410
2411SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
2412                                                  SelectionDAG &DAG) const {
2413  SDLoc DL(Node);
2414  const GlobalValue *GV = Node->getGlobal();
2415  int64_t Offset = Node->getOffset();
2416  EVT PtrVT = getPointerTy(DAG.getDataLayout());
2417  Reloc::Model RM = DAG.getTarget().getRelocationModel();
2418  CodeModel::Model CM = DAG.getTarget().getCodeModel();
2419
2420  SDValue Result;
2421  if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) {
2422    // Assign anchors at 1<<12 byte boundaries.
2423    uint64_t Anchor = Offset & ~uint64_t(0xfff);
2424    Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
2425    Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2426
2427    // The offset can be folded into the address if it is aligned to a halfword.
2428    Offset -= Anchor;
2429    if (Offset != 0 && (Offset & 1) == 0) {
2430      SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
2431      Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
2432      Offset = 0;
2433    }
2434  } else {
2435    Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
2436    Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2437    Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
2438                         MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2439                         false, false, false, 0);
2440  }
2441
2442  // If there was a non-zero offset that we didn't fold, create an explicit
2443  // addition for it.
2444  if (Offset != 0)
2445    Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
2446                         DAG.getConstant(Offset, DL, PtrVT));
2447
2448  return Result;
2449}
2450
2451SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
2452                                                 SelectionDAG &DAG,
2453                                                 unsigned Opcode,
2454                                                 SDValue GOTOffset) const {
2455  SDLoc DL(Node);
2456  EVT PtrVT = getPointerTy(DAG.getDataLayout());
2457  SDValue Chain = DAG.getEntryNode();
2458  SDValue Glue;
2459
2460  // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
2461  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2462  Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
2463  Glue = Chain.getValue(1);
2464  Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
2465  Glue = Chain.getValue(1);
2466
2467  // The first call operand is the chain and the second is the TLS symbol.
2468  SmallVector<SDValue, 8> Ops;
2469  Ops.push_back(Chain);
2470  Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
2471                                           Node->getValueType(0),
2472                                           0, 0));
2473
2474  // Add argument registers to the end of the list so that they are
2475  // known live into the call.
2476  Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
2477  Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
2478
2479  // Add a register mask operand representing the call-preserved registers.
2480  const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2481  const uint32_t *Mask =
2482      TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
2483  assert(Mask && "Missing call preserved mask for calling convention");
2484  Ops.push_back(DAG.getRegisterMask(Mask));
2485
2486  // Glue the call to the argument copies.
2487  Ops.push_back(Glue);
2488
2489  // Emit the call.
2490  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2491  Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
2492  Glue = Chain.getValue(1);
2493
2494  // Copy the return value from %r2.
2495  return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
2496}
2497
2498SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
2499                                                     SelectionDAG &DAG) const {
2500  if (DAG.getTarget().Options.EmulatedTLS)
2501    return LowerToTLSEmulatedModel(Node, DAG);
2502  SDLoc DL(Node);
2503  const GlobalValue *GV = Node->getGlobal();
2504  EVT PtrVT = getPointerTy(DAG.getDataLayout());
2505  TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
2506
2507  // The high part of the thread pointer is in access register 0.
2508  SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
2509                             DAG.getConstant(0, DL, MVT::i32));
2510  TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
2511
2512  // The low part of the thread pointer is in access register 1.
2513  SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
2514                             DAG.getConstant(1, DL, MVT::i32));
2515  TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
2516
2517  // Merge them into a single 64-bit address.
2518  SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
2519                                    DAG.getConstant(32, DL, PtrVT));
2520  SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
2521
2522  // Get the offset of GA from the thread pointer, based on the TLS model.
2523  SDValue Offset;
2524  switch (model) {
2525    case TLSModel::GeneralDynamic: {
2526      // Load the GOT offset of the tls_index (module ID / per-symbol offset).
2527      SystemZConstantPoolValue *CPV =
2528        SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
2529
2530      Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2531      Offset = DAG.getLoad(
2532          PtrVT, DL, DAG.getEntryNode(), Offset,
2533          MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
2534          false, false, 0);
2535
2536      // Call __tls_get_offset to retrieve the offset.
2537      Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
2538      break;
2539    }
2540
2541    case TLSModel::LocalDynamic: {
2542      // Load the GOT offset of the module ID.
2543      SystemZConstantPoolValue *CPV =
2544        SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
2545
2546      Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2547      Offset = DAG.getLoad(
2548          PtrVT, DL, DAG.getEntryNode(), Offset,
2549          MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
2550          false, false, 0);
2551
2552      // Call __tls_get_offset to retrieve the module base offset.
2553      Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
2554
2555      // Note: The SystemZLDCleanupPass will remove redundant computations
2556      // of the module base offset.  Count total number of local-dynamic
2557      // accesses to trigger execution of that pass.
2558      SystemZMachineFunctionInfo* MFI =
2559        DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
2560      MFI->incNumLocalDynamicTLSAccesses();
2561
2562      // Add the per-symbol offset.
2563      CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
2564
2565      SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8);
2566      DTPOffset = DAG.getLoad(
2567          PtrVT, DL, DAG.getEntryNode(), DTPOffset,
2568          MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
2569          false, false, 0);
2570
2571      Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
2572      break;
2573    }
2574
2575    case TLSModel::InitialExec: {
2576      // Load the offset from the GOT.
2577      Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2578                                          SystemZII::MO_INDNTPOFF);
2579      Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
2580      Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
2581                           MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2582                           false, false, false, 0);
2583      break;
2584    }
2585
2586    case TLSModel::LocalExec: {
2587      // Force the offset into the constant pool and load it from there.
2588      SystemZConstantPoolValue *CPV =
2589        SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
2590
2591      Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2592      Offset = DAG.getLoad(
2593          PtrVT, DL, DAG.getEntryNode(), Offset,
2594          MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
2595          false, false, 0);
2596      break;
2597    }
2598  }
2599
2600  // Add the base and offset together.
2601  return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
2602}
2603
2604SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
2605                                                 SelectionDAG &DAG) const {
2606  SDLoc DL(Node);
2607  const BlockAddress *BA = Node->getBlockAddress();
2608  int64_t Offset = Node->getOffset();
2609  EVT PtrVT = getPointerTy(DAG.getDataLayout());
2610
2611  SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
2612  Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2613  return Result;
2614}
2615
2616SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
2617                                              SelectionDAG &DAG) const {
2618  SDLoc DL(JT);
2619  EVT PtrVT = getPointerTy(DAG.getDataLayout());
2620  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2621
2622  // Use LARL to load the address of the table.
2623  return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2624}
2625
2626SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
2627                                                 SelectionDAG &DAG) const {
2628  SDLoc DL(CP);
2629  EVT PtrVT = getPointerTy(DAG.getDataLayout());
2630
2631  SDValue Result;
2632  if (CP->isMachineConstantPoolEntry())
2633    Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2634                                       CP->getAlignment());
2635  else
2636    Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2637                                       CP->getAlignment(), CP->getOffset());
2638
2639  // Use LARL to load the address of the constant pool entry.
2640  return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2641}
2642
2643SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
2644                                            SelectionDAG &DAG) const {
2645  SDLoc DL(Op);
2646  SDValue In = Op.getOperand(0);
2647  EVT InVT = In.getValueType();
2648  EVT ResVT = Op.getValueType();
2649
2650  // Convert loads directly.  This is normally done by DAGCombiner,
2651  // but we need this case for bitcasts that are created during lowering
2652  // and which are then lowered themselves.
2653  if (auto *LoadN = dyn_cast<LoadSDNode>(In))
2654    return DAG.getLoad(ResVT, DL, LoadN->getChain(), LoadN->getBasePtr(),
2655                       LoadN->getMemOperand());
2656
2657  if (InVT == MVT::i32 && ResVT == MVT::f32) {
2658    SDValue In64;
2659    if (Subtarget.hasHighWord()) {
2660      SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
2661                                       MVT::i64);
2662      In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
2663                                       MVT::i64, SDValue(U64, 0), In);
2664    } else {
2665      In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
2666      In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
2667                         DAG.getConstant(32, DL, MVT::i64));
2668    }
2669    SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
2670    return DAG.getTargetExtractSubreg(SystemZ::subreg_r32,
2671                                      DL, MVT::f32, Out64);
2672  }
2673  if (InVT == MVT::f32 && ResVT == MVT::i32) {
2674    SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
2675    SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL,
2676                                             MVT::f64, SDValue(U64, 0), In);
2677    SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
2678    if (Subtarget.hasHighWord())
2679      return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
2680                                        MVT::i32, Out64);
2681    SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
2682                                DAG.getConstant(32, DL, MVT::i64));
2683    return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
2684  }
2685  llvm_unreachable("Unexpected bitcast combination");
2686}
2687
2688SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
2689                                            SelectionDAG &DAG) const {
2690  MachineFunction &MF = DAG.getMachineFunction();
2691  SystemZMachineFunctionInfo *FuncInfo =
2692    MF.getInfo<SystemZMachineFunctionInfo>();
2693  EVT PtrVT = getPointerTy(DAG.getDataLayout());
2694
2695  SDValue Chain   = Op.getOperand(0);
2696  SDValue Addr    = Op.getOperand(1);
2697  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2698  SDLoc DL(Op);
2699
2700  // The initial values of each field.
2701  const unsigned NumFields = 4;
2702  SDValue Fields[NumFields] = {
2703    DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
2704    DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
2705    DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
2706    DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
2707  };
2708
2709  // Store each field into its respective slot.
2710  SDValue MemOps[NumFields];
2711  unsigned Offset = 0;
2712  for (unsigned I = 0; I < NumFields; ++I) {
2713    SDValue FieldAddr = Addr;
2714    if (Offset != 0)
2715      FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
2716                              DAG.getIntPtrConstant(Offset, DL));
2717    MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
2718                             MachinePointerInfo(SV, Offset),
2719                             false, false, 0);
2720    Offset += 8;
2721  }
2722  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
2723}
2724
2725SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
2726                                           SelectionDAG &DAG) const {
2727  SDValue Chain      = Op.getOperand(0);
2728  SDValue DstPtr     = Op.getOperand(1);
2729  SDValue SrcPtr     = Op.getOperand(2);
2730  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
2731  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
2732  SDLoc DL(Op);
2733
2734  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
2735                       /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
2736                       /*isTailCall*/false,
2737                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
2738}
2739
2740SDValue SystemZTargetLowering::
2741lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
2742  const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
2743  bool RealignOpt = !DAG.getMachineFunction().getFunction()->
2744    hasFnAttribute("no-realign-stack");
2745
2746  SDValue Chain = Op.getOperand(0);
2747  SDValue Size  = Op.getOperand(1);
2748  SDValue Align = Op.getOperand(2);
2749  SDLoc DL(Op);
2750
2751  // If user has set the no alignment function attribute, ignore
2752  // alloca alignments.
2753  uint64_t AlignVal = (RealignOpt ?
2754                       dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0);
2755
2756  uint64_t StackAlign = TFI->getStackAlignment();
2757  uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
2758  uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
2759
2760  unsigned SPReg = getStackPointerRegisterToSaveRestore();
2761  SDValue NeededSpace = Size;
2762
2763  // Get a reference to the stack pointer.
2764  SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
2765
2766  // Add extra space for alignment if needed.
2767  if (ExtraAlignSpace)
2768    NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
2769                              DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
2770
2771  // Get the new stack pointer value.
2772  SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
2773
2774  // Copy the new stack pointer back.
2775  Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
2776
2777  // The allocated data lives above the 160 bytes allocated for the standard
2778  // frame, plus any outgoing stack arguments.  We don't know how much that
2779  // amounts to yet, so emit a special ADJDYNALLOC placeholder.
2780  SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
2781  SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
2782
2783  // Dynamically realign if needed.
2784  if (RequiredAlign > StackAlign) {
2785    Result =
2786      DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
2787                  DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
2788    Result =
2789      DAG.getNode(ISD::AND, DL, MVT::i64, Result,
2790                  DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
2791  }
2792
2793  SDValue Ops[2] = { Result, Chain };
2794  return DAG.getMergeValues(Ops, DL);
2795}
2796
2797SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
2798                                              SelectionDAG &DAG) const {
2799  EVT VT = Op.getValueType();
2800  SDLoc DL(Op);
2801  SDValue Ops[2];
2802  if (is32Bit(VT))
2803    // Just do a normal 64-bit multiplication and extract the results.
2804    // We define this so that it can be used for constant division.
2805    lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
2806                    Op.getOperand(1), Ops[1], Ops[0]);
2807  else {
2808    // Do a full 128-bit multiplication based on UMUL_LOHI64:
2809    //
2810    //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
2811    //
2812    // but using the fact that the upper halves are either all zeros
2813    // or all ones:
2814    //
2815    //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
2816    //
2817    // and grouping the right terms together since they are quicker than the
2818    // multiplication:
2819    //
2820    //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
2821    SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
2822    SDValue LL = Op.getOperand(0);
2823    SDValue RL = Op.getOperand(1);
2824    SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
2825    SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
2826    // UMUL_LOHI64 returns the low result in the odd register and the high
2827    // result in the even register.  SMUL_LOHI is defined to return the
2828    // low half first, so the results are in reverse order.
2829    lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
2830                     LL, RL, Ops[1], Ops[0]);
2831    SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
2832    SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
2833    SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
2834    Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
2835  }
2836  return DAG.getMergeValues(Ops, DL);
2837}
2838
2839SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
2840                                              SelectionDAG &DAG) const {
2841  EVT VT = Op.getValueType();
2842  SDLoc DL(Op);
2843  SDValue Ops[2];
2844  if (is32Bit(VT))
2845    // Just do a normal 64-bit multiplication and extract the results.
2846    // We define this so that it can be used for constant division.
2847    lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
2848                    Op.getOperand(1), Ops[1], Ops[0]);
2849  else
2850    // UMUL_LOHI64 returns the low result in the odd register and the high
2851    // result in the even register.  UMUL_LOHI is defined to return the
2852    // low half first, so the results are in reverse order.
2853    lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
2854                     Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
2855  return DAG.getMergeValues(Ops, DL);
2856}
2857
2858SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
2859                                            SelectionDAG &DAG) const {
2860  SDValue Op0 = Op.getOperand(0);
2861  SDValue Op1 = Op.getOperand(1);
2862  EVT VT = Op.getValueType();
2863  SDLoc DL(Op);
2864  unsigned Opcode;
2865
2866  // We use DSGF for 32-bit division.
2867  if (is32Bit(VT)) {
2868    Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
2869    Opcode = SystemZISD::SDIVREM32;
2870  } else if (DAG.ComputeNumSignBits(Op1) > 32) {
2871    Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
2872    Opcode = SystemZISD::SDIVREM32;
2873  } else
2874    Opcode = SystemZISD::SDIVREM64;
2875
2876  // DSG(F) takes a 64-bit dividend, so the even register in the GR128
2877  // input is "don't care".  The instruction returns the remainder in
2878  // the even register and the quotient in the odd register.
2879  SDValue Ops[2];
2880  lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode,
2881                   Op0, Op1, Ops[1], Ops[0]);
2882  return DAG.getMergeValues(Ops, DL);
2883}
2884
2885SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
2886                                            SelectionDAG &DAG) const {
2887  EVT VT = Op.getValueType();
2888  SDLoc DL(Op);
2889
2890  // DL(G) uses a double-width dividend, so we need to clear the even
2891  // register in the GR128 input.  The instruction returns the remainder
2892  // in the even register and the quotient in the odd register.
2893  SDValue Ops[2];
2894  if (is32Bit(VT))
2895    lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32,
2896                     Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
2897  else
2898    lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64,
2899                     Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
2900  return DAG.getMergeValues(Ops, DL);
2901}
2902
2903SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
2904  assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
2905
2906  // Get the known-zero masks for each operand.
2907  SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
2908  APInt KnownZero[2], KnownOne[2];
2909  DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]);
2910  DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]);
2911
2912  // See if the upper 32 bits of one operand and the lower 32 bits of the
2913  // other are known zero.  They are the low and high operands respectively.
2914  uint64_t Masks[] = { KnownZero[0].getZExtValue(),
2915                       KnownZero[1].getZExtValue() };
2916  unsigned High, Low;
2917  if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
2918    High = 1, Low = 0;
2919  else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
2920    High = 0, Low = 1;
2921  else
2922    return Op;
2923
2924  SDValue LowOp = Ops[Low];
2925  SDValue HighOp = Ops[High];
2926
2927  // If the high part is a constant, we're better off using IILH.
2928  if (HighOp.getOpcode() == ISD::Constant)
2929    return Op;
2930
2931  // If the low part is a constant that is outside the range of LHI,
2932  // then we're better off using IILF.
2933  if (LowOp.getOpcode() == ISD::Constant) {
2934    int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
2935    if (!isInt<16>(Value))
2936      return Op;
2937  }
2938
2939  // Check whether the high part is an AND that doesn't change the
2940  // high 32 bits and just masks out low bits.  We can skip it if so.
2941  if (HighOp.getOpcode() == ISD::AND &&
2942      HighOp.getOperand(1).getOpcode() == ISD::Constant) {
2943    SDValue HighOp0 = HighOp.getOperand(0);
2944    uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
2945    if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
2946      HighOp = HighOp0;
2947  }
2948
2949  // Take advantage of the fact that all GR32 operations only change the
2950  // low 32 bits by truncating Low to an i32 and inserting it directly
2951  // using a subreg.  The interesting cases are those where the truncation
2952  // can be folded.
2953  SDLoc DL(Op);
2954  SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
2955  return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
2956                                   MVT::i64, HighOp, Low32);
2957}
2958
2959SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
2960                                          SelectionDAG &DAG) const {
2961  EVT VT = Op.getValueType();
2962  SDLoc DL(Op);
2963  Op = Op.getOperand(0);
2964
2965  // Handle vector types via VPOPCT.
2966  if (VT.isVector()) {
2967    Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
2968    Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
2969    switch (VT.getVectorElementType().getSizeInBits()) {
2970    case 8:
2971      break;
2972    case 16: {
2973      Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
2974      SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
2975      SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
2976      Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
2977      Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
2978      break;
2979    }
2980    case 32: {
2981      SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
2982                                DAG.getConstant(0, DL, MVT::i32));
2983      Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
2984      break;
2985    }
2986    case 64: {
2987      SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
2988                                DAG.getConstant(0, DL, MVT::i32));
2989      Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
2990      Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
2991      break;
2992    }
2993    default:
2994      llvm_unreachable("Unexpected type");
2995    }
2996    return Op;
2997  }
2998
2999  // Get the known-zero mask for the operand.
3000  APInt KnownZero, KnownOne;
3001  DAG.computeKnownBits(Op, KnownZero, KnownOne);
3002  unsigned NumSignificantBits = (~KnownZero).getActiveBits();
3003  if (NumSignificantBits == 0)
3004    return DAG.getConstant(0, DL, VT);
3005
3006  // Skip known-zero high parts of the operand.
3007  int64_t OrigBitSize = VT.getSizeInBits();
3008  int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3009  BitSize = std::min(BitSize, OrigBitSize);
3010
3011  // The POPCNT instruction counts the number of bits in each byte.
3012  Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3013  Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3014  Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3015
3016  // Add up per-byte counts in a binary tree.  All bits of Op at
3017  // position larger than BitSize remain zero throughout.
3018  for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3019    SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3020    if (BitSize != OrigBitSize)
3021      Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3022                        DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3023    Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3024  }
3025
3026  // Extract overall result from high byte.
3027  if (BitSize > 8)
3028    Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3029                     DAG.getConstant(BitSize - 8, DL, VT));
3030
3031  return Op;
3032}
3033
3034// Op is an atomic load.  Lower it into a normal volatile load.
3035SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3036                                                SelectionDAG &DAG) const {
3037  auto *Node = cast<AtomicSDNode>(Op.getNode());
3038  return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3039                        Node->getChain(), Node->getBasePtr(),
3040                        Node->getMemoryVT(), Node->getMemOperand());
3041}
3042
3043// Op is an atomic store.  Lower it into a normal volatile store followed
3044// by a serialization.
3045SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3046                                                 SelectionDAG &DAG) const {
3047  auto *Node = cast<AtomicSDNode>(Op.getNode());
3048  SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3049                                    Node->getBasePtr(), Node->getMemoryVT(),
3050                                    Node->getMemOperand());
3051  return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other,
3052                                    Chain), 0);
3053}
3054
3055// Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
3056// two into the fullword ATOMIC_LOADW_* operation given by Opcode.
3057SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3058                                                   SelectionDAG &DAG,
3059                                                   unsigned Opcode) const {
3060  auto *Node = cast<AtomicSDNode>(Op.getNode());
3061
3062  // 32-bit operations need no code outside the main loop.
3063  EVT NarrowVT = Node->getMemoryVT();
3064  EVT WideVT = MVT::i32;
3065  if (NarrowVT == WideVT)
3066    return Op;
3067
3068  int64_t BitSize = NarrowVT.getSizeInBits();
3069  SDValue ChainIn = Node->getChain();
3070  SDValue Addr = Node->getBasePtr();
3071  SDValue Src2 = Node->getVal();
3072  MachineMemOperand *MMO = Node->getMemOperand();
3073  SDLoc DL(Node);
3074  EVT PtrVT = Addr.getValueType();
3075
3076  // Convert atomic subtracts of constants into additions.
3077  if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3078    if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3079      Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3080      Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3081    }
3082
3083  // Get the address of the containing word.
3084  SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3085                                    DAG.getConstant(-4, DL, PtrVT));
3086
3087  // Get the number of bits that the word must be rotated left in order
3088  // to bring the field to the top bits of a GR32.
3089  SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3090                                 DAG.getConstant(3, DL, PtrVT));
3091  BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3092
3093  // Get the complementing shift amount, for rotating a field in the top
3094  // bits back to its proper position.
3095  SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3096                                    DAG.getConstant(0, DL, WideVT), BitShift);
3097
3098  // Extend the source operand to 32 bits and prepare it for the inner loop.
3099  // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3100  // operations require the source to be shifted in advance.  (This shift
3101  // can be folded if the source is constant.)  For AND and NAND, the lower
3102  // bits must be set, while for other opcodes they should be left clear.
3103  if (Opcode != SystemZISD::ATOMIC_SWAPW)
3104    Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3105                       DAG.getConstant(32 - BitSize, DL, WideVT));
3106  if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3107      Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3108    Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3109                       DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3110
3111  // Construct the ATOMIC_LOADW_* node.
3112  SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3113  SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
3114                    DAG.getConstant(BitSize, DL, WideVT) };
3115  SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
3116                                             NarrowVT, MMO);
3117
3118  // Rotate the result of the final CS so that the field is in the lower
3119  // bits of a GR32, then truncate it.
3120  SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
3121                                    DAG.getConstant(BitSize, DL, WideVT));
3122  SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3123
3124  SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
3125  return DAG.getMergeValues(RetOps, DL);
3126}
3127
3128// Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
3129// into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
3130// operations into additions.
3131SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3132                                                    SelectionDAG &DAG) const {
3133  auto *Node = cast<AtomicSDNode>(Op.getNode());
3134  EVT MemVT = Node->getMemoryVT();
3135  if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3136    // A full-width operation.
3137    assert(Op.getValueType() == MemVT && "Mismatched VTs");
3138    SDValue Src2 = Node->getVal();
3139    SDValue NegSrc2;
3140    SDLoc DL(Src2);
3141
3142    if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
3143      // Use an addition if the operand is constant and either LAA(G) is
3144      // available or the negative value is in the range of A(G)FHI.
3145      int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
3146      if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
3147        NegSrc2 = DAG.getConstant(Value, DL, MemVT);
3148    } else if (Subtarget.hasInterlockedAccess1())
3149      // Use LAA(G) if available.
3150      NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
3151                            Src2);
3152
3153    if (NegSrc2.getNode())
3154      return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3155                           Node->getChain(), Node->getBasePtr(), NegSrc2,
3156                           Node->getMemOperand(), Node->getOrdering(),
3157                           Node->getSynchScope());
3158
3159    // Use the node as-is.
3160    return Op;
3161  }
3162
3163  return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
3164}
3165
3166// Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation.  Lower the first two
3167// into a fullword ATOMIC_CMP_SWAPW operation.
3168SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
3169                                                    SelectionDAG &DAG) const {
3170  auto *Node = cast<AtomicSDNode>(Op.getNode());
3171
3172  // We have native support for 32-bit compare and swap.
3173  EVT NarrowVT = Node->getMemoryVT();
3174  EVT WideVT = MVT::i32;
3175  if (NarrowVT == WideVT)
3176    return Op;
3177
3178  int64_t BitSize = NarrowVT.getSizeInBits();
3179  SDValue ChainIn = Node->getOperand(0);
3180  SDValue Addr = Node->getOperand(1);
3181  SDValue CmpVal = Node->getOperand(2);
3182  SDValue SwapVal = Node->getOperand(3);
3183  MachineMemOperand *MMO = Node->getMemOperand();
3184  SDLoc DL(Node);
3185  EVT PtrVT = Addr.getValueType();
3186
3187  // Get the address of the containing word.
3188  SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3189                                    DAG.getConstant(-4, DL, PtrVT));
3190
3191  // Get the number of bits that the word must be rotated left in order
3192  // to bring the field to the top bits of a GR32.
3193  SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3194                                 DAG.getConstant(3, DL, PtrVT));
3195  BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3196
3197  // Get the complementing shift amount, for rotating a field in the top
3198  // bits back to its proper position.
3199  SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3200                                    DAG.getConstant(0, DL, WideVT), BitShift);
3201
3202  // Construct the ATOMIC_CMP_SWAPW node.
3203  SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3204  SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
3205                    NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
3206  SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
3207                                             VTList, Ops, NarrowVT, MMO);
3208  return AtomicOp;
3209}
3210
3211SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
3212                                              SelectionDAG &DAG) const {
3213  MachineFunction &MF = DAG.getMachineFunction();
3214  MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3215  return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
3216                            SystemZ::R15D, Op.getValueType());
3217}
3218
3219SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
3220                                                 SelectionDAG &DAG) const {
3221  MachineFunction &MF = DAG.getMachineFunction();
3222  MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3223  return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op),
3224                          SystemZ::R15D, Op.getOperand(1));
3225}
3226
3227SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
3228                                             SelectionDAG &DAG) const {
3229  bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3230  if (!IsData)
3231    // Just preserve the chain.
3232    return Op.getOperand(0);
3233
3234  SDLoc DL(Op);
3235  bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
3236  unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
3237  auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
3238  SDValue Ops[] = {
3239    Op.getOperand(0),
3240    DAG.getConstant(Code, DL, MVT::i32),
3241    Op.getOperand(1)
3242  };
3243  return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
3244                                 Node->getVTList(), Ops,
3245                                 Node->getMemoryVT(), Node->getMemOperand());
3246}
3247
3248// Return an i32 that contains the value of CC immediately after After,
3249// whose final operand must be MVT::Glue.
3250static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) {
3251  SDLoc DL(After);
3252  SDValue Glue = SDValue(After, After->getNumValues() - 1);
3253  SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
3254  return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
3255                     DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
3256}
3257
3258SDValue
3259SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
3260                                              SelectionDAG &DAG) const {
3261  unsigned Opcode, CCValid;
3262  if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
3263    assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
3264    SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode);
3265    SDValue CC = getCCResult(DAG, Glued.getNode());
3266    DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
3267    return SDValue();
3268  }
3269
3270  return SDValue();
3271}
3272
3273SDValue
3274SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
3275                                               SelectionDAG &DAG) const {
3276  unsigned Opcode, CCValid;
3277  if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
3278    SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode);
3279    SDValue CC = getCCResult(DAG, Glued.getNode());
3280    if (Op->getNumValues() == 1)
3281      return CC;
3282    assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
3283    return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), Glued,
3284                       CC);
3285  }
3286
3287  unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3288  switch (Id) {
3289  case Intrinsic::s390_vpdi:
3290    return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
3291                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3292
3293  case Intrinsic::s390_vperm:
3294    return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
3295                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3296
3297  case Intrinsic::s390_vuphb:
3298  case Intrinsic::s390_vuphh:
3299  case Intrinsic::s390_vuphf:
3300    return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
3301                       Op.getOperand(1));
3302
3303  case Intrinsic::s390_vuplhb:
3304  case Intrinsic::s390_vuplhh:
3305  case Intrinsic::s390_vuplhf:
3306    return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
3307                       Op.getOperand(1));
3308
3309  case Intrinsic::s390_vuplb:
3310  case Intrinsic::s390_vuplhw:
3311  case Intrinsic::s390_vuplf:
3312    return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
3313                       Op.getOperand(1));
3314
3315  case Intrinsic::s390_vupllb:
3316  case Intrinsic::s390_vupllh:
3317  case Intrinsic::s390_vupllf:
3318    return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
3319                       Op.getOperand(1));
3320
3321  case Intrinsic::s390_vsumb:
3322  case Intrinsic::s390_vsumh:
3323  case Intrinsic::s390_vsumgh:
3324  case Intrinsic::s390_vsumgf:
3325  case Intrinsic::s390_vsumqf:
3326  case Intrinsic::s390_vsumqg:
3327    return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
3328                       Op.getOperand(1), Op.getOperand(2));
3329  }
3330
3331  return SDValue();
3332}
3333
3334namespace {
3335// Says that SystemZISD operation Opcode can be used to perform the equivalent
3336// of a VPERM with permute vector Bytes.  If Opcode takes three operands,
3337// Operand is the constant third operand, otherwise it is the number of
3338// bytes in each element of the result.
3339struct Permute {
3340  unsigned Opcode;
3341  unsigned Operand;
3342  unsigned char Bytes[SystemZ::VectorBytes];
3343};
3344}
3345
3346static const Permute PermuteForms[] = {
3347  // VMRHG
3348  { SystemZISD::MERGE_HIGH, 8,
3349    { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
3350  // VMRHF
3351  { SystemZISD::MERGE_HIGH, 4,
3352    { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
3353  // VMRHH
3354  { SystemZISD::MERGE_HIGH, 2,
3355    { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
3356  // VMRHB
3357  { SystemZISD::MERGE_HIGH, 1,
3358    { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
3359  // VMRLG
3360  { SystemZISD::MERGE_LOW, 8,
3361    { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
3362  // VMRLF
3363  { SystemZISD::MERGE_LOW, 4,
3364    { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
3365  // VMRLH
3366  { SystemZISD::MERGE_LOW, 2,
3367    { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
3368  // VMRLB
3369  { SystemZISD::MERGE_LOW, 1,
3370    { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
3371  // VPKG
3372  { SystemZISD::PACK, 4,
3373    { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
3374  // VPKF
3375  { SystemZISD::PACK, 2,
3376    { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
3377  // VPKH
3378  { SystemZISD::PACK, 1,
3379    { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
3380  // VPDI V1, V2, 4  (low half of V1, high half of V2)
3381  { SystemZISD::PERMUTE_DWORDS, 4,
3382    { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
3383  // VPDI V1, V2, 1  (high half of V1, low half of V2)
3384  { SystemZISD::PERMUTE_DWORDS, 1,
3385    { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
3386};
3387
3388// Called after matching a vector shuffle against a particular pattern.
3389// Both the original shuffle and the pattern have two vector operands.
3390// OpNos[0] is the operand of the original shuffle that should be used for
3391// operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
3392// OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
3393// set OpNo0 and OpNo1 to the shuffle operands that should actually be used
3394// for operands 0 and 1 of the pattern.
3395static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
3396  if (OpNos[0] < 0) {
3397    if (OpNos[1] < 0)
3398      return false;
3399    OpNo0 = OpNo1 = OpNos[1];
3400  } else if (OpNos[1] < 0) {
3401    OpNo0 = OpNo1 = OpNos[0];
3402  } else {
3403    OpNo0 = OpNos[0];
3404    OpNo1 = OpNos[1];
3405  }
3406  return true;
3407}
3408
3409// Bytes is a VPERM-like permute vector, except that -1 is used for
3410// undefined bytes.  Return true if the VPERM can be implemented using P.
3411// When returning true set OpNo0 to the VPERM operand that should be
3412// used for operand 0 of P and likewise OpNo1 for operand 1 of P.
3413//
3414// For example, if swapping the VPERM operands allows P to match, OpNo0
3415// will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
3416// operand, but rewriting it to use two duplicated operands allows it to
3417// match P, then OpNo0 and OpNo1 will be the same.
3418static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
3419                         unsigned &OpNo0, unsigned &OpNo1) {
3420  int OpNos[] = { -1, -1 };
3421  for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
3422    int Elt = Bytes[I];
3423    if (Elt >= 0) {
3424      // Make sure that the two permute vectors use the same suboperand
3425      // byte number.  Only the operand numbers (the high bits) are
3426      // allowed to differ.
3427      if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
3428        return false;
3429      int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
3430      int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
3431      // Make sure that the operand mappings are consistent with previous
3432      // elements.
3433      if (OpNos[ModelOpNo] == 1 - RealOpNo)
3434        return false;
3435      OpNos[ModelOpNo] = RealOpNo;
3436    }
3437  }
3438  return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
3439}
3440
3441// As above, but search for a matching permute.
3442static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
3443                                   unsigned &OpNo0, unsigned &OpNo1) {
3444  for (auto &P : PermuteForms)
3445    if (matchPermute(Bytes, P, OpNo0, OpNo1))
3446      return &P;
3447  return nullptr;
3448}
3449
3450// Bytes is a VPERM-like permute vector, except that -1 is used for
3451// undefined bytes.  This permute is an operand of an outer permute.
3452// See whether redistributing the -1 bytes gives a shuffle that can be
3453// implemented using P.  If so, set Transform to a VPERM-like permute vector
3454// that, when applied to the result of P, gives the original permute in Bytes.
3455static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
3456                               const Permute &P,
3457                               SmallVectorImpl<int> &Transform) {
3458  unsigned To = 0;
3459  for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
3460    int Elt = Bytes[From];
3461    if (Elt < 0)
3462      // Byte number From of the result is undefined.
3463      Transform[From] = -1;
3464    else {
3465      while (P.Bytes[To] != Elt) {
3466        To += 1;
3467        if (To == SystemZ::VectorBytes)
3468          return false;
3469      }
3470      Transform[From] = To;
3471    }
3472  }
3473  return true;
3474}
3475
3476// As above, but search for a matching permute.
3477static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
3478                                         SmallVectorImpl<int> &Transform) {
3479  for (auto &P : PermuteForms)
3480    if (matchDoublePermute(Bytes, P, Transform))
3481      return &P;
3482  return nullptr;
3483}
3484
3485// Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask,
3486// as if it had type vNi8.
3487static void getVPermMask(ShuffleVectorSDNode *VSN,
3488                         SmallVectorImpl<int> &Bytes) {
3489  EVT VT = VSN->getValueType(0);
3490  unsigned NumElements = VT.getVectorNumElements();
3491  unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3492  Bytes.resize(NumElements * BytesPerElement, -1);
3493  for (unsigned I = 0; I < NumElements; ++I) {
3494    int Index = VSN->getMaskElt(I);
3495    if (Index >= 0)
3496      for (unsigned J = 0; J < BytesPerElement; ++J)
3497        Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
3498  }
3499}
3500
3501// Bytes is a VPERM-like permute vector, except that -1 is used for
3502// undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
3503// the result come from a contiguous sequence of bytes from one input.
3504// Set Base to the selector for the first byte if so.
3505static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
3506                            unsigned BytesPerElement, int &Base) {
3507  Base = -1;
3508  for (unsigned I = 0; I < BytesPerElement; ++I) {
3509    if (Bytes[Start + I] >= 0) {
3510      unsigned Elem = Bytes[Start + I];
3511      if (Base < 0) {
3512        Base = Elem - I;
3513        // Make sure the bytes would come from one input operand.
3514        if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
3515          return false;
3516      } else if (unsigned(Base) != Elem - I)
3517        return false;
3518    }
3519  }
3520  return true;
3521}
3522
3523// Bytes is a VPERM-like permute vector, except that -1 is used for
3524// undefined bytes.  Return true if it can be performed using VSLDI.
3525// When returning true, set StartIndex to the shift amount and OpNo0
3526// and OpNo1 to the VPERM operands that should be used as the first
3527// and second shift operand respectively.
3528static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
3529                               unsigned &StartIndex, unsigned &OpNo0,
3530                               unsigned &OpNo1) {
3531  int OpNos[] = { -1, -1 };
3532  int Shift = -1;
3533  for (unsigned I = 0; I < 16; ++I) {
3534    int Index = Bytes[I];
3535    if (Index >= 0) {
3536      int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
3537      int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
3538      int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
3539      if (Shift < 0)
3540        Shift = ExpectedShift;
3541      else if (Shift != ExpectedShift)
3542        return false;
3543      // Make sure that the operand mappings are consistent with previous
3544      // elements.
3545      if (OpNos[ModelOpNo] == 1 - RealOpNo)
3546        return false;
3547      OpNos[ModelOpNo] = RealOpNo;
3548    }
3549  }
3550  StartIndex = Shift;
3551  return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
3552}
3553
3554// Create a node that performs P on operands Op0 and Op1, casting the
3555// operands to the appropriate type.  The type of the result is determined by P.
3556static SDValue getPermuteNode(SelectionDAG &DAG, SDLoc DL,
3557                              const Permute &P, SDValue Op0, SDValue Op1) {
3558  // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
3559  // elements of a PACK are twice as wide as the outputs.
3560  unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
3561                      P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
3562                      P.Operand);
3563  // Cast both operands to the appropriate type.
3564  MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
3565                              SystemZ::VectorBytes / InBytes);
3566  Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
3567  Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
3568  SDValue Op;
3569  if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
3570    SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32);
3571    Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
3572  } else if (P.Opcode == SystemZISD::PACK) {
3573    MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
3574                                 SystemZ::VectorBytes / P.Operand);
3575    Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
3576  } else {
3577    Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
3578  }
3579  return Op;
3580}
3581
3582// Bytes is a VPERM-like permute vector, except that -1 is used for
3583// undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
3584// VSLDI or VPERM.
3585static SDValue getGeneralPermuteNode(SelectionDAG &DAG, SDLoc DL, SDValue *Ops,
3586                                     const SmallVectorImpl<int> &Bytes) {
3587  for (unsigned I = 0; I < 2; ++I)
3588    Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
3589
3590  // First see whether VSLDI can be used.
3591  unsigned StartIndex, OpNo0, OpNo1;
3592  if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
3593    return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
3594                       Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32));
3595
3596  // Fall back on VPERM.  Construct an SDNode for the permute vector.
3597  SDValue IndexNodes[SystemZ::VectorBytes];
3598  for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
3599    if (Bytes[I] >= 0)
3600      IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
3601    else
3602      IndexNodes[I] = DAG.getUNDEF(MVT::i32);
3603  SDValue Op2 = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, IndexNodes);
3604  return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2);
3605}
3606
3607namespace {
3608// Describes a general N-operand vector shuffle.
3609struct GeneralShuffle {
3610  GeneralShuffle(EVT vt) : VT(vt) {}
3611  void addUndef();
3612  void add(SDValue, unsigned);
3613  SDValue getNode(SelectionDAG &, SDLoc);
3614
3615  // The operands of the shuffle.
3616  SmallVector<SDValue, SystemZ::VectorBytes> Ops;
3617
3618  // Index I is -1 if byte I of the result is undefined.  Otherwise the
3619  // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
3620  // Bytes[I] / SystemZ::VectorBytes.
3621  SmallVector<int, SystemZ::VectorBytes> Bytes;
3622
3623  // The type of the shuffle result.
3624  EVT VT;
3625};
3626}
3627
3628// Add an extra undefined element to the shuffle.
3629void GeneralShuffle::addUndef() {
3630  unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3631  for (unsigned I = 0; I < BytesPerElement; ++I)
3632    Bytes.push_back(-1);
3633}
3634
3635// Add an extra element to the shuffle, taking it from element Elem of Op.
3636// A null Op indicates a vector input whose value will be calculated later;
3637// there is at most one such input per shuffle and it always has the same
3638// type as the result.
3639void GeneralShuffle::add(SDValue Op, unsigned Elem) {
3640  unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3641
3642  // The source vector can have wider elements than the result,
3643  // either through an explicit TRUNCATE or because of type legalization.
3644  // We want the least significant part.
3645  EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
3646  unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
3647  assert(FromBytesPerElement >= BytesPerElement &&
3648         "Invalid EXTRACT_VECTOR_ELT");
3649  unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
3650                   (FromBytesPerElement - BytesPerElement));
3651
3652  // Look through things like shuffles and bitcasts.
3653  while (Op.getNode()) {
3654    if (Op.getOpcode() == ISD::BITCAST)
3655      Op = Op.getOperand(0);
3656    else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
3657      // See whether the bytes we need come from a contiguous part of one
3658      // operand.
3659      SmallVector<int, SystemZ::VectorBytes> OpBytes;
3660      getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes);
3661      int NewByte;
3662      if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
3663        break;
3664      if (NewByte < 0) {
3665        addUndef();
3666        return;
3667      }
3668      Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
3669      Byte = unsigned(NewByte) % SystemZ::VectorBytes;
3670    } else if (Op.getOpcode() == ISD::UNDEF) {
3671      addUndef();
3672      return;
3673    } else
3674      break;
3675  }
3676
3677  // Make sure that the source of the extraction is in Ops.
3678  unsigned OpNo = 0;
3679  for (; OpNo < Ops.size(); ++OpNo)
3680    if (Ops[OpNo] == Op)
3681      break;
3682  if (OpNo == Ops.size())
3683    Ops.push_back(Op);
3684
3685  // Add the element to Bytes.
3686  unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
3687  for (unsigned I = 0; I < BytesPerElement; ++I)
3688    Bytes.push_back(Base + I);
3689}
3690
3691// Return SDNodes for the completed shuffle.
3692SDValue GeneralShuffle::getNode(SelectionDAG &DAG, SDLoc DL) {
3693  assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
3694
3695  if (Ops.size() == 0)
3696    return DAG.getUNDEF(VT);
3697
3698  // Make sure that there are at least two shuffle operands.
3699  if (Ops.size() == 1)
3700    Ops.push_back(DAG.getUNDEF(MVT::v16i8));
3701
3702  // Create a tree of shuffles, deferring root node until after the loop.
3703  // Try to redistribute the undefined elements of non-root nodes so that
3704  // the non-root shuffles match something like a pack or merge, then adjust
3705  // the parent node's permute vector to compensate for the new order.
3706  // Among other things, this copes with vectors like <2 x i16> that were
3707  // padded with undefined elements during type legalization.
3708  //
3709  // In the best case this redistribution will lead to the whole tree
3710  // using packs and merges.  It should rarely be a loss in other cases.
3711  unsigned Stride = 1;
3712  for (; Stride * 2 < Ops.size(); Stride *= 2) {
3713    for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
3714      SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
3715
3716      // Create a mask for just these two operands.
3717      SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
3718      for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
3719        unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
3720        unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
3721        if (OpNo == I)
3722          NewBytes[J] = Byte;
3723        else if (OpNo == I + Stride)
3724          NewBytes[J] = SystemZ::VectorBytes + Byte;
3725        else
3726          NewBytes[J] = -1;
3727      }
3728      // See if it would be better to reorganize NewMask to avoid using VPERM.
3729      SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
3730      if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
3731        Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
3732        // Applying NewBytesMap to Ops[I] gets back to NewBytes.
3733        for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
3734          if (NewBytes[J] >= 0) {
3735            assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
3736                   "Invalid double permute");
3737            Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
3738          } else
3739            assert(NewBytesMap[J] < 0 && "Invalid double permute");
3740        }
3741      } else {
3742        // Just use NewBytes on the operands.
3743        Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
3744        for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
3745          if (NewBytes[J] >= 0)
3746            Bytes[J] = I * SystemZ::VectorBytes + J;
3747      }
3748    }
3749  }
3750
3751  // Now we just have 2 inputs.  Put the second operand in Ops[1].
3752  if (Stride > 1) {
3753    Ops[1] = Ops[Stride];
3754    for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
3755      if (Bytes[I] >= int(SystemZ::VectorBytes))
3756        Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
3757  }
3758
3759  // Look for an instruction that can do the permute without resorting
3760  // to VPERM.
3761  unsigned OpNo0, OpNo1;
3762  SDValue Op;
3763  if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
3764    Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
3765  else
3766    Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
3767  return DAG.getNode(ISD::BITCAST, DL, VT, Op);
3768}
3769
3770// Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
3771static bool isScalarToVector(SDValue Op) {
3772  for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
3773    if (Op.getOperand(I).getOpcode() != ISD::UNDEF)
3774      return false;
3775  return true;
3776}
3777
3778// Return a vector of type VT that contains Value in the first element.
3779// The other elements don't matter.
3780static SDValue buildScalarToVector(SelectionDAG &DAG, SDLoc DL, EVT VT,
3781                                   SDValue Value) {
3782  // If we have a constant, replicate it to all elements and let the
3783  // BUILD_VECTOR lowering take care of it.
3784  if (Value.getOpcode() == ISD::Constant ||
3785      Value.getOpcode() == ISD::ConstantFP) {
3786    SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
3787    return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
3788  }
3789  if (Value.getOpcode() == ISD::UNDEF)
3790    return DAG.getUNDEF(VT);
3791  return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
3792}
3793
3794// Return a vector of type VT in which Op0 is in element 0 and Op1 is in
3795// element 1.  Used for cases in which replication is cheap.
3796static SDValue buildMergeScalars(SelectionDAG &DAG, SDLoc DL, EVT VT,
3797                                 SDValue Op0, SDValue Op1) {
3798  if (Op0.getOpcode() == ISD::UNDEF) {
3799    if (Op1.getOpcode() == ISD::UNDEF)
3800      return DAG.getUNDEF(VT);
3801    return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
3802  }
3803  if (Op1.getOpcode() == ISD::UNDEF)
3804    return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
3805  return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
3806                     buildScalarToVector(DAG, DL, VT, Op0),
3807                     buildScalarToVector(DAG, DL, VT, Op1));
3808}
3809
3810// Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
3811// vector for them.
3812static SDValue joinDwords(SelectionDAG &DAG, SDLoc DL, SDValue Op0,
3813                          SDValue Op1) {
3814  if (Op0.getOpcode() == ISD::UNDEF && Op1.getOpcode() == ISD::UNDEF)
3815    return DAG.getUNDEF(MVT::v2i64);
3816  // If one of the two inputs is undefined then replicate the other one,
3817  // in order to avoid using another register unnecessarily.
3818  if (Op0.getOpcode() == ISD::UNDEF)
3819    Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
3820  else if (Op1.getOpcode() == ISD::UNDEF)
3821    Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
3822  else {
3823    Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
3824    Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
3825  }
3826  return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
3827}
3828
3829// Try to represent constant BUILD_VECTOR node BVN using a
3830// SystemZISD::BYTE_MASK-style mask.  Store the mask value in Mask
3831// on success.
3832static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) {
3833  EVT ElemVT = BVN->getValueType(0).getVectorElementType();
3834  unsigned BytesPerElement = ElemVT.getStoreSize();
3835  for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) {
3836    SDValue Op = BVN->getOperand(I);
3837    if (Op.getOpcode() != ISD::UNDEF) {
3838      uint64_t Value;
3839      if (Op.getOpcode() == ISD::Constant)
3840        Value = dyn_cast<ConstantSDNode>(Op)->getZExtValue();
3841      else if (Op.getOpcode() == ISD::ConstantFP)
3842        Value = (dyn_cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()
3843                 .getZExtValue());
3844      else
3845        return false;
3846      for (unsigned J = 0; J < BytesPerElement; ++J) {
3847        uint64_t Byte = (Value >> (J * 8)) & 0xff;
3848        if (Byte == 0xff)
3849          Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J);
3850        else if (Byte != 0)
3851          return false;
3852      }
3853    }
3854  }
3855  return true;
3856}
3857
3858// Try to load a vector constant in which BitsPerElement-bit value Value
3859// is replicated to fill the vector.  VT is the type of the resulting
3860// constant, which may have elements of a different size from BitsPerElement.
3861// Return the SDValue of the constant on success, otherwise return
3862// an empty value.
3863static SDValue tryBuildVectorReplicate(SelectionDAG &DAG,
3864                                       const SystemZInstrInfo *TII,
3865                                       SDLoc DL, EVT VT, uint64_t Value,
3866                                       unsigned BitsPerElement) {
3867  // Signed 16-bit values can be replicated using VREPI.
3868  int64_t SignedValue = SignExtend64(Value, BitsPerElement);
3869  if (isInt<16>(SignedValue)) {
3870    MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
3871                                 SystemZ::VectorBits / BitsPerElement);
3872    SDValue Op = DAG.getNode(SystemZISD::REPLICATE, DL, VecVT,
3873                             DAG.getConstant(SignedValue, DL, MVT::i32));
3874    return DAG.getNode(ISD::BITCAST, DL, VT, Op);
3875  }
3876  // See whether rotating the constant left some N places gives a value that
3877  // is one less than a power of 2 (i.e. all zeros followed by all ones).
3878  // If so we can use VGM.
3879  unsigned Start, End;
3880  if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) {
3881    // isRxSBGMask returns the bit numbers for a full 64-bit value,
3882    // with 0 denoting 1 << 63 and 63 denoting 1.  Convert them to
3883    // bit numbers for an BitsPerElement value, so that 0 denotes
3884    // 1 << (BitsPerElement-1).
3885    Start -= 64 - BitsPerElement;
3886    End -= 64 - BitsPerElement;
3887    MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
3888                                 SystemZ::VectorBits / BitsPerElement);
3889    SDValue Op = DAG.getNode(SystemZISD::ROTATE_MASK, DL, VecVT,
3890                             DAG.getConstant(Start, DL, MVT::i32),
3891                             DAG.getConstant(End, DL, MVT::i32));
3892    return DAG.getNode(ISD::BITCAST, DL, VT, Op);
3893  }
3894  return SDValue();
3895}
3896
3897// If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
3898// better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
3899// the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
3900// would benefit from this representation and return it if so.
3901static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
3902                                     BuildVectorSDNode *BVN) {
3903  EVT VT = BVN->getValueType(0);
3904  unsigned NumElements = VT.getVectorNumElements();
3905
3906  // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
3907  // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
3908  // need a BUILD_VECTOR, add an additional placeholder operand for that
3909  // BUILD_VECTOR and store its operands in ResidueOps.
3910  GeneralShuffle GS(VT);
3911  SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
3912  bool FoundOne = false;
3913  for (unsigned I = 0; I < NumElements; ++I) {
3914    SDValue Op = BVN->getOperand(I);
3915    if (Op.getOpcode() == ISD::TRUNCATE)
3916      Op = Op.getOperand(0);
3917    if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
3918        Op.getOperand(1).getOpcode() == ISD::Constant) {
3919      unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
3920      GS.add(Op.getOperand(0), Elem);
3921      FoundOne = true;
3922    } else if (Op.getOpcode() == ISD::UNDEF) {
3923      GS.addUndef();
3924    } else {
3925      GS.add(SDValue(), ResidueOps.size());
3926      ResidueOps.push_back(BVN->getOperand(I));
3927    }
3928  }
3929
3930  // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
3931  if (!FoundOne)
3932    return SDValue();
3933
3934  // Create the BUILD_VECTOR for the remaining elements, if any.
3935  if (!ResidueOps.empty()) {
3936    while (ResidueOps.size() < NumElements)
3937      ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
3938    for (auto &Op : GS.Ops) {
3939      if (!Op.getNode()) {
3940        Op = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BVN), VT, ResidueOps);
3941        break;
3942      }
3943    }
3944  }
3945  return GS.getNode(DAG, SDLoc(BVN));
3946}
3947
3948// Combine GPR scalar values Elems into a vector of type VT.
3949static SDValue buildVector(SelectionDAG &DAG, SDLoc DL, EVT VT,
3950                           SmallVectorImpl<SDValue> &Elems) {
3951  // See whether there is a single replicated value.
3952  SDValue Single;
3953  unsigned int NumElements = Elems.size();
3954  unsigned int Count = 0;
3955  for (auto Elem : Elems) {
3956    if (Elem.getOpcode() != ISD::UNDEF) {
3957      if (!Single.getNode())
3958        Single = Elem;
3959      else if (Elem != Single) {
3960        Single = SDValue();
3961        break;
3962      }
3963      Count += 1;
3964    }
3965  }
3966  // There are three cases here:
3967  //
3968  // - if the only defined element is a loaded one, the best sequence
3969  //   is a replicating load.
3970  //
3971  // - otherwise, if the only defined element is an i64 value, we will
3972  //   end up with the same VLVGP sequence regardless of whether we short-cut
3973  //   for replication or fall through to the later code.
3974  //
3975  // - otherwise, if the only defined element is an i32 or smaller value,
3976  //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
3977  //   This is only a win if the single defined element is used more than once.
3978  //   In other cases we're better off using a single VLVGx.
3979  if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD))
3980    return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
3981
3982  // The best way of building a v2i64 from two i64s is to use VLVGP.
3983  if (VT == MVT::v2i64)
3984    return joinDwords(DAG, DL, Elems[0], Elems[1]);
3985
3986  // Use a 64-bit merge high to combine two doubles.
3987  if (VT == MVT::v2f64)
3988    return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
3989
3990  // Build v4f32 values directly from the FPRs:
3991  //
3992  //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
3993  //         V              V         VMRHF
3994  //      <ABxx>         <CDxx>
3995  //                V                 VMRHG
3996  //              <ABCD>
3997  if (VT == MVT::v4f32) {
3998    SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
3999    SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
4000    // Avoid unnecessary undefs by reusing the other operand.
4001    if (Op01.getOpcode() == ISD::UNDEF)
4002      Op01 = Op23;
4003    else if (Op23.getOpcode() == ISD::UNDEF)
4004      Op23 = Op01;
4005    // Merging identical replications is a no-op.
4006    if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
4007      return Op01;
4008    Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
4009    Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
4010    SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
4011                             DL, MVT::v2i64, Op01, Op23);
4012    return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4013  }
4014
4015  // Collect the constant terms.
4016  SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
4017  SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
4018
4019  unsigned NumConstants = 0;
4020  for (unsigned I = 0; I < NumElements; ++I) {
4021    SDValue Elem = Elems[I];
4022    if (Elem.getOpcode() == ISD::Constant ||
4023        Elem.getOpcode() == ISD::ConstantFP) {
4024      NumConstants += 1;
4025      Constants[I] = Elem;
4026      Done[I] = true;
4027    }
4028  }
4029  // If there was at least one constant, fill in the other elements of
4030  // Constants with undefs to get a full vector constant and use that
4031  // as the starting point.
4032  SDValue Result;
4033  if (NumConstants > 0) {
4034    for (unsigned I = 0; I < NumElements; ++I)
4035      if (!Constants[I].getNode())
4036        Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
4037    Result = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Constants);
4038  } else {
4039    // Otherwise try to use VLVGP to start the sequence in order to
4040    // avoid a false dependency on any previous contents of the vector
4041    // register.  This only makes sense if one of the associated elements
4042    // is defined.
4043    unsigned I1 = NumElements / 2 - 1;
4044    unsigned I2 = NumElements - 1;
4045    bool Def1 = (Elems[I1].getOpcode() != ISD::UNDEF);
4046    bool Def2 = (Elems[I2].getOpcode() != ISD::UNDEF);
4047    if (Def1 || Def2) {
4048      SDValue Elem1 = Elems[Def1 ? I1 : I2];
4049      SDValue Elem2 = Elems[Def2 ? I2 : I1];
4050      Result = DAG.getNode(ISD::BITCAST, DL, VT,
4051                           joinDwords(DAG, DL, Elem1, Elem2));
4052      Done[I1] = true;
4053      Done[I2] = true;
4054    } else
4055      Result = DAG.getUNDEF(VT);
4056  }
4057
4058  // Use VLVGx to insert the other elements.
4059  for (unsigned I = 0; I < NumElements; ++I)
4060    if (!Done[I] && Elems[I].getOpcode() != ISD::UNDEF)
4061      Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
4062                           DAG.getConstant(I, DL, MVT::i32));
4063  return Result;
4064}
4065
4066SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
4067                                                 SelectionDAG &DAG) const {
4068  const SystemZInstrInfo *TII =
4069    static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
4070  auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
4071  SDLoc DL(Op);
4072  EVT VT = Op.getValueType();
4073
4074  if (BVN->isConstant()) {
4075    // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
4076    // preferred way of creating all-zero and all-one vectors so give it
4077    // priority over other methods below.
4078    uint64_t Mask = 0;
4079    if (tryBuildVectorByteMask(BVN, Mask)) {
4080      SDValue Op = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
4081                               DAG.getConstant(Mask, DL, MVT::i32));
4082      return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4083    }
4084
4085    // Try using some form of replication.
4086    APInt SplatBits, SplatUndef;
4087    unsigned SplatBitSize;
4088    bool HasAnyUndefs;
4089    if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4090                             8, true) &&
4091        SplatBitSize <= 64) {
4092      // First try assuming that any undefined bits above the highest set bit
4093      // and below the lowest set bit are 1s.  This increases the likelihood of
4094      // being able to use a sign-extended element value in VECTOR REPLICATE
4095      // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
4096      uint64_t SplatBitsZ = SplatBits.getZExtValue();
4097      uint64_t SplatUndefZ = SplatUndef.getZExtValue();
4098      uint64_t Lower = (SplatUndefZ
4099                        & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
4100      uint64_t Upper = (SplatUndefZ
4101                        & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
4102      uint64_t Value = SplatBitsZ | Upper | Lower;
4103      SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value,
4104                                           SplatBitSize);
4105      if (Op.getNode())
4106        return Op;
4107
4108      // Now try assuming that any undefined bits between the first and
4109      // last defined set bits are set.  This increases the chances of
4110      // using a non-wraparound mask.
4111      uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
4112      Value = SplatBitsZ | Middle;
4113      Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize);
4114      if (Op.getNode())
4115        return Op;
4116    }
4117
4118    // Fall back to loading it from memory.
4119    return SDValue();
4120  }
4121
4122  // See if we should use shuffles to construct the vector from other vectors.
4123  SDValue Res = tryBuildVectorShuffle(DAG, BVN);
4124  if (Res.getNode())
4125    return Res;
4126
4127  // Detect SCALAR_TO_VECTOR conversions.
4128  if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
4129    return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
4130
4131  // Otherwise use buildVector to build the vector up from GPRs.
4132  unsigned NumElements = Op.getNumOperands();
4133  SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
4134  for (unsigned I = 0; I < NumElements; ++I)
4135    Ops[I] = Op.getOperand(I);
4136  return buildVector(DAG, DL, VT, Ops);
4137}
4138
4139SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
4140                                                   SelectionDAG &DAG) const {
4141  auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
4142  SDLoc DL(Op);
4143  EVT VT = Op.getValueType();
4144  unsigned NumElements = VT.getVectorNumElements();
4145
4146  if (VSN->isSplat()) {
4147    SDValue Op0 = Op.getOperand(0);
4148    unsigned Index = VSN->getSplatIndex();
4149    assert(Index < VT.getVectorNumElements() &&
4150           "Splat index should be defined and in first operand");
4151    // See whether the value we're splatting is directly available as a scalar.
4152    if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4153        Op0.getOpcode() == ISD::BUILD_VECTOR)
4154      return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
4155    // Otherwise keep it as a vector-to-vector operation.
4156    return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
4157                       DAG.getConstant(Index, DL, MVT::i32));
4158  }
4159
4160  GeneralShuffle GS(VT);
4161  for (unsigned I = 0; I < NumElements; ++I) {
4162    int Elt = VSN->getMaskElt(I);
4163    if (Elt < 0)
4164      GS.addUndef();
4165    else
4166      GS.add(Op.getOperand(unsigned(Elt) / NumElements),
4167             unsigned(Elt) % NumElements);
4168  }
4169  return GS.getNode(DAG, SDLoc(VSN));
4170}
4171
4172SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
4173                                                     SelectionDAG &DAG) const {
4174  SDLoc DL(Op);
4175  // Just insert the scalar into element 0 of an undefined vector.
4176  return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
4177                     Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
4178                     Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
4179}
4180
4181SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4182                                                      SelectionDAG &DAG) const {
4183  // Handle insertions of floating-point values.
4184  SDLoc DL(Op);
4185  SDValue Op0 = Op.getOperand(0);
4186  SDValue Op1 = Op.getOperand(1);
4187  SDValue Op2 = Op.getOperand(2);
4188  EVT VT = Op.getValueType();
4189
4190  // Insertions into constant indices of a v2f64 can be done using VPDI.
4191  // However, if the inserted value is a bitcast or a constant then it's
4192  // better to use GPRs, as below.
4193  if (VT == MVT::v2f64 &&
4194      Op1.getOpcode() != ISD::BITCAST &&
4195      Op1.getOpcode() != ISD::ConstantFP &&
4196      Op2.getOpcode() == ISD::Constant) {
4197    uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue();
4198    unsigned Mask = VT.getVectorNumElements() - 1;
4199    if (Index <= Mask)
4200      return Op;
4201  }
4202
4203  // Otherwise bitcast to the equivalent integer form and insert via a GPR.
4204  MVT IntVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits());
4205  MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
4206  SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
4207                            DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
4208                            DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
4209  return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4210}
4211
4212SDValue
4213SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4214                                               SelectionDAG &DAG) const {
4215  // Handle extractions of floating-point values.
4216  SDLoc DL(Op);
4217  SDValue Op0 = Op.getOperand(0);
4218  SDValue Op1 = Op.getOperand(1);
4219  EVT VT = Op.getValueType();
4220  EVT VecVT = Op0.getValueType();
4221
4222  // Extractions of constant indices can be done directly.
4223  if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
4224    uint64_t Index = CIndexN->getZExtValue();
4225    unsigned Mask = VecVT.getVectorNumElements() - 1;
4226    if (Index <= Mask)
4227      return Op;
4228  }
4229
4230  // Otherwise bitcast to the equivalent integer form and extract via a GPR.
4231  MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
4232  MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
4233  SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
4234                            DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
4235  return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4236}
4237
4238SDValue
4239SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
4240                                              unsigned UnpackHigh) const {
4241  SDValue PackedOp = Op.getOperand(0);
4242  EVT OutVT = Op.getValueType();
4243  EVT InVT = PackedOp.getValueType();
4244  unsigned ToBits = OutVT.getVectorElementType().getSizeInBits();
4245  unsigned FromBits = InVT.getVectorElementType().getSizeInBits();
4246  do {
4247    FromBits *= 2;
4248    EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
4249                                 SystemZ::VectorBits / FromBits);
4250    PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp);
4251  } while (FromBits != ToBits);
4252  return PackedOp;
4253}
4254
4255SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
4256                                          unsigned ByScalar) const {
4257  // Look for cases where a vector shift can use the *_BY_SCALAR form.
4258  SDValue Op0 = Op.getOperand(0);
4259  SDValue Op1 = Op.getOperand(1);
4260  SDLoc DL(Op);
4261  EVT VT = Op.getValueType();
4262  unsigned ElemBitSize = VT.getVectorElementType().getSizeInBits();
4263
4264  // See whether the shift vector is a splat represented as BUILD_VECTOR.
4265  if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
4266    APInt SplatBits, SplatUndef;
4267    unsigned SplatBitSize;
4268    bool HasAnyUndefs;
4269    // Check for constant splats.  Use ElemBitSize as the minimum element
4270    // width and reject splats that need wider elements.
4271    if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4272                             ElemBitSize, true) &&
4273        SplatBitSize == ElemBitSize) {
4274      SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
4275                                      DL, MVT::i32);
4276      return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4277    }
4278    // Check for variable splats.
4279    BitVector UndefElements;
4280    SDValue Splat = BVN->getSplatValue(&UndefElements);
4281    if (Splat) {
4282      // Since i32 is the smallest legal type, we either need a no-op
4283      // or a truncation.
4284      SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
4285      return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4286    }
4287  }
4288
4289  // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
4290  // and the shift amount is directly available in a GPR.
4291  if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
4292    if (VSN->isSplat()) {
4293      SDValue VSNOp0 = VSN->getOperand(0);
4294      unsigned Index = VSN->getSplatIndex();
4295      assert(Index < VT.getVectorNumElements() &&
4296             "Splat index should be defined and in first operand");
4297      if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4298          VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
4299        // Since i32 is the smallest legal type, we either need a no-op
4300        // or a truncation.
4301        SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
4302                                    VSNOp0.getOperand(Index));
4303        return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4304      }
4305    }
4306  }
4307
4308  // Otherwise just treat the current form as legal.
4309  return Op;
4310}
4311
4312SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
4313                                              SelectionDAG &DAG) const {
4314  switch (Op.getOpcode()) {
4315  case ISD::BR_CC:
4316    return lowerBR_CC(Op, DAG);
4317  case ISD::SELECT_CC:
4318    return lowerSELECT_CC(Op, DAG);
4319  case ISD::SETCC:
4320    return lowerSETCC(Op, DAG);
4321  case ISD::GlobalAddress:
4322    return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
4323  case ISD::GlobalTLSAddress:
4324    return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
4325  case ISD::BlockAddress:
4326    return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
4327  case ISD::JumpTable:
4328    return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
4329  case ISD::ConstantPool:
4330    return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
4331  case ISD::BITCAST:
4332    return lowerBITCAST(Op, DAG);
4333  case ISD::VASTART:
4334    return lowerVASTART(Op, DAG);
4335  case ISD::VACOPY:
4336    return lowerVACOPY(Op, DAG);
4337  case ISD::DYNAMIC_STACKALLOC:
4338    return lowerDYNAMIC_STACKALLOC(Op, DAG);
4339  case ISD::SMUL_LOHI:
4340    return lowerSMUL_LOHI(Op, DAG);
4341  case ISD::UMUL_LOHI:
4342    return lowerUMUL_LOHI(Op, DAG);
4343  case ISD::SDIVREM:
4344    return lowerSDIVREM(Op, DAG);
4345  case ISD::UDIVREM:
4346    return lowerUDIVREM(Op, DAG);
4347  case ISD::OR:
4348    return lowerOR(Op, DAG);
4349  case ISD::CTPOP:
4350    return lowerCTPOP(Op, DAG);
4351  case ISD::CTLZ_ZERO_UNDEF:
4352    return DAG.getNode(ISD::CTLZ, SDLoc(Op),
4353                       Op.getValueType(), Op.getOperand(0));
4354  case ISD::CTTZ_ZERO_UNDEF:
4355    return DAG.getNode(ISD::CTTZ, SDLoc(Op),
4356                       Op.getValueType(), Op.getOperand(0));
4357  case ISD::ATOMIC_SWAP:
4358    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
4359  case ISD::ATOMIC_STORE:
4360    return lowerATOMIC_STORE(Op, DAG);
4361  case ISD::ATOMIC_LOAD:
4362    return lowerATOMIC_LOAD(Op, DAG);
4363  case ISD::ATOMIC_LOAD_ADD:
4364    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
4365  case ISD::ATOMIC_LOAD_SUB:
4366    return lowerATOMIC_LOAD_SUB(Op, DAG);
4367  case ISD::ATOMIC_LOAD_AND:
4368    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
4369  case ISD::ATOMIC_LOAD_OR:
4370    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
4371  case ISD::ATOMIC_LOAD_XOR:
4372    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
4373  case ISD::ATOMIC_LOAD_NAND:
4374    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
4375  case ISD::ATOMIC_LOAD_MIN:
4376    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
4377  case ISD::ATOMIC_LOAD_MAX:
4378    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
4379  case ISD::ATOMIC_LOAD_UMIN:
4380    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
4381  case ISD::ATOMIC_LOAD_UMAX:
4382    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
4383  case ISD::ATOMIC_CMP_SWAP:
4384    return lowerATOMIC_CMP_SWAP(Op, DAG);
4385  case ISD::STACKSAVE:
4386    return lowerSTACKSAVE(Op, DAG);
4387  case ISD::STACKRESTORE:
4388    return lowerSTACKRESTORE(Op, DAG);
4389  case ISD::PREFETCH:
4390    return lowerPREFETCH(Op, DAG);
4391  case ISD::INTRINSIC_W_CHAIN:
4392    return lowerINTRINSIC_W_CHAIN(Op, DAG);
4393  case ISD::INTRINSIC_WO_CHAIN:
4394    return lowerINTRINSIC_WO_CHAIN(Op, DAG);
4395  case ISD::BUILD_VECTOR:
4396    return lowerBUILD_VECTOR(Op, DAG);
4397  case ISD::VECTOR_SHUFFLE:
4398    return lowerVECTOR_SHUFFLE(Op, DAG);
4399  case ISD::SCALAR_TO_VECTOR:
4400    return lowerSCALAR_TO_VECTOR(Op, DAG);
4401  case ISD::INSERT_VECTOR_ELT:
4402    return lowerINSERT_VECTOR_ELT(Op, DAG);
4403  case ISD::EXTRACT_VECTOR_ELT:
4404    return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4405  case ISD::SIGN_EXTEND_VECTOR_INREG:
4406    return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH);
4407  case ISD::ZERO_EXTEND_VECTOR_INREG:
4408    return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH);
4409  case ISD::SHL:
4410    return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
4411  case ISD::SRL:
4412    return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
4413  case ISD::SRA:
4414    return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
4415  default:
4416    llvm_unreachable("Unexpected node to lower");
4417  }
4418}
4419
4420const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
4421#define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
4422  switch ((SystemZISD::NodeType)Opcode) {
4423    case SystemZISD::FIRST_NUMBER: break;
4424    OPCODE(RET_FLAG);
4425    OPCODE(CALL);
4426    OPCODE(SIBCALL);
4427    OPCODE(TLS_GDCALL);
4428    OPCODE(TLS_LDCALL);
4429    OPCODE(PCREL_WRAPPER);
4430    OPCODE(PCREL_OFFSET);
4431    OPCODE(IABS);
4432    OPCODE(ICMP);
4433    OPCODE(FCMP);
4434    OPCODE(TM);
4435    OPCODE(BR_CCMASK);
4436    OPCODE(SELECT_CCMASK);
4437    OPCODE(ADJDYNALLOC);
4438    OPCODE(EXTRACT_ACCESS);
4439    OPCODE(POPCNT);
4440    OPCODE(UMUL_LOHI64);
4441    OPCODE(SDIVREM32);
4442    OPCODE(SDIVREM64);
4443    OPCODE(UDIVREM32);
4444    OPCODE(UDIVREM64);
4445    OPCODE(MVC);
4446    OPCODE(MVC_LOOP);
4447    OPCODE(NC);
4448    OPCODE(NC_LOOP);
4449    OPCODE(OC);
4450    OPCODE(OC_LOOP);
4451    OPCODE(XC);
4452    OPCODE(XC_LOOP);
4453    OPCODE(CLC);
4454    OPCODE(CLC_LOOP);
4455    OPCODE(STPCPY);
4456    OPCODE(STRCMP);
4457    OPCODE(SEARCH_STRING);
4458    OPCODE(IPM);
4459    OPCODE(SERIALIZE);
4460    OPCODE(TBEGIN);
4461    OPCODE(TBEGIN_NOFLOAT);
4462    OPCODE(TEND);
4463    OPCODE(BYTE_MASK);
4464    OPCODE(ROTATE_MASK);
4465    OPCODE(REPLICATE);
4466    OPCODE(JOIN_DWORDS);
4467    OPCODE(SPLAT);
4468    OPCODE(MERGE_HIGH);
4469    OPCODE(MERGE_LOW);
4470    OPCODE(SHL_DOUBLE);
4471    OPCODE(PERMUTE_DWORDS);
4472    OPCODE(PERMUTE);
4473    OPCODE(PACK);
4474    OPCODE(PACKS_CC);
4475    OPCODE(PACKLS_CC);
4476    OPCODE(UNPACK_HIGH);
4477    OPCODE(UNPACKL_HIGH);
4478    OPCODE(UNPACK_LOW);
4479    OPCODE(UNPACKL_LOW);
4480    OPCODE(VSHL_BY_SCALAR);
4481    OPCODE(VSRL_BY_SCALAR);
4482    OPCODE(VSRA_BY_SCALAR);
4483    OPCODE(VSUM);
4484    OPCODE(VICMPE);
4485    OPCODE(VICMPH);
4486    OPCODE(VICMPHL);
4487    OPCODE(VICMPES);
4488    OPCODE(VICMPHS);
4489    OPCODE(VICMPHLS);
4490    OPCODE(VFCMPE);
4491    OPCODE(VFCMPH);
4492    OPCODE(VFCMPHE);
4493    OPCODE(VFCMPES);
4494    OPCODE(VFCMPHS);
4495    OPCODE(VFCMPHES);
4496    OPCODE(VFTCI);
4497    OPCODE(VEXTEND);
4498    OPCODE(VROUND);
4499    OPCODE(VTM);
4500    OPCODE(VFAE_CC);
4501    OPCODE(VFAEZ_CC);
4502    OPCODE(VFEE_CC);
4503    OPCODE(VFEEZ_CC);
4504    OPCODE(VFENE_CC);
4505    OPCODE(VFENEZ_CC);
4506    OPCODE(VISTR_CC);
4507    OPCODE(VSTRC_CC);
4508    OPCODE(VSTRCZ_CC);
4509    OPCODE(ATOMIC_SWAPW);
4510    OPCODE(ATOMIC_LOADW_ADD);
4511    OPCODE(ATOMIC_LOADW_SUB);
4512    OPCODE(ATOMIC_LOADW_AND);
4513    OPCODE(ATOMIC_LOADW_OR);
4514    OPCODE(ATOMIC_LOADW_XOR);
4515    OPCODE(ATOMIC_LOADW_NAND);
4516    OPCODE(ATOMIC_LOADW_MIN);
4517    OPCODE(ATOMIC_LOADW_MAX);
4518    OPCODE(ATOMIC_LOADW_UMIN);
4519    OPCODE(ATOMIC_LOADW_UMAX);
4520    OPCODE(ATOMIC_CMP_SWAPW);
4521    OPCODE(PREFETCH);
4522  }
4523  return nullptr;
4524#undef OPCODE
4525}
4526
4527// Return true if VT is a vector whose elements are a whole number of bytes
4528// in width.
4529static bool canTreatAsByteVector(EVT VT) {
4530  return VT.isVector() && VT.getVectorElementType().getSizeInBits() % 8 == 0;
4531}
4532
4533// Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
4534// producing a result of type ResVT.  Op is a possibly bitcast version
4535// of the input vector and Index is the index (based on type VecVT) that
4536// should be extracted.  Return the new extraction if a simplification
4537// was possible or if Force is true.
4538SDValue SystemZTargetLowering::combineExtract(SDLoc DL, EVT ResVT, EVT VecVT,
4539                                              SDValue Op, unsigned Index,
4540                                              DAGCombinerInfo &DCI,
4541                                              bool Force) const {
4542  SelectionDAG &DAG = DCI.DAG;
4543
4544  // The number of bytes being extracted.
4545  unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
4546
4547  for (;;) {
4548    unsigned Opcode = Op.getOpcode();
4549    if (Opcode == ISD::BITCAST)
4550      // Look through bitcasts.
4551      Op = Op.getOperand(0);
4552    else if (Opcode == ISD::VECTOR_SHUFFLE &&
4553             canTreatAsByteVector(Op.getValueType())) {
4554      // Get a VPERM-like permute mask and see whether the bytes covered
4555      // by the extracted element are a contiguous sequence from one
4556      // source operand.
4557      SmallVector<int, SystemZ::VectorBytes> Bytes;
4558      getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes);
4559      int First;
4560      if (!getShuffleInput(Bytes, Index * BytesPerElement,
4561                           BytesPerElement, First))
4562        break;
4563      if (First < 0)
4564        return DAG.getUNDEF(ResVT);
4565      // Make sure the contiguous sequence starts at a multiple of the
4566      // original element size.
4567      unsigned Byte = unsigned(First) % Bytes.size();
4568      if (Byte % BytesPerElement != 0)
4569        break;
4570      // We can get the extracted value directly from an input.
4571      Index = Byte / BytesPerElement;
4572      Op = Op.getOperand(unsigned(First) / Bytes.size());
4573      Force = true;
4574    } else if (Opcode == ISD::BUILD_VECTOR &&
4575               canTreatAsByteVector(Op.getValueType())) {
4576      // We can only optimize this case if the BUILD_VECTOR elements are
4577      // at least as wide as the extracted value.
4578      EVT OpVT = Op.getValueType();
4579      unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
4580      if (OpBytesPerElement < BytesPerElement)
4581        break;
4582      // Make sure that the least-significant bit of the extracted value
4583      // is the least significant bit of an input.
4584      unsigned End = (Index + 1) * BytesPerElement;
4585      if (End % OpBytesPerElement != 0)
4586        break;
4587      // We're extracting the low part of one operand of the BUILD_VECTOR.
4588      Op = Op.getOperand(End / OpBytesPerElement - 1);
4589      if (!Op.getValueType().isInteger()) {
4590        EVT VT = MVT::getIntegerVT(Op.getValueType().getSizeInBits());
4591        Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
4592        DCI.AddToWorklist(Op.getNode());
4593      }
4594      EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
4595      Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
4596      if (VT != ResVT) {
4597        DCI.AddToWorklist(Op.getNode());
4598        Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
4599      }
4600      return Op;
4601    } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
4602                Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
4603                Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
4604               canTreatAsByteVector(Op.getValueType()) &&
4605               canTreatAsByteVector(Op.getOperand(0).getValueType())) {
4606      // Make sure that only the unextended bits are significant.
4607      EVT ExtVT = Op.getValueType();
4608      EVT OpVT = Op.getOperand(0).getValueType();
4609      unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
4610      unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
4611      unsigned Byte = Index * BytesPerElement;
4612      unsigned SubByte = Byte % ExtBytesPerElement;
4613      unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
4614      if (SubByte < MinSubByte ||
4615          SubByte + BytesPerElement > ExtBytesPerElement)
4616        break;
4617      // Get the byte offset of the unextended element
4618      Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
4619      // ...then add the byte offset relative to that element.
4620      Byte += SubByte - MinSubByte;
4621      if (Byte % BytesPerElement != 0)
4622        break;
4623      Op = Op.getOperand(0);
4624      Index = Byte / BytesPerElement;
4625      Force = true;
4626    } else
4627      break;
4628  }
4629  if (Force) {
4630    if (Op.getValueType() != VecVT) {
4631      Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
4632      DCI.AddToWorklist(Op.getNode());
4633    }
4634    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
4635                       DAG.getConstant(Index, DL, MVT::i32));
4636  }
4637  return SDValue();
4638}
4639
4640// Optimize vector operations in scalar value Op on the basis that Op
4641// is truncated to TruncVT.
4642SDValue
4643SystemZTargetLowering::combineTruncateExtract(SDLoc DL, EVT TruncVT, SDValue Op,
4644                                              DAGCombinerInfo &DCI) const {
4645  // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
4646  // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
4647  // of type TruncVT.
4648  if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4649      TruncVT.getSizeInBits() % 8 == 0) {
4650    SDValue Vec = Op.getOperand(0);
4651    EVT VecVT = Vec.getValueType();
4652    if (canTreatAsByteVector(VecVT)) {
4653      if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
4654        unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
4655        unsigned TruncBytes = TruncVT.getStoreSize();
4656        if (BytesPerElement % TruncBytes == 0) {
4657          // Calculate the value of Y' in the above description.  We are
4658          // splitting the original elements into Scale equal-sized pieces
4659          // and for truncation purposes want the last (least-significant)
4660          // of these pieces for IndexN.  This is easiest to do by calculating
4661          // the start index of the following element and then subtracting 1.
4662          unsigned Scale = BytesPerElement / TruncBytes;
4663          unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
4664
4665          // Defer the creation of the bitcast from X to combineExtract,
4666          // which might be able to optimize the extraction.
4667          VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
4668                                   VecVT.getStoreSize() / TruncBytes);
4669          EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
4670          return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
4671        }
4672      }
4673    }
4674  }
4675  return SDValue();
4676}
4677
4678SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
4679                                                 DAGCombinerInfo &DCI) const {
4680  SelectionDAG &DAG = DCI.DAG;
4681  unsigned Opcode = N->getOpcode();
4682  if (Opcode == ISD::SIGN_EXTEND) {
4683    // Convert (sext (ashr (shl X, C1), C2)) to
4684    // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
4685    // cheap as narrower ones.
4686    SDValue N0 = N->getOperand(0);
4687    EVT VT = N->getValueType(0);
4688    if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
4689      auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
4690      SDValue Inner = N0.getOperand(0);
4691      if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
4692        if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
4693          unsigned Extra = (VT.getSizeInBits() -
4694                            N0.getValueType().getSizeInBits());
4695          unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
4696          unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
4697          EVT ShiftVT = N0.getOperand(1).getValueType();
4698          SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
4699                                    Inner.getOperand(0));
4700          SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
4701                                    DAG.getConstant(NewShlAmt, SDLoc(Inner),
4702                                                    ShiftVT));
4703          return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
4704                             DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
4705        }
4706      }
4707    }
4708  }
4709  if (Opcode == SystemZISD::MERGE_HIGH ||
4710      Opcode == SystemZISD::MERGE_LOW) {
4711    SDValue Op0 = N->getOperand(0);
4712    SDValue Op1 = N->getOperand(1);
4713    if (Op0.getOpcode() == ISD::BITCAST)
4714      Op0 = Op0.getOperand(0);
4715    if (Op0.getOpcode() == SystemZISD::BYTE_MASK &&
4716        cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) {
4717      // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
4718      // for v4f32.
4719      if (Op1 == N->getOperand(0))
4720        return Op1;
4721      // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
4722      EVT VT = Op1.getValueType();
4723      unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
4724      if (ElemBytes <= 4) {
4725        Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
4726                  SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
4727        EVT InVT = VT.changeVectorElementTypeToInteger();
4728        EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
4729                                     SystemZ::VectorBytes / ElemBytes / 2);
4730        if (VT != InVT) {
4731          Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
4732          DCI.AddToWorklist(Op1.getNode());
4733        }
4734        SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
4735        DCI.AddToWorklist(Op.getNode());
4736        return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
4737      }
4738    }
4739  }
4740  // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
4741  // for the extraction to be done on a vMiN value, so that we can use VSTE.
4742  // If X has wider elements then convert it to:
4743  // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
4744  if (Opcode == ISD::STORE) {
4745    auto *SN = cast<StoreSDNode>(N);
4746    EVT MemVT = SN->getMemoryVT();
4747    if (MemVT.isInteger()) {
4748      SDValue Value = combineTruncateExtract(SDLoc(N), MemVT,
4749                                             SN->getValue(), DCI);
4750      if (Value.getNode()) {
4751        DCI.AddToWorklist(Value.getNode());
4752
4753        // Rewrite the store with the new form of stored value.
4754        return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
4755                                 SN->getBasePtr(), SN->getMemoryVT(),
4756                                 SN->getMemOperand());
4757      }
4758    }
4759  }
4760  // Try to simplify a vector extraction.
4761  if (Opcode == ISD::EXTRACT_VECTOR_ELT) {
4762    if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
4763      SDValue Op0 = N->getOperand(0);
4764      EVT VecVT = Op0.getValueType();
4765      return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
4766                            IndexN->getZExtValue(), DCI, false);
4767    }
4768  }
4769  // (join_dwords X, X) == (replicate X)
4770  if (Opcode == SystemZISD::JOIN_DWORDS &&
4771      N->getOperand(0) == N->getOperand(1))
4772    return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
4773                       N->getOperand(0));
4774  // (fround (extract_vector_elt X 0))
4775  // (fround (extract_vector_elt X 1)) ->
4776  // (extract_vector_elt (VROUND X) 0)
4777  // (extract_vector_elt (VROUND X) 1)
4778  //
4779  // This is a special case since the target doesn't really support v2f32s.
4780  if (Opcode == ISD::FP_ROUND) {
4781    SDValue Op0 = N->getOperand(0);
4782    if (N->getValueType(0) == MVT::f32 &&
4783        Op0.hasOneUse() &&
4784        Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4785        Op0.getOperand(0).getValueType() == MVT::v2f64 &&
4786        Op0.getOperand(1).getOpcode() == ISD::Constant &&
4787        cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
4788      SDValue Vec = Op0.getOperand(0);
4789      for (auto *U : Vec->uses()) {
4790        if (U != Op0.getNode() &&
4791            U->hasOneUse() &&
4792            U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4793            U->getOperand(0) == Vec &&
4794            U->getOperand(1).getOpcode() == ISD::Constant &&
4795            cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
4796          SDValue OtherRound = SDValue(*U->use_begin(), 0);
4797          if (OtherRound.getOpcode() == ISD::FP_ROUND &&
4798              OtherRound.getOperand(0) == SDValue(U, 0) &&
4799              OtherRound.getValueType() == MVT::f32) {
4800            SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
4801                                         MVT::v4f32, Vec);
4802            DCI.AddToWorklist(VRound.getNode());
4803            SDValue Extract1 =
4804              DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
4805                          VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
4806            DCI.AddToWorklist(Extract1.getNode());
4807            DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
4808            SDValue Extract0 =
4809              DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
4810                          VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
4811            return Extract0;
4812          }
4813        }
4814      }
4815    }
4816  }
4817  return SDValue();
4818}
4819
4820//===----------------------------------------------------------------------===//
4821// Custom insertion
4822//===----------------------------------------------------------------------===//
4823
4824// Create a new basic block after MBB.
4825static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
4826  MachineFunction &MF = *MBB->getParent();
4827  MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
4828  MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
4829  return NewMBB;
4830}
4831
4832// Split MBB after MI and return the new block (the one that contains
4833// instructions after MI).
4834static MachineBasicBlock *splitBlockAfter(MachineInstr *MI,
4835                                          MachineBasicBlock *MBB) {
4836  MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
4837  NewMBB->splice(NewMBB->begin(), MBB,
4838                 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
4839  NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
4840  return NewMBB;
4841}
4842
4843// Split MBB before MI and return the new block (the one that contains MI).
4844static MachineBasicBlock *splitBlockBefore(MachineInstr *MI,
4845                                           MachineBasicBlock *MBB) {
4846  MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
4847  NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
4848  NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
4849  return NewMBB;
4850}
4851
4852// Force base value Base into a register before MI.  Return the register.
4853static unsigned forceReg(MachineInstr *MI, MachineOperand &Base,
4854                         const SystemZInstrInfo *TII) {
4855  if (Base.isReg())
4856    return Base.getReg();
4857
4858  MachineBasicBlock *MBB = MI->getParent();
4859  MachineFunction &MF = *MBB->getParent();
4860  MachineRegisterInfo &MRI = MF.getRegInfo();
4861
4862  unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
4863  BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg)
4864    .addOperand(Base).addImm(0).addReg(0);
4865  return Reg;
4866}
4867
4868// Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
4869MachineBasicBlock *
4870SystemZTargetLowering::emitSelect(MachineInstr *MI,
4871                                  MachineBasicBlock *MBB) const {
4872  const SystemZInstrInfo *TII =
4873      static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
4874
4875  unsigned DestReg  = MI->getOperand(0).getReg();
4876  unsigned TrueReg  = MI->getOperand(1).getReg();
4877  unsigned FalseReg = MI->getOperand(2).getReg();
4878  unsigned CCValid  = MI->getOperand(3).getImm();
4879  unsigned CCMask   = MI->getOperand(4).getImm();
4880  DebugLoc DL       = MI->getDebugLoc();
4881
4882  MachineBasicBlock *StartMBB = MBB;
4883  MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
4884  MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
4885
4886  //  StartMBB:
4887  //   BRC CCMask, JoinMBB
4888  //   # fallthrough to FalseMBB
4889  MBB = StartMBB;
4890  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
4891    .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
4892  MBB->addSuccessor(JoinMBB);
4893  MBB->addSuccessor(FalseMBB);
4894
4895  //  FalseMBB:
4896  //   # fallthrough to JoinMBB
4897  MBB = FalseMBB;
4898  MBB->addSuccessor(JoinMBB);
4899
4900  //  JoinMBB:
4901  //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
4902  //  ...
4903  MBB = JoinMBB;
4904  BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg)
4905    .addReg(TrueReg).addMBB(StartMBB)
4906    .addReg(FalseReg).addMBB(FalseMBB);
4907
4908  MI->eraseFromParent();
4909  return JoinMBB;
4910}
4911
4912// Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
4913// StoreOpcode is the store to use and Invert says whether the store should
4914// happen when the condition is false rather than true.  If a STORE ON
4915// CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
4916MachineBasicBlock *
4917SystemZTargetLowering::emitCondStore(MachineInstr *MI,
4918                                     MachineBasicBlock *MBB,
4919                                     unsigned StoreOpcode, unsigned STOCOpcode,
4920                                     bool Invert) const {
4921  const SystemZInstrInfo *TII =
4922      static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
4923
4924  unsigned SrcReg     = MI->getOperand(0).getReg();
4925  MachineOperand Base = MI->getOperand(1);
4926  int64_t Disp        = MI->getOperand(2).getImm();
4927  unsigned IndexReg   = MI->getOperand(3).getReg();
4928  unsigned CCValid    = MI->getOperand(4).getImm();
4929  unsigned CCMask     = MI->getOperand(5).getImm();
4930  DebugLoc DL         = MI->getDebugLoc();
4931
4932  StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
4933
4934  // Use STOCOpcode if possible.  We could use different store patterns in
4935  // order to avoid matching the index register, but the performance trade-offs
4936  // might be more complicated in that case.
4937  if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
4938    if (Invert)
4939      CCMask ^= CCValid;
4940    BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
4941      .addReg(SrcReg).addOperand(Base).addImm(Disp)
4942      .addImm(CCValid).addImm(CCMask);
4943    MI->eraseFromParent();
4944    return MBB;
4945  }
4946
4947  // Get the condition needed to branch around the store.
4948  if (!Invert)
4949    CCMask ^= CCValid;
4950
4951  MachineBasicBlock *StartMBB = MBB;
4952  MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
4953  MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
4954
4955  //  StartMBB:
4956  //   BRC CCMask, JoinMBB
4957  //   # fallthrough to FalseMBB
4958  MBB = StartMBB;
4959  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
4960    .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
4961  MBB->addSuccessor(JoinMBB);
4962  MBB->addSuccessor(FalseMBB);
4963
4964  //  FalseMBB:
4965  //   store %SrcReg, %Disp(%Index,%Base)
4966  //   # fallthrough to JoinMBB
4967  MBB = FalseMBB;
4968  BuildMI(MBB, DL, TII->get(StoreOpcode))
4969    .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg);
4970  MBB->addSuccessor(JoinMBB);
4971
4972  MI->eraseFromParent();
4973  return JoinMBB;
4974}
4975
4976// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
4977// or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
4978// performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
4979// BitSize is the width of the field in bits, or 0 if this is a partword
4980// ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
4981// is one of the operands.  Invert says whether the field should be
4982// inverted after performing BinOpcode (e.g. for NAND).
4983MachineBasicBlock *
4984SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI,
4985                                            MachineBasicBlock *MBB,
4986                                            unsigned BinOpcode,
4987                                            unsigned BitSize,
4988                                            bool Invert) const {
4989  MachineFunction &MF = *MBB->getParent();
4990  const SystemZInstrInfo *TII =
4991      static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
4992  MachineRegisterInfo &MRI = MF.getRegInfo();
4993  bool IsSubWord = (BitSize < 32);
4994
4995  // Extract the operands.  Base can be a register or a frame index.
4996  // Src2 can be a register or immediate.
4997  unsigned Dest        = MI->getOperand(0).getReg();
4998  MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
4999  int64_t Disp         = MI->getOperand(2).getImm();
5000  MachineOperand Src2  = earlyUseOperand(MI->getOperand(3));
5001  unsigned BitShift    = (IsSubWord ? MI->getOperand(4).getReg() : 0);
5002  unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
5003  DebugLoc DL          = MI->getDebugLoc();
5004  if (IsSubWord)
5005    BitSize = MI->getOperand(6).getImm();
5006
5007  // Subword operations use 32-bit registers.
5008  const TargetRegisterClass *RC = (BitSize <= 32 ?
5009                                   &SystemZ::GR32BitRegClass :
5010                                   &SystemZ::GR64BitRegClass);
5011  unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
5012  unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
5013
5014  // Get the right opcodes for the displacement.
5015  LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
5016  CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
5017  assert(LOpcode && CSOpcode && "Displacement out of range");
5018
5019  // Create virtual registers for temporary results.
5020  unsigned OrigVal       = MRI.createVirtualRegister(RC);
5021  unsigned OldVal        = MRI.createVirtualRegister(RC);
5022  unsigned NewVal        = (BinOpcode || IsSubWord ?
5023                            MRI.createVirtualRegister(RC) : Src2.getReg());
5024  unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
5025  unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
5026
5027  // Insert a basic block for the main loop.
5028  MachineBasicBlock *StartMBB = MBB;
5029  MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
5030  MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
5031
5032  //  StartMBB:
5033  //   ...
5034  //   %OrigVal = L Disp(%Base)
5035  //   # fall through to LoopMMB
5036  MBB = StartMBB;
5037  BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
5038    .addOperand(Base).addImm(Disp).addReg(0);
5039  MBB->addSuccessor(LoopMBB);
5040
5041  //  LoopMBB:
5042  //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
5043  //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
5044  //   %RotatedNewVal = OP %RotatedOldVal, %Src2
5045  //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
5046  //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
5047  //   JNE LoopMBB
5048  //   # fall through to DoneMMB
5049  MBB = LoopMBB;
5050  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
5051    .addReg(OrigVal).addMBB(StartMBB)
5052    .addReg(Dest).addMBB(LoopMBB);
5053  if (IsSubWord)
5054    BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
5055      .addReg(OldVal).addReg(BitShift).addImm(0);
5056  if (Invert) {
5057    // Perform the operation normally and then invert every bit of the field.
5058    unsigned Tmp = MRI.createVirtualRegister(RC);
5059    BuildMI(MBB, DL, TII->get(BinOpcode), Tmp)
5060      .addReg(RotatedOldVal).addOperand(Src2);
5061    if (BitSize <= 32)
5062      // XILF with the upper BitSize bits set.
5063      BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
5064        .addReg(Tmp).addImm(-1U << (32 - BitSize));
5065    else {
5066      // Use LCGR and add -1 to the result, which is more compact than
5067      // an XILF, XILH pair.
5068      unsigned Tmp2 = MRI.createVirtualRegister(RC);
5069      BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
5070      BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
5071        .addReg(Tmp2).addImm(-1);
5072    }
5073  } else if (BinOpcode)
5074    // A simply binary operation.
5075    BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
5076      .addReg(RotatedOldVal).addOperand(Src2);
5077  else if (IsSubWord)
5078    // Use RISBG to rotate Src2 into position and use it to replace the
5079    // field in RotatedOldVal.
5080    BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
5081      .addReg(RotatedOldVal).addReg(Src2.getReg())
5082      .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
5083  if (IsSubWord)
5084    BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
5085      .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
5086  BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
5087    .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
5088  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5089    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
5090  MBB->addSuccessor(LoopMBB);
5091  MBB->addSuccessor(DoneMBB);
5092
5093  MI->eraseFromParent();
5094  return DoneMBB;
5095}
5096
5097// Implement EmitInstrWithCustomInserter for pseudo
5098// ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
5099// instruction that should be used to compare the current field with the
5100// minimum or maximum value.  KeepOldMask is the BRC condition-code mask
5101// for when the current field should be kept.  BitSize is the width of
5102// the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
5103MachineBasicBlock *
5104SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI,
5105                                            MachineBasicBlock *MBB,
5106                                            unsigned CompareOpcode,
5107                                            unsigned KeepOldMask,
5108                                            unsigned BitSize) const {
5109  MachineFunction &MF = *MBB->getParent();
5110  const SystemZInstrInfo *TII =
5111      static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5112  MachineRegisterInfo &MRI = MF.getRegInfo();
5113  bool IsSubWord = (BitSize < 32);
5114
5115  // Extract the operands.  Base can be a register or a frame index.
5116  unsigned Dest        = MI->getOperand(0).getReg();
5117  MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
5118  int64_t  Disp        = MI->getOperand(2).getImm();
5119  unsigned Src2        = MI->getOperand(3).getReg();
5120  unsigned BitShift    = (IsSubWord ? MI->getOperand(4).getReg() : 0);
5121  unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
5122  DebugLoc DL          = MI->getDebugLoc();
5123  if (IsSubWord)
5124    BitSize = MI->getOperand(6).getImm();
5125
5126  // Subword operations use 32-bit registers.
5127  const TargetRegisterClass *RC = (BitSize <= 32 ?
5128                                   &SystemZ::GR32BitRegClass :
5129                                   &SystemZ::GR64BitRegClass);
5130  unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
5131  unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
5132
5133  // Get the right opcodes for the displacement.
5134  LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
5135  CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
5136  assert(LOpcode && CSOpcode && "Displacement out of range");
5137
5138  // Create virtual registers for temporary results.
5139  unsigned OrigVal       = MRI.createVirtualRegister(RC);
5140  unsigned OldVal        = MRI.createVirtualRegister(RC);
5141  unsigned NewVal        = MRI.createVirtualRegister(RC);
5142  unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
5143  unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
5144  unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
5145
5146  // Insert 3 basic blocks for the loop.
5147  MachineBasicBlock *StartMBB  = MBB;
5148  MachineBasicBlock *DoneMBB   = splitBlockBefore(MI, MBB);
5149  MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
5150  MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
5151  MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
5152
5153  //  StartMBB:
5154  //   ...
5155  //   %OrigVal     = L Disp(%Base)
5156  //   # fall through to LoopMMB
5157  MBB = StartMBB;
5158  BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
5159    .addOperand(Base).addImm(Disp).addReg(0);
5160  MBB->addSuccessor(LoopMBB);
5161
5162  //  LoopMBB:
5163  //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
5164  //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
5165  //   CompareOpcode %RotatedOldVal, %Src2
5166  //   BRC KeepOldMask, UpdateMBB
5167  MBB = LoopMBB;
5168  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
5169    .addReg(OrigVal).addMBB(StartMBB)
5170    .addReg(Dest).addMBB(UpdateMBB);
5171  if (IsSubWord)
5172    BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
5173      .addReg(OldVal).addReg(BitShift).addImm(0);
5174  BuildMI(MBB, DL, TII->get(CompareOpcode))
5175    .addReg(RotatedOldVal).addReg(Src2);
5176  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5177    .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
5178  MBB->addSuccessor(UpdateMBB);
5179  MBB->addSuccessor(UseAltMBB);
5180
5181  //  UseAltMBB:
5182  //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
5183  //   # fall through to UpdateMMB
5184  MBB = UseAltMBB;
5185  if (IsSubWord)
5186    BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
5187      .addReg(RotatedOldVal).addReg(Src2)
5188      .addImm(32).addImm(31 + BitSize).addImm(0);
5189  MBB->addSuccessor(UpdateMBB);
5190
5191  //  UpdateMBB:
5192  //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
5193  //                        [ %RotatedAltVal, UseAltMBB ]
5194  //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
5195  //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
5196  //   JNE LoopMBB
5197  //   # fall through to DoneMMB
5198  MBB = UpdateMBB;
5199  BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
5200    .addReg(RotatedOldVal).addMBB(LoopMBB)
5201    .addReg(RotatedAltVal).addMBB(UseAltMBB);
5202  if (IsSubWord)
5203    BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
5204      .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
5205  BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
5206    .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
5207  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5208    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
5209  MBB->addSuccessor(LoopMBB);
5210  MBB->addSuccessor(DoneMBB);
5211
5212  MI->eraseFromParent();
5213  return DoneMBB;
5214}
5215
5216// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
5217// instruction MI.
5218MachineBasicBlock *
5219SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI,
5220                                          MachineBasicBlock *MBB) const {
5221  MachineFunction &MF = *MBB->getParent();
5222  const SystemZInstrInfo *TII =
5223      static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5224  MachineRegisterInfo &MRI = MF.getRegInfo();
5225
5226  // Extract the operands.  Base can be a register or a frame index.
5227  unsigned Dest        = MI->getOperand(0).getReg();
5228  MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
5229  int64_t  Disp        = MI->getOperand(2).getImm();
5230  unsigned OrigCmpVal  = MI->getOperand(3).getReg();
5231  unsigned OrigSwapVal = MI->getOperand(4).getReg();
5232  unsigned BitShift    = MI->getOperand(5).getReg();
5233  unsigned NegBitShift = MI->getOperand(6).getReg();
5234  int64_t  BitSize     = MI->getOperand(7).getImm();
5235  DebugLoc DL          = MI->getDebugLoc();
5236
5237  const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
5238
5239  // Get the right opcodes for the displacement.
5240  unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
5241  unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
5242  assert(LOpcode && CSOpcode && "Displacement out of range");
5243
5244  // Create virtual registers for temporary results.
5245  unsigned OrigOldVal   = MRI.createVirtualRegister(RC);
5246  unsigned OldVal       = MRI.createVirtualRegister(RC);
5247  unsigned CmpVal       = MRI.createVirtualRegister(RC);
5248  unsigned SwapVal      = MRI.createVirtualRegister(RC);
5249  unsigned StoreVal     = MRI.createVirtualRegister(RC);
5250  unsigned RetryOldVal  = MRI.createVirtualRegister(RC);
5251  unsigned RetryCmpVal  = MRI.createVirtualRegister(RC);
5252  unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
5253
5254  // Insert 2 basic blocks for the loop.
5255  MachineBasicBlock *StartMBB = MBB;
5256  MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
5257  MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
5258  MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
5259
5260  //  StartMBB:
5261  //   ...
5262  //   %OrigOldVal     = L Disp(%Base)
5263  //   # fall through to LoopMMB
5264  MBB = StartMBB;
5265  BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
5266    .addOperand(Base).addImm(Disp).addReg(0);
5267  MBB->addSuccessor(LoopMBB);
5268
5269  //  LoopMBB:
5270  //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
5271  //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
5272  //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
5273  //   %Dest          = RLL %OldVal, BitSize(%BitShift)
5274  //                      ^^ The low BitSize bits contain the field
5275  //                         of interest.
5276  //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
5277  //                      ^^ Replace the upper 32-BitSize bits of the
5278  //                         comparison value with those that we loaded,
5279  //                         so that we can use a full word comparison.
5280  //   CR %Dest, %RetryCmpVal
5281  //   JNE DoneMBB
5282  //   # Fall through to SetMBB
5283  MBB = LoopMBB;
5284  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
5285    .addReg(OrigOldVal).addMBB(StartMBB)
5286    .addReg(RetryOldVal).addMBB(SetMBB);
5287  BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
5288    .addReg(OrigCmpVal).addMBB(StartMBB)
5289    .addReg(RetryCmpVal).addMBB(SetMBB);
5290  BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
5291    .addReg(OrigSwapVal).addMBB(StartMBB)
5292    .addReg(RetrySwapVal).addMBB(SetMBB);
5293  BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
5294    .addReg(OldVal).addReg(BitShift).addImm(BitSize);
5295  BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
5296    .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
5297  BuildMI(MBB, DL, TII->get(SystemZ::CR))
5298    .addReg(Dest).addReg(RetryCmpVal);
5299  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5300    .addImm(SystemZ::CCMASK_ICMP)
5301    .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
5302  MBB->addSuccessor(DoneMBB);
5303  MBB->addSuccessor(SetMBB);
5304
5305  //  SetMBB:
5306  //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
5307  //                      ^^ Replace the upper 32-BitSize bits of the new
5308  //                         value with those that we loaded.
5309  //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
5310  //                      ^^ Rotate the new field to its proper position.
5311  //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
5312  //   JNE LoopMBB
5313  //   # fall through to ExitMMB
5314  MBB = SetMBB;
5315  BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
5316    .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
5317  BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
5318    .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
5319  BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
5320    .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp);
5321  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5322    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
5323  MBB->addSuccessor(LoopMBB);
5324  MBB->addSuccessor(DoneMBB);
5325
5326  MI->eraseFromParent();
5327  return DoneMBB;
5328}
5329
5330// Emit an extension from a GR32 or GR64 to a GR128.  ClearEven is true
5331// if the high register of the GR128 value must be cleared or false if
5332// it's "don't care".  SubReg is subreg_l32 when extending a GR32
5333// and subreg_l64 when extending a GR64.
5334MachineBasicBlock *
5335SystemZTargetLowering::emitExt128(MachineInstr *MI,
5336                                  MachineBasicBlock *MBB,
5337                                  bool ClearEven, unsigned SubReg) const {
5338  MachineFunction &MF = *MBB->getParent();
5339  const SystemZInstrInfo *TII =
5340      static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5341  MachineRegisterInfo &MRI = MF.getRegInfo();
5342  DebugLoc DL = MI->getDebugLoc();
5343
5344  unsigned Dest  = MI->getOperand(0).getReg();
5345  unsigned Src   = MI->getOperand(1).getReg();
5346  unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
5347
5348  BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
5349  if (ClearEven) {
5350    unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
5351    unsigned Zero64   = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
5352
5353    BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
5354      .addImm(0);
5355    BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
5356      .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
5357    In128 = NewIn128;
5358  }
5359  BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
5360    .addReg(In128).addReg(Src).addImm(SubReg);
5361
5362  MI->eraseFromParent();
5363  return MBB;
5364}
5365
5366MachineBasicBlock *
5367SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI,
5368                                         MachineBasicBlock *MBB,
5369                                         unsigned Opcode) const {
5370  MachineFunction &MF = *MBB->getParent();
5371  const SystemZInstrInfo *TII =
5372      static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5373  MachineRegisterInfo &MRI = MF.getRegInfo();
5374  DebugLoc DL = MI->getDebugLoc();
5375
5376  MachineOperand DestBase = earlyUseOperand(MI->getOperand(0));
5377  uint64_t       DestDisp = MI->getOperand(1).getImm();
5378  MachineOperand SrcBase  = earlyUseOperand(MI->getOperand(2));
5379  uint64_t       SrcDisp  = MI->getOperand(3).getImm();
5380  uint64_t       Length   = MI->getOperand(4).getImm();
5381
5382  // When generating more than one CLC, all but the last will need to
5383  // branch to the end when a difference is found.
5384  MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
5385                               splitBlockAfter(MI, MBB) : nullptr);
5386
5387  // Check for the loop form, in which operand 5 is the trip count.
5388  if (MI->getNumExplicitOperands() > 5) {
5389    bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
5390
5391    uint64_t StartCountReg = MI->getOperand(5).getReg();
5392    uint64_t StartSrcReg   = forceReg(MI, SrcBase, TII);
5393    uint64_t StartDestReg  = (HaveSingleBase ? StartSrcReg :
5394                              forceReg(MI, DestBase, TII));
5395
5396    const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
5397    uint64_t ThisSrcReg  = MRI.createVirtualRegister(RC);
5398    uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
5399                            MRI.createVirtualRegister(RC));
5400    uint64_t NextSrcReg  = MRI.createVirtualRegister(RC);
5401    uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
5402                            MRI.createVirtualRegister(RC));
5403
5404    RC = &SystemZ::GR64BitRegClass;
5405    uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
5406    uint64_t NextCountReg = MRI.createVirtualRegister(RC);
5407
5408    MachineBasicBlock *StartMBB = MBB;
5409    MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
5410    MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
5411    MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
5412
5413    //  StartMBB:
5414    //   # fall through to LoopMMB
5415    MBB->addSuccessor(LoopMBB);
5416
5417    //  LoopMBB:
5418    //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
5419    //                      [ %NextDestReg, NextMBB ]
5420    //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
5421    //                     [ %NextSrcReg, NextMBB ]
5422    //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
5423    //                       [ %NextCountReg, NextMBB ]
5424    //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
5425    //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
5426    //   ( JLH EndMBB )
5427    //
5428    // The prefetch is used only for MVC.  The JLH is used only for CLC.
5429    MBB = LoopMBB;
5430
5431    BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
5432      .addReg(StartDestReg).addMBB(StartMBB)
5433      .addReg(NextDestReg).addMBB(NextMBB);
5434    if (!HaveSingleBase)
5435      BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
5436        .addReg(StartSrcReg).addMBB(StartMBB)
5437        .addReg(NextSrcReg).addMBB(NextMBB);
5438    BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
5439      .addReg(StartCountReg).addMBB(StartMBB)
5440      .addReg(NextCountReg).addMBB(NextMBB);
5441    if (Opcode == SystemZ::MVC)
5442      BuildMI(MBB, DL, TII->get(SystemZ::PFD))
5443        .addImm(SystemZ::PFD_WRITE)
5444        .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
5445    BuildMI(MBB, DL, TII->get(Opcode))
5446      .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
5447      .addReg(ThisSrcReg).addImm(SrcDisp);
5448    if (EndMBB) {
5449      BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5450        .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
5451        .addMBB(EndMBB);
5452      MBB->addSuccessor(EndMBB);
5453      MBB->addSuccessor(NextMBB);
5454    }
5455
5456    // NextMBB:
5457    //   %NextDestReg = LA 256(%ThisDestReg)
5458    //   %NextSrcReg = LA 256(%ThisSrcReg)
5459    //   %NextCountReg = AGHI %ThisCountReg, -1
5460    //   CGHI %NextCountReg, 0
5461    //   JLH LoopMBB
5462    //   # fall through to DoneMMB
5463    //
5464    // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
5465    MBB = NextMBB;
5466
5467    BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
5468      .addReg(ThisDestReg).addImm(256).addReg(0);
5469    if (!HaveSingleBase)
5470      BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
5471        .addReg(ThisSrcReg).addImm(256).addReg(0);
5472    BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
5473      .addReg(ThisCountReg).addImm(-1);
5474    BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
5475      .addReg(NextCountReg).addImm(0);
5476    BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5477      .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
5478      .addMBB(LoopMBB);
5479    MBB->addSuccessor(LoopMBB);
5480    MBB->addSuccessor(DoneMBB);
5481
5482    DestBase = MachineOperand::CreateReg(NextDestReg, false);
5483    SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
5484    Length &= 255;
5485    MBB = DoneMBB;
5486  }
5487  // Handle any remaining bytes with straight-line code.
5488  while (Length > 0) {
5489    uint64_t ThisLength = std::min(Length, uint64_t(256));
5490    // The previous iteration might have created out-of-range displacements.
5491    // Apply them using LAY if so.
5492    if (!isUInt<12>(DestDisp)) {
5493      unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
5494      BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
5495        .addOperand(DestBase).addImm(DestDisp).addReg(0);
5496      DestBase = MachineOperand::CreateReg(Reg, false);
5497      DestDisp = 0;
5498    }
5499    if (!isUInt<12>(SrcDisp)) {
5500      unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
5501      BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
5502        .addOperand(SrcBase).addImm(SrcDisp).addReg(0);
5503      SrcBase = MachineOperand::CreateReg(Reg, false);
5504      SrcDisp = 0;
5505    }
5506    BuildMI(*MBB, MI, DL, TII->get(Opcode))
5507      .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength)
5508      .addOperand(SrcBase).addImm(SrcDisp);
5509    DestDisp += ThisLength;
5510    SrcDisp += ThisLength;
5511    Length -= ThisLength;
5512    // If there's another CLC to go, branch to the end if a difference
5513    // was found.
5514    if (EndMBB && Length > 0) {
5515      MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
5516      BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5517        .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
5518        .addMBB(EndMBB);
5519      MBB->addSuccessor(EndMBB);
5520      MBB->addSuccessor(NextMBB);
5521      MBB = NextMBB;
5522    }
5523  }
5524  if (EndMBB) {
5525    MBB->addSuccessor(EndMBB);
5526    MBB = EndMBB;
5527    MBB->addLiveIn(SystemZ::CC);
5528  }
5529
5530  MI->eraseFromParent();
5531  return MBB;
5532}
5533
5534// Decompose string pseudo-instruction MI into a loop that continually performs
5535// Opcode until CC != 3.
5536MachineBasicBlock *
5537SystemZTargetLowering::emitStringWrapper(MachineInstr *MI,
5538                                         MachineBasicBlock *MBB,
5539                                         unsigned Opcode) const {
5540  MachineFunction &MF = *MBB->getParent();
5541  const SystemZInstrInfo *TII =
5542      static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5543  MachineRegisterInfo &MRI = MF.getRegInfo();
5544  DebugLoc DL = MI->getDebugLoc();
5545
5546  uint64_t End1Reg   = MI->getOperand(0).getReg();
5547  uint64_t Start1Reg = MI->getOperand(1).getReg();
5548  uint64_t Start2Reg = MI->getOperand(2).getReg();
5549  uint64_t CharReg   = MI->getOperand(3).getReg();
5550
5551  const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
5552  uint64_t This1Reg = MRI.createVirtualRegister(RC);
5553  uint64_t This2Reg = MRI.createVirtualRegister(RC);
5554  uint64_t End2Reg  = MRI.createVirtualRegister(RC);
5555
5556  MachineBasicBlock *StartMBB = MBB;
5557  MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
5558  MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
5559
5560  //  StartMBB:
5561  //   # fall through to LoopMMB
5562  MBB->addSuccessor(LoopMBB);
5563
5564  //  LoopMBB:
5565  //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
5566  //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
5567  //   R0L = %CharReg
5568  //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
5569  //   JO LoopMBB
5570  //   # fall through to DoneMMB
5571  //
5572  // The load of R0L can be hoisted by post-RA LICM.
5573  MBB = LoopMBB;
5574
5575  BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
5576    .addReg(Start1Reg).addMBB(StartMBB)
5577    .addReg(End1Reg).addMBB(LoopMBB);
5578  BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
5579    .addReg(Start2Reg).addMBB(StartMBB)
5580    .addReg(End2Reg).addMBB(LoopMBB);
5581  BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
5582  BuildMI(MBB, DL, TII->get(Opcode))
5583    .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
5584    .addReg(This1Reg).addReg(This2Reg);
5585  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5586    .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
5587  MBB->addSuccessor(LoopMBB);
5588  MBB->addSuccessor(DoneMBB);
5589
5590  DoneMBB->addLiveIn(SystemZ::CC);
5591
5592  MI->eraseFromParent();
5593  return DoneMBB;
5594}
5595
5596// Update TBEGIN instruction with final opcode and register clobbers.
5597MachineBasicBlock *
5598SystemZTargetLowering::emitTransactionBegin(MachineInstr *MI,
5599                                            MachineBasicBlock *MBB,
5600                                            unsigned Opcode,
5601                                            bool NoFloat) const {
5602  MachineFunction &MF = *MBB->getParent();
5603  const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
5604  const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
5605
5606  // Update opcode.
5607  MI->setDesc(TII->get(Opcode));
5608
5609  // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
5610  // Make sure to add the corresponding GRSM bits if they are missing.
5611  uint64_t Control = MI->getOperand(2).getImm();
5612  static const unsigned GPRControlBit[16] = {
5613    0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
5614    0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
5615  };
5616  Control |= GPRControlBit[15];
5617  if (TFI->hasFP(MF))
5618    Control |= GPRControlBit[11];
5619  MI->getOperand(2).setImm(Control);
5620
5621  // Add GPR clobbers.
5622  for (int I = 0; I < 16; I++) {
5623    if ((Control & GPRControlBit[I]) == 0) {
5624      unsigned Reg = SystemZMC::GR64Regs[I];
5625      MI->addOperand(MachineOperand::CreateReg(Reg, true, true));
5626    }
5627  }
5628
5629  // Add FPR/VR clobbers.
5630  if (!NoFloat && (Control & 4) != 0) {
5631    if (Subtarget.hasVector()) {
5632      for (int I = 0; I < 32; I++) {
5633        unsigned Reg = SystemZMC::VR128Regs[I];
5634        MI->addOperand(MachineOperand::CreateReg(Reg, true, true));
5635      }
5636    } else {
5637      for (int I = 0; I < 16; I++) {
5638        unsigned Reg = SystemZMC::FP64Regs[I];
5639        MI->addOperand(MachineOperand::CreateReg(Reg, true, true));
5640      }
5641    }
5642  }
5643
5644  return MBB;
5645}
5646
5647MachineBasicBlock *
5648SystemZTargetLowering::emitLoadAndTestCmp0(MachineInstr *MI,
5649                                          MachineBasicBlock *MBB,
5650                                          unsigned Opcode) const {
5651  MachineFunction &MF = *MBB->getParent();
5652  MachineRegisterInfo *MRI = &MF.getRegInfo();
5653  const SystemZInstrInfo *TII =
5654      static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5655  DebugLoc DL = MI->getDebugLoc();
5656
5657  unsigned SrcReg = MI->getOperand(0).getReg();
5658
5659  // Create new virtual register of the same class as source.
5660  const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
5661  unsigned DstReg = MRI->createVirtualRegister(RC);
5662
5663  // Replace pseudo with a normal load-and-test that models the def as
5664  // well.
5665  BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
5666    .addReg(SrcReg);
5667  MI->eraseFromParent();
5668
5669  return MBB;
5670}
5671
5672MachineBasicBlock *SystemZTargetLowering::
5673EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const {
5674  switch (MI->getOpcode()) {
5675  case SystemZ::Select32Mux:
5676  case SystemZ::Select32:
5677  case SystemZ::SelectF32:
5678  case SystemZ::Select64:
5679  case SystemZ::SelectF64:
5680  case SystemZ::SelectF128:
5681    return emitSelect(MI, MBB);
5682
5683  case SystemZ::CondStore8Mux:
5684    return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
5685  case SystemZ::CondStore8MuxInv:
5686    return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
5687  case SystemZ::CondStore16Mux:
5688    return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
5689  case SystemZ::CondStore16MuxInv:
5690    return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
5691  case SystemZ::CondStore8:
5692    return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
5693  case SystemZ::CondStore8Inv:
5694    return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
5695  case SystemZ::CondStore16:
5696    return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
5697  case SystemZ::CondStore16Inv:
5698    return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
5699  case SystemZ::CondStore32:
5700    return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
5701  case SystemZ::CondStore32Inv:
5702    return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
5703  case SystemZ::CondStore64:
5704    return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
5705  case SystemZ::CondStore64Inv:
5706    return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
5707  case SystemZ::CondStoreF32:
5708    return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
5709  case SystemZ::CondStoreF32Inv:
5710    return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
5711  case SystemZ::CondStoreF64:
5712    return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
5713  case SystemZ::CondStoreF64Inv:
5714    return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
5715
5716  case SystemZ::AEXT128_64:
5717    return emitExt128(MI, MBB, false, SystemZ::subreg_l64);
5718  case SystemZ::ZEXT128_32:
5719    return emitExt128(MI, MBB, true, SystemZ::subreg_l32);
5720  case SystemZ::ZEXT128_64:
5721    return emitExt128(MI, MBB, true, SystemZ::subreg_l64);
5722
5723  case SystemZ::ATOMIC_SWAPW:
5724    return emitAtomicLoadBinary(MI, MBB, 0, 0);
5725  case SystemZ::ATOMIC_SWAP_32:
5726    return emitAtomicLoadBinary(MI, MBB, 0, 32);
5727  case SystemZ::ATOMIC_SWAP_64:
5728    return emitAtomicLoadBinary(MI, MBB, 0, 64);
5729
5730  case SystemZ::ATOMIC_LOADW_AR:
5731    return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
5732  case SystemZ::ATOMIC_LOADW_AFI:
5733    return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
5734  case SystemZ::ATOMIC_LOAD_AR:
5735    return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
5736  case SystemZ::ATOMIC_LOAD_AHI:
5737    return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
5738  case SystemZ::ATOMIC_LOAD_AFI:
5739    return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
5740  case SystemZ::ATOMIC_LOAD_AGR:
5741    return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
5742  case SystemZ::ATOMIC_LOAD_AGHI:
5743    return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
5744  case SystemZ::ATOMIC_LOAD_AGFI:
5745    return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
5746
5747  case SystemZ::ATOMIC_LOADW_SR:
5748    return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
5749  case SystemZ::ATOMIC_LOAD_SR:
5750    return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
5751  case SystemZ::ATOMIC_LOAD_SGR:
5752    return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
5753
5754  case SystemZ::ATOMIC_LOADW_NR:
5755    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
5756  case SystemZ::ATOMIC_LOADW_NILH:
5757    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
5758  case SystemZ::ATOMIC_LOAD_NR:
5759    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
5760  case SystemZ::ATOMIC_LOAD_NILL:
5761    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
5762  case SystemZ::ATOMIC_LOAD_NILH:
5763    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
5764  case SystemZ::ATOMIC_LOAD_NILF:
5765    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
5766  case SystemZ::ATOMIC_LOAD_NGR:
5767    return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
5768  case SystemZ::ATOMIC_LOAD_NILL64:
5769    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
5770  case SystemZ::ATOMIC_LOAD_NILH64:
5771    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
5772  case SystemZ::ATOMIC_LOAD_NIHL64:
5773    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
5774  case SystemZ::ATOMIC_LOAD_NIHH64:
5775    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
5776  case SystemZ::ATOMIC_LOAD_NILF64:
5777    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
5778  case SystemZ::ATOMIC_LOAD_NIHF64:
5779    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
5780
5781  case SystemZ::ATOMIC_LOADW_OR:
5782    return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
5783  case SystemZ::ATOMIC_LOADW_OILH:
5784    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
5785  case SystemZ::ATOMIC_LOAD_OR:
5786    return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
5787  case SystemZ::ATOMIC_LOAD_OILL:
5788    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
5789  case SystemZ::ATOMIC_LOAD_OILH:
5790    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
5791  case SystemZ::ATOMIC_LOAD_OILF:
5792    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
5793  case SystemZ::ATOMIC_LOAD_OGR:
5794    return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
5795  case SystemZ::ATOMIC_LOAD_OILL64:
5796    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
5797  case SystemZ::ATOMIC_LOAD_OILH64:
5798    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
5799  case SystemZ::ATOMIC_LOAD_OIHL64:
5800    return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
5801  case SystemZ::ATOMIC_LOAD_OIHH64:
5802    return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
5803  case SystemZ::ATOMIC_LOAD_OILF64:
5804    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
5805  case SystemZ::ATOMIC_LOAD_OIHF64:
5806    return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
5807
5808  case SystemZ::ATOMIC_LOADW_XR:
5809    return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
5810  case SystemZ::ATOMIC_LOADW_XILF:
5811    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
5812  case SystemZ::ATOMIC_LOAD_XR:
5813    return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
5814  case SystemZ::ATOMIC_LOAD_XILF:
5815    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
5816  case SystemZ::ATOMIC_LOAD_XGR:
5817    return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
5818  case SystemZ::ATOMIC_LOAD_XILF64:
5819    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
5820  case SystemZ::ATOMIC_LOAD_XIHF64:
5821    return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
5822
5823  case SystemZ::ATOMIC_LOADW_NRi:
5824    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
5825  case SystemZ::ATOMIC_LOADW_NILHi:
5826    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
5827  case SystemZ::ATOMIC_LOAD_NRi:
5828    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
5829  case SystemZ::ATOMIC_LOAD_NILLi:
5830    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
5831  case SystemZ::ATOMIC_LOAD_NILHi:
5832    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
5833  case SystemZ::ATOMIC_LOAD_NILFi:
5834    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
5835  case SystemZ::ATOMIC_LOAD_NGRi:
5836    return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
5837  case SystemZ::ATOMIC_LOAD_NILL64i:
5838    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
5839  case SystemZ::ATOMIC_LOAD_NILH64i:
5840    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
5841  case SystemZ::ATOMIC_LOAD_NIHL64i:
5842    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
5843  case SystemZ::ATOMIC_LOAD_NIHH64i:
5844    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
5845  case SystemZ::ATOMIC_LOAD_NILF64i:
5846    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
5847  case SystemZ::ATOMIC_LOAD_NIHF64i:
5848    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
5849
5850  case SystemZ::ATOMIC_LOADW_MIN:
5851    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
5852                                SystemZ::CCMASK_CMP_LE, 0);
5853  case SystemZ::ATOMIC_LOAD_MIN_32:
5854    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
5855                                SystemZ::CCMASK_CMP_LE, 32);
5856  case SystemZ::ATOMIC_LOAD_MIN_64:
5857    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
5858                                SystemZ::CCMASK_CMP_LE, 64);
5859
5860  case SystemZ::ATOMIC_LOADW_MAX:
5861    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
5862                                SystemZ::CCMASK_CMP_GE, 0);
5863  case SystemZ::ATOMIC_LOAD_MAX_32:
5864    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
5865                                SystemZ::CCMASK_CMP_GE, 32);
5866  case SystemZ::ATOMIC_LOAD_MAX_64:
5867    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
5868                                SystemZ::CCMASK_CMP_GE, 64);
5869
5870  case SystemZ::ATOMIC_LOADW_UMIN:
5871    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
5872                                SystemZ::CCMASK_CMP_LE, 0);
5873  case SystemZ::ATOMIC_LOAD_UMIN_32:
5874    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
5875                                SystemZ::CCMASK_CMP_LE, 32);
5876  case SystemZ::ATOMIC_LOAD_UMIN_64:
5877    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
5878                                SystemZ::CCMASK_CMP_LE, 64);
5879
5880  case SystemZ::ATOMIC_LOADW_UMAX:
5881    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
5882                                SystemZ::CCMASK_CMP_GE, 0);
5883  case SystemZ::ATOMIC_LOAD_UMAX_32:
5884    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
5885                                SystemZ::CCMASK_CMP_GE, 32);
5886  case SystemZ::ATOMIC_LOAD_UMAX_64:
5887    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
5888                                SystemZ::CCMASK_CMP_GE, 64);
5889
5890  case SystemZ::ATOMIC_CMP_SWAPW:
5891    return emitAtomicCmpSwapW(MI, MBB);
5892  case SystemZ::MVCSequence:
5893  case SystemZ::MVCLoop:
5894    return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
5895  case SystemZ::NCSequence:
5896  case SystemZ::NCLoop:
5897    return emitMemMemWrapper(MI, MBB, SystemZ::NC);
5898  case SystemZ::OCSequence:
5899  case SystemZ::OCLoop:
5900    return emitMemMemWrapper(MI, MBB, SystemZ::OC);
5901  case SystemZ::XCSequence:
5902  case SystemZ::XCLoop:
5903    return emitMemMemWrapper(MI, MBB, SystemZ::XC);
5904  case SystemZ::CLCSequence:
5905  case SystemZ::CLCLoop:
5906    return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
5907  case SystemZ::CLSTLoop:
5908    return emitStringWrapper(MI, MBB, SystemZ::CLST);
5909  case SystemZ::MVSTLoop:
5910    return emitStringWrapper(MI, MBB, SystemZ::MVST);
5911  case SystemZ::SRSTLoop:
5912    return emitStringWrapper(MI, MBB, SystemZ::SRST);
5913  case SystemZ::TBEGIN:
5914    return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
5915  case SystemZ::TBEGIN_nofloat:
5916    return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
5917  case SystemZ::TBEGINC:
5918    return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
5919  case SystemZ::LTEBRCompare_VecPseudo:
5920    return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
5921  case SystemZ::LTDBRCompare_VecPseudo:
5922    return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
5923  case SystemZ::LTXBRCompare_VecPseudo:
5924    return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
5925
5926  default:
5927    llvm_unreachable("Unexpected instr type to insert");
5928  }
5929}
5930