SystemZISelLowering.cpp revision 280031
1//===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SystemZTargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "SystemZISelLowering.h"
15#include "SystemZCallingConv.h"
16#include "SystemZConstantPoolValue.h"
17#include "SystemZMachineFunctionInfo.h"
18#include "SystemZTargetMachine.h"
19#include "llvm/CodeGen/CallingConvLower.h"
20#include "llvm/CodeGen/MachineInstrBuilder.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
23#include <cctype>
24
25using namespace llvm;
26
27#define DEBUG_TYPE "systemz-lower"
28
29namespace {
30// Represents a sequence for extracting a 0/1 value from an IPM result:
31// (((X ^ XORValue) + AddValue) >> Bit)
32struct IPMConversion {
33  IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
34    : XORValue(xorValue), AddValue(addValue), Bit(bit) {}
35
36  int64_t XORValue;
37  int64_t AddValue;
38  unsigned Bit;
39};
40
41// Represents information about a comparison.
42struct Comparison {
43  Comparison(SDValue Op0In, SDValue Op1In)
44    : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
45
46  // The operands to the comparison.
47  SDValue Op0, Op1;
48
49  // The opcode that should be used to compare Op0 and Op1.
50  unsigned Opcode;
51
52  // A SystemZICMP value.  Only used for integer comparisons.
53  unsigned ICmpType;
54
55  // The mask of CC values that Opcode can produce.
56  unsigned CCValid;
57
58  // The mask of CC values for which the original condition is true.
59  unsigned CCMask;
60};
61} // end anonymous namespace
62
63// Classify VT as either 32 or 64 bit.
64static bool is32Bit(EVT VT) {
65  switch (VT.getSimpleVT().SimpleTy) {
66  case MVT::i32:
67    return true;
68  case MVT::i64:
69    return false;
70  default:
71    llvm_unreachable("Unsupported type");
72  }
73}
74
75// Return a version of MachineOperand that can be safely used before the
76// final use.
77static MachineOperand earlyUseOperand(MachineOperand Op) {
78  if (Op.isReg())
79    Op.setIsKill(false);
80  return Op;
81}
82
83SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &tm)
84    : TargetLowering(tm),
85      Subtarget(tm.getSubtarget<SystemZSubtarget>()) {
86  MVT PtrVT = getPointerTy();
87
88  // Set up the register classes.
89  if (Subtarget.hasHighWord())
90    addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
91  else
92    addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
93  addRegisterClass(MVT::i64,  &SystemZ::GR64BitRegClass);
94  addRegisterClass(MVT::f32,  &SystemZ::FP32BitRegClass);
95  addRegisterClass(MVT::f64,  &SystemZ::FP64BitRegClass);
96  addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
97
98  // Compute derived properties from the register classes
99  computeRegisterProperties();
100
101  // Set up special registers.
102  setExceptionPointerRegister(SystemZ::R6D);
103  setExceptionSelectorRegister(SystemZ::R7D);
104  setStackPointerRegisterToSaveRestore(SystemZ::R15D);
105
106  // TODO: It may be better to default to latency-oriented scheduling, however
107  // LLVM's current latency-oriented scheduler can't handle physreg definitions
108  // such as SystemZ has with CC, so set this to the register-pressure
109  // scheduler, because it can.
110  setSchedulingPreference(Sched::RegPressure);
111
112  setBooleanContents(ZeroOrOneBooleanContent);
113  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
114
115  // Instructions are strings of 2-byte aligned 2-byte values.
116  setMinFunctionAlignment(2);
117
118  // Handle operations that are handled in a similar way for all types.
119  for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
120       I <= MVT::LAST_FP_VALUETYPE;
121       ++I) {
122    MVT VT = MVT::SimpleValueType(I);
123    if (isTypeLegal(VT)) {
124      // Lower SET_CC into an IPM-based sequence.
125      setOperationAction(ISD::SETCC, VT, Custom);
126
127      // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
128      setOperationAction(ISD::SELECT, VT, Expand);
129
130      // Lower SELECT_CC and BR_CC into separate comparisons and branches.
131      setOperationAction(ISD::SELECT_CC, VT, Custom);
132      setOperationAction(ISD::BR_CC,     VT, Custom);
133    }
134  }
135
136  // Expand jump table branches as address arithmetic followed by an
137  // indirect jump.
138  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
139
140  // Expand BRCOND into a BR_CC (see above).
141  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
142
143  // Handle integer types.
144  for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
145       I <= MVT::LAST_INTEGER_VALUETYPE;
146       ++I) {
147    MVT VT = MVT::SimpleValueType(I);
148    if (isTypeLegal(VT)) {
149      // Expand individual DIV and REMs into DIVREMs.
150      setOperationAction(ISD::SDIV, VT, Expand);
151      setOperationAction(ISD::UDIV, VT, Expand);
152      setOperationAction(ISD::SREM, VT, Expand);
153      setOperationAction(ISD::UREM, VT, Expand);
154      setOperationAction(ISD::SDIVREM, VT, Custom);
155      setOperationAction(ISD::UDIVREM, VT, Custom);
156
157      // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
158      // stores, putting a serialization instruction after the stores.
159      setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
160      setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
161
162      // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
163      // available, or if the operand is constant.
164      setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
165
166      // No special instructions for these.
167      setOperationAction(ISD::CTPOP,           VT, Expand);
168      setOperationAction(ISD::CTTZ,            VT, Expand);
169      setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
170      setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
171      setOperationAction(ISD::ROTR,            VT, Expand);
172
173      // Use *MUL_LOHI where possible instead of MULH*.
174      setOperationAction(ISD::MULHS, VT, Expand);
175      setOperationAction(ISD::MULHU, VT, Expand);
176      setOperationAction(ISD::SMUL_LOHI, VT, Custom);
177      setOperationAction(ISD::UMUL_LOHI, VT, Custom);
178
179      // Only z196 and above have native support for conversions to unsigned.
180      if (!Subtarget.hasFPExtension())
181        setOperationAction(ISD::FP_TO_UINT, VT, Expand);
182    }
183  }
184
185  // Type legalization will convert 8- and 16-bit atomic operations into
186  // forms that operate on i32s (but still keeping the original memory VT).
187  // Lower them into full i32 operations.
188  setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
189  setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
190  setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
191  setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
192  setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
193  setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
194  setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
195  setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
196  setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
197  setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
198  setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
199  setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Custom);
200
201  // z10 has instructions for signed but not unsigned FP conversion.
202  // Handle unsigned 32-bit types as signed 64-bit types.
203  if (!Subtarget.hasFPExtension()) {
204    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
205    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
206  }
207
208  // We have native support for a 64-bit CTLZ, via FLOGR.
209  setOperationAction(ISD::CTLZ, MVT::i32, Promote);
210  setOperationAction(ISD::CTLZ, MVT::i64, Legal);
211
212  // Give LowerOperation the chance to replace 64-bit ORs with subregs.
213  setOperationAction(ISD::OR, MVT::i64, Custom);
214
215  // FIXME: Can we support these natively?
216  setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
217  setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
218  setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
219
220  // We have native instructions for i8, i16 and i32 extensions, but not i1.
221  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
222  for (MVT VT : MVT::integer_valuetypes()) {
223    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
224    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
225    setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
226  }
227
228  // Handle the various types of symbolic address.
229  setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
230  setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
231  setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
232  setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
233  setOperationAction(ISD::JumpTable,        PtrVT, Custom);
234
235  // We need to handle dynamic allocations specially because of the
236  // 160-byte area at the bottom of the stack.
237  setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
238
239  // Use custom expanders so that we can force the function to use
240  // a frame pointer.
241  setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
242  setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
243
244  // Handle prefetches with PFD or PFDRL.
245  setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
246
247  // Handle floating-point types.
248  for (unsigned I = MVT::FIRST_FP_VALUETYPE;
249       I <= MVT::LAST_FP_VALUETYPE;
250       ++I) {
251    MVT VT = MVT::SimpleValueType(I);
252    if (isTypeLegal(VT)) {
253      // We can use FI for FRINT.
254      setOperationAction(ISD::FRINT, VT, Legal);
255
256      // We can use the extended form of FI for other rounding operations.
257      if (Subtarget.hasFPExtension()) {
258        setOperationAction(ISD::FNEARBYINT, VT, Legal);
259        setOperationAction(ISD::FFLOOR, VT, Legal);
260        setOperationAction(ISD::FCEIL, VT, Legal);
261        setOperationAction(ISD::FTRUNC, VT, Legal);
262        setOperationAction(ISD::FROUND, VT, Legal);
263      }
264
265      // No special instructions for these.
266      setOperationAction(ISD::FSIN, VT, Expand);
267      setOperationAction(ISD::FCOS, VT, Expand);
268      setOperationAction(ISD::FREM, VT, Expand);
269    }
270  }
271
272  // We have fused multiply-addition for f32 and f64 but not f128.
273  setOperationAction(ISD::FMA, MVT::f32,  Legal);
274  setOperationAction(ISD::FMA, MVT::f64,  Legal);
275  setOperationAction(ISD::FMA, MVT::f128, Expand);
276
277  // Needed so that we don't try to implement f128 constant loads using
278  // a load-and-extend of a f80 constant (in cases where the constant
279  // would fit in an f80).
280  for (MVT VT : MVT::fp_valuetypes())
281    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
282
283  // Floating-point truncation and stores need to be done separately.
284  setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
285  setTruncStoreAction(MVT::f128, MVT::f32, Expand);
286  setTruncStoreAction(MVT::f128, MVT::f64, Expand);
287
288  // We have 64-bit FPR<->GPR moves, but need special handling for
289  // 32-bit forms.
290  setOperationAction(ISD::BITCAST, MVT::i32, Custom);
291  setOperationAction(ISD::BITCAST, MVT::f32, Custom);
292
293  // VASTART and VACOPY need to deal with the SystemZ-specific varargs
294  // structure, but VAEND is a no-op.
295  setOperationAction(ISD::VASTART, MVT::Other, Custom);
296  setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
297  setOperationAction(ISD::VAEND,   MVT::Other, Expand);
298
299  // Codes for which we want to perform some z-specific combinations.
300  setTargetDAGCombine(ISD::SIGN_EXTEND);
301
302  // We want to use MVC in preference to even a single load/store pair.
303  MaxStoresPerMemcpy = 0;
304  MaxStoresPerMemcpyOptSize = 0;
305
306  // The main memset sequence is a byte store followed by an MVC.
307  // Two STC or MV..I stores win over that, but the kind of fused stores
308  // generated by target-independent code don't when the byte value is
309  // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
310  // than "STC;MVC".  Handle the choice in target-specific code instead.
311  MaxStoresPerMemset = 0;
312  MaxStoresPerMemsetOptSize = 0;
313}
314
315EVT SystemZTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
316  if (!VT.isVector())
317    return MVT::i32;
318  return VT.changeVectorElementTypeToInteger();
319}
320
321bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
322  VT = VT.getScalarType();
323
324  if (!VT.isSimple())
325    return false;
326
327  switch (VT.getSimpleVT().SimpleTy) {
328  case MVT::f32:
329  case MVT::f64:
330    return true;
331  case MVT::f128:
332    return false;
333  default:
334    break;
335  }
336
337  return false;
338}
339
340bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
341  // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
342  return Imm.isZero() || Imm.isNegZero();
343}
344
345bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
346                                                           unsigned,
347                                                           unsigned,
348                                                           bool *Fast) const {
349  // Unaligned accesses should never be slower than the expanded version.
350  // We check specifically for aligned accesses in the few cases where
351  // they are required.
352  if (Fast)
353    *Fast = true;
354  return true;
355}
356
357bool SystemZTargetLowering::isLegalAddressingMode(const AddrMode &AM,
358                                                  Type *Ty) const {
359  // Punt on globals for now, although they can be used in limited
360  // RELATIVE LONG cases.
361  if (AM.BaseGV)
362    return false;
363
364  // Require a 20-bit signed offset.
365  if (!isInt<20>(AM.BaseOffs))
366    return false;
367
368  // Indexing is OK but no scale factor can be applied.
369  return AM.Scale == 0 || AM.Scale == 1;
370}
371
372bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
373  if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
374    return false;
375  unsigned FromBits = FromType->getPrimitiveSizeInBits();
376  unsigned ToBits = ToType->getPrimitiveSizeInBits();
377  return FromBits > ToBits;
378}
379
380bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
381  if (!FromVT.isInteger() || !ToVT.isInteger())
382    return false;
383  unsigned FromBits = FromVT.getSizeInBits();
384  unsigned ToBits = ToVT.getSizeInBits();
385  return FromBits > ToBits;
386}
387
388//===----------------------------------------------------------------------===//
389// Inline asm support
390//===----------------------------------------------------------------------===//
391
392TargetLowering::ConstraintType
393SystemZTargetLowering::getConstraintType(const std::string &Constraint) const {
394  if (Constraint.size() == 1) {
395    switch (Constraint[0]) {
396    case 'a': // Address register
397    case 'd': // Data register (equivalent to 'r')
398    case 'f': // Floating-point register
399    case 'h': // High-part register
400    case 'r': // General-purpose register
401      return C_RegisterClass;
402
403    case 'Q': // Memory with base and unsigned 12-bit displacement
404    case 'R': // Likewise, plus an index
405    case 'S': // Memory with base and signed 20-bit displacement
406    case 'T': // Likewise, plus an index
407    case 'm': // Equivalent to 'T'.
408      return C_Memory;
409
410    case 'I': // Unsigned 8-bit constant
411    case 'J': // Unsigned 12-bit constant
412    case 'K': // Signed 16-bit constant
413    case 'L': // Signed 20-bit displacement (on all targets we support)
414    case 'M': // 0x7fffffff
415      return C_Other;
416
417    default:
418      break;
419    }
420  }
421  return TargetLowering::getConstraintType(Constraint);
422}
423
424TargetLowering::ConstraintWeight SystemZTargetLowering::
425getSingleConstraintMatchWeight(AsmOperandInfo &info,
426                               const char *constraint) const {
427  ConstraintWeight weight = CW_Invalid;
428  Value *CallOperandVal = info.CallOperandVal;
429  // If we don't have a value, we can't do a match,
430  // but allow it at the lowest weight.
431  if (!CallOperandVal)
432    return CW_Default;
433  Type *type = CallOperandVal->getType();
434  // Look at the constraint type.
435  switch (*constraint) {
436  default:
437    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
438    break;
439
440  case 'a': // Address register
441  case 'd': // Data register (equivalent to 'r')
442  case 'h': // High-part register
443  case 'r': // General-purpose register
444    if (CallOperandVal->getType()->isIntegerTy())
445      weight = CW_Register;
446    break;
447
448  case 'f': // Floating-point register
449    if (type->isFloatingPointTy())
450      weight = CW_Register;
451    break;
452
453  case 'I': // Unsigned 8-bit constant
454    if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
455      if (isUInt<8>(C->getZExtValue()))
456        weight = CW_Constant;
457    break;
458
459  case 'J': // Unsigned 12-bit constant
460    if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
461      if (isUInt<12>(C->getZExtValue()))
462        weight = CW_Constant;
463    break;
464
465  case 'K': // Signed 16-bit constant
466    if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
467      if (isInt<16>(C->getSExtValue()))
468        weight = CW_Constant;
469    break;
470
471  case 'L': // Signed 20-bit displacement (on all targets we support)
472    if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
473      if (isInt<20>(C->getSExtValue()))
474        weight = CW_Constant;
475    break;
476
477  case 'M': // 0x7fffffff
478    if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
479      if (C->getZExtValue() == 0x7fffffff)
480        weight = CW_Constant;
481    break;
482  }
483  return weight;
484}
485
486// Parse a "{tNNN}" register constraint for which the register type "t"
487// has already been verified.  MC is the class associated with "t" and
488// Map maps 0-based register numbers to LLVM register numbers.
489static std::pair<unsigned, const TargetRegisterClass *>
490parseRegisterNumber(const std::string &Constraint,
491                    const TargetRegisterClass *RC, const unsigned *Map) {
492  assert(*(Constraint.end()-1) == '}' && "Missing '}'");
493  if (isdigit(Constraint[2])) {
494    std::string Suffix(Constraint.data() + 2, Constraint.size() - 2);
495    unsigned Index = atoi(Suffix.c_str());
496    if (Index < 16 && Map[Index])
497      return std::make_pair(Map[Index], RC);
498  }
499  return std::make_pair(0U, nullptr);
500}
501
502std::pair<unsigned, const TargetRegisterClass *> SystemZTargetLowering::
503getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const {
504  if (Constraint.size() == 1) {
505    // GCC Constraint Letters
506    switch (Constraint[0]) {
507    default: break;
508    case 'd': // Data register (equivalent to 'r')
509    case 'r': // General-purpose register
510      if (VT == MVT::i64)
511        return std::make_pair(0U, &SystemZ::GR64BitRegClass);
512      else if (VT == MVT::i128)
513        return std::make_pair(0U, &SystemZ::GR128BitRegClass);
514      return std::make_pair(0U, &SystemZ::GR32BitRegClass);
515
516    case 'a': // Address register
517      if (VT == MVT::i64)
518        return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
519      else if (VT == MVT::i128)
520        return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
521      return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
522
523    case 'h': // High-part register (an LLVM extension)
524      return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
525
526    case 'f': // Floating-point register
527      if (VT == MVT::f64)
528        return std::make_pair(0U, &SystemZ::FP64BitRegClass);
529      else if (VT == MVT::f128)
530        return std::make_pair(0U, &SystemZ::FP128BitRegClass);
531      return std::make_pair(0U, &SystemZ::FP32BitRegClass);
532    }
533  }
534  if (Constraint[0] == '{') {
535    // We need to override the default register parsing for GPRs and FPRs
536    // because the interpretation depends on VT.  The internal names of
537    // the registers are also different from the external names
538    // (F0D and F0S instead of F0, etc.).
539    if (Constraint[1] == 'r') {
540      if (VT == MVT::i32)
541        return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
542                                   SystemZMC::GR32Regs);
543      if (VT == MVT::i128)
544        return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
545                                   SystemZMC::GR128Regs);
546      return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
547                                 SystemZMC::GR64Regs);
548    }
549    if (Constraint[1] == 'f') {
550      if (VT == MVT::f32)
551        return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
552                                   SystemZMC::FP32Regs);
553      if (VT == MVT::f128)
554        return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
555                                   SystemZMC::FP128Regs);
556      return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
557                                 SystemZMC::FP64Regs);
558    }
559  }
560  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
561}
562
563void SystemZTargetLowering::
564LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
565                             std::vector<SDValue> &Ops,
566                             SelectionDAG &DAG) const {
567  // Only support length 1 constraints for now.
568  if (Constraint.length() == 1) {
569    switch (Constraint[0]) {
570    case 'I': // Unsigned 8-bit constant
571      if (auto *C = dyn_cast<ConstantSDNode>(Op))
572        if (isUInt<8>(C->getZExtValue()))
573          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
574                                              Op.getValueType()));
575      return;
576
577    case 'J': // Unsigned 12-bit constant
578      if (auto *C = dyn_cast<ConstantSDNode>(Op))
579        if (isUInt<12>(C->getZExtValue()))
580          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
581                                              Op.getValueType()));
582      return;
583
584    case 'K': // Signed 16-bit constant
585      if (auto *C = dyn_cast<ConstantSDNode>(Op))
586        if (isInt<16>(C->getSExtValue()))
587          Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
588                                              Op.getValueType()));
589      return;
590
591    case 'L': // Signed 20-bit displacement (on all targets we support)
592      if (auto *C = dyn_cast<ConstantSDNode>(Op))
593        if (isInt<20>(C->getSExtValue()))
594          Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
595                                              Op.getValueType()));
596      return;
597
598    case 'M': // 0x7fffffff
599      if (auto *C = dyn_cast<ConstantSDNode>(Op))
600        if (C->getZExtValue() == 0x7fffffff)
601          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
602                                              Op.getValueType()));
603      return;
604    }
605  }
606  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
607}
608
609//===----------------------------------------------------------------------===//
610// Calling conventions
611//===----------------------------------------------------------------------===//
612
613#include "SystemZGenCallingConv.inc"
614
615bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
616                                                     Type *ToType) const {
617  return isTruncateFree(FromType, ToType);
618}
619
620bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
621  if (!CI->isTailCall())
622    return false;
623  return true;
624}
625
626// Value is a value that has been passed to us in the location described by VA
627// (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
628// any loads onto Chain.
629static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL,
630                                   CCValAssign &VA, SDValue Chain,
631                                   SDValue Value) {
632  // If the argument has been promoted from a smaller type, insert an
633  // assertion to capture this.
634  if (VA.getLocInfo() == CCValAssign::SExt)
635    Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
636                        DAG.getValueType(VA.getValVT()));
637  else if (VA.getLocInfo() == CCValAssign::ZExt)
638    Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
639                        DAG.getValueType(VA.getValVT()));
640
641  if (VA.isExtInLoc())
642    Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
643  else if (VA.getLocInfo() == CCValAssign::Indirect)
644    Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value,
645                        MachinePointerInfo(), false, false, false, 0);
646  else
647    assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
648  return Value;
649}
650
651// Value is a value of type VA.getValVT() that we need to copy into
652// the location described by VA.  Return a copy of Value converted to
653// VA.getValVT().  The caller is responsible for handling indirect values.
654static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL,
655                                   CCValAssign &VA, SDValue Value) {
656  switch (VA.getLocInfo()) {
657  case CCValAssign::SExt:
658    return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
659  case CCValAssign::ZExt:
660    return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
661  case CCValAssign::AExt:
662    return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
663  case CCValAssign::Full:
664    return Value;
665  default:
666    llvm_unreachable("Unhandled getLocInfo()");
667  }
668}
669
670SDValue SystemZTargetLowering::
671LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
672                     const SmallVectorImpl<ISD::InputArg> &Ins,
673                     SDLoc DL, SelectionDAG &DAG,
674                     SmallVectorImpl<SDValue> &InVals) const {
675  MachineFunction &MF = DAG.getMachineFunction();
676  MachineFrameInfo *MFI = MF.getFrameInfo();
677  MachineRegisterInfo &MRI = MF.getRegInfo();
678  SystemZMachineFunctionInfo *FuncInfo =
679    MF.getInfo<SystemZMachineFunctionInfo>();
680  auto *TFL = static_cast<const SystemZFrameLowering *>(
681      DAG.getSubtarget().getFrameLowering());
682
683  // Assign locations to all of the incoming arguments.
684  SmallVector<CCValAssign, 16> ArgLocs;
685  CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
686  CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
687
688  unsigned NumFixedGPRs = 0;
689  unsigned NumFixedFPRs = 0;
690  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
691    SDValue ArgValue;
692    CCValAssign &VA = ArgLocs[I];
693    EVT LocVT = VA.getLocVT();
694    if (VA.isRegLoc()) {
695      // Arguments passed in registers
696      const TargetRegisterClass *RC;
697      switch (LocVT.getSimpleVT().SimpleTy) {
698      default:
699        // Integers smaller than i64 should be promoted to i64.
700        llvm_unreachable("Unexpected argument type");
701      case MVT::i32:
702        NumFixedGPRs += 1;
703        RC = &SystemZ::GR32BitRegClass;
704        break;
705      case MVT::i64:
706        NumFixedGPRs += 1;
707        RC = &SystemZ::GR64BitRegClass;
708        break;
709      case MVT::f32:
710        NumFixedFPRs += 1;
711        RC = &SystemZ::FP32BitRegClass;
712        break;
713      case MVT::f64:
714        NumFixedFPRs += 1;
715        RC = &SystemZ::FP64BitRegClass;
716        break;
717      }
718
719      unsigned VReg = MRI.createVirtualRegister(RC);
720      MRI.addLiveIn(VA.getLocReg(), VReg);
721      ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
722    } else {
723      assert(VA.isMemLoc() && "Argument not register or memory");
724
725      // Create the frame index object for this incoming parameter.
726      int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8,
727                                      VA.getLocMemOffset(), true);
728
729      // Create the SelectionDAG nodes corresponding to a load
730      // from this parameter.  Unpromoted ints and floats are
731      // passed as right-justified 8-byte values.
732      EVT PtrVT = getPointerTy();
733      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
734      if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
735        FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4));
736      ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
737                             MachinePointerInfo::getFixedStack(FI),
738                             false, false, false, 0);
739    }
740
741    // Convert the value of the argument register into the value that's
742    // being passed.
743    InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
744  }
745
746  if (IsVarArg) {
747    // Save the number of non-varargs registers for later use by va_start, etc.
748    FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
749    FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
750
751    // Likewise the address (in the form of a frame index) of where the
752    // first stack vararg would be.  The 1-byte size here is arbitrary.
753    int64_t StackSize = CCInfo.getNextStackOffset();
754    FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true));
755
756    // ...and a similar frame index for the caller-allocated save area
757    // that will be used to store the incoming registers.
758    int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
759    unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true);
760    FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
761
762    // Store the FPR varargs in the reserved frame slots.  (We store the
763    // GPRs as part of the prologue.)
764    if (NumFixedFPRs < SystemZ::NumArgFPRs) {
765      SDValue MemOps[SystemZ::NumArgFPRs];
766      for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
767        unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
768        int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true);
769        SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
770        unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
771                                     &SystemZ::FP64BitRegClass);
772        SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
773        MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
774                                 MachinePointerInfo::getFixedStack(FI),
775                                 false, false, 0);
776
777      }
778      // Join the stores, which are independent of one another.
779      Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
780                          makeArrayRef(&MemOps[NumFixedFPRs],
781                                       SystemZ::NumArgFPRs-NumFixedFPRs));
782    }
783  }
784
785  return Chain;
786}
787
788static bool canUseSiblingCall(const CCState &ArgCCInfo,
789                              SmallVectorImpl<CCValAssign> &ArgLocs) {
790  // Punt if there are any indirect or stack arguments, or if the call
791  // needs the call-saved argument register R6.
792  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
793    CCValAssign &VA = ArgLocs[I];
794    if (VA.getLocInfo() == CCValAssign::Indirect)
795      return false;
796    if (!VA.isRegLoc())
797      return false;
798    unsigned Reg = VA.getLocReg();
799    if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
800      return false;
801  }
802  return true;
803}
804
805SDValue
806SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
807                                 SmallVectorImpl<SDValue> &InVals) const {
808  SelectionDAG &DAG = CLI.DAG;
809  SDLoc &DL = CLI.DL;
810  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
811  SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
812  SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
813  SDValue Chain = CLI.Chain;
814  SDValue Callee = CLI.Callee;
815  bool &IsTailCall = CLI.IsTailCall;
816  CallingConv::ID CallConv = CLI.CallConv;
817  bool IsVarArg = CLI.IsVarArg;
818  MachineFunction &MF = DAG.getMachineFunction();
819  EVT PtrVT = getPointerTy();
820
821  // Analyze the operands of the call, assigning locations to each operand.
822  SmallVector<CCValAssign, 16> ArgLocs;
823  CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
824  ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
825
826  // We don't support GuaranteedTailCallOpt, only automatically-detected
827  // sibling calls.
828  if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs))
829    IsTailCall = false;
830
831  // Get a count of how many bytes are to be pushed on the stack.
832  unsigned NumBytes = ArgCCInfo.getNextStackOffset();
833
834  // Mark the start of the call.
835  if (!IsTailCall)
836    Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, PtrVT, true),
837                                 DL);
838
839  // Copy argument values to their designated locations.
840  SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
841  SmallVector<SDValue, 8> MemOpChains;
842  SDValue StackPtr;
843  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
844    CCValAssign &VA = ArgLocs[I];
845    SDValue ArgValue = OutVals[I];
846
847    if (VA.getLocInfo() == CCValAssign::Indirect) {
848      // Store the argument in a stack slot and pass its address.
849      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
850      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
851      MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, SpillSlot,
852                                         MachinePointerInfo::getFixedStack(FI),
853                                         false, false, 0));
854      ArgValue = SpillSlot;
855    } else
856      ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
857
858    if (VA.isRegLoc())
859      // Queue up the argument copies and emit them at the end.
860      RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
861    else {
862      assert(VA.isMemLoc() && "Argument not register or memory");
863
864      // Work out the address of the stack slot.  Unpromoted ints and
865      // floats are passed as right-justified 8-byte values.
866      if (!StackPtr.getNode())
867        StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
868      unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
869      if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
870        Offset += 4;
871      SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
872                                    DAG.getIntPtrConstant(Offset));
873
874      // Emit the store.
875      MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address,
876                                         MachinePointerInfo(),
877                                         false, false, 0));
878    }
879  }
880
881  // Join the stores, which are independent of one another.
882  if (!MemOpChains.empty())
883    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
884
885  // Accept direct calls by converting symbolic call addresses to the
886  // associated Target* opcodes.  Force %r1 to be used for indirect
887  // tail calls.
888  SDValue Glue;
889  if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
890    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
891    Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
892  } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
893    Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
894    Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
895  } else if (IsTailCall) {
896    Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
897    Glue = Chain.getValue(1);
898    Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
899  }
900
901  // Build a sequence of copy-to-reg nodes, chained and glued together.
902  for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
903    Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
904                             RegsToPass[I].second, Glue);
905    Glue = Chain.getValue(1);
906  }
907
908  // The first call operand is the chain and the second is the target address.
909  SmallVector<SDValue, 8> Ops;
910  Ops.push_back(Chain);
911  Ops.push_back(Callee);
912
913  // Add argument registers to the end of the list so that they are
914  // known live into the call.
915  for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
916    Ops.push_back(DAG.getRegister(RegsToPass[I].first,
917                                  RegsToPass[I].second.getValueType()));
918
919  // Add a register mask operand representing the call-preserved registers.
920  const TargetRegisterInfo *TRI =
921      getTargetMachine().getSubtargetImpl()->getRegisterInfo();
922  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
923  assert(Mask && "Missing call preserved mask for calling convention");
924  Ops.push_back(DAG.getRegisterMask(Mask));
925
926  // Glue the call to the argument copies, if any.
927  if (Glue.getNode())
928    Ops.push_back(Glue);
929
930  // Emit the call.
931  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
932  if (IsTailCall)
933    return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
934  Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
935  Glue = Chain.getValue(1);
936
937  // Mark the end of the call, which is glued to the call itself.
938  Chain = DAG.getCALLSEQ_END(Chain,
939                             DAG.getConstant(NumBytes, PtrVT, true),
940                             DAG.getConstant(0, PtrVT, true),
941                             Glue, DL);
942  Glue = Chain.getValue(1);
943
944  // Assign locations to each value returned by this call.
945  SmallVector<CCValAssign, 16> RetLocs;
946  CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
947  RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
948
949  // Copy all of the result registers out of their specified physreg.
950  for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
951    CCValAssign &VA = RetLocs[I];
952
953    // Copy the value out, gluing the copy to the end of the call sequence.
954    SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
955                                          VA.getLocVT(), Glue);
956    Chain = RetValue.getValue(1);
957    Glue = RetValue.getValue(2);
958
959    // Convert the value of the return register into the value that's
960    // being returned.
961    InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
962  }
963
964  return Chain;
965}
966
967SDValue
968SystemZTargetLowering::LowerReturn(SDValue Chain,
969                                   CallingConv::ID CallConv, bool IsVarArg,
970                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
971                                   const SmallVectorImpl<SDValue> &OutVals,
972                                   SDLoc DL, SelectionDAG &DAG) const {
973  MachineFunction &MF = DAG.getMachineFunction();
974
975  // Assign locations to each returned value.
976  SmallVector<CCValAssign, 16> RetLocs;
977  CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
978  RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
979
980  // Quick exit for void returns
981  if (RetLocs.empty())
982    return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
983
984  // Copy the result values into the output registers.
985  SDValue Glue;
986  SmallVector<SDValue, 4> RetOps;
987  RetOps.push_back(Chain);
988  for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
989    CCValAssign &VA = RetLocs[I];
990    SDValue RetValue = OutVals[I];
991
992    // Make the return register live on exit.
993    assert(VA.isRegLoc() && "Can only return in registers!");
994
995    // Promote the value as required.
996    RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
997
998    // Chain and glue the copies together.
999    unsigned Reg = VA.getLocReg();
1000    Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1001    Glue = Chain.getValue(1);
1002    RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1003  }
1004
1005  // Update chain and glue.
1006  RetOps[0] = Chain;
1007  if (Glue.getNode())
1008    RetOps.push_back(Glue);
1009
1010  return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1011}
1012
1013SDValue SystemZTargetLowering::
1014prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL, SelectionDAG &DAG) const {
1015  return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain);
1016}
1017
1018// CC is a comparison that will be implemented using an integer or
1019// floating-point comparison.  Return the condition code mask for
1020// a branch on true.  In the integer case, CCMASK_CMP_UO is set for
1021// unsigned comparisons and clear for signed ones.  In the floating-point
1022// case, CCMASK_CMP_UO has its normal mask meaning (unordered).
1023static unsigned CCMaskForCondCode(ISD::CondCode CC) {
1024#define CONV(X) \
1025  case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
1026  case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
1027  case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
1028
1029  switch (CC) {
1030  default:
1031    llvm_unreachable("Invalid integer condition!");
1032
1033  CONV(EQ);
1034  CONV(NE);
1035  CONV(GT);
1036  CONV(GE);
1037  CONV(LT);
1038  CONV(LE);
1039
1040  case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
1041  case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
1042  }
1043#undef CONV
1044}
1045
1046// Return a sequence for getting a 1 from an IPM result when CC has a
1047// value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
1048// The handling of CC values outside CCValid doesn't matter.
1049static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
1050  // Deal with cases where the result can be taken directly from a bit
1051  // of the IPM result.
1052  if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
1053    return IPMConversion(0, 0, SystemZ::IPM_CC);
1054  if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
1055    return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
1056
1057  // Deal with cases where we can add a value to force the sign bit
1058  // to contain the right value.  Putting the bit in 31 means we can
1059  // use SRL rather than RISBG(L), and also makes it easier to get a
1060  // 0/-1 value, so it has priority over the other tests below.
1061  //
1062  // These sequences rely on the fact that the upper two bits of the
1063  // IPM result are zero.
1064  uint64_t TopBit = uint64_t(1) << 31;
1065  if (CCMask == (CCValid & SystemZ::CCMASK_0))
1066    return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
1067  if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
1068    return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
1069  if (CCMask == (CCValid & (SystemZ::CCMASK_0
1070                            | SystemZ::CCMASK_1
1071                            | SystemZ::CCMASK_2)))
1072    return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
1073  if (CCMask == (CCValid & SystemZ::CCMASK_3))
1074    return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
1075  if (CCMask == (CCValid & (SystemZ::CCMASK_1
1076                            | SystemZ::CCMASK_2
1077                            | SystemZ::CCMASK_3)))
1078    return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
1079
1080  // Next try inverting the value and testing a bit.  0/1 could be
1081  // handled this way too, but we dealt with that case above.
1082  if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
1083    return IPMConversion(-1, 0, SystemZ::IPM_CC);
1084
1085  // Handle cases where adding a value forces a non-sign bit to contain
1086  // the right value.
1087  if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
1088    return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
1089  if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
1090    return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
1091
1092  // The remaining cases are 1, 2, 0/1/3 and 0/2/3.  All these are
1093  // can be done by inverting the low CC bit and applying one of the
1094  // sign-based extractions above.
1095  if (CCMask == (CCValid & SystemZ::CCMASK_1))
1096    return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
1097  if (CCMask == (CCValid & SystemZ::CCMASK_2))
1098    return IPMConversion(1 << SystemZ::IPM_CC,
1099                         TopBit - (3 << SystemZ::IPM_CC), 31);
1100  if (CCMask == (CCValid & (SystemZ::CCMASK_0
1101                            | SystemZ::CCMASK_1
1102                            | SystemZ::CCMASK_3)))
1103    return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
1104  if (CCMask == (CCValid & (SystemZ::CCMASK_0
1105                            | SystemZ::CCMASK_2
1106                            | SystemZ::CCMASK_3)))
1107    return IPMConversion(1 << SystemZ::IPM_CC,
1108                         TopBit - (1 << SystemZ::IPM_CC), 31);
1109
1110  llvm_unreachable("Unexpected CC combination");
1111}
1112
1113// If C can be converted to a comparison against zero, adjust the operands
1114// as necessary.
1115static void adjustZeroCmp(SelectionDAG &DAG, Comparison &C) {
1116  if (C.ICmpType == SystemZICMP::UnsignedOnly)
1117    return;
1118
1119  auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
1120  if (!ConstOp1)
1121    return;
1122
1123  int64_t Value = ConstOp1->getSExtValue();
1124  if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
1125      (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
1126      (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
1127      (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
1128    C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1129    C.Op1 = DAG.getConstant(0, C.Op1.getValueType());
1130  }
1131}
1132
1133// If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
1134// adjust the operands as necessary.
1135static void adjustSubwordCmp(SelectionDAG &DAG, Comparison &C) {
1136  // For us to make any changes, it must a comparison between a single-use
1137  // load and a constant.
1138  if (!C.Op0.hasOneUse() ||
1139      C.Op0.getOpcode() != ISD::LOAD ||
1140      C.Op1.getOpcode() != ISD::Constant)
1141    return;
1142
1143  // We must have an 8- or 16-bit load.
1144  auto *Load = cast<LoadSDNode>(C.Op0);
1145  unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1146  if (NumBits != 8 && NumBits != 16)
1147    return;
1148
1149  // The load must be an extending one and the constant must be within the
1150  // range of the unextended value.
1151  auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
1152  uint64_t Value = ConstOp1->getZExtValue();
1153  uint64_t Mask = (1 << NumBits) - 1;
1154  if (Load->getExtensionType() == ISD::SEXTLOAD) {
1155    // Make sure that ConstOp1 is in range of C.Op0.
1156    int64_t SignedValue = ConstOp1->getSExtValue();
1157    if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
1158      return;
1159    if (C.ICmpType != SystemZICMP::SignedOnly) {
1160      // Unsigned comparison between two sign-extended values is equivalent
1161      // to unsigned comparison between two zero-extended values.
1162      Value &= Mask;
1163    } else if (NumBits == 8) {
1164      // Try to treat the comparison as unsigned, so that we can use CLI.
1165      // Adjust CCMask and Value as necessary.
1166      if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
1167        // Test whether the high bit of the byte is set.
1168        Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
1169      else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
1170        // Test whether the high bit of the byte is clear.
1171        Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
1172      else
1173        // No instruction exists for this combination.
1174        return;
1175      C.ICmpType = SystemZICMP::UnsignedOnly;
1176    }
1177  } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
1178    if (Value > Mask)
1179      return;
1180    assert(C.ICmpType == SystemZICMP::Any &&
1181           "Signedness shouldn't matter here.");
1182  } else
1183    return;
1184
1185  // Make sure that the first operand is an i32 of the right extension type.
1186  ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
1187                              ISD::SEXTLOAD :
1188                              ISD::ZEXTLOAD);
1189  if (C.Op0.getValueType() != MVT::i32 ||
1190      Load->getExtensionType() != ExtType)
1191    C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32,
1192                           Load->getChain(), Load->getBasePtr(),
1193                           Load->getPointerInfo(), Load->getMemoryVT(),
1194                           Load->isVolatile(), Load->isNonTemporal(),
1195                           Load->isInvariant(), Load->getAlignment());
1196
1197  // Make sure that the second operand is an i32 with the right value.
1198  if (C.Op1.getValueType() != MVT::i32 ||
1199      Value != ConstOp1->getZExtValue())
1200    C.Op1 = DAG.getConstant(Value, MVT::i32);
1201}
1202
1203// Return true if Op is either an unextended load, or a load suitable
1204// for integer register-memory comparisons of type ICmpType.
1205static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
1206  auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
1207  if (Load) {
1208    // There are no instructions to compare a register with a memory byte.
1209    if (Load->getMemoryVT() == MVT::i8)
1210      return false;
1211    // Otherwise decide on extension type.
1212    switch (Load->getExtensionType()) {
1213    case ISD::NON_EXTLOAD:
1214      return true;
1215    case ISD::SEXTLOAD:
1216      return ICmpType != SystemZICMP::UnsignedOnly;
1217    case ISD::ZEXTLOAD:
1218      return ICmpType != SystemZICMP::SignedOnly;
1219    default:
1220      break;
1221    }
1222  }
1223  return false;
1224}
1225
1226// Return true if it is better to swap the operands of C.
1227static bool shouldSwapCmpOperands(const Comparison &C) {
1228  // Leave f128 comparisons alone, since they have no memory forms.
1229  if (C.Op0.getValueType() == MVT::f128)
1230    return false;
1231
1232  // Always keep a floating-point constant second, since comparisons with
1233  // zero can use LOAD TEST and comparisons with other constants make a
1234  // natural memory operand.
1235  if (isa<ConstantFPSDNode>(C.Op1))
1236    return false;
1237
1238  // Never swap comparisons with zero since there are many ways to optimize
1239  // those later.
1240  auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
1241  if (ConstOp1 && ConstOp1->getZExtValue() == 0)
1242    return false;
1243
1244  // Also keep natural memory operands second if the loaded value is
1245  // only used here.  Several comparisons have memory forms.
1246  if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
1247    return false;
1248
1249  // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
1250  // In that case we generally prefer the memory to be second.
1251  if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
1252    // The only exceptions are when the second operand is a constant and
1253    // we can use things like CHHSI.
1254    if (!ConstOp1)
1255      return true;
1256    // The unsigned memory-immediate instructions can handle 16-bit
1257    // unsigned integers.
1258    if (C.ICmpType != SystemZICMP::SignedOnly &&
1259        isUInt<16>(ConstOp1->getZExtValue()))
1260      return false;
1261    // The signed memory-immediate instructions can handle 16-bit
1262    // signed integers.
1263    if (C.ICmpType != SystemZICMP::UnsignedOnly &&
1264        isInt<16>(ConstOp1->getSExtValue()))
1265      return false;
1266    return true;
1267  }
1268
1269  // Try to promote the use of CGFR and CLGFR.
1270  unsigned Opcode0 = C.Op0.getOpcode();
1271  if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
1272    return true;
1273  if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
1274    return true;
1275  if (C.ICmpType != SystemZICMP::SignedOnly &&
1276      Opcode0 == ISD::AND &&
1277      C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
1278      cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
1279    return true;
1280
1281  return false;
1282}
1283
1284// Return a version of comparison CC mask CCMask in which the LT and GT
1285// actions are swapped.
1286static unsigned reverseCCMask(unsigned CCMask) {
1287  return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1288          (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1289          (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1290          (CCMask & SystemZ::CCMASK_CMP_UO));
1291}
1292
1293// Check whether C tests for equality between X and Y and whether X - Y
1294// or Y - X is also computed.  In that case it's better to compare the
1295// result of the subtraction against zero.
1296static void adjustForSubtraction(SelectionDAG &DAG, Comparison &C) {
1297  if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
1298      C.CCMask == SystemZ::CCMASK_CMP_NE) {
1299    for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1300      SDNode *N = *I;
1301      if (N->getOpcode() == ISD::SUB &&
1302          ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
1303           (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
1304        C.Op0 = SDValue(N, 0);
1305        C.Op1 = DAG.getConstant(0, N->getValueType(0));
1306        return;
1307      }
1308    }
1309  }
1310}
1311
1312// Check whether C compares a floating-point value with zero and if that
1313// floating-point value is also negated.  In this case we can use the
1314// negation to set CC, so avoiding separate LOAD AND TEST and
1315// LOAD (NEGATIVE/COMPLEMENT) instructions.
1316static void adjustForFNeg(Comparison &C) {
1317  auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
1318  if (C1 && C1->isZero()) {
1319    for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1320      SDNode *N = *I;
1321      if (N->getOpcode() == ISD::FNEG) {
1322        C.Op0 = SDValue(N, 0);
1323        C.CCMask = reverseCCMask(C.CCMask);
1324        return;
1325      }
1326    }
1327  }
1328}
1329
1330// Check whether C compares (shl X, 32) with 0 and whether X is
1331// also sign-extended.  In that case it is better to test the result
1332// of the sign extension using LTGFR.
1333//
1334// This case is important because InstCombine transforms a comparison
1335// with (sext (trunc X)) into a comparison with (shl X, 32).
1336static void adjustForLTGFR(Comparison &C) {
1337  // Check for a comparison between (shl X, 32) and 0.
1338  if (C.Op0.getOpcode() == ISD::SHL &&
1339      C.Op0.getValueType() == MVT::i64 &&
1340      C.Op1.getOpcode() == ISD::Constant &&
1341      cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1342    auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
1343    if (C1 && C1->getZExtValue() == 32) {
1344      SDValue ShlOp0 = C.Op0.getOperand(0);
1345      // See whether X has any SIGN_EXTEND_INREG uses.
1346      for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
1347        SDNode *N = *I;
1348        if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
1349            cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
1350          C.Op0 = SDValue(N, 0);
1351          return;
1352        }
1353      }
1354    }
1355  }
1356}
1357
1358// If C compares the truncation of an extending load, try to compare
1359// the untruncated value instead.  This exposes more opportunities to
1360// reuse CC.
1361static void adjustICmpTruncate(SelectionDAG &DAG, Comparison &C) {
1362  if (C.Op0.getOpcode() == ISD::TRUNCATE &&
1363      C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
1364      C.Op1.getOpcode() == ISD::Constant &&
1365      cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1366    auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
1367    if (L->getMemoryVT().getStoreSizeInBits()
1368        <= C.Op0.getValueType().getSizeInBits()) {
1369      unsigned Type = L->getExtensionType();
1370      if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
1371          (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
1372        C.Op0 = C.Op0.getOperand(0);
1373        C.Op1 = DAG.getConstant(0, C.Op0.getValueType());
1374      }
1375    }
1376  }
1377}
1378
1379// Return true if shift operation N has an in-range constant shift value.
1380// Store it in ShiftVal if so.
1381static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
1382  auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
1383  if (!Shift)
1384    return false;
1385
1386  uint64_t Amount = Shift->getZExtValue();
1387  if (Amount >= N.getValueType().getSizeInBits())
1388    return false;
1389
1390  ShiftVal = Amount;
1391  return true;
1392}
1393
1394// Check whether an AND with Mask is suitable for a TEST UNDER MASK
1395// instruction and whether the CC value is descriptive enough to handle
1396// a comparison of type Opcode between the AND result and CmpVal.
1397// CCMask says which comparison result is being tested and BitSize is
1398// the number of bits in the operands.  If TEST UNDER MASK can be used,
1399// return the corresponding CC mask, otherwise return 0.
1400static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
1401                                     uint64_t Mask, uint64_t CmpVal,
1402                                     unsigned ICmpType) {
1403  assert(Mask != 0 && "ANDs with zero should have been removed by now");
1404
1405  // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
1406  if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
1407      !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
1408    return 0;
1409
1410  // Work out the masks for the lowest and highest bits.
1411  unsigned HighShift = 63 - countLeadingZeros(Mask);
1412  uint64_t High = uint64_t(1) << HighShift;
1413  uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
1414
1415  // Signed ordered comparisons are effectively unsigned if the sign
1416  // bit is dropped.
1417  bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
1418
1419  // Check for equality comparisons with 0, or the equivalent.
1420  if (CmpVal == 0) {
1421    if (CCMask == SystemZ::CCMASK_CMP_EQ)
1422      return SystemZ::CCMASK_TM_ALL_0;
1423    if (CCMask == SystemZ::CCMASK_CMP_NE)
1424      return SystemZ::CCMASK_TM_SOME_1;
1425  }
1426  if (EffectivelyUnsigned && CmpVal <= Low) {
1427    if (CCMask == SystemZ::CCMASK_CMP_LT)
1428      return SystemZ::CCMASK_TM_ALL_0;
1429    if (CCMask == SystemZ::CCMASK_CMP_GE)
1430      return SystemZ::CCMASK_TM_SOME_1;
1431  }
1432  if (EffectivelyUnsigned && CmpVal < Low) {
1433    if (CCMask == SystemZ::CCMASK_CMP_LE)
1434      return SystemZ::CCMASK_TM_ALL_0;
1435    if (CCMask == SystemZ::CCMASK_CMP_GT)
1436      return SystemZ::CCMASK_TM_SOME_1;
1437  }
1438
1439  // Check for equality comparisons with the mask, or the equivalent.
1440  if (CmpVal == Mask) {
1441    if (CCMask == SystemZ::CCMASK_CMP_EQ)
1442      return SystemZ::CCMASK_TM_ALL_1;
1443    if (CCMask == SystemZ::CCMASK_CMP_NE)
1444      return SystemZ::CCMASK_TM_SOME_0;
1445  }
1446  if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
1447    if (CCMask == SystemZ::CCMASK_CMP_GT)
1448      return SystemZ::CCMASK_TM_ALL_1;
1449    if (CCMask == SystemZ::CCMASK_CMP_LE)
1450      return SystemZ::CCMASK_TM_SOME_0;
1451  }
1452  if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
1453    if (CCMask == SystemZ::CCMASK_CMP_GE)
1454      return SystemZ::CCMASK_TM_ALL_1;
1455    if (CCMask == SystemZ::CCMASK_CMP_LT)
1456      return SystemZ::CCMASK_TM_SOME_0;
1457  }
1458
1459  // Check for ordered comparisons with the top bit.
1460  if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
1461    if (CCMask == SystemZ::CCMASK_CMP_LE)
1462      return SystemZ::CCMASK_TM_MSB_0;
1463    if (CCMask == SystemZ::CCMASK_CMP_GT)
1464      return SystemZ::CCMASK_TM_MSB_1;
1465  }
1466  if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
1467    if (CCMask == SystemZ::CCMASK_CMP_LT)
1468      return SystemZ::CCMASK_TM_MSB_0;
1469    if (CCMask == SystemZ::CCMASK_CMP_GE)
1470      return SystemZ::CCMASK_TM_MSB_1;
1471  }
1472
1473  // If there are just two bits, we can do equality checks for Low and High
1474  // as well.
1475  if (Mask == Low + High) {
1476    if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
1477      return SystemZ::CCMASK_TM_MIXED_MSB_0;
1478    if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
1479      return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
1480    if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
1481      return SystemZ::CCMASK_TM_MIXED_MSB_1;
1482    if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
1483      return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
1484  }
1485
1486  // Looks like we've exhausted our options.
1487  return 0;
1488}
1489
1490// See whether C can be implemented as a TEST UNDER MASK instruction.
1491// Update the arguments with the TM version if so.
1492static void adjustForTestUnderMask(SelectionDAG &DAG, Comparison &C) {
1493  // Check that we have a comparison with a constant.
1494  auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
1495  if (!ConstOp1)
1496    return;
1497  uint64_t CmpVal = ConstOp1->getZExtValue();
1498
1499  // Check whether the nonconstant input is an AND with a constant mask.
1500  Comparison NewC(C);
1501  uint64_t MaskVal;
1502  ConstantSDNode *Mask = nullptr;
1503  if (C.Op0.getOpcode() == ISD::AND) {
1504    NewC.Op0 = C.Op0.getOperand(0);
1505    NewC.Op1 = C.Op0.getOperand(1);
1506    Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
1507    if (!Mask)
1508      return;
1509    MaskVal = Mask->getZExtValue();
1510  } else {
1511    // There is no instruction to compare with a 64-bit immediate
1512    // so use TMHH instead if possible.  We need an unsigned ordered
1513    // comparison with an i64 immediate.
1514    if (NewC.Op0.getValueType() != MVT::i64 ||
1515        NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
1516        NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
1517        NewC.ICmpType == SystemZICMP::SignedOnly)
1518      return;
1519    // Convert LE and GT comparisons into LT and GE.
1520    if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
1521        NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
1522      if (CmpVal == uint64_t(-1))
1523        return;
1524      CmpVal += 1;
1525      NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1526    }
1527    // If the low N bits of Op1 are zero than the low N bits of Op0 can
1528    // be masked off without changing the result.
1529    MaskVal = -(CmpVal & -CmpVal);
1530    NewC.ICmpType = SystemZICMP::UnsignedOnly;
1531  }
1532
1533  // Check whether the combination of mask, comparison value and comparison
1534  // type are suitable.
1535  unsigned BitSize = NewC.Op0.getValueType().getSizeInBits();
1536  unsigned NewCCMask, ShiftVal;
1537  if (NewC.ICmpType != SystemZICMP::SignedOnly &&
1538      NewC.Op0.getOpcode() == ISD::SHL &&
1539      isSimpleShift(NewC.Op0, ShiftVal) &&
1540      (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
1541                                        MaskVal >> ShiftVal,
1542                                        CmpVal >> ShiftVal,
1543                                        SystemZICMP::Any))) {
1544    NewC.Op0 = NewC.Op0.getOperand(0);
1545    MaskVal >>= ShiftVal;
1546  } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
1547             NewC.Op0.getOpcode() == ISD::SRL &&
1548             isSimpleShift(NewC.Op0, ShiftVal) &&
1549             (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
1550                                               MaskVal << ShiftVal,
1551                                               CmpVal << ShiftVal,
1552                                               SystemZICMP::UnsignedOnly))) {
1553    NewC.Op0 = NewC.Op0.getOperand(0);
1554    MaskVal <<= ShiftVal;
1555  } else {
1556    NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
1557                                     NewC.ICmpType);
1558    if (!NewCCMask)
1559      return;
1560  }
1561
1562  // Go ahead and make the change.
1563  C.Opcode = SystemZISD::TM;
1564  C.Op0 = NewC.Op0;
1565  if (Mask && Mask->getZExtValue() == MaskVal)
1566    C.Op1 = SDValue(Mask, 0);
1567  else
1568    C.Op1 = DAG.getConstant(MaskVal, C.Op0.getValueType());
1569  C.CCValid = SystemZ::CCMASK_TM;
1570  C.CCMask = NewCCMask;
1571}
1572
1573// Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
1574static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
1575                         ISD::CondCode Cond) {
1576  Comparison C(CmpOp0, CmpOp1);
1577  C.CCMask = CCMaskForCondCode(Cond);
1578  if (C.Op0.getValueType().isFloatingPoint()) {
1579    C.CCValid = SystemZ::CCMASK_FCMP;
1580    C.Opcode = SystemZISD::FCMP;
1581    adjustForFNeg(C);
1582  } else {
1583    C.CCValid = SystemZ::CCMASK_ICMP;
1584    C.Opcode = SystemZISD::ICMP;
1585    // Choose the type of comparison.  Equality and inequality tests can
1586    // use either signed or unsigned comparisons.  The choice also doesn't
1587    // matter if both sign bits are known to be clear.  In those cases we
1588    // want to give the main isel code the freedom to choose whichever
1589    // form fits best.
1590    if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
1591        C.CCMask == SystemZ::CCMASK_CMP_NE ||
1592        (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
1593      C.ICmpType = SystemZICMP::Any;
1594    else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
1595      C.ICmpType = SystemZICMP::UnsignedOnly;
1596    else
1597      C.ICmpType = SystemZICMP::SignedOnly;
1598    C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
1599    adjustZeroCmp(DAG, C);
1600    adjustSubwordCmp(DAG, C);
1601    adjustForSubtraction(DAG, C);
1602    adjustForLTGFR(C);
1603    adjustICmpTruncate(DAG, C);
1604  }
1605
1606  if (shouldSwapCmpOperands(C)) {
1607    std::swap(C.Op0, C.Op1);
1608    C.CCMask = reverseCCMask(C.CCMask);
1609  }
1610
1611  adjustForTestUnderMask(DAG, C);
1612  return C;
1613}
1614
1615// Emit the comparison instruction described by C.
1616static SDValue emitCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) {
1617  if (C.Opcode == SystemZISD::ICMP)
1618    return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1,
1619                       DAG.getConstant(C.ICmpType, MVT::i32));
1620  if (C.Opcode == SystemZISD::TM) {
1621    bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
1622                         bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
1623    return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1,
1624                       DAG.getConstant(RegisterOnly, MVT::i32));
1625  }
1626  return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1);
1627}
1628
1629// Implement a 32-bit *MUL_LOHI operation by extending both operands to
1630// 64 bits.  Extend is the extension type to use.  Store the high part
1631// in Hi and the low part in Lo.
1632static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL,
1633                            unsigned Extend, SDValue Op0, SDValue Op1,
1634                            SDValue &Hi, SDValue &Lo) {
1635  Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
1636  Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
1637  SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
1638  Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, DAG.getConstant(32, MVT::i64));
1639  Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
1640  Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
1641}
1642
1643// Lower a binary operation that produces two VT results, one in each
1644// half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
1645// Extend extends Op0 to a GR128, and Opcode performs the GR128 operation
1646// on the extended Op0 and (unextended) Op1.  Store the even register result
1647// in Even and the odd register result in Odd.
1648static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT,
1649                             unsigned Extend, unsigned Opcode,
1650                             SDValue Op0, SDValue Op1,
1651                             SDValue &Even, SDValue &Odd) {
1652  SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0);
1653  SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped,
1654                               SDValue(In128, 0), Op1);
1655  bool Is32Bit = is32Bit(VT);
1656  Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
1657  Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
1658}
1659
1660// Return an i32 value that is 1 if the CC value produced by Glue is
1661// in the mask CCMask and 0 otherwise.  CC is known to have a value
1662// in CCValid, so other values can be ignored.
1663static SDValue emitSETCC(SelectionDAG &DAG, SDLoc DL, SDValue Glue,
1664                         unsigned CCValid, unsigned CCMask) {
1665  IPMConversion Conversion = getIPMConversion(CCValid, CCMask);
1666  SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
1667
1668  if (Conversion.XORValue)
1669    Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result,
1670                         DAG.getConstant(Conversion.XORValue, MVT::i32));
1671
1672  if (Conversion.AddValue)
1673    Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result,
1674                         DAG.getConstant(Conversion.AddValue, MVT::i32));
1675
1676  // The SHR/AND sequence should get optimized to an RISBG.
1677  Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result,
1678                       DAG.getConstant(Conversion.Bit, MVT::i32));
1679  if (Conversion.Bit != 31)
1680    Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result,
1681                         DAG.getConstant(1, MVT::i32));
1682  return Result;
1683}
1684
1685SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
1686                                          SelectionDAG &DAG) const {
1687  SDValue CmpOp0   = Op.getOperand(0);
1688  SDValue CmpOp1   = Op.getOperand(1);
1689  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1690  SDLoc DL(Op);
1691
1692  Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC));
1693  SDValue Glue = emitCmp(DAG, DL, C);
1694  return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
1695}
1696
1697SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
1698  SDValue Chain    = Op.getOperand(0);
1699  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1700  SDValue CmpOp0   = Op.getOperand(2);
1701  SDValue CmpOp1   = Op.getOperand(3);
1702  SDValue Dest     = Op.getOperand(4);
1703  SDLoc DL(Op);
1704
1705  Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC));
1706  SDValue Glue = emitCmp(DAG, DL, C);
1707  return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
1708                     Chain, DAG.getConstant(C.CCValid, MVT::i32),
1709                     DAG.getConstant(C.CCMask, MVT::i32), Dest, Glue);
1710}
1711
1712// Return true if Pos is CmpOp and Neg is the negative of CmpOp,
1713// allowing Pos and Neg to be wider than CmpOp.
1714static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
1715  return (Neg.getOpcode() == ISD::SUB &&
1716          Neg.getOperand(0).getOpcode() == ISD::Constant &&
1717          cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
1718          Neg.getOperand(1) == Pos &&
1719          (Pos == CmpOp ||
1720           (Pos.getOpcode() == ISD::SIGN_EXTEND &&
1721            Pos.getOperand(0) == CmpOp)));
1722}
1723
1724// Return the absolute or negative absolute of Op; IsNegative decides which.
1725static SDValue getAbsolute(SelectionDAG &DAG, SDLoc DL, SDValue Op,
1726                           bool IsNegative) {
1727  Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
1728  if (IsNegative)
1729    Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
1730                     DAG.getConstant(0, Op.getValueType()), Op);
1731  return Op;
1732}
1733
1734SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
1735                                              SelectionDAG &DAG) const {
1736  SDValue CmpOp0   = Op.getOperand(0);
1737  SDValue CmpOp1   = Op.getOperand(1);
1738  SDValue TrueOp   = Op.getOperand(2);
1739  SDValue FalseOp  = Op.getOperand(3);
1740  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1741  SDLoc DL(Op);
1742
1743  Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC));
1744
1745  // Check for absolute and negative-absolute selections, including those
1746  // where the comparison value is sign-extended (for LPGFR and LNGFR).
1747  // This check supplements the one in DAGCombiner.
1748  if (C.Opcode == SystemZISD::ICMP &&
1749      C.CCMask != SystemZ::CCMASK_CMP_EQ &&
1750      C.CCMask != SystemZ::CCMASK_CMP_NE &&
1751      C.Op1.getOpcode() == ISD::Constant &&
1752      cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1753    if (isAbsolute(C.Op0, TrueOp, FalseOp))
1754      return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
1755    if (isAbsolute(C.Op0, FalseOp, TrueOp))
1756      return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
1757  }
1758
1759  SDValue Glue = emitCmp(DAG, DL, C);
1760
1761  // Special case for handling -1/0 results.  The shifts we use here
1762  // should get optimized with the IPM conversion sequence.
1763  auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp);
1764  auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp);
1765  if (TrueC && FalseC) {
1766    int64_t TrueVal = TrueC->getSExtValue();
1767    int64_t FalseVal = FalseC->getSExtValue();
1768    if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) {
1769      // Invert the condition if we want -1 on false.
1770      if (TrueVal == 0)
1771        C.CCMask ^= C.CCValid;
1772      SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
1773      EVT VT = Op.getValueType();
1774      // Extend the result to VT.  Upper bits are ignored.
1775      if (!is32Bit(VT))
1776        Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result);
1777      // Sign-extend from the low bit.
1778      SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, MVT::i32);
1779      SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt);
1780      return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt);
1781    }
1782  }
1783
1784  SmallVector<SDValue, 5> Ops;
1785  Ops.push_back(TrueOp);
1786  Ops.push_back(FalseOp);
1787  Ops.push_back(DAG.getConstant(C.CCValid, MVT::i32));
1788  Ops.push_back(DAG.getConstant(C.CCMask, MVT::i32));
1789  Ops.push_back(Glue);
1790
1791  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
1792  return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops);
1793}
1794
1795SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
1796                                                  SelectionDAG &DAG) const {
1797  SDLoc DL(Node);
1798  const GlobalValue *GV = Node->getGlobal();
1799  int64_t Offset = Node->getOffset();
1800  EVT PtrVT = getPointerTy();
1801  Reloc::Model RM = DAG.getTarget().getRelocationModel();
1802  CodeModel::Model CM = DAG.getTarget().getCodeModel();
1803
1804  SDValue Result;
1805  if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) {
1806    // Assign anchors at 1<<12 byte boundaries.
1807    uint64_t Anchor = Offset & ~uint64_t(0xfff);
1808    Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
1809    Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1810
1811    // The offset can be folded into the address if it is aligned to a halfword.
1812    Offset -= Anchor;
1813    if (Offset != 0 && (Offset & 1) == 0) {
1814      SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
1815      Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
1816      Offset = 0;
1817    }
1818  } else {
1819    Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
1820    Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1821    Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
1822                         MachinePointerInfo::getGOT(), false, false, false, 0);
1823  }
1824
1825  // If there was a non-zero offset that we didn't fold, create an explicit
1826  // addition for it.
1827  if (Offset != 0)
1828    Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
1829                         DAG.getConstant(Offset, PtrVT));
1830
1831  return Result;
1832}
1833
1834SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
1835						     SelectionDAG &DAG) const {
1836  SDLoc DL(Node);
1837  const GlobalValue *GV = Node->getGlobal();
1838  EVT PtrVT = getPointerTy();
1839  TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
1840
1841  if (model != TLSModel::LocalExec)
1842    llvm_unreachable("only local-exec TLS mode supported");
1843
1844  // The high part of the thread pointer is in access register 0.
1845  SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
1846                             DAG.getConstant(0, MVT::i32));
1847  TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
1848
1849  // The low part of the thread pointer is in access register 1.
1850  SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
1851                             DAG.getConstant(1, MVT::i32));
1852  TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
1853
1854  // Merge them into a single 64-bit address.
1855  SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
1856				    DAG.getConstant(32, PtrVT));
1857  SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
1858
1859  // Get the offset of GA from the thread pointer.
1860  SystemZConstantPoolValue *CPV =
1861    SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
1862
1863  // Force the offset into the constant pool and load it from there.
1864  SDValue CPAddr = DAG.getConstantPool(CPV, PtrVT, 8);
1865  SDValue Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
1866			       CPAddr, MachinePointerInfo::getConstantPool(),
1867			       false, false, false, 0);
1868
1869  // Add the base and offset together.
1870  return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
1871}
1872
1873SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
1874                                                 SelectionDAG &DAG) const {
1875  SDLoc DL(Node);
1876  const BlockAddress *BA = Node->getBlockAddress();
1877  int64_t Offset = Node->getOffset();
1878  EVT PtrVT = getPointerTy();
1879
1880  SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
1881  Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1882  return Result;
1883}
1884
1885SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
1886                                              SelectionDAG &DAG) const {
1887  SDLoc DL(JT);
1888  EVT PtrVT = getPointerTy();
1889  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1890
1891  // Use LARL to load the address of the table.
1892  return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1893}
1894
1895SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
1896                                                 SelectionDAG &DAG) const {
1897  SDLoc DL(CP);
1898  EVT PtrVT = getPointerTy();
1899
1900  SDValue Result;
1901  if (CP->isMachineConstantPoolEntry())
1902    Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1903				       CP->getAlignment());
1904  else
1905    Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1906				       CP->getAlignment(), CP->getOffset());
1907
1908  // Use LARL to load the address of the constant pool entry.
1909  return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1910}
1911
1912SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
1913                                            SelectionDAG &DAG) const {
1914  SDLoc DL(Op);
1915  SDValue In = Op.getOperand(0);
1916  EVT InVT = In.getValueType();
1917  EVT ResVT = Op.getValueType();
1918
1919  if (InVT == MVT::i32 && ResVT == MVT::f32) {
1920    SDValue In64;
1921    if (Subtarget.hasHighWord()) {
1922      SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
1923                                       MVT::i64);
1924      In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
1925                                       MVT::i64, SDValue(U64, 0), In);
1926    } else {
1927      In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
1928      In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
1929                         DAG.getConstant(32, MVT::i64));
1930    }
1931    SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
1932    return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
1933                                      DL, MVT::f32, Out64);
1934  }
1935  if (InVT == MVT::f32 && ResVT == MVT::i32) {
1936    SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
1937    SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
1938                                             MVT::f64, SDValue(U64, 0), In);
1939    SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
1940    if (Subtarget.hasHighWord())
1941      return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
1942                                        MVT::i32, Out64);
1943    SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
1944                                DAG.getConstant(32, MVT::i64));
1945    return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
1946  }
1947  llvm_unreachable("Unexpected bitcast combination");
1948}
1949
1950SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
1951                                            SelectionDAG &DAG) const {
1952  MachineFunction &MF = DAG.getMachineFunction();
1953  SystemZMachineFunctionInfo *FuncInfo =
1954    MF.getInfo<SystemZMachineFunctionInfo>();
1955  EVT PtrVT = getPointerTy();
1956
1957  SDValue Chain   = Op.getOperand(0);
1958  SDValue Addr    = Op.getOperand(1);
1959  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1960  SDLoc DL(Op);
1961
1962  // The initial values of each field.
1963  const unsigned NumFields = 4;
1964  SDValue Fields[NumFields] = {
1965    DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), PtrVT),
1966    DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), PtrVT),
1967    DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
1968    DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
1969  };
1970
1971  // Store each field into its respective slot.
1972  SDValue MemOps[NumFields];
1973  unsigned Offset = 0;
1974  for (unsigned I = 0; I < NumFields; ++I) {
1975    SDValue FieldAddr = Addr;
1976    if (Offset != 0)
1977      FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
1978                              DAG.getIntPtrConstant(Offset));
1979    MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
1980                             MachinePointerInfo(SV, Offset),
1981                             false, false, 0);
1982    Offset += 8;
1983  }
1984  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
1985}
1986
1987SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
1988                                           SelectionDAG &DAG) const {
1989  SDValue Chain      = Op.getOperand(0);
1990  SDValue DstPtr     = Op.getOperand(1);
1991  SDValue SrcPtr     = Op.getOperand(2);
1992  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
1993  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
1994  SDLoc DL(Op);
1995
1996  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32),
1997                       /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
1998                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
1999}
2000
2001SDValue SystemZTargetLowering::
2002lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
2003  SDValue Chain = Op.getOperand(0);
2004  SDValue Size  = Op.getOperand(1);
2005  SDLoc DL(Op);
2006
2007  unsigned SPReg = getStackPointerRegisterToSaveRestore();
2008
2009  // Get a reference to the stack pointer.
2010  SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
2011
2012  // Get the new stack pointer value.
2013  SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size);
2014
2015  // Copy the new stack pointer back.
2016  Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
2017
2018  // The allocated data lives above the 160 bytes allocated for the standard
2019  // frame, plus any outgoing stack arguments.  We don't know how much that
2020  // amounts to yet, so emit a special ADJDYNALLOC placeholder.
2021  SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
2022  SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
2023
2024  SDValue Ops[2] = { Result, Chain };
2025  return DAG.getMergeValues(Ops, DL);
2026}
2027
2028SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
2029                                              SelectionDAG &DAG) const {
2030  EVT VT = Op.getValueType();
2031  SDLoc DL(Op);
2032  SDValue Ops[2];
2033  if (is32Bit(VT))
2034    // Just do a normal 64-bit multiplication and extract the results.
2035    // We define this so that it can be used for constant division.
2036    lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
2037                    Op.getOperand(1), Ops[1], Ops[0]);
2038  else {
2039    // Do a full 128-bit multiplication based on UMUL_LOHI64:
2040    //
2041    //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
2042    //
2043    // but using the fact that the upper halves are either all zeros
2044    // or all ones:
2045    //
2046    //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
2047    //
2048    // and grouping the right terms together since they are quicker than the
2049    // multiplication:
2050    //
2051    //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
2052    SDValue C63 = DAG.getConstant(63, MVT::i64);
2053    SDValue LL = Op.getOperand(0);
2054    SDValue RL = Op.getOperand(1);
2055    SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
2056    SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
2057    // UMUL_LOHI64 returns the low result in the odd register and the high
2058    // result in the even register.  SMUL_LOHI is defined to return the
2059    // low half first, so the results are in reverse order.
2060    lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
2061                     LL, RL, Ops[1], Ops[0]);
2062    SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
2063    SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
2064    SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
2065    Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
2066  }
2067  return DAG.getMergeValues(Ops, DL);
2068}
2069
2070SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
2071                                              SelectionDAG &DAG) const {
2072  EVT VT = Op.getValueType();
2073  SDLoc DL(Op);
2074  SDValue Ops[2];
2075  if (is32Bit(VT))
2076    // Just do a normal 64-bit multiplication and extract the results.
2077    // We define this so that it can be used for constant division.
2078    lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
2079                    Op.getOperand(1), Ops[1], Ops[0]);
2080  else
2081    // UMUL_LOHI64 returns the low result in the odd register and the high
2082    // result in the even register.  UMUL_LOHI is defined to return the
2083    // low half first, so the results are in reverse order.
2084    lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
2085                     Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
2086  return DAG.getMergeValues(Ops, DL);
2087}
2088
2089SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
2090                                            SelectionDAG &DAG) const {
2091  SDValue Op0 = Op.getOperand(0);
2092  SDValue Op1 = Op.getOperand(1);
2093  EVT VT = Op.getValueType();
2094  SDLoc DL(Op);
2095  unsigned Opcode;
2096
2097  // We use DSGF for 32-bit division.
2098  if (is32Bit(VT)) {
2099    Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
2100    Opcode = SystemZISD::SDIVREM32;
2101  } else if (DAG.ComputeNumSignBits(Op1) > 32) {
2102    Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
2103    Opcode = SystemZISD::SDIVREM32;
2104  } else
2105    Opcode = SystemZISD::SDIVREM64;
2106
2107  // DSG(F) takes a 64-bit dividend, so the even register in the GR128
2108  // input is "don't care".  The instruction returns the remainder in
2109  // the even register and the quotient in the odd register.
2110  SDValue Ops[2];
2111  lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode,
2112                   Op0, Op1, Ops[1], Ops[0]);
2113  return DAG.getMergeValues(Ops, DL);
2114}
2115
2116SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
2117                                            SelectionDAG &DAG) const {
2118  EVT VT = Op.getValueType();
2119  SDLoc DL(Op);
2120
2121  // DL(G) uses a double-width dividend, so we need to clear the even
2122  // register in the GR128 input.  The instruction returns the remainder
2123  // in the even register and the quotient in the odd register.
2124  SDValue Ops[2];
2125  if (is32Bit(VT))
2126    lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32,
2127                     Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
2128  else
2129    lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64,
2130                     Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
2131  return DAG.getMergeValues(Ops, DL);
2132}
2133
2134SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
2135  assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
2136
2137  // Get the known-zero masks for each operand.
2138  SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
2139  APInt KnownZero[2], KnownOne[2];
2140  DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]);
2141  DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]);
2142
2143  // See if the upper 32 bits of one operand and the lower 32 bits of the
2144  // other are known zero.  They are the low and high operands respectively.
2145  uint64_t Masks[] = { KnownZero[0].getZExtValue(),
2146                       KnownZero[1].getZExtValue() };
2147  unsigned High, Low;
2148  if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
2149    High = 1, Low = 0;
2150  else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
2151    High = 0, Low = 1;
2152  else
2153    return Op;
2154
2155  SDValue LowOp = Ops[Low];
2156  SDValue HighOp = Ops[High];
2157
2158  // If the high part is a constant, we're better off using IILH.
2159  if (HighOp.getOpcode() == ISD::Constant)
2160    return Op;
2161
2162  // If the low part is a constant that is outside the range of LHI,
2163  // then we're better off using IILF.
2164  if (LowOp.getOpcode() == ISD::Constant) {
2165    int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
2166    if (!isInt<16>(Value))
2167      return Op;
2168  }
2169
2170  // Check whether the high part is an AND that doesn't change the
2171  // high 32 bits and just masks out low bits.  We can skip it if so.
2172  if (HighOp.getOpcode() == ISD::AND &&
2173      HighOp.getOperand(1).getOpcode() == ISD::Constant) {
2174    SDValue HighOp0 = HighOp.getOperand(0);
2175    uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
2176    if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
2177      HighOp = HighOp0;
2178  }
2179
2180  // Take advantage of the fact that all GR32 operations only change the
2181  // low 32 bits by truncating Low to an i32 and inserting it directly
2182  // using a subreg.  The interesting cases are those where the truncation
2183  // can be folded.
2184  SDLoc DL(Op);
2185  SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
2186  return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
2187                                   MVT::i64, HighOp, Low32);
2188}
2189
2190// Op is an atomic load.  Lower it into a normal volatile load.
2191SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
2192                                                SelectionDAG &DAG) const {
2193  auto *Node = cast<AtomicSDNode>(Op.getNode());
2194  return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
2195                        Node->getChain(), Node->getBasePtr(),
2196                        Node->getMemoryVT(), Node->getMemOperand());
2197}
2198
2199// Op is an atomic store.  Lower it into a normal volatile store followed
2200// by a serialization.
2201SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
2202                                                 SelectionDAG &DAG) const {
2203  auto *Node = cast<AtomicSDNode>(Op.getNode());
2204  SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
2205                                    Node->getBasePtr(), Node->getMemoryVT(),
2206                                    Node->getMemOperand());
2207  return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other,
2208                                    Chain), 0);
2209}
2210
2211// Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
2212// two into the fullword ATOMIC_LOADW_* operation given by Opcode.
2213SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
2214                                                   SelectionDAG &DAG,
2215                                                   unsigned Opcode) const {
2216  auto *Node = cast<AtomicSDNode>(Op.getNode());
2217
2218  // 32-bit operations need no code outside the main loop.
2219  EVT NarrowVT = Node->getMemoryVT();
2220  EVT WideVT = MVT::i32;
2221  if (NarrowVT == WideVT)
2222    return Op;
2223
2224  int64_t BitSize = NarrowVT.getSizeInBits();
2225  SDValue ChainIn = Node->getChain();
2226  SDValue Addr = Node->getBasePtr();
2227  SDValue Src2 = Node->getVal();
2228  MachineMemOperand *MMO = Node->getMemOperand();
2229  SDLoc DL(Node);
2230  EVT PtrVT = Addr.getValueType();
2231
2232  // Convert atomic subtracts of constants into additions.
2233  if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
2234    if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
2235      Opcode = SystemZISD::ATOMIC_LOADW_ADD;
2236      Src2 = DAG.getConstant(-Const->getSExtValue(), Src2.getValueType());
2237    }
2238
2239  // Get the address of the containing word.
2240  SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
2241                                    DAG.getConstant(-4, PtrVT));
2242
2243  // Get the number of bits that the word must be rotated left in order
2244  // to bring the field to the top bits of a GR32.
2245  SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
2246                                 DAG.getConstant(3, PtrVT));
2247  BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
2248
2249  // Get the complementing shift amount, for rotating a field in the top
2250  // bits back to its proper position.
2251  SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
2252                                    DAG.getConstant(0, WideVT), BitShift);
2253
2254  // Extend the source operand to 32 bits and prepare it for the inner loop.
2255  // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
2256  // operations require the source to be shifted in advance.  (This shift
2257  // can be folded if the source is constant.)  For AND and NAND, the lower
2258  // bits must be set, while for other opcodes they should be left clear.
2259  if (Opcode != SystemZISD::ATOMIC_SWAPW)
2260    Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
2261                       DAG.getConstant(32 - BitSize, WideVT));
2262  if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
2263      Opcode == SystemZISD::ATOMIC_LOADW_NAND)
2264    Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
2265                       DAG.getConstant(uint32_t(-1) >> BitSize, WideVT));
2266
2267  // Construct the ATOMIC_LOADW_* node.
2268  SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
2269  SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
2270                    DAG.getConstant(BitSize, WideVT) };
2271  SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
2272                                             NarrowVT, MMO);
2273
2274  // Rotate the result of the final CS so that the field is in the lower
2275  // bits of a GR32, then truncate it.
2276  SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
2277                                    DAG.getConstant(BitSize, WideVT));
2278  SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
2279
2280  SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
2281  return DAG.getMergeValues(RetOps, DL);
2282}
2283
2284// Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
2285// into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
2286// operations into additions.
2287SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
2288                                                    SelectionDAG &DAG) const {
2289  auto *Node = cast<AtomicSDNode>(Op.getNode());
2290  EVT MemVT = Node->getMemoryVT();
2291  if (MemVT == MVT::i32 || MemVT == MVT::i64) {
2292    // A full-width operation.
2293    assert(Op.getValueType() == MemVT && "Mismatched VTs");
2294    SDValue Src2 = Node->getVal();
2295    SDValue NegSrc2;
2296    SDLoc DL(Src2);
2297
2298    if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
2299      // Use an addition if the operand is constant and either LAA(G) is
2300      // available or the negative value is in the range of A(G)FHI.
2301      int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
2302      if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
2303        NegSrc2 = DAG.getConstant(Value, MemVT);
2304    } else if (Subtarget.hasInterlockedAccess1())
2305      // Use LAA(G) if available.
2306      NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, MemVT),
2307                            Src2);
2308
2309    if (NegSrc2.getNode())
2310      return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
2311                           Node->getChain(), Node->getBasePtr(), NegSrc2,
2312                           Node->getMemOperand(), Node->getOrdering(),
2313                           Node->getSynchScope());
2314
2315    // Use the node as-is.
2316    return Op;
2317  }
2318
2319  return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
2320}
2321
2322// Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation.  Lower the first two
2323// into a fullword ATOMIC_CMP_SWAPW operation.
2324SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
2325                                                    SelectionDAG &DAG) const {
2326  auto *Node = cast<AtomicSDNode>(Op.getNode());
2327
2328  // We have native support for 32-bit compare and swap.
2329  EVT NarrowVT = Node->getMemoryVT();
2330  EVT WideVT = MVT::i32;
2331  if (NarrowVT == WideVT)
2332    return Op;
2333
2334  int64_t BitSize = NarrowVT.getSizeInBits();
2335  SDValue ChainIn = Node->getOperand(0);
2336  SDValue Addr = Node->getOperand(1);
2337  SDValue CmpVal = Node->getOperand(2);
2338  SDValue SwapVal = Node->getOperand(3);
2339  MachineMemOperand *MMO = Node->getMemOperand();
2340  SDLoc DL(Node);
2341  EVT PtrVT = Addr.getValueType();
2342
2343  // Get the address of the containing word.
2344  SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
2345                                    DAG.getConstant(-4, PtrVT));
2346
2347  // Get the number of bits that the word must be rotated left in order
2348  // to bring the field to the top bits of a GR32.
2349  SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
2350                                 DAG.getConstant(3, PtrVT));
2351  BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
2352
2353  // Get the complementing shift amount, for rotating a field in the top
2354  // bits back to its proper position.
2355  SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
2356                                    DAG.getConstant(0, WideVT), BitShift);
2357
2358  // Construct the ATOMIC_CMP_SWAPW node.
2359  SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
2360  SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
2361                    NegBitShift, DAG.getConstant(BitSize, WideVT) };
2362  SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
2363                                             VTList, Ops, NarrowVT, MMO);
2364  return AtomicOp;
2365}
2366
2367SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
2368                                              SelectionDAG &DAG) const {
2369  MachineFunction &MF = DAG.getMachineFunction();
2370  MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
2371  return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
2372                            SystemZ::R15D, Op.getValueType());
2373}
2374
2375SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
2376                                                 SelectionDAG &DAG) const {
2377  MachineFunction &MF = DAG.getMachineFunction();
2378  MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
2379  return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op),
2380                          SystemZ::R15D, Op.getOperand(1));
2381}
2382
2383SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
2384                                             SelectionDAG &DAG) const {
2385  bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2386  if (!IsData)
2387    // Just preserve the chain.
2388    return Op.getOperand(0);
2389
2390  bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2391  unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
2392  auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
2393  SDValue Ops[] = {
2394    Op.getOperand(0),
2395    DAG.getConstant(Code, MVT::i32),
2396    Op.getOperand(1)
2397  };
2398  return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, SDLoc(Op),
2399                                 Node->getVTList(), Ops,
2400                                 Node->getMemoryVT(), Node->getMemOperand());
2401}
2402
2403SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
2404                                              SelectionDAG &DAG) const {
2405  switch (Op.getOpcode()) {
2406  case ISD::BR_CC:
2407    return lowerBR_CC(Op, DAG);
2408  case ISD::SELECT_CC:
2409    return lowerSELECT_CC(Op, DAG);
2410  case ISD::SETCC:
2411    return lowerSETCC(Op, DAG);
2412  case ISD::GlobalAddress:
2413    return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
2414  case ISD::GlobalTLSAddress:
2415    return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
2416  case ISD::BlockAddress:
2417    return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
2418  case ISD::JumpTable:
2419    return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
2420  case ISD::ConstantPool:
2421    return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
2422  case ISD::BITCAST:
2423    return lowerBITCAST(Op, DAG);
2424  case ISD::VASTART:
2425    return lowerVASTART(Op, DAG);
2426  case ISD::VACOPY:
2427    return lowerVACOPY(Op, DAG);
2428  case ISD::DYNAMIC_STACKALLOC:
2429    return lowerDYNAMIC_STACKALLOC(Op, DAG);
2430  case ISD::SMUL_LOHI:
2431    return lowerSMUL_LOHI(Op, DAG);
2432  case ISD::UMUL_LOHI:
2433    return lowerUMUL_LOHI(Op, DAG);
2434  case ISD::SDIVREM:
2435    return lowerSDIVREM(Op, DAG);
2436  case ISD::UDIVREM:
2437    return lowerUDIVREM(Op, DAG);
2438  case ISD::OR:
2439    return lowerOR(Op, DAG);
2440  case ISD::ATOMIC_SWAP:
2441    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
2442  case ISD::ATOMIC_STORE:
2443    return lowerATOMIC_STORE(Op, DAG);
2444  case ISD::ATOMIC_LOAD:
2445    return lowerATOMIC_LOAD(Op, DAG);
2446  case ISD::ATOMIC_LOAD_ADD:
2447    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
2448  case ISD::ATOMIC_LOAD_SUB:
2449    return lowerATOMIC_LOAD_SUB(Op, DAG);
2450  case ISD::ATOMIC_LOAD_AND:
2451    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
2452  case ISD::ATOMIC_LOAD_OR:
2453    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
2454  case ISD::ATOMIC_LOAD_XOR:
2455    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
2456  case ISD::ATOMIC_LOAD_NAND:
2457    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
2458  case ISD::ATOMIC_LOAD_MIN:
2459    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
2460  case ISD::ATOMIC_LOAD_MAX:
2461    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
2462  case ISD::ATOMIC_LOAD_UMIN:
2463    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
2464  case ISD::ATOMIC_LOAD_UMAX:
2465    return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
2466  case ISD::ATOMIC_CMP_SWAP:
2467    return lowerATOMIC_CMP_SWAP(Op, DAG);
2468  case ISD::STACKSAVE:
2469    return lowerSTACKSAVE(Op, DAG);
2470  case ISD::STACKRESTORE:
2471    return lowerSTACKRESTORE(Op, DAG);
2472  case ISD::PREFETCH:
2473    return lowerPREFETCH(Op, DAG);
2474  default:
2475    llvm_unreachable("Unexpected node to lower");
2476  }
2477}
2478
2479const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
2480#define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
2481  switch (Opcode) {
2482    OPCODE(RET_FLAG);
2483    OPCODE(CALL);
2484    OPCODE(SIBCALL);
2485    OPCODE(PCREL_WRAPPER);
2486    OPCODE(PCREL_OFFSET);
2487    OPCODE(IABS);
2488    OPCODE(ICMP);
2489    OPCODE(FCMP);
2490    OPCODE(TM);
2491    OPCODE(BR_CCMASK);
2492    OPCODE(SELECT_CCMASK);
2493    OPCODE(ADJDYNALLOC);
2494    OPCODE(EXTRACT_ACCESS);
2495    OPCODE(UMUL_LOHI64);
2496    OPCODE(SDIVREM64);
2497    OPCODE(UDIVREM32);
2498    OPCODE(UDIVREM64);
2499    OPCODE(MVC);
2500    OPCODE(MVC_LOOP);
2501    OPCODE(NC);
2502    OPCODE(NC_LOOP);
2503    OPCODE(OC);
2504    OPCODE(OC_LOOP);
2505    OPCODE(XC);
2506    OPCODE(XC_LOOP);
2507    OPCODE(CLC);
2508    OPCODE(CLC_LOOP);
2509    OPCODE(STRCMP);
2510    OPCODE(STPCPY);
2511    OPCODE(SEARCH_STRING);
2512    OPCODE(IPM);
2513    OPCODE(SERIALIZE);
2514    OPCODE(ATOMIC_SWAPW);
2515    OPCODE(ATOMIC_LOADW_ADD);
2516    OPCODE(ATOMIC_LOADW_SUB);
2517    OPCODE(ATOMIC_LOADW_AND);
2518    OPCODE(ATOMIC_LOADW_OR);
2519    OPCODE(ATOMIC_LOADW_XOR);
2520    OPCODE(ATOMIC_LOADW_NAND);
2521    OPCODE(ATOMIC_LOADW_MIN);
2522    OPCODE(ATOMIC_LOADW_MAX);
2523    OPCODE(ATOMIC_LOADW_UMIN);
2524    OPCODE(ATOMIC_LOADW_UMAX);
2525    OPCODE(ATOMIC_CMP_SWAPW);
2526    OPCODE(PREFETCH);
2527  }
2528  return nullptr;
2529#undef OPCODE
2530}
2531
2532SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
2533                                                 DAGCombinerInfo &DCI) const {
2534  SelectionDAG &DAG = DCI.DAG;
2535  unsigned Opcode = N->getOpcode();
2536  if (Opcode == ISD::SIGN_EXTEND) {
2537    // Convert (sext (ashr (shl X, C1), C2)) to
2538    // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
2539    // cheap as narrower ones.
2540    SDValue N0 = N->getOperand(0);
2541    EVT VT = N->getValueType(0);
2542    if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
2543      auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2544      SDValue Inner = N0.getOperand(0);
2545      if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
2546        if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
2547          unsigned Extra = (VT.getSizeInBits() -
2548                            N0.getValueType().getSizeInBits());
2549          unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
2550          unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
2551          EVT ShiftVT = N0.getOperand(1).getValueType();
2552          SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
2553                                    Inner.getOperand(0));
2554          SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
2555                                    DAG.getConstant(NewShlAmt, ShiftVT));
2556          return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
2557                             DAG.getConstant(NewSraAmt, ShiftVT));
2558        }
2559      }
2560    }
2561  }
2562  return SDValue();
2563}
2564
2565//===----------------------------------------------------------------------===//
2566// Custom insertion
2567//===----------------------------------------------------------------------===//
2568
2569// Create a new basic block after MBB.
2570static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
2571  MachineFunction &MF = *MBB->getParent();
2572  MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
2573  MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
2574  return NewMBB;
2575}
2576
2577// Split MBB after MI and return the new block (the one that contains
2578// instructions after MI).
2579static MachineBasicBlock *splitBlockAfter(MachineInstr *MI,
2580                                          MachineBasicBlock *MBB) {
2581  MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
2582  NewMBB->splice(NewMBB->begin(), MBB,
2583                 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
2584  NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
2585  return NewMBB;
2586}
2587
2588// Split MBB before MI and return the new block (the one that contains MI).
2589static MachineBasicBlock *splitBlockBefore(MachineInstr *MI,
2590                                           MachineBasicBlock *MBB) {
2591  MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
2592  NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
2593  NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
2594  return NewMBB;
2595}
2596
2597// Force base value Base into a register before MI.  Return the register.
2598static unsigned forceReg(MachineInstr *MI, MachineOperand &Base,
2599                         const SystemZInstrInfo *TII) {
2600  if (Base.isReg())
2601    return Base.getReg();
2602
2603  MachineBasicBlock *MBB = MI->getParent();
2604  MachineFunction &MF = *MBB->getParent();
2605  MachineRegisterInfo &MRI = MF.getRegInfo();
2606
2607  unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
2608  BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg)
2609    .addOperand(Base).addImm(0).addReg(0);
2610  return Reg;
2611}
2612
2613// Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
2614MachineBasicBlock *
2615SystemZTargetLowering::emitSelect(MachineInstr *MI,
2616                                  MachineBasicBlock *MBB) const {
2617  const SystemZInstrInfo *TII = static_cast<const SystemZInstrInfo *>(
2618      MBB->getParent()->getSubtarget().getInstrInfo());
2619
2620  unsigned DestReg  = MI->getOperand(0).getReg();
2621  unsigned TrueReg  = MI->getOperand(1).getReg();
2622  unsigned FalseReg = MI->getOperand(2).getReg();
2623  unsigned CCValid  = MI->getOperand(3).getImm();
2624  unsigned CCMask   = MI->getOperand(4).getImm();
2625  DebugLoc DL       = MI->getDebugLoc();
2626
2627  MachineBasicBlock *StartMBB = MBB;
2628  MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
2629  MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
2630
2631  //  StartMBB:
2632  //   BRC CCMask, JoinMBB
2633  //   # fallthrough to FalseMBB
2634  MBB = StartMBB;
2635  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2636    .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
2637  MBB->addSuccessor(JoinMBB);
2638  MBB->addSuccessor(FalseMBB);
2639
2640  //  FalseMBB:
2641  //   # fallthrough to JoinMBB
2642  MBB = FalseMBB;
2643  MBB->addSuccessor(JoinMBB);
2644
2645  //  JoinMBB:
2646  //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
2647  //  ...
2648  MBB = JoinMBB;
2649  BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg)
2650    .addReg(TrueReg).addMBB(StartMBB)
2651    .addReg(FalseReg).addMBB(FalseMBB);
2652
2653  MI->eraseFromParent();
2654  return JoinMBB;
2655}
2656
2657// Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
2658// StoreOpcode is the store to use and Invert says whether the store should
2659// happen when the condition is false rather than true.  If a STORE ON
2660// CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
2661MachineBasicBlock *
2662SystemZTargetLowering::emitCondStore(MachineInstr *MI,
2663                                     MachineBasicBlock *MBB,
2664                                     unsigned StoreOpcode, unsigned STOCOpcode,
2665                                     bool Invert) const {
2666  const SystemZInstrInfo *TII = static_cast<const SystemZInstrInfo *>(
2667      MBB->getParent()->getSubtarget().getInstrInfo());
2668
2669  unsigned SrcReg     = MI->getOperand(0).getReg();
2670  MachineOperand Base = MI->getOperand(1);
2671  int64_t Disp        = MI->getOperand(2).getImm();
2672  unsigned IndexReg   = MI->getOperand(3).getReg();
2673  unsigned CCValid    = MI->getOperand(4).getImm();
2674  unsigned CCMask     = MI->getOperand(5).getImm();
2675  DebugLoc DL         = MI->getDebugLoc();
2676
2677  StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
2678
2679  // Use STOCOpcode if possible.  We could use different store patterns in
2680  // order to avoid matching the index register, but the performance trade-offs
2681  // might be more complicated in that case.
2682  if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
2683    if (Invert)
2684      CCMask ^= CCValid;
2685    BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
2686      .addReg(SrcReg).addOperand(Base).addImm(Disp)
2687      .addImm(CCValid).addImm(CCMask);
2688    MI->eraseFromParent();
2689    return MBB;
2690  }
2691
2692  // Get the condition needed to branch around the store.
2693  if (!Invert)
2694    CCMask ^= CCValid;
2695
2696  MachineBasicBlock *StartMBB = MBB;
2697  MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
2698  MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
2699
2700  //  StartMBB:
2701  //   BRC CCMask, JoinMBB
2702  //   # fallthrough to FalseMBB
2703  MBB = StartMBB;
2704  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2705    .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
2706  MBB->addSuccessor(JoinMBB);
2707  MBB->addSuccessor(FalseMBB);
2708
2709  //  FalseMBB:
2710  //   store %SrcReg, %Disp(%Index,%Base)
2711  //   # fallthrough to JoinMBB
2712  MBB = FalseMBB;
2713  BuildMI(MBB, DL, TII->get(StoreOpcode))
2714    .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg);
2715  MBB->addSuccessor(JoinMBB);
2716
2717  MI->eraseFromParent();
2718  return JoinMBB;
2719}
2720
2721// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
2722// or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
2723// performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
2724// BitSize is the width of the field in bits, or 0 if this is a partword
2725// ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
2726// is one of the operands.  Invert says whether the field should be
2727// inverted after performing BinOpcode (e.g. for NAND).
2728MachineBasicBlock *
2729SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI,
2730                                            MachineBasicBlock *MBB,
2731                                            unsigned BinOpcode,
2732                                            unsigned BitSize,
2733                                            bool Invert) const {
2734  MachineFunction &MF = *MBB->getParent();
2735  const SystemZInstrInfo *TII =
2736      static_cast<const SystemZInstrInfo *>(MF.getSubtarget().getInstrInfo());
2737  MachineRegisterInfo &MRI = MF.getRegInfo();
2738  bool IsSubWord = (BitSize < 32);
2739
2740  // Extract the operands.  Base can be a register or a frame index.
2741  // Src2 can be a register or immediate.
2742  unsigned Dest        = MI->getOperand(0).getReg();
2743  MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
2744  int64_t Disp         = MI->getOperand(2).getImm();
2745  MachineOperand Src2  = earlyUseOperand(MI->getOperand(3));
2746  unsigned BitShift    = (IsSubWord ? MI->getOperand(4).getReg() : 0);
2747  unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
2748  DebugLoc DL          = MI->getDebugLoc();
2749  if (IsSubWord)
2750    BitSize = MI->getOperand(6).getImm();
2751
2752  // Subword operations use 32-bit registers.
2753  const TargetRegisterClass *RC = (BitSize <= 32 ?
2754                                   &SystemZ::GR32BitRegClass :
2755                                   &SystemZ::GR64BitRegClass);
2756  unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
2757  unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
2758
2759  // Get the right opcodes for the displacement.
2760  LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
2761  CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
2762  assert(LOpcode && CSOpcode && "Displacement out of range");
2763
2764  // Create virtual registers for temporary results.
2765  unsigned OrigVal       = MRI.createVirtualRegister(RC);
2766  unsigned OldVal        = MRI.createVirtualRegister(RC);
2767  unsigned NewVal        = (BinOpcode || IsSubWord ?
2768                            MRI.createVirtualRegister(RC) : Src2.getReg());
2769  unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
2770  unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
2771
2772  // Insert a basic block for the main loop.
2773  MachineBasicBlock *StartMBB = MBB;
2774  MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
2775  MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
2776
2777  //  StartMBB:
2778  //   ...
2779  //   %OrigVal = L Disp(%Base)
2780  //   # fall through to LoopMMB
2781  MBB = StartMBB;
2782  BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
2783    .addOperand(Base).addImm(Disp).addReg(0);
2784  MBB->addSuccessor(LoopMBB);
2785
2786  //  LoopMBB:
2787  //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
2788  //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
2789  //   %RotatedNewVal = OP %RotatedOldVal, %Src2
2790  //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
2791  //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
2792  //   JNE LoopMBB
2793  //   # fall through to DoneMMB
2794  MBB = LoopMBB;
2795  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2796    .addReg(OrigVal).addMBB(StartMBB)
2797    .addReg(Dest).addMBB(LoopMBB);
2798  if (IsSubWord)
2799    BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
2800      .addReg(OldVal).addReg(BitShift).addImm(0);
2801  if (Invert) {
2802    // Perform the operation normally and then invert every bit of the field.
2803    unsigned Tmp = MRI.createVirtualRegister(RC);
2804    BuildMI(MBB, DL, TII->get(BinOpcode), Tmp)
2805      .addReg(RotatedOldVal).addOperand(Src2);
2806    if (BitSize <= 32)
2807      // XILF with the upper BitSize bits set.
2808      BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
2809        .addReg(Tmp).addImm(-1U << (32 - BitSize));
2810    else {
2811      // Use LCGR and add -1 to the result, which is more compact than
2812      // an XILF, XILH pair.
2813      unsigned Tmp2 = MRI.createVirtualRegister(RC);
2814      BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
2815      BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
2816        .addReg(Tmp2).addImm(-1);
2817    }
2818  } else if (BinOpcode)
2819    // A simply binary operation.
2820    BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
2821      .addReg(RotatedOldVal).addOperand(Src2);
2822  else if (IsSubWord)
2823    // Use RISBG to rotate Src2 into position and use it to replace the
2824    // field in RotatedOldVal.
2825    BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
2826      .addReg(RotatedOldVal).addReg(Src2.getReg())
2827      .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
2828  if (IsSubWord)
2829    BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
2830      .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
2831  BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
2832    .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
2833  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2834    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
2835  MBB->addSuccessor(LoopMBB);
2836  MBB->addSuccessor(DoneMBB);
2837
2838  MI->eraseFromParent();
2839  return DoneMBB;
2840}
2841
2842// Implement EmitInstrWithCustomInserter for pseudo
2843// ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
2844// instruction that should be used to compare the current field with the
2845// minimum or maximum value.  KeepOldMask is the BRC condition-code mask
2846// for when the current field should be kept.  BitSize is the width of
2847// the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
2848MachineBasicBlock *
2849SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI,
2850                                            MachineBasicBlock *MBB,
2851                                            unsigned CompareOpcode,
2852                                            unsigned KeepOldMask,
2853                                            unsigned BitSize) const {
2854  MachineFunction &MF = *MBB->getParent();
2855  const SystemZInstrInfo *TII =
2856      static_cast<const SystemZInstrInfo *>(MF.getSubtarget().getInstrInfo());
2857  MachineRegisterInfo &MRI = MF.getRegInfo();
2858  bool IsSubWord = (BitSize < 32);
2859
2860  // Extract the operands.  Base can be a register or a frame index.
2861  unsigned Dest        = MI->getOperand(0).getReg();
2862  MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
2863  int64_t  Disp        = MI->getOperand(2).getImm();
2864  unsigned Src2        = MI->getOperand(3).getReg();
2865  unsigned BitShift    = (IsSubWord ? MI->getOperand(4).getReg() : 0);
2866  unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
2867  DebugLoc DL          = MI->getDebugLoc();
2868  if (IsSubWord)
2869    BitSize = MI->getOperand(6).getImm();
2870
2871  // Subword operations use 32-bit registers.
2872  const TargetRegisterClass *RC = (BitSize <= 32 ?
2873                                   &SystemZ::GR32BitRegClass :
2874                                   &SystemZ::GR64BitRegClass);
2875  unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
2876  unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
2877
2878  // Get the right opcodes for the displacement.
2879  LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
2880  CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
2881  assert(LOpcode && CSOpcode && "Displacement out of range");
2882
2883  // Create virtual registers for temporary results.
2884  unsigned OrigVal       = MRI.createVirtualRegister(RC);
2885  unsigned OldVal        = MRI.createVirtualRegister(RC);
2886  unsigned NewVal        = MRI.createVirtualRegister(RC);
2887  unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
2888  unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
2889  unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
2890
2891  // Insert 3 basic blocks for the loop.
2892  MachineBasicBlock *StartMBB  = MBB;
2893  MachineBasicBlock *DoneMBB   = splitBlockBefore(MI, MBB);
2894  MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
2895  MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
2896  MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
2897
2898  //  StartMBB:
2899  //   ...
2900  //   %OrigVal     = L Disp(%Base)
2901  //   # fall through to LoopMMB
2902  MBB = StartMBB;
2903  BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
2904    .addOperand(Base).addImm(Disp).addReg(0);
2905  MBB->addSuccessor(LoopMBB);
2906
2907  //  LoopMBB:
2908  //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
2909  //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
2910  //   CompareOpcode %RotatedOldVal, %Src2
2911  //   BRC KeepOldMask, UpdateMBB
2912  MBB = LoopMBB;
2913  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2914    .addReg(OrigVal).addMBB(StartMBB)
2915    .addReg(Dest).addMBB(UpdateMBB);
2916  if (IsSubWord)
2917    BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
2918      .addReg(OldVal).addReg(BitShift).addImm(0);
2919  BuildMI(MBB, DL, TII->get(CompareOpcode))
2920    .addReg(RotatedOldVal).addReg(Src2);
2921  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2922    .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
2923  MBB->addSuccessor(UpdateMBB);
2924  MBB->addSuccessor(UseAltMBB);
2925
2926  //  UseAltMBB:
2927  //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
2928  //   # fall through to UpdateMMB
2929  MBB = UseAltMBB;
2930  if (IsSubWord)
2931    BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
2932      .addReg(RotatedOldVal).addReg(Src2)
2933      .addImm(32).addImm(31 + BitSize).addImm(0);
2934  MBB->addSuccessor(UpdateMBB);
2935
2936  //  UpdateMBB:
2937  //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
2938  //                        [ %RotatedAltVal, UseAltMBB ]
2939  //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
2940  //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
2941  //   JNE LoopMBB
2942  //   # fall through to DoneMMB
2943  MBB = UpdateMBB;
2944  BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
2945    .addReg(RotatedOldVal).addMBB(LoopMBB)
2946    .addReg(RotatedAltVal).addMBB(UseAltMBB);
2947  if (IsSubWord)
2948    BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
2949      .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
2950  BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
2951    .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
2952  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2953    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
2954  MBB->addSuccessor(LoopMBB);
2955  MBB->addSuccessor(DoneMBB);
2956
2957  MI->eraseFromParent();
2958  return DoneMBB;
2959}
2960
2961// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
2962// instruction MI.
2963MachineBasicBlock *
2964SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI,
2965                                          MachineBasicBlock *MBB) const {
2966  MachineFunction &MF = *MBB->getParent();
2967  const SystemZInstrInfo *TII =
2968      static_cast<const SystemZInstrInfo *>(MF.getSubtarget().getInstrInfo());
2969  MachineRegisterInfo &MRI = MF.getRegInfo();
2970
2971  // Extract the operands.  Base can be a register or a frame index.
2972  unsigned Dest        = MI->getOperand(0).getReg();
2973  MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
2974  int64_t  Disp        = MI->getOperand(2).getImm();
2975  unsigned OrigCmpVal  = MI->getOperand(3).getReg();
2976  unsigned OrigSwapVal = MI->getOperand(4).getReg();
2977  unsigned BitShift    = MI->getOperand(5).getReg();
2978  unsigned NegBitShift = MI->getOperand(6).getReg();
2979  int64_t  BitSize     = MI->getOperand(7).getImm();
2980  DebugLoc DL          = MI->getDebugLoc();
2981
2982  const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
2983
2984  // Get the right opcodes for the displacement.
2985  unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
2986  unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
2987  assert(LOpcode && CSOpcode && "Displacement out of range");
2988
2989  // Create virtual registers for temporary results.
2990  unsigned OrigOldVal   = MRI.createVirtualRegister(RC);
2991  unsigned OldVal       = MRI.createVirtualRegister(RC);
2992  unsigned CmpVal       = MRI.createVirtualRegister(RC);
2993  unsigned SwapVal      = MRI.createVirtualRegister(RC);
2994  unsigned StoreVal     = MRI.createVirtualRegister(RC);
2995  unsigned RetryOldVal  = MRI.createVirtualRegister(RC);
2996  unsigned RetryCmpVal  = MRI.createVirtualRegister(RC);
2997  unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
2998
2999  // Insert 2 basic blocks for the loop.
3000  MachineBasicBlock *StartMBB = MBB;
3001  MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
3002  MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
3003  MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
3004
3005  //  StartMBB:
3006  //   ...
3007  //   %OrigOldVal     = L Disp(%Base)
3008  //   # fall through to LoopMMB
3009  MBB = StartMBB;
3010  BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
3011    .addOperand(Base).addImm(Disp).addReg(0);
3012  MBB->addSuccessor(LoopMBB);
3013
3014  //  LoopMBB:
3015  //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
3016  //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
3017  //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
3018  //   %Dest          = RLL %OldVal, BitSize(%BitShift)
3019  //                      ^^ The low BitSize bits contain the field
3020  //                         of interest.
3021  //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
3022  //                      ^^ Replace the upper 32-BitSize bits of the
3023  //                         comparison value with those that we loaded,
3024  //                         so that we can use a full word comparison.
3025  //   CR %Dest, %RetryCmpVal
3026  //   JNE DoneMBB
3027  //   # Fall through to SetMBB
3028  MBB = LoopMBB;
3029  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
3030    .addReg(OrigOldVal).addMBB(StartMBB)
3031    .addReg(RetryOldVal).addMBB(SetMBB);
3032  BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
3033    .addReg(OrigCmpVal).addMBB(StartMBB)
3034    .addReg(RetryCmpVal).addMBB(SetMBB);
3035  BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
3036    .addReg(OrigSwapVal).addMBB(StartMBB)
3037    .addReg(RetrySwapVal).addMBB(SetMBB);
3038  BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
3039    .addReg(OldVal).addReg(BitShift).addImm(BitSize);
3040  BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
3041    .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
3042  BuildMI(MBB, DL, TII->get(SystemZ::CR))
3043    .addReg(Dest).addReg(RetryCmpVal);
3044  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3045    .addImm(SystemZ::CCMASK_ICMP)
3046    .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
3047  MBB->addSuccessor(DoneMBB);
3048  MBB->addSuccessor(SetMBB);
3049
3050  //  SetMBB:
3051  //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
3052  //                      ^^ Replace the upper 32-BitSize bits of the new
3053  //                         value with those that we loaded.
3054  //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
3055  //                      ^^ Rotate the new field to its proper position.
3056  //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
3057  //   JNE LoopMBB
3058  //   # fall through to ExitMMB
3059  MBB = SetMBB;
3060  BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
3061    .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
3062  BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
3063    .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
3064  BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
3065    .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp);
3066  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3067    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
3068  MBB->addSuccessor(LoopMBB);
3069  MBB->addSuccessor(DoneMBB);
3070
3071  MI->eraseFromParent();
3072  return DoneMBB;
3073}
3074
3075// Emit an extension from a GR32 or GR64 to a GR128.  ClearEven is true
3076// if the high register of the GR128 value must be cleared or false if
3077// it's "don't care".  SubReg is subreg_l32 when extending a GR32
3078// and subreg_l64 when extending a GR64.
3079MachineBasicBlock *
3080SystemZTargetLowering::emitExt128(MachineInstr *MI,
3081                                  MachineBasicBlock *MBB,
3082                                  bool ClearEven, unsigned SubReg) const {
3083  MachineFunction &MF = *MBB->getParent();
3084  const SystemZInstrInfo *TII =
3085      static_cast<const SystemZInstrInfo *>(MF.getSubtarget().getInstrInfo());
3086  MachineRegisterInfo &MRI = MF.getRegInfo();
3087  DebugLoc DL = MI->getDebugLoc();
3088
3089  unsigned Dest  = MI->getOperand(0).getReg();
3090  unsigned Src   = MI->getOperand(1).getReg();
3091  unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
3092
3093  BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
3094  if (ClearEven) {
3095    unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
3096    unsigned Zero64   = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
3097
3098    BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
3099      .addImm(0);
3100    BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
3101      .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
3102    In128 = NewIn128;
3103  }
3104  BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
3105    .addReg(In128).addReg(Src).addImm(SubReg);
3106
3107  MI->eraseFromParent();
3108  return MBB;
3109}
3110
3111MachineBasicBlock *
3112SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI,
3113                                         MachineBasicBlock *MBB,
3114                                         unsigned Opcode) const {
3115  MachineFunction &MF = *MBB->getParent();
3116  const SystemZInstrInfo *TII =
3117      static_cast<const SystemZInstrInfo *>(MF.getSubtarget().getInstrInfo());
3118  MachineRegisterInfo &MRI = MF.getRegInfo();
3119  DebugLoc DL = MI->getDebugLoc();
3120
3121  MachineOperand DestBase = earlyUseOperand(MI->getOperand(0));
3122  uint64_t       DestDisp = MI->getOperand(1).getImm();
3123  MachineOperand SrcBase  = earlyUseOperand(MI->getOperand(2));
3124  uint64_t       SrcDisp  = MI->getOperand(3).getImm();
3125  uint64_t       Length   = MI->getOperand(4).getImm();
3126
3127  // When generating more than one CLC, all but the last will need to
3128  // branch to the end when a difference is found.
3129  MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
3130                               splitBlockAfter(MI, MBB) : nullptr);
3131
3132  // Check for the loop form, in which operand 5 is the trip count.
3133  if (MI->getNumExplicitOperands() > 5) {
3134    bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
3135
3136    uint64_t StartCountReg = MI->getOperand(5).getReg();
3137    uint64_t StartSrcReg   = forceReg(MI, SrcBase, TII);
3138    uint64_t StartDestReg  = (HaveSingleBase ? StartSrcReg :
3139                              forceReg(MI, DestBase, TII));
3140
3141    const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
3142    uint64_t ThisSrcReg  = MRI.createVirtualRegister(RC);
3143    uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
3144                            MRI.createVirtualRegister(RC));
3145    uint64_t NextSrcReg  = MRI.createVirtualRegister(RC);
3146    uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
3147                            MRI.createVirtualRegister(RC));
3148
3149    RC = &SystemZ::GR64BitRegClass;
3150    uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
3151    uint64_t NextCountReg = MRI.createVirtualRegister(RC);
3152
3153    MachineBasicBlock *StartMBB = MBB;
3154    MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
3155    MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
3156    MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
3157
3158    //  StartMBB:
3159    //   # fall through to LoopMMB
3160    MBB->addSuccessor(LoopMBB);
3161
3162    //  LoopMBB:
3163    //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
3164    //                      [ %NextDestReg, NextMBB ]
3165    //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
3166    //                     [ %NextSrcReg, NextMBB ]
3167    //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
3168    //                       [ %NextCountReg, NextMBB ]
3169    //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
3170    //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
3171    //   ( JLH EndMBB )
3172    //
3173    // The prefetch is used only for MVC.  The JLH is used only for CLC.
3174    MBB = LoopMBB;
3175
3176    BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
3177      .addReg(StartDestReg).addMBB(StartMBB)
3178      .addReg(NextDestReg).addMBB(NextMBB);
3179    if (!HaveSingleBase)
3180      BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
3181        .addReg(StartSrcReg).addMBB(StartMBB)
3182        .addReg(NextSrcReg).addMBB(NextMBB);
3183    BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
3184      .addReg(StartCountReg).addMBB(StartMBB)
3185      .addReg(NextCountReg).addMBB(NextMBB);
3186    if (Opcode == SystemZ::MVC)
3187      BuildMI(MBB, DL, TII->get(SystemZ::PFD))
3188        .addImm(SystemZ::PFD_WRITE)
3189        .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
3190    BuildMI(MBB, DL, TII->get(Opcode))
3191      .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
3192      .addReg(ThisSrcReg).addImm(SrcDisp);
3193    if (EndMBB) {
3194      BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3195        .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
3196        .addMBB(EndMBB);
3197      MBB->addSuccessor(EndMBB);
3198      MBB->addSuccessor(NextMBB);
3199    }
3200
3201    // NextMBB:
3202    //   %NextDestReg = LA 256(%ThisDestReg)
3203    //   %NextSrcReg = LA 256(%ThisSrcReg)
3204    //   %NextCountReg = AGHI %ThisCountReg, -1
3205    //   CGHI %NextCountReg, 0
3206    //   JLH LoopMBB
3207    //   # fall through to DoneMMB
3208    //
3209    // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
3210    MBB = NextMBB;
3211
3212    BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
3213      .addReg(ThisDestReg).addImm(256).addReg(0);
3214    if (!HaveSingleBase)
3215      BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
3216        .addReg(ThisSrcReg).addImm(256).addReg(0);
3217    BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
3218      .addReg(ThisCountReg).addImm(-1);
3219    BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
3220      .addReg(NextCountReg).addImm(0);
3221    BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3222      .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
3223      .addMBB(LoopMBB);
3224    MBB->addSuccessor(LoopMBB);
3225    MBB->addSuccessor(DoneMBB);
3226
3227    DestBase = MachineOperand::CreateReg(NextDestReg, false);
3228    SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
3229    Length &= 255;
3230    MBB = DoneMBB;
3231  }
3232  // Handle any remaining bytes with straight-line code.
3233  while (Length > 0) {
3234    uint64_t ThisLength = std::min(Length, uint64_t(256));
3235    // The previous iteration might have created out-of-range displacements.
3236    // Apply them using LAY if so.
3237    if (!isUInt<12>(DestDisp)) {
3238      unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
3239      BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
3240        .addOperand(DestBase).addImm(DestDisp).addReg(0);
3241      DestBase = MachineOperand::CreateReg(Reg, false);
3242      DestDisp = 0;
3243    }
3244    if (!isUInt<12>(SrcDisp)) {
3245      unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
3246      BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
3247        .addOperand(SrcBase).addImm(SrcDisp).addReg(0);
3248      SrcBase = MachineOperand::CreateReg(Reg, false);
3249      SrcDisp = 0;
3250    }
3251    BuildMI(*MBB, MI, DL, TII->get(Opcode))
3252      .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength)
3253      .addOperand(SrcBase).addImm(SrcDisp);
3254    DestDisp += ThisLength;
3255    SrcDisp += ThisLength;
3256    Length -= ThisLength;
3257    // If there's another CLC to go, branch to the end if a difference
3258    // was found.
3259    if (EndMBB && Length > 0) {
3260      MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
3261      BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3262        .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
3263        .addMBB(EndMBB);
3264      MBB->addSuccessor(EndMBB);
3265      MBB->addSuccessor(NextMBB);
3266      MBB = NextMBB;
3267    }
3268  }
3269  if (EndMBB) {
3270    MBB->addSuccessor(EndMBB);
3271    MBB = EndMBB;
3272    MBB->addLiveIn(SystemZ::CC);
3273  }
3274
3275  MI->eraseFromParent();
3276  return MBB;
3277}
3278
3279// Decompose string pseudo-instruction MI into a loop that continually performs
3280// Opcode until CC != 3.
3281MachineBasicBlock *
3282SystemZTargetLowering::emitStringWrapper(MachineInstr *MI,
3283                                         MachineBasicBlock *MBB,
3284                                         unsigned Opcode) const {
3285  MachineFunction &MF = *MBB->getParent();
3286  const SystemZInstrInfo *TII =
3287      static_cast<const SystemZInstrInfo *>(MF.getSubtarget().getInstrInfo());
3288  MachineRegisterInfo &MRI = MF.getRegInfo();
3289  DebugLoc DL = MI->getDebugLoc();
3290
3291  uint64_t End1Reg   = MI->getOperand(0).getReg();
3292  uint64_t Start1Reg = MI->getOperand(1).getReg();
3293  uint64_t Start2Reg = MI->getOperand(2).getReg();
3294  uint64_t CharReg   = MI->getOperand(3).getReg();
3295
3296  const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
3297  uint64_t This1Reg = MRI.createVirtualRegister(RC);
3298  uint64_t This2Reg = MRI.createVirtualRegister(RC);
3299  uint64_t End2Reg  = MRI.createVirtualRegister(RC);
3300
3301  MachineBasicBlock *StartMBB = MBB;
3302  MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
3303  MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
3304
3305  //  StartMBB:
3306  //   # fall through to LoopMMB
3307  MBB->addSuccessor(LoopMBB);
3308
3309  //  LoopMBB:
3310  //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
3311  //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
3312  //   R0L = %CharReg
3313  //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
3314  //   JO LoopMBB
3315  //   # fall through to DoneMMB
3316  //
3317  // The load of R0L can be hoisted by post-RA LICM.
3318  MBB = LoopMBB;
3319
3320  BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
3321    .addReg(Start1Reg).addMBB(StartMBB)
3322    .addReg(End1Reg).addMBB(LoopMBB);
3323  BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
3324    .addReg(Start2Reg).addMBB(StartMBB)
3325    .addReg(End2Reg).addMBB(LoopMBB);
3326  BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
3327  BuildMI(MBB, DL, TII->get(Opcode))
3328    .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
3329    .addReg(This1Reg).addReg(This2Reg);
3330  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3331    .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
3332  MBB->addSuccessor(LoopMBB);
3333  MBB->addSuccessor(DoneMBB);
3334
3335  DoneMBB->addLiveIn(SystemZ::CC);
3336
3337  MI->eraseFromParent();
3338  return DoneMBB;
3339}
3340
3341MachineBasicBlock *SystemZTargetLowering::
3342EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const {
3343  switch (MI->getOpcode()) {
3344  case SystemZ::Select32Mux:
3345  case SystemZ::Select32:
3346  case SystemZ::SelectF32:
3347  case SystemZ::Select64:
3348  case SystemZ::SelectF64:
3349  case SystemZ::SelectF128:
3350    return emitSelect(MI, MBB);
3351
3352  case SystemZ::CondStore8Mux:
3353    return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
3354  case SystemZ::CondStore8MuxInv:
3355    return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
3356  case SystemZ::CondStore16Mux:
3357    return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
3358  case SystemZ::CondStore16MuxInv:
3359    return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
3360  case SystemZ::CondStore8:
3361    return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
3362  case SystemZ::CondStore8Inv:
3363    return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
3364  case SystemZ::CondStore16:
3365    return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
3366  case SystemZ::CondStore16Inv:
3367    return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
3368  case SystemZ::CondStore32:
3369    return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
3370  case SystemZ::CondStore32Inv:
3371    return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
3372  case SystemZ::CondStore64:
3373    return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
3374  case SystemZ::CondStore64Inv:
3375    return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
3376  case SystemZ::CondStoreF32:
3377    return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
3378  case SystemZ::CondStoreF32Inv:
3379    return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
3380  case SystemZ::CondStoreF64:
3381    return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
3382  case SystemZ::CondStoreF64Inv:
3383    return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
3384
3385  case SystemZ::AEXT128_64:
3386    return emitExt128(MI, MBB, false, SystemZ::subreg_l64);
3387  case SystemZ::ZEXT128_32:
3388    return emitExt128(MI, MBB, true, SystemZ::subreg_l32);
3389  case SystemZ::ZEXT128_64:
3390    return emitExt128(MI, MBB, true, SystemZ::subreg_l64);
3391
3392  case SystemZ::ATOMIC_SWAPW:
3393    return emitAtomicLoadBinary(MI, MBB, 0, 0);
3394  case SystemZ::ATOMIC_SWAP_32:
3395    return emitAtomicLoadBinary(MI, MBB, 0, 32);
3396  case SystemZ::ATOMIC_SWAP_64:
3397    return emitAtomicLoadBinary(MI, MBB, 0, 64);
3398
3399  case SystemZ::ATOMIC_LOADW_AR:
3400    return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
3401  case SystemZ::ATOMIC_LOADW_AFI:
3402    return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
3403  case SystemZ::ATOMIC_LOAD_AR:
3404    return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
3405  case SystemZ::ATOMIC_LOAD_AHI:
3406    return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
3407  case SystemZ::ATOMIC_LOAD_AFI:
3408    return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
3409  case SystemZ::ATOMIC_LOAD_AGR:
3410    return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
3411  case SystemZ::ATOMIC_LOAD_AGHI:
3412    return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
3413  case SystemZ::ATOMIC_LOAD_AGFI:
3414    return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
3415
3416  case SystemZ::ATOMIC_LOADW_SR:
3417    return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
3418  case SystemZ::ATOMIC_LOAD_SR:
3419    return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
3420  case SystemZ::ATOMIC_LOAD_SGR:
3421    return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
3422
3423  case SystemZ::ATOMIC_LOADW_NR:
3424    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
3425  case SystemZ::ATOMIC_LOADW_NILH:
3426    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
3427  case SystemZ::ATOMIC_LOAD_NR:
3428    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
3429  case SystemZ::ATOMIC_LOAD_NILL:
3430    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
3431  case SystemZ::ATOMIC_LOAD_NILH:
3432    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
3433  case SystemZ::ATOMIC_LOAD_NILF:
3434    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
3435  case SystemZ::ATOMIC_LOAD_NGR:
3436    return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
3437  case SystemZ::ATOMIC_LOAD_NILL64:
3438    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
3439  case SystemZ::ATOMIC_LOAD_NILH64:
3440    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
3441  case SystemZ::ATOMIC_LOAD_NIHL64:
3442    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
3443  case SystemZ::ATOMIC_LOAD_NIHH64:
3444    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
3445  case SystemZ::ATOMIC_LOAD_NILF64:
3446    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
3447  case SystemZ::ATOMIC_LOAD_NIHF64:
3448    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
3449
3450  case SystemZ::ATOMIC_LOADW_OR:
3451    return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
3452  case SystemZ::ATOMIC_LOADW_OILH:
3453    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
3454  case SystemZ::ATOMIC_LOAD_OR:
3455    return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
3456  case SystemZ::ATOMIC_LOAD_OILL:
3457    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
3458  case SystemZ::ATOMIC_LOAD_OILH:
3459    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
3460  case SystemZ::ATOMIC_LOAD_OILF:
3461    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
3462  case SystemZ::ATOMIC_LOAD_OGR:
3463    return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
3464  case SystemZ::ATOMIC_LOAD_OILL64:
3465    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
3466  case SystemZ::ATOMIC_LOAD_OILH64:
3467    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
3468  case SystemZ::ATOMIC_LOAD_OIHL64:
3469    return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
3470  case SystemZ::ATOMIC_LOAD_OIHH64:
3471    return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
3472  case SystemZ::ATOMIC_LOAD_OILF64:
3473    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
3474  case SystemZ::ATOMIC_LOAD_OIHF64:
3475    return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
3476
3477  case SystemZ::ATOMIC_LOADW_XR:
3478    return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
3479  case SystemZ::ATOMIC_LOADW_XILF:
3480    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
3481  case SystemZ::ATOMIC_LOAD_XR:
3482    return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
3483  case SystemZ::ATOMIC_LOAD_XILF:
3484    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
3485  case SystemZ::ATOMIC_LOAD_XGR:
3486    return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
3487  case SystemZ::ATOMIC_LOAD_XILF64:
3488    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
3489  case SystemZ::ATOMIC_LOAD_XIHF64:
3490    return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
3491
3492  case SystemZ::ATOMIC_LOADW_NRi:
3493    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
3494  case SystemZ::ATOMIC_LOADW_NILHi:
3495    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
3496  case SystemZ::ATOMIC_LOAD_NRi:
3497    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
3498  case SystemZ::ATOMIC_LOAD_NILLi:
3499    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
3500  case SystemZ::ATOMIC_LOAD_NILHi:
3501    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
3502  case SystemZ::ATOMIC_LOAD_NILFi:
3503    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
3504  case SystemZ::ATOMIC_LOAD_NGRi:
3505    return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
3506  case SystemZ::ATOMIC_LOAD_NILL64i:
3507    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
3508  case SystemZ::ATOMIC_LOAD_NILH64i:
3509    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
3510  case SystemZ::ATOMIC_LOAD_NIHL64i:
3511    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
3512  case SystemZ::ATOMIC_LOAD_NIHH64i:
3513    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
3514  case SystemZ::ATOMIC_LOAD_NILF64i:
3515    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
3516  case SystemZ::ATOMIC_LOAD_NIHF64i:
3517    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
3518
3519  case SystemZ::ATOMIC_LOADW_MIN:
3520    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3521                                SystemZ::CCMASK_CMP_LE, 0);
3522  case SystemZ::ATOMIC_LOAD_MIN_32:
3523    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3524                                SystemZ::CCMASK_CMP_LE, 32);
3525  case SystemZ::ATOMIC_LOAD_MIN_64:
3526    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
3527                                SystemZ::CCMASK_CMP_LE, 64);
3528
3529  case SystemZ::ATOMIC_LOADW_MAX:
3530    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3531                                SystemZ::CCMASK_CMP_GE, 0);
3532  case SystemZ::ATOMIC_LOAD_MAX_32:
3533    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3534                                SystemZ::CCMASK_CMP_GE, 32);
3535  case SystemZ::ATOMIC_LOAD_MAX_64:
3536    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
3537                                SystemZ::CCMASK_CMP_GE, 64);
3538
3539  case SystemZ::ATOMIC_LOADW_UMIN:
3540    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3541                                SystemZ::CCMASK_CMP_LE, 0);
3542  case SystemZ::ATOMIC_LOAD_UMIN_32:
3543    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3544                                SystemZ::CCMASK_CMP_LE, 32);
3545  case SystemZ::ATOMIC_LOAD_UMIN_64:
3546    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
3547                                SystemZ::CCMASK_CMP_LE, 64);
3548
3549  case SystemZ::ATOMIC_LOADW_UMAX:
3550    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3551                                SystemZ::CCMASK_CMP_GE, 0);
3552  case SystemZ::ATOMIC_LOAD_UMAX_32:
3553    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3554                                SystemZ::CCMASK_CMP_GE, 32);
3555  case SystemZ::ATOMIC_LOAD_UMAX_64:
3556    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
3557                                SystemZ::CCMASK_CMP_GE, 64);
3558
3559  case SystemZ::ATOMIC_CMP_SWAPW:
3560    return emitAtomicCmpSwapW(MI, MBB);
3561  case SystemZ::MVCSequence:
3562  case SystemZ::MVCLoop:
3563    return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
3564  case SystemZ::NCSequence:
3565  case SystemZ::NCLoop:
3566    return emitMemMemWrapper(MI, MBB, SystemZ::NC);
3567  case SystemZ::OCSequence:
3568  case SystemZ::OCLoop:
3569    return emitMemMemWrapper(MI, MBB, SystemZ::OC);
3570  case SystemZ::XCSequence:
3571  case SystemZ::XCLoop:
3572    return emitMemMemWrapper(MI, MBB, SystemZ::XC);
3573  case SystemZ::CLCSequence:
3574  case SystemZ::CLCLoop:
3575    return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
3576  case SystemZ::CLSTLoop:
3577    return emitStringWrapper(MI, MBB, SystemZ::CLST);
3578  case SystemZ::MVSTLoop:
3579    return emitStringWrapper(MI, MBB, SystemZ::MVST);
3580  case SystemZ::SRSTLoop:
3581    return emitStringWrapper(MI, MBB, SystemZ::SRST);
3582  default:
3583    llvm_unreachable("Unexpected instr type to insert");
3584  }
3585}
3586