1//===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines an instruction selector for the SystemZ target.
11//
12//===----------------------------------------------------------------------===//
13
14#include "SystemZTargetMachine.h"
15#include "llvm/Analysis/AliasAnalysis.h"
16#include "llvm/CodeGen/SelectionDAGISel.h"
17#include "llvm/Support/Debug.h"
18#include "llvm/Support/raw_ostream.h"
19
20using namespace llvm;
21
22#define DEBUG_TYPE "systemz-isel"
23
24namespace {
25// Used to build addressing modes.
26struct SystemZAddressingMode {
27  // The shape of the address.
28  enum AddrForm {
29    // base+displacement
30    FormBD,
31
32    // base+displacement+index for load and store operands
33    FormBDXNormal,
34
35    // base+displacement+index for load address operands
36    FormBDXLA,
37
38    // base+displacement+index+ADJDYNALLOC
39    FormBDXDynAlloc
40  };
41  AddrForm Form;
42
43  // The type of displacement.  The enum names here correspond directly
44  // to the definitions in SystemZOperand.td.  We could split them into
45  // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
46  enum DispRange {
47    Disp12Only,
48    Disp12Pair,
49    Disp20Only,
50    Disp20Only128,
51    Disp20Pair
52  };
53  DispRange DR;
54
55  // The parts of the address.  The address is equivalent to:
56  //
57  //     Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
58  SDValue Base;
59  int64_t Disp;
60  SDValue Index;
61  bool IncludesDynAlloc;
62
63  SystemZAddressingMode(AddrForm form, DispRange dr)
64    : Form(form), DR(dr), Base(), Disp(0), Index(),
65      IncludesDynAlloc(false) {}
66
67  // True if the address can have an index register.
68  bool hasIndexField() { return Form != FormBD; }
69
70  // True if the address can (and must) include ADJDYNALLOC.
71  bool isDynAlloc() { return Form == FormBDXDynAlloc; }
72
73  void dump() {
74    errs() << "SystemZAddressingMode " << this << '\n';
75
76    errs() << " Base ";
77    if (Base.getNode())
78      Base.getNode()->dump();
79    else
80      errs() << "null\n";
81
82    if (hasIndexField()) {
83      errs() << " Index ";
84      if (Index.getNode())
85        Index.getNode()->dump();
86      else
87        errs() << "null\n";
88    }
89
90    errs() << " Disp " << Disp;
91    if (IncludesDynAlloc)
92      errs() << " + ADJDYNALLOC";
93    errs() << '\n';
94  }
95};
96
97// Return a mask with Count low bits set.
98static uint64_t allOnes(unsigned int Count) {
99  assert(Count <= 64);
100  if (Count > 63)
101    return UINT64_MAX;
102  return (uint64_t(1) << Count) - 1;
103}
104
105// Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation
106// given by Opcode.  The operands are: Input (R2), Start (I3), End (I4) and
107// Rotate (I5).  The combined operand value is effectively:
108//
109//   (or (rotl Input, Rotate), ~Mask)
110//
111// for RNSBG and:
112//
113//   (and (rotl Input, Rotate), Mask)
114//
115// otherwise.  The output value has BitSize bits, although Input may be
116// narrower (in which case the upper bits are don't care).
117struct RxSBGOperands {
118  RxSBGOperands(unsigned Op, SDValue N)
119    : Opcode(Op), BitSize(N.getValueType().getSizeInBits()),
120      Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63),
121      Rotate(0) {}
122
123  unsigned Opcode;
124  unsigned BitSize;
125  uint64_t Mask;
126  SDValue Input;
127  unsigned Start;
128  unsigned End;
129  unsigned Rotate;
130};
131
132class SystemZDAGToDAGISel : public SelectionDAGISel {
133  const SystemZSubtarget *Subtarget;
134
135  // Used by SystemZOperands.td to create integer constants.
136  inline SDValue getImm(const SDNode *Node, uint64_t Imm) const {
137    return CurDAG->getTargetConstant(Imm, SDLoc(Node), Node->getValueType(0));
138  }
139
140  const SystemZTargetMachine &getTargetMachine() const {
141    return static_cast<const SystemZTargetMachine &>(TM);
142  }
143
144  const SystemZInstrInfo *getInstrInfo() const {
145    return Subtarget->getInstrInfo();
146  }
147
148  // Try to fold more of the base or index of AM into AM, where IsBase
149  // selects between the base and index.
150  bool expandAddress(SystemZAddressingMode &AM, bool IsBase) const;
151
152  // Try to describe N in AM, returning true on success.
153  bool selectAddress(SDValue N, SystemZAddressingMode &AM) const;
154
155  // Extract individual target operands from matched address AM.
156  void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
157                          SDValue &Base, SDValue &Disp) const;
158  void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
159                          SDValue &Base, SDValue &Disp, SDValue &Index) const;
160
161  // Try to match Addr as a FormBD address with displacement type DR.
162  // Return true on success, storing the base and displacement in
163  // Base and Disp respectively.
164  bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
165                    SDValue &Base, SDValue &Disp) const;
166
167  // Try to match Addr as a FormBDX address with displacement type DR.
168  // Return true on success and if the result had no index.  Store the
169  // base and displacement in Base and Disp respectively.
170  bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
171                     SDValue &Base, SDValue &Disp) const;
172
173  // Try to match Addr as a FormBDX* address of form Form with
174  // displacement type DR.  Return true on success, storing the base,
175  // displacement and index in Base, Disp and Index respectively.
176  bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
177                     SystemZAddressingMode::DispRange DR, SDValue Addr,
178                     SDValue &Base, SDValue &Disp, SDValue &Index) const;
179
180  // PC-relative address matching routines used by SystemZOperands.td.
181  bool selectPCRelAddress(SDValue Addr, SDValue &Target) const {
182    if (SystemZISD::isPCREL(Addr.getOpcode())) {
183      Target = Addr.getOperand(0);
184      return true;
185    }
186    return false;
187  }
188
189  // BD matching routines used by SystemZOperands.td.
190  bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
191    return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
192  }
193  bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
194    return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
195  }
196  bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
197    return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
198  }
199  bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
200    return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
201  }
202
203  // MVI matching routines used by SystemZOperands.td.
204  bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
205    return selectMVIAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
206  }
207  bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
208    return selectMVIAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
209  }
210
211  // BDX matching routines used by SystemZOperands.td.
212  bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
213                           SDValue &Index) const {
214    return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
215                         SystemZAddressingMode::Disp12Only,
216                         Addr, Base, Disp, Index);
217  }
218  bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
219                           SDValue &Index) const {
220    return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
221                         SystemZAddressingMode::Disp12Pair,
222                         Addr, Base, Disp, Index);
223  }
224  bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
225                            SDValue &Index) const {
226    return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc,
227                         SystemZAddressingMode::Disp12Only,
228                         Addr, Base, Disp, Index);
229  }
230  bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
231                           SDValue &Index) const {
232    return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
233                         SystemZAddressingMode::Disp20Only,
234                         Addr, Base, Disp, Index);
235  }
236  bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
237                              SDValue &Index) const {
238    return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
239                         SystemZAddressingMode::Disp20Only128,
240                         Addr, Base, Disp, Index);
241  }
242  bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
243                           SDValue &Index) const {
244    return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
245                         SystemZAddressingMode::Disp20Pair,
246                         Addr, Base, Disp, Index);
247  }
248  bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
249                          SDValue &Index) const {
250    return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
251                         SystemZAddressingMode::Disp12Pair,
252                         Addr, Base, Disp, Index);
253  }
254  bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
255                          SDValue &Index) const {
256    return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
257                         SystemZAddressingMode::Disp20Pair,
258                         Addr, Base, Disp, Index);
259  }
260
261  // Try to match Addr as an address with a base, 12-bit displacement
262  // and index, where the index is element Elem of a vector.
263  // Return true on success, storing the base, displacement and vector
264  // in Base, Disp and Index respectively.
265  bool selectBDVAddr12Only(SDValue Addr, SDValue Elem, SDValue &Base,
266                           SDValue &Disp, SDValue &Index) const;
267
268  // Check whether (or Op (and X InsertMask)) is effectively an insertion
269  // of X into bits InsertMask of some Y != Op.  Return true if so and
270  // set Op to that Y.
271  bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const;
272
273  // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used.
274  // Return true on success.
275  bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const;
276
277  // Try to fold some of RxSBG.Input into other fields of RxSBG.
278  // Return true on success.
279  bool expandRxSBG(RxSBGOperands &RxSBG) const;
280
281  // Return an undefined value of type VT.
282  SDValue getUNDEF(SDLoc DL, EVT VT) const;
283
284  // Convert N to VT, if it isn't already.
285  SDValue convertTo(SDLoc DL, EVT VT, SDValue N) const;
286
287  // Try to implement AND or shift node N using RISBG with the zero flag set.
288  // Return the selected node on success, otherwise return null.
289  SDNode *tryRISBGZero(SDNode *N);
290
291  // Try to use RISBG or Opcode to implement OR or XOR node N.
292  // Return the selected node on success, otherwise return null.
293  SDNode *tryRxSBG(SDNode *N, unsigned Opcode);
294
295  // If Op0 is null, then Node is a constant that can be loaded using:
296  //
297  //   (Opcode UpperVal LowerVal)
298  //
299  // If Op0 is nonnull, then Node can be implemented using:
300  //
301  //   (Opcode (Opcode Op0 UpperVal) LowerVal)
302  SDNode *splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
303                              uint64_t UpperVal, uint64_t LowerVal);
304
305  // Try to use gather instruction Opcode to implement vector insertion N.
306  SDNode *tryGather(SDNode *N, unsigned Opcode);
307
308  // Try to use scatter instruction Opcode to implement store Store.
309  SDNode *tryScatter(StoreSDNode *Store, unsigned Opcode);
310
311  // Return true if Load and Store are loads and stores of the same size
312  // and are guaranteed not to overlap.  Such operations can be implemented
313  // using block (SS-format) instructions.
314  //
315  // Partial overlap would lead to incorrect code, since the block operations
316  // are logically bytewise, even though they have a fast path for the
317  // non-overlapping case.  We also need to avoid full overlap (i.e. two
318  // addresses that might be equal at run time) because although that case
319  // would be handled correctly, it might be implemented by millicode.
320  bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const;
321
322  // N is a (store (load Y), X) pattern.  Return true if it can use an MVC
323  // from Y to X.
324  bool storeLoadCanUseMVC(SDNode *N) const;
325
326  // N is a (store (op (load A[0]), (load A[1])), X) pattern.  Return true
327  // if A[1 - I] == X and if N can use a block operation like NC from A[I]
328  // to X.
329  bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const;
330
331public:
332  SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
333      : SelectionDAGISel(TM, OptLevel) {}
334
335  bool runOnMachineFunction(MachineFunction &MF) override {
336    Subtarget = &MF.getSubtarget<SystemZSubtarget>();
337    return SelectionDAGISel::runOnMachineFunction(MF);
338  }
339
340  // Override MachineFunctionPass.
341  const char *getPassName() const override {
342    return "SystemZ DAG->DAG Pattern Instruction Selection";
343  }
344
345  // Override SelectionDAGISel.
346  SDNode *Select(SDNode *Node) override;
347  bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
348                                    std::vector<SDValue> &OutOps) override;
349
350  // Include the pieces autogenerated from the target description.
351  #include "SystemZGenDAGISel.inc"
352};
353} // end anonymous namespace
354
355FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
356                                         CodeGenOpt::Level OptLevel) {
357  return new SystemZDAGToDAGISel(TM, OptLevel);
358}
359
360// Return true if Val should be selected as a displacement for an address
361// with range DR.  Here we're interested in the range of both the instruction
362// described by DR and of any pairing instruction.
363static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
364  switch (DR) {
365  case SystemZAddressingMode::Disp12Only:
366    return isUInt<12>(Val);
367
368  case SystemZAddressingMode::Disp12Pair:
369  case SystemZAddressingMode::Disp20Only:
370  case SystemZAddressingMode::Disp20Pair:
371    return isInt<20>(Val);
372
373  case SystemZAddressingMode::Disp20Only128:
374    return isInt<20>(Val) && isInt<20>(Val + 8);
375  }
376  llvm_unreachable("Unhandled displacement range");
377}
378
379// Change the base or index in AM to Value, where IsBase selects
380// between the base and index.
381static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
382                            SDValue Value) {
383  if (IsBase)
384    AM.Base = Value;
385  else
386    AM.Index = Value;
387}
388
389// The base or index of AM is equivalent to Value + ADJDYNALLOC,
390// where IsBase selects between the base and index.  Try to fold the
391// ADJDYNALLOC into AM.
392static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
393                              SDValue Value) {
394  if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
395    changeComponent(AM, IsBase, Value);
396    AM.IncludesDynAlloc = true;
397    return true;
398  }
399  return false;
400}
401
402// The base of AM is equivalent to Base + Index.  Try to use Index as
403// the index register.
404static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
405                        SDValue Index) {
406  if (AM.hasIndexField() && !AM.Index.getNode()) {
407    AM.Base = Base;
408    AM.Index = Index;
409    return true;
410  }
411  return false;
412}
413
414// The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
415// between the base and index.  Try to fold Op1 into AM's displacement.
416static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
417                       SDValue Op0, uint64_t Op1) {
418  // First try adjusting the displacement.
419  int64_t TestDisp = AM.Disp + Op1;
420  if (selectDisp(AM.DR, TestDisp)) {
421    changeComponent(AM, IsBase, Op0);
422    AM.Disp = TestDisp;
423    return true;
424  }
425
426  // We could consider forcing the displacement into a register and
427  // using it as an index, but it would need to be carefully tuned.
428  return false;
429}
430
431bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
432                                        bool IsBase) const {
433  SDValue N = IsBase ? AM.Base : AM.Index;
434  unsigned Opcode = N.getOpcode();
435  if (Opcode == ISD::TRUNCATE) {
436    N = N.getOperand(0);
437    Opcode = N.getOpcode();
438  }
439  if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) {
440    SDValue Op0 = N.getOperand(0);
441    SDValue Op1 = N.getOperand(1);
442
443    unsigned Op0Code = Op0->getOpcode();
444    unsigned Op1Code = Op1->getOpcode();
445
446    if (Op0Code == SystemZISD::ADJDYNALLOC)
447      return expandAdjDynAlloc(AM, IsBase, Op1);
448    if (Op1Code == SystemZISD::ADJDYNALLOC)
449      return expandAdjDynAlloc(AM, IsBase, Op0);
450
451    if (Op0Code == ISD::Constant)
452      return expandDisp(AM, IsBase, Op1,
453                        cast<ConstantSDNode>(Op0)->getSExtValue());
454    if (Op1Code == ISD::Constant)
455      return expandDisp(AM, IsBase, Op0,
456                        cast<ConstantSDNode>(Op1)->getSExtValue());
457
458    if (IsBase && expandIndex(AM, Op0, Op1))
459      return true;
460  }
461  if (Opcode == SystemZISD::PCREL_OFFSET) {
462    SDValue Full = N.getOperand(0);
463    SDValue Base = N.getOperand(1);
464    SDValue Anchor = Base.getOperand(0);
465    uint64_t Offset = (cast<GlobalAddressSDNode>(Full)->getOffset() -
466                       cast<GlobalAddressSDNode>(Anchor)->getOffset());
467    return expandDisp(AM, IsBase, Base, Offset);
468  }
469  return false;
470}
471
472// Return true if an instruction with displacement range DR should be
473// used for displacement value Val.  selectDisp(DR, Val) must already hold.
474static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
475  assert(selectDisp(DR, Val) && "Invalid displacement");
476  switch (DR) {
477  case SystemZAddressingMode::Disp12Only:
478  case SystemZAddressingMode::Disp20Only:
479  case SystemZAddressingMode::Disp20Only128:
480    return true;
481
482  case SystemZAddressingMode::Disp12Pair:
483    // Use the other instruction if the displacement is too large.
484    return isUInt<12>(Val);
485
486  case SystemZAddressingMode::Disp20Pair:
487    // Use the other instruction if the displacement is small enough.
488    return !isUInt<12>(Val);
489  }
490  llvm_unreachable("Unhandled displacement range");
491}
492
493// Return true if Base + Disp + Index should be performed by LA(Y).
494static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
495  // Don't use LA(Y) for constants.
496  if (!Base)
497    return false;
498
499  // Always use LA(Y) for frame addresses, since we know that the destination
500  // register is almost always (perhaps always) going to be different from
501  // the frame register.
502  if (Base->getOpcode() == ISD::FrameIndex)
503    return true;
504
505  if (Disp) {
506    // Always use LA(Y) if there is a base, displacement and index.
507    if (Index)
508      return true;
509
510    // Always use LA if the displacement is small enough.  It should always
511    // be no worse than AGHI (and better if it avoids a move).
512    if (isUInt<12>(Disp))
513      return true;
514
515    // For similar reasons, always use LAY if the constant is too big for AGHI.
516    // LAY should be no worse than AGFI.
517    if (!isInt<16>(Disp))
518      return true;
519  } else {
520    // Don't use LA for plain registers.
521    if (!Index)
522      return false;
523
524    // Don't use LA for plain addition if the index operand is only used
525    // once.  It should be a natural two-operand addition in that case.
526    if (Index->hasOneUse())
527      return false;
528
529    // Prefer addition if the second operation is sign-extended, in the
530    // hope of using AGF.
531    unsigned IndexOpcode = Index->getOpcode();
532    if (IndexOpcode == ISD::SIGN_EXTEND ||
533        IndexOpcode == ISD::SIGN_EXTEND_INREG)
534      return false;
535  }
536
537  // Don't use LA for two-operand addition if either operand is only
538  // used once.  The addition instructions are better in that case.
539  if (Base->hasOneUse())
540    return false;
541
542  return true;
543}
544
545// Return true if Addr is suitable for AM, updating AM if so.
546bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
547                                        SystemZAddressingMode &AM) const {
548  // Start out assuming that the address will need to be loaded separately,
549  // then try to extend it as much as we can.
550  AM.Base = Addr;
551
552  // First try treating the address as a constant.
553  if (Addr.getOpcode() == ISD::Constant &&
554      expandDisp(AM, true, SDValue(),
555                 cast<ConstantSDNode>(Addr)->getSExtValue()))
556    ;
557  else
558    // Otherwise try expanding each component.
559    while (expandAddress(AM, true) ||
560           (AM.Index.getNode() && expandAddress(AM, false)))
561      continue;
562
563  // Reject cases where it isn't profitable to use LA(Y).
564  if (AM.Form == SystemZAddressingMode::FormBDXLA &&
565      !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode()))
566    return false;
567
568  // Reject cases where the other instruction in a pair should be used.
569  if (!isValidDisp(AM.DR, AM.Disp))
570    return false;
571
572  // Make sure that ADJDYNALLOC is included where necessary.
573  if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
574    return false;
575
576  DEBUG(AM.dump());
577  return true;
578}
579
580// Insert a node into the DAG at least before Pos.  This will reposition
581// the node as needed, and will assign it a node ID that is <= Pos's ID.
582// Note that this does *not* preserve the uniqueness of node IDs!
583// The selection DAG must no longer depend on their uniqueness when this
584// function is used.
585static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
586  if (N.getNode()->getNodeId() == -1 ||
587      N.getNode()->getNodeId() > Pos->getNodeId()) {
588    DAG->RepositionNode(Pos->getIterator(), N.getNode());
589    N.getNode()->setNodeId(Pos->getNodeId());
590  }
591}
592
593void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
594                                             EVT VT, SDValue &Base,
595                                             SDValue &Disp) const {
596  Base = AM.Base;
597  if (!Base.getNode())
598    // Register 0 means "no base".  This is mostly useful for shifts.
599    Base = CurDAG->getRegister(0, VT);
600  else if (Base.getOpcode() == ISD::FrameIndex) {
601    // Lower a FrameIndex to a TargetFrameIndex.
602    int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex();
603    Base = CurDAG->getTargetFrameIndex(FrameIndex, VT);
604  } else if (Base.getValueType() != VT) {
605    // Truncate values from i64 to i32, for shifts.
606    assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
607           "Unexpected truncation");
608    SDLoc DL(Base);
609    SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base);
610    insertDAGNode(CurDAG, Base.getNode(), Trunc);
611    Base = Trunc;
612  }
613
614  // Lower the displacement to a TargetConstant.
615  Disp = CurDAG->getTargetConstant(AM.Disp, SDLoc(Base), VT);
616}
617
618void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
619                                             EVT VT, SDValue &Base,
620                                             SDValue &Disp,
621                                             SDValue &Index) const {
622  getAddressOperands(AM, VT, Base, Disp);
623
624  Index = AM.Index;
625  if (!Index.getNode())
626    // Register 0 means "no index".
627    Index = CurDAG->getRegister(0, VT);
628}
629
630bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
631                                       SDValue Addr, SDValue &Base,
632                                       SDValue &Disp) const {
633  SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
634  if (!selectAddress(Addr, AM))
635    return false;
636
637  getAddressOperands(AM, Addr.getValueType(), Base, Disp);
638  return true;
639}
640
641bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR,
642                                        SDValue Addr, SDValue &Base,
643                                        SDValue &Disp) const {
644  SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR);
645  if (!selectAddress(Addr, AM) || AM.Index.getNode())
646    return false;
647
648  getAddressOperands(AM, Addr.getValueType(), Base, Disp);
649  return true;
650}
651
652bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
653                                        SystemZAddressingMode::DispRange DR,
654                                        SDValue Addr, SDValue &Base,
655                                        SDValue &Disp, SDValue &Index) const {
656  SystemZAddressingMode AM(Form, DR);
657  if (!selectAddress(Addr, AM))
658    return false;
659
660  getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index);
661  return true;
662}
663
664bool SystemZDAGToDAGISel::selectBDVAddr12Only(SDValue Addr, SDValue Elem,
665                                              SDValue &Base,
666                                              SDValue &Disp,
667                                              SDValue &Index) const {
668  SDValue Regs[2];
669  if (selectBDXAddr12Only(Addr, Regs[0], Disp, Regs[1]) &&
670      Regs[0].getNode() && Regs[1].getNode()) {
671    for (unsigned int I = 0; I < 2; ++I) {
672      Base = Regs[I];
673      Index = Regs[1 - I];
674      // We can't tell here whether the index vector has the right type
675      // for the access; the caller needs to do that instead.
676      if (Index.getOpcode() == ISD::ZERO_EXTEND)
677        Index = Index.getOperand(0);
678      if (Index.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
679          Index.getOperand(1) == Elem) {
680        Index = Index.getOperand(0);
681        return true;
682      }
683    }
684  }
685  return false;
686}
687
688bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op,
689                                               uint64_t InsertMask) const {
690  // We're only interested in cases where the insertion is into some operand
691  // of Op, rather than into Op itself.  The only useful case is an AND.
692  if (Op.getOpcode() != ISD::AND)
693    return false;
694
695  // We need a constant mask.
696  auto *MaskNode = dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode());
697  if (!MaskNode)
698    return false;
699
700  // It's not an insertion of Op.getOperand(0) if the two masks overlap.
701  uint64_t AndMask = MaskNode->getZExtValue();
702  if (InsertMask & AndMask)
703    return false;
704
705  // It's only an insertion if all bits are covered or are known to be zero.
706  // The inner check covers all cases but is more expensive.
707  uint64_t Used = allOnes(Op.getValueType().getSizeInBits());
708  if (Used != (AndMask | InsertMask)) {
709    APInt KnownZero, KnownOne;
710    CurDAG->computeKnownBits(Op.getOperand(0), KnownZero, KnownOne);
711    if (Used != (AndMask | InsertMask | KnownZero.getZExtValue()))
712      return false;
713  }
714
715  Op = Op.getOperand(0);
716  return true;
717}
718
719bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG,
720                                          uint64_t Mask) const {
721  const SystemZInstrInfo *TII = getInstrInfo();
722  if (RxSBG.Rotate != 0)
723    Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate));
724  Mask &= RxSBG.Mask;
725  if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) {
726    RxSBG.Mask = Mask;
727    return true;
728  }
729  return false;
730}
731
732// Return true if any bits of (RxSBG.Input & Mask) are significant.
733static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask) {
734  // Rotate the mask in the same way as RxSBG.Input is rotated.
735  if (RxSBG.Rotate != 0)
736    Mask = ((Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate)));
737  return (Mask & RxSBG.Mask) != 0;
738}
739
740bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) const {
741  SDValue N = RxSBG.Input;
742  unsigned Opcode = N.getOpcode();
743  switch (Opcode) {
744  case ISD::AND: {
745    if (RxSBG.Opcode == SystemZ::RNSBG)
746      return false;
747
748    auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
749    if (!MaskNode)
750      return false;
751
752    SDValue Input = N.getOperand(0);
753    uint64_t Mask = MaskNode->getZExtValue();
754    if (!refineRxSBGMask(RxSBG, Mask)) {
755      // If some bits of Input are already known zeros, those bits will have
756      // been removed from the mask.  See if adding them back in makes the
757      // mask suitable.
758      APInt KnownZero, KnownOne;
759      CurDAG->computeKnownBits(Input, KnownZero, KnownOne);
760      Mask |= KnownZero.getZExtValue();
761      if (!refineRxSBGMask(RxSBG, Mask))
762        return false;
763    }
764    RxSBG.Input = Input;
765    return true;
766  }
767
768  case ISD::OR: {
769    if (RxSBG.Opcode != SystemZ::RNSBG)
770      return false;
771
772    auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
773    if (!MaskNode)
774      return false;
775
776    SDValue Input = N.getOperand(0);
777    uint64_t Mask = ~MaskNode->getZExtValue();
778    if (!refineRxSBGMask(RxSBG, Mask)) {
779      // If some bits of Input are already known ones, those bits will have
780      // been removed from the mask.  See if adding them back in makes the
781      // mask suitable.
782      APInt KnownZero, KnownOne;
783      CurDAG->computeKnownBits(Input, KnownZero, KnownOne);
784      Mask &= ~KnownOne.getZExtValue();
785      if (!refineRxSBGMask(RxSBG, Mask))
786        return false;
787    }
788    RxSBG.Input = Input;
789    return true;
790  }
791
792  case ISD::ROTL: {
793    // Any 64-bit rotate left can be merged into the RxSBG.
794    if (RxSBG.BitSize != 64 || N.getValueType() != MVT::i64)
795      return false;
796    auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
797    if (!CountNode)
798      return false;
799
800    RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63;
801    RxSBG.Input = N.getOperand(0);
802    return true;
803  }
804
805  case ISD::ANY_EXTEND:
806    // Bits above the extended operand are don't-care.
807    RxSBG.Input = N.getOperand(0);
808    return true;
809
810  case ISD::ZERO_EXTEND:
811    if (RxSBG.Opcode != SystemZ::RNSBG) {
812      // Restrict the mask to the extended operand.
813      unsigned InnerBitSize = N.getOperand(0).getValueType().getSizeInBits();
814      if (!refineRxSBGMask(RxSBG, allOnes(InnerBitSize)))
815        return false;
816
817      RxSBG.Input = N.getOperand(0);
818      return true;
819    }
820    // Fall through.
821
822  case ISD::SIGN_EXTEND: {
823    // Check that the extension bits are don't-care (i.e. are masked out
824    // by the final mask).
825    unsigned InnerBitSize = N.getOperand(0).getValueType().getSizeInBits();
826    if (maskMatters(RxSBG, allOnes(RxSBG.BitSize) - allOnes(InnerBitSize)))
827      return false;
828
829    RxSBG.Input = N.getOperand(0);
830    return true;
831  }
832
833  case ISD::SHL: {
834    auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
835    if (!CountNode)
836      return false;
837
838    uint64_t Count = CountNode->getZExtValue();
839    unsigned BitSize = N.getValueType().getSizeInBits();
840    if (Count < 1 || Count >= BitSize)
841      return false;
842
843    if (RxSBG.Opcode == SystemZ::RNSBG) {
844      // Treat (shl X, count) as (rotl X, size-count) as long as the bottom
845      // count bits from RxSBG.Input are ignored.
846      if (maskMatters(RxSBG, allOnes(Count)))
847        return false;
848    } else {
849      // Treat (shl X, count) as (and (rotl X, count), ~0<<count).
850      if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count) << Count))
851        return false;
852    }
853
854    RxSBG.Rotate = (RxSBG.Rotate + Count) & 63;
855    RxSBG.Input = N.getOperand(0);
856    return true;
857  }
858
859  case ISD::SRL:
860  case ISD::SRA: {
861    auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
862    if (!CountNode)
863      return false;
864
865    uint64_t Count = CountNode->getZExtValue();
866    unsigned BitSize = N.getValueType().getSizeInBits();
867    if (Count < 1 || Count >= BitSize)
868      return false;
869
870    if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) {
871      // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top
872      // count bits from RxSBG.Input are ignored.
873      if (maskMatters(RxSBG, allOnes(Count) << (BitSize - Count)))
874        return false;
875    } else {
876      // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count),
877      // which is similar to SLL above.
878      if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count)))
879        return false;
880    }
881
882    RxSBG.Rotate = (RxSBG.Rotate - Count) & 63;
883    RxSBG.Input = N.getOperand(0);
884    return true;
885  }
886  default:
887    return false;
888  }
889}
890
891SDValue SystemZDAGToDAGISel::getUNDEF(SDLoc DL, EVT VT) const {
892  SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, VT);
893  return SDValue(N, 0);
894}
895
896SDValue SystemZDAGToDAGISel::convertTo(SDLoc DL, EVT VT, SDValue N) const {
897  if (N.getValueType() == MVT::i32 && VT == MVT::i64)
898    return CurDAG->getTargetInsertSubreg(SystemZ::subreg_l32,
899                                         DL, VT, getUNDEF(DL, MVT::i64), N);
900  if (N.getValueType() == MVT::i64 && VT == MVT::i32)
901    return CurDAG->getTargetExtractSubreg(SystemZ::subreg_l32, DL, VT, N);
902  assert(N.getValueType() == VT && "Unexpected value types");
903  return N;
904}
905
906SDNode *SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) {
907  SDLoc DL(N);
908  EVT VT = N->getValueType(0);
909  if (!VT.isInteger() || VT.getSizeInBits() > 64)
910    return nullptr;
911  RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0));
912  unsigned Count = 0;
913  while (expandRxSBG(RISBG))
914    if (RISBG.Input.getOpcode() != ISD::ANY_EXTEND)
915      Count += 1;
916  if (Count == 0)
917    return nullptr;
918  if (Count == 1) {
919    // Prefer to use normal shift instructions over RISBG, since they can handle
920    // all cases and are sometimes shorter.
921    if (N->getOpcode() != ISD::AND)
922      return nullptr;
923
924    // Prefer register extensions like LLC over RISBG.  Also prefer to start
925    // out with normal ANDs if one instruction would be enough.  We can convert
926    // these ANDs into an RISBG later if a three-address instruction is useful.
927    if (VT == MVT::i32 ||
928        RISBG.Mask == 0xff ||
929        RISBG.Mask == 0xffff ||
930        SystemZ::isImmLF(~RISBG.Mask) ||
931        SystemZ::isImmHF(~RISBG.Mask)) {
932      // Force the new mask into the DAG, since it may include known-one bits.
933      auto *MaskN = cast<ConstantSDNode>(N->getOperand(1).getNode());
934      if (MaskN->getZExtValue() != RISBG.Mask) {
935        SDValue NewMask = CurDAG->getConstant(RISBG.Mask, DL, VT);
936        N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), NewMask);
937        return SelectCode(N);
938      }
939      return nullptr;
940    }
941  }
942
943  // If the RISBG operands require no rotation and just masks the bottom
944  // 8/16 bits, attempt to convert this to a LLC zero extension.
945  if (RISBG.Rotate == 0 && (RISBG.Mask == 0xff || RISBG.Mask == 0xffff)) {
946    unsigned OpCode = (RISBG.Mask == 0xff ? SystemZ::LLGCR : SystemZ::LLGHR);
947    if (VT == MVT::i32) {
948      if (Subtarget->hasHighWord())
949        OpCode = (RISBG.Mask == 0xff ? SystemZ::LLCRMux : SystemZ::LLHRMux);
950      else
951        OpCode = (RISBG.Mask == 0xff ? SystemZ::LLCR : SystemZ::LLHR);
952    }
953
954    SDValue In = convertTo(DL, VT, RISBG.Input);
955    N = CurDAG->getMachineNode(OpCode, DL, VT, In);
956    return convertTo(DL, VT, SDValue(N, 0)).getNode();
957  }
958
959  unsigned Opcode = SystemZ::RISBG;
960  // Prefer RISBGN if available, since it does not clobber CC.
961  if (Subtarget->hasMiscellaneousExtensions())
962    Opcode = SystemZ::RISBGN;
963  EVT OpcodeVT = MVT::i64;
964  if (VT == MVT::i32 && Subtarget->hasHighWord()) {
965    Opcode = SystemZ::RISBMux;
966    OpcodeVT = MVT::i32;
967    RISBG.Start &= 31;
968    RISBG.End &= 31;
969  }
970  SDValue Ops[5] = {
971    getUNDEF(DL, OpcodeVT),
972    convertTo(DL, OpcodeVT, RISBG.Input),
973    CurDAG->getTargetConstant(RISBG.Start, DL, MVT::i32),
974    CurDAG->getTargetConstant(RISBG.End | 128, DL, MVT::i32),
975    CurDAG->getTargetConstant(RISBG.Rotate, DL, MVT::i32)
976  };
977  N = CurDAG->getMachineNode(Opcode, DL, OpcodeVT, Ops);
978  return convertTo(DL, VT, SDValue(N, 0)).getNode();
979}
980
981SDNode *SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) {
982  SDLoc DL(N);
983  EVT VT = N->getValueType(0);
984  if (!VT.isInteger() || VT.getSizeInBits() > 64)
985    return nullptr;
986  // Try treating each operand of N as the second operand of the RxSBG
987  // and see which goes deepest.
988  RxSBGOperands RxSBG[] = {
989    RxSBGOperands(Opcode, N->getOperand(0)),
990    RxSBGOperands(Opcode, N->getOperand(1))
991  };
992  unsigned Count[] = { 0, 0 };
993  for (unsigned I = 0; I < 2; ++I)
994    while (expandRxSBG(RxSBG[I]))
995      if (RxSBG[I].Input.getOpcode() != ISD::ANY_EXTEND)
996        Count[I] += 1;
997
998  // Do nothing if neither operand is suitable.
999  if (Count[0] == 0 && Count[1] == 0)
1000    return nullptr;
1001
1002  // Pick the deepest second operand.
1003  unsigned I = Count[0] > Count[1] ? 0 : 1;
1004  SDValue Op0 = N->getOperand(I ^ 1);
1005
1006  // Prefer IC for character insertions from memory.
1007  if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0)
1008    if (auto *Load = dyn_cast<LoadSDNode>(Op0.getNode()))
1009      if (Load->getMemoryVT() == MVT::i8)
1010        return nullptr;
1011
1012  // See whether we can avoid an AND in the first operand by converting
1013  // ROSBG to RISBG.
1014  if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask)) {
1015    Opcode = SystemZ::RISBG;
1016    // Prefer RISBGN if available, since it does not clobber CC.
1017    if (Subtarget->hasMiscellaneousExtensions())
1018      Opcode = SystemZ::RISBGN;
1019  }
1020
1021  SDValue Ops[5] = {
1022    convertTo(DL, MVT::i64, Op0),
1023    convertTo(DL, MVT::i64, RxSBG[I].Input),
1024    CurDAG->getTargetConstant(RxSBG[I].Start, DL, MVT::i32),
1025    CurDAG->getTargetConstant(RxSBG[I].End, DL, MVT::i32),
1026    CurDAG->getTargetConstant(RxSBG[I].Rotate, DL, MVT::i32)
1027  };
1028  N = CurDAG->getMachineNode(Opcode, DL, MVT::i64, Ops);
1029  return convertTo(DL, VT, SDValue(N, 0)).getNode();
1030}
1031
1032SDNode *SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
1033                                                 SDValue Op0, uint64_t UpperVal,
1034                                                 uint64_t LowerVal) {
1035  EVT VT = Node->getValueType(0);
1036  SDLoc DL(Node);
1037  SDValue Upper = CurDAG->getConstant(UpperVal, DL, VT);
1038  if (Op0.getNode())
1039    Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper);
1040  Upper = SDValue(Select(Upper.getNode()), 0);
1041
1042  SDValue Lower = CurDAG->getConstant(LowerVal, DL, VT);
1043  SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower);
1044  return Or.getNode();
1045}
1046
1047SDNode *SystemZDAGToDAGISel::tryGather(SDNode *N, unsigned Opcode) {
1048  SDValue ElemV = N->getOperand(2);
1049  auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
1050  if (!ElemN)
1051    return 0;
1052
1053  unsigned Elem = ElemN->getZExtValue();
1054  EVT VT = N->getValueType(0);
1055  if (Elem >= VT.getVectorNumElements())
1056    return 0;
1057
1058  auto *Load = dyn_cast<LoadSDNode>(N->getOperand(1));
1059  if (!Load || !Load->hasOneUse())
1060    return 0;
1061  if (Load->getMemoryVT().getSizeInBits() !=
1062      Load->getValueType(0).getSizeInBits())
1063    return 0;
1064
1065  SDValue Base, Disp, Index;
1066  if (!selectBDVAddr12Only(Load->getBasePtr(), ElemV, Base, Disp, Index) ||
1067      Index.getValueType() != VT.changeVectorElementTypeToInteger())
1068    return 0;
1069
1070  SDLoc DL(Load);
1071  SDValue Ops[] = {
1072    N->getOperand(0), Base, Disp, Index,
1073    CurDAG->getTargetConstant(Elem, DL, MVT::i32), Load->getChain()
1074  };
1075  SDNode *Res = CurDAG->getMachineNode(Opcode, DL, VT, MVT::Other, Ops);
1076  ReplaceUses(SDValue(Load, 1), SDValue(Res, 1));
1077  return Res;
1078}
1079
1080SDNode *SystemZDAGToDAGISel::tryScatter(StoreSDNode *Store, unsigned Opcode) {
1081  SDValue Value = Store->getValue();
1082  if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1083    return 0;
1084  if (Store->getMemoryVT().getSizeInBits() !=
1085      Value.getValueType().getSizeInBits())
1086    return 0;
1087
1088  SDValue ElemV = Value.getOperand(1);
1089  auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
1090  if (!ElemN)
1091    return 0;
1092
1093  SDValue Vec = Value.getOperand(0);
1094  EVT VT = Vec.getValueType();
1095  unsigned Elem = ElemN->getZExtValue();
1096  if (Elem >= VT.getVectorNumElements())
1097    return 0;
1098
1099  SDValue Base, Disp, Index;
1100  if (!selectBDVAddr12Only(Store->getBasePtr(), ElemV, Base, Disp, Index) ||
1101      Index.getValueType() != VT.changeVectorElementTypeToInteger())
1102    return 0;
1103
1104  SDLoc DL(Store);
1105  SDValue Ops[] = {
1106    Vec, Base, Disp, Index, CurDAG->getTargetConstant(Elem, DL, MVT::i32),
1107    Store->getChain()
1108  };
1109  return CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops);
1110}
1111
1112bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store,
1113                                               LoadSDNode *Load) const {
1114  // Check that the two memory operands have the same size.
1115  if (Load->getMemoryVT() != Store->getMemoryVT())
1116    return false;
1117
1118  // Volatility stops an access from being decomposed.
1119  if (Load->isVolatile() || Store->isVolatile())
1120    return false;
1121
1122  // There's no chance of overlap if the load is invariant.
1123  if (Load->isInvariant())
1124    return true;
1125
1126  // Otherwise we need to check whether there's an alias.
1127  const Value *V1 = Load->getMemOperand()->getValue();
1128  const Value *V2 = Store->getMemOperand()->getValue();
1129  if (!V1 || !V2)
1130    return false;
1131
1132  // Reject equality.
1133  uint64_t Size = Load->getMemoryVT().getStoreSize();
1134  int64_t End1 = Load->getSrcValueOffset() + Size;
1135  int64_t End2 = Store->getSrcValueOffset() + Size;
1136  if (V1 == V2 && End1 == End2)
1137    return false;
1138
1139  return !AA->alias(MemoryLocation(V1, End1, Load->getAAInfo()),
1140                    MemoryLocation(V2, End2, Store->getAAInfo()));
1141}
1142
1143bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
1144  auto *Store = cast<StoreSDNode>(N);
1145  auto *Load = cast<LoadSDNode>(Store->getValue());
1146
1147  // Prefer not to use MVC if either address can use ... RELATIVE LONG
1148  // instructions.
1149  uint64_t Size = Load->getMemoryVT().getStoreSize();
1150  if (Size > 1 && Size <= 8) {
1151    // Prefer LHRL, LRL and LGRL.
1152    if (SystemZISD::isPCREL(Load->getBasePtr().getOpcode()))
1153      return false;
1154    // Prefer STHRL, STRL and STGRL.
1155    if (SystemZISD::isPCREL(Store->getBasePtr().getOpcode()))
1156      return false;
1157  }
1158
1159  return canUseBlockOperation(Store, Load);
1160}
1161
1162bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N,
1163                                                     unsigned I) const {
1164  auto *StoreA = cast<StoreSDNode>(N);
1165  auto *LoadA = cast<LoadSDNode>(StoreA->getValue().getOperand(1 - I));
1166  auto *LoadB = cast<LoadSDNode>(StoreA->getValue().getOperand(I));
1167  return !LoadA->isVolatile() && canUseBlockOperation(StoreA, LoadB);
1168}
1169
1170SDNode *SystemZDAGToDAGISel::Select(SDNode *Node) {
1171  // Dump information about the Node being selected
1172  DEBUG(errs() << "Selecting: "; Node->dump(CurDAG); errs() << "\n");
1173
1174  // If we have a custom node, we already have selected!
1175  if (Node->isMachineOpcode()) {
1176    DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
1177    Node->setNodeId(-1);
1178    return nullptr;
1179  }
1180
1181  unsigned Opcode = Node->getOpcode();
1182  SDNode *ResNode = nullptr;
1183  switch (Opcode) {
1184  case ISD::OR:
1185    if (Node->getOperand(1).getOpcode() != ISD::Constant)
1186      ResNode = tryRxSBG(Node, SystemZ::ROSBG);
1187    goto or_xor;
1188
1189  case ISD::XOR:
1190    if (Node->getOperand(1).getOpcode() != ISD::Constant)
1191      ResNode = tryRxSBG(Node, SystemZ::RXSBG);
1192    // Fall through.
1193  or_xor:
1194    // If this is a 64-bit operation in which both 32-bit halves are nonzero,
1195    // split the operation into two.
1196    if (!ResNode && Node->getValueType(0) == MVT::i64)
1197      if (auto *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
1198        uint64_t Val = Op1->getZExtValue();
1199        if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val))
1200          Node = splitLargeImmediate(Opcode, Node, Node->getOperand(0),
1201                                     Val - uint32_t(Val), uint32_t(Val));
1202      }
1203    break;
1204
1205  case ISD::AND:
1206    if (Node->getOperand(1).getOpcode() != ISD::Constant)
1207      ResNode = tryRxSBG(Node, SystemZ::RNSBG);
1208    // Fall through.
1209  case ISD::ROTL:
1210  case ISD::SHL:
1211  case ISD::SRL:
1212  case ISD::ZERO_EXTEND:
1213    if (!ResNode)
1214      ResNode = tryRISBGZero(Node);
1215    break;
1216
1217  case ISD::Constant:
1218    // If this is a 64-bit constant that is out of the range of LLILF,
1219    // LLIHF and LGFI, split it into two 32-bit pieces.
1220    if (Node->getValueType(0) == MVT::i64) {
1221      uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue();
1222      if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val))
1223        Node = splitLargeImmediate(ISD::OR, Node, SDValue(),
1224                                   Val - uint32_t(Val), uint32_t(Val));
1225    }
1226    break;
1227
1228  case SystemZISD::SELECT_CCMASK: {
1229    SDValue Op0 = Node->getOperand(0);
1230    SDValue Op1 = Node->getOperand(1);
1231    // Prefer to put any load first, so that it can be matched as a
1232    // conditional load.
1233    if (Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) {
1234      SDValue CCValid = Node->getOperand(2);
1235      SDValue CCMask = Node->getOperand(3);
1236      uint64_t ConstCCValid =
1237        cast<ConstantSDNode>(CCValid.getNode())->getZExtValue();
1238      uint64_t ConstCCMask =
1239        cast<ConstantSDNode>(CCMask.getNode())->getZExtValue();
1240      // Invert the condition.
1241      CCMask = CurDAG->getConstant(ConstCCValid ^ ConstCCMask, SDLoc(Node),
1242                                   CCMask.getValueType());
1243      SDValue Op4 = Node->getOperand(4);
1244      Node = CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4);
1245    }
1246    break;
1247  }
1248
1249  case ISD::INSERT_VECTOR_ELT: {
1250    EVT VT = Node->getValueType(0);
1251    unsigned ElemBitSize = VT.getVectorElementType().getSizeInBits();
1252    if (ElemBitSize == 32)
1253      ResNode = tryGather(Node, SystemZ::VGEF);
1254    else if (ElemBitSize == 64)
1255      ResNode = tryGather(Node, SystemZ::VGEG);
1256    break;
1257  }
1258
1259  case ISD::STORE: {
1260    auto *Store = cast<StoreSDNode>(Node);
1261    unsigned ElemBitSize = Store->getValue().getValueType().getSizeInBits();
1262    if (ElemBitSize == 32)
1263      ResNode = tryScatter(Store, SystemZ::VSCEF);
1264    else if (ElemBitSize == 64)
1265      ResNode = tryScatter(Store, SystemZ::VSCEG);
1266    break;
1267  }
1268  }
1269
1270  // Select the default instruction
1271  if (!ResNode)
1272    ResNode = SelectCode(Node);
1273
1274  DEBUG(errs() << "=> ";
1275        if (ResNode == nullptr || ResNode == Node)
1276          Node->dump(CurDAG);
1277        else
1278          ResNode->dump(CurDAG);
1279        errs() << "\n";
1280        );
1281  return ResNode;
1282}
1283
1284bool SystemZDAGToDAGISel::
1285SelectInlineAsmMemoryOperand(const SDValue &Op,
1286                             unsigned ConstraintID,
1287                             std::vector<SDValue> &OutOps) {
1288  switch(ConstraintID) {
1289  default:
1290    llvm_unreachable("Unexpected asm memory constraint");
1291  case InlineAsm::Constraint_i:
1292  case InlineAsm::Constraint_m:
1293  case InlineAsm::Constraint_Q:
1294  case InlineAsm::Constraint_R:
1295  case InlineAsm::Constraint_S:
1296  case InlineAsm::Constraint_T:
1297    // Accept addresses with short displacements, which are compatible
1298    // with Q, R, S and T.  But keep the index operand for future expansion.
1299    SDValue Base, Disp, Index;
1300    if (selectBDXAddr(SystemZAddressingMode::FormBD,
1301                      SystemZAddressingMode::Disp12Only,
1302                      Op, Base, Disp, Index)) {
1303      OutOps.push_back(Base);
1304      OutOps.push_back(Disp);
1305      OutOps.push_back(Index);
1306      return false;
1307    }
1308    break;
1309  }
1310  return true;
1311}
1312