SparcInstrInfo.td revision 212904
1//===- SparcInstrInfo.td - Target Description for Sparc Target ------------===//
2// 
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7// 
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Sparc instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18include "SparcInstrFormats.td"
19
20//===----------------------------------------------------------------------===//
21// Feature predicates.
22//===----------------------------------------------------------------------===//
23
24// HasV9 - This predicate is true when the target processor supports V9
25// instructions.  Note that the machine may be running in 32-bit mode.
26def HasV9   : Predicate<"Subtarget.isV9()">;
27
28// HasNoV9 - This predicate is true when the target doesn't have V9
29// instructions.  Use of this is just a hack for the isel not having proper
30// costs for V8 instructions that are more expensive than their V9 ones.
31def HasNoV9 : Predicate<"!Subtarget.isV9()">;
32
33// HasVIS - This is true when the target processor has VIS extensions.
34def HasVIS : Predicate<"Subtarget.isVIS()">;
35
36// UseDeprecatedInsts - This predicate is true when the target processor is a
37// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
38// to use when appropriate.  In either of these cases, the instruction selector
39// will pick deprecated instructions.
40def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
41
42//===----------------------------------------------------------------------===//
43// Instruction Pattern Stuff
44//===----------------------------------------------------------------------===//
45
46def simm11  : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>;
47
48def simm13  : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>;
49
50def LO10 : SDNodeXForm<imm, [{
51  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023,
52                                   MVT::i32);
53}]>;
54
55def HI22 : SDNodeXForm<imm, [{
56  // Transformation function: shift the immediate value down into the low bits.
57  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, MVT::i32);
58}]>;
59
60def SETHIimm : PatLeaf<(imm), [{
61  return (((unsigned)N->getZExtValue() >> 10) << 10) ==
62         (unsigned)N->getZExtValue();
63}], HI22>;
64
65// Addressing modes.
66def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
67def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex], []>;
68
69// Address operands
70def MEMrr : Operand<i32> {
71  let PrintMethod = "printMemOperand";
72  let MIOperandInfo = (ops IntRegs, IntRegs);
73}
74def MEMri : Operand<i32> {
75  let PrintMethod = "printMemOperand";
76  let MIOperandInfo = (ops IntRegs, i32imm);
77}
78
79// Branch targets have OtherVT type.
80def brtarget : Operand<OtherVT>;
81def calltarget : Operand<i32>;
82
83// Operand for printing out a condition code.
84let PrintMethod = "printCCOperand" in
85  def CCOp : Operand<i32>;
86
87def SDTSPcmpfcc : 
88SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
89def SDTSPbrcc : 
90SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
91def SDTSPselectcc :
92SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
93def SDTSPFTOI :
94SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
95def SDTSPITOF :
96SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
97
98def SPcmpicc : SDNode<"SPISD::CMPICC", SDTIntBinOp, [SDNPOutFlag]>;
99def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutFlag]>;
100def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInFlag]>;
101def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInFlag]>;
102
103def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
104def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
105
106def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>;
107def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>;
108
109def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInFlag]>;
110def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInFlag]>;
111
112//  These are target-independent nodes, but have target-specific formats.
113def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
114def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
115                                        SDTCisVT<1, i32> ]>;
116
117def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
118                           [SDNPHasChain, SDNPOutFlag]>;
119def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
120                           [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
121
122def SDT_SPCall    : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
123def call          : SDNode<"SPISD::CALL", SDT_SPCall,
124                           [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
125
126def retflag       : SDNode<"SPISD::RET_FLAG", SDTNone,
127                           [SDNPHasChain, SDNPOptInFlag]>;
128
129def getPCX        : Operand<i32> {
130  let PrintMethod = "printGetPCX";
131}  
132
133//===----------------------------------------------------------------------===//
134// SPARC Flag Conditions
135//===----------------------------------------------------------------------===//
136
137// Note that these values must be kept in sync with the CCOp::CondCode enum
138// values.
139class ICC_VAL<int N> : PatLeaf<(i32 N)>;
140def ICC_NE  : ICC_VAL< 9>;  // Not Equal
141def ICC_E   : ICC_VAL< 1>;  // Equal
142def ICC_G   : ICC_VAL<10>;  // Greater
143def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
144def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
145def ICC_L   : ICC_VAL< 3>;  // Less
146def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
147def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
148def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
149def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
150def ICC_POS : ICC_VAL<14>;  // Positive
151def ICC_NEG : ICC_VAL< 6>;  // Negative
152def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
153def ICC_VS  : ICC_VAL< 7>;  // Overflow Set
154
155class FCC_VAL<int N> : PatLeaf<(i32 N)>;
156def FCC_U   : FCC_VAL<23>;  // Unordered
157def FCC_G   : FCC_VAL<22>;  // Greater
158def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
159def FCC_L   : FCC_VAL<20>;  // Less
160def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
161def FCC_LG  : FCC_VAL<18>;  // Less or Greater
162def FCC_NE  : FCC_VAL<17>;  // Not Equal
163def FCC_E   : FCC_VAL<25>;  // Equal
164def FCC_UE  : FCC_VAL<24>;  // Unordered or Equal
165def FCC_GE  : FCC_VAL<25>;  // Greater or Equal
166def FCC_UGE : FCC_VAL<26>;  // Unordered or Greater or Equal
167def FCC_LE  : FCC_VAL<27>;  // Less or Equal
168def FCC_ULE : FCC_VAL<28>;  // Unordered or Less or Equal
169def FCC_O   : FCC_VAL<29>;  // Ordered
170
171//===----------------------------------------------------------------------===//
172// Instruction Class Templates
173//===----------------------------------------------------------------------===//
174
175/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
176multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode> {
177  def rr  : F3_1<2, Op3Val, 
178                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
179                 !strconcat(OpcStr, " $b, $c, $dst"),
180                 [(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]>;
181  def ri  : F3_2<2, Op3Val,
182                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
183                 !strconcat(OpcStr, " $b, $c, $dst"),
184                 [(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]>;
185}
186
187/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
188/// pattern.
189multiclass F3_12np<string OpcStr, bits<6> Op3Val> {
190  def rr  : F3_1<2, Op3Val, 
191                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
192                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
193  def ri  : F3_2<2, Op3Val,
194                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
195                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
196}
197
198//===----------------------------------------------------------------------===//
199// Instructions
200//===----------------------------------------------------------------------===//
201
202// Pseudo instructions.
203class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
204   : InstSP<outs, ins, asmstr, pattern>;
205
206// GETPCX for PIC
207let Defs = [O7], Uses = [O7] in {
208  def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >;
209}
210
211let Defs = [O6], Uses = [O6] in {
212def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
213                               "!ADJCALLSTACKDOWN $amt",
214                               [(callseq_start timm:$amt)]>;
215def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
216                            "!ADJCALLSTACKUP $amt1",
217                            [(callseq_end timm:$amt1, timm:$amt2)]>;
218}
219
220// FpMOVD/FpNEGD/FpABSD - These are lowered to single-precision ops by the 
221// fpmover pass.
222let Predicates = [HasNoV9] in {  // Only emit these in V8 mode.
223  def FpMOVD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
224                      "!FpMOVD $src, $dst", []>;
225  def FpNEGD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
226                      "!FpNEGD $src, $dst",
227                      [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
228  def FpABSD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
229                      "!FpABSD $src, $dst",
230                      [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
231}
232
233// SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded after
234// instruction selection into a branch sequence.  This has to handle all
235// permutations of selection between i32/f32/f64 on ICC and FCC.
236let usesCustomInserter = 1 in {   // Expanded after instruction selection.
237  def SELECT_CC_Int_ICC
238   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
239            "; SELECT_CC_Int_ICC PSEUDO!",
240            [(set IntRegs:$dst, (SPselecticc IntRegs:$T, IntRegs:$F,
241                                             imm:$Cond))]>;
242  def SELECT_CC_Int_FCC
243   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
244            "; SELECT_CC_Int_FCC PSEUDO!",
245            [(set IntRegs:$dst, (SPselectfcc IntRegs:$T, IntRegs:$F,
246                                             imm:$Cond))]>;
247  def SELECT_CC_FP_ICC
248   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
249            "; SELECT_CC_FP_ICC PSEUDO!",
250            [(set FPRegs:$dst, (SPselecticc FPRegs:$T, FPRegs:$F,
251                                            imm:$Cond))]>;
252  def SELECT_CC_FP_FCC
253   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
254            "; SELECT_CC_FP_FCC PSEUDO!",
255            [(set FPRegs:$dst, (SPselectfcc FPRegs:$T, FPRegs:$F,
256                                            imm:$Cond))]>;
257  def SELECT_CC_DFP_ICC
258   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
259            "; SELECT_CC_DFP_ICC PSEUDO!",
260            [(set DFPRegs:$dst, (SPselecticc DFPRegs:$T, DFPRegs:$F,
261                                             imm:$Cond))]>;
262  def SELECT_CC_DFP_FCC
263   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
264            "; SELECT_CC_DFP_FCC PSEUDO!",
265            [(set DFPRegs:$dst, (SPselectfcc DFPRegs:$T, DFPRegs:$F,
266                                             imm:$Cond))]>;
267}
268
269
270// Section A.3 - Synthetic Instructions, p. 85
271// special cases of JMPL:
272let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in {
273  let rd = O7.Num, rs1 = G0.Num, simm13 = 8 in
274    def RETL: F3_2<2, 0b111000, (outs), (ins), "retl", [(retflag)]>;
275}
276
277// Section B.1 - Load Integer Instructions, p. 90
278def LDSBrr : F3_1<3, 0b001001,
279                  (outs IntRegs:$dst), (ins MEMrr:$addr),
280                  "ldsb [$addr], $dst",
281                  [(set IntRegs:$dst, (sextloadi8 ADDRrr:$addr))]>;
282def LDSBri : F3_2<3, 0b001001,
283                  (outs IntRegs:$dst), (ins MEMri:$addr),
284                  "ldsb [$addr], $dst",
285                  [(set IntRegs:$dst, (sextloadi8 ADDRri:$addr))]>;
286def LDSHrr : F3_1<3, 0b001010,
287                  (outs IntRegs:$dst), (ins MEMrr:$addr),
288                  "ldsh [$addr], $dst",
289                  [(set IntRegs:$dst, (sextloadi16 ADDRrr:$addr))]>;
290def LDSHri : F3_2<3, 0b001010,
291                  (outs IntRegs:$dst), (ins MEMri:$addr),
292                  "ldsh [$addr], $dst",
293                  [(set IntRegs:$dst, (sextloadi16 ADDRri:$addr))]>;
294def LDUBrr : F3_1<3, 0b000001,
295                  (outs IntRegs:$dst), (ins MEMrr:$addr),
296                  "ldub [$addr], $dst",
297                  [(set IntRegs:$dst, (zextloadi8 ADDRrr:$addr))]>;
298def LDUBri : F3_2<3, 0b000001,
299                  (outs IntRegs:$dst), (ins MEMri:$addr),
300                  "ldub [$addr], $dst",
301                  [(set IntRegs:$dst, (zextloadi8 ADDRri:$addr))]>;
302def LDUHrr : F3_1<3, 0b000010,
303                  (outs IntRegs:$dst), (ins MEMrr:$addr),
304                  "lduh [$addr], $dst",
305                  [(set IntRegs:$dst, (zextloadi16 ADDRrr:$addr))]>;
306def LDUHri : F3_2<3, 0b000010,
307                  (outs IntRegs:$dst), (ins MEMri:$addr),
308                  "lduh [$addr], $dst",
309                  [(set IntRegs:$dst, (zextloadi16 ADDRri:$addr))]>;
310def LDrr   : F3_1<3, 0b000000,
311                  (outs IntRegs:$dst), (ins MEMrr:$addr),
312                  "ld [$addr], $dst",
313                  [(set IntRegs:$dst, (load ADDRrr:$addr))]>;
314def LDri   : F3_2<3, 0b000000,
315                  (outs IntRegs:$dst), (ins MEMri:$addr),
316                  "ld [$addr], $dst",
317                  [(set IntRegs:$dst, (load ADDRri:$addr))]>;
318
319// Section B.2 - Load Floating-point Instructions, p. 92
320def LDFrr  : F3_1<3, 0b100000,
321                  (outs FPRegs:$dst), (ins MEMrr:$addr),
322                  "ld [$addr], $dst",
323                  [(set FPRegs:$dst, (load ADDRrr:$addr))]>;
324def LDFri  : F3_2<3, 0b100000,
325                  (outs FPRegs:$dst), (ins MEMri:$addr),
326                  "ld [$addr], $dst",
327                  [(set FPRegs:$dst, (load ADDRri:$addr))]>;
328def LDDFrr : F3_1<3, 0b100011,
329                  (outs DFPRegs:$dst), (ins MEMrr:$addr),
330                  "ldd [$addr], $dst",
331                  [(set DFPRegs:$dst, (load ADDRrr:$addr))]>;
332def LDDFri : F3_2<3, 0b100011,
333                  (outs DFPRegs:$dst), (ins MEMri:$addr),
334                  "ldd [$addr], $dst",
335                  [(set DFPRegs:$dst, (load ADDRri:$addr))]>;
336
337// Section B.4 - Store Integer Instructions, p. 95
338def STBrr : F3_1<3, 0b000101,
339                 (outs), (ins MEMrr:$addr, IntRegs:$src),
340                 "stb $src, [$addr]",
341                 [(truncstorei8 IntRegs:$src, ADDRrr:$addr)]>;
342def STBri : F3_2<3, 0b000101,
343                 (outs), (ins MEMri:$addr, IntRegs:$src),
344                 "stb $src, [$addr]",
345                 [(truncstorei8 IntRegs:$src, ADDRri:$addr)]>;
346def STHrr : F3_1<3, 0b000110,
347                 (outs), (ins MEMrr:$addr, IntRegs:$src),
348                 "sth $src, [$addr]",
349                 [(truncstorei16 IntRegs:$src, ADDRrr:$addr)]>;
350def STHri : F3_2<3, 0b000110,
351                 (outs), (ins MEMri:$addr, IntRegs:$src),
352                 "sth $src, [$addr]",
353                 [(truncstorei16 IntRegs:$src, ADDRri:$addr)]>;
354def STrr  : F3_1<3, 0b000100,
355                 (outs), (ins MEMrr:$addr, IntRegs:$src),
356                 "st $src, [$addr]",
357                 [(store IntRegs:$src, ADDRrr:$addr)]>;
358def STri  : F3_2<3, 0b000100,
359                 (outs), (ins MEMri:$addr, IntRegs:$src),
360                 "st $src, [$addr]",
361                 [(store IntRegs:$src, ADDRri:$addr)]>;
362
363// Section B.5 - Store Floating-point Instructions, p. 97
364def STFrr   : F3_1<3, 0b100100,
365                   (outs), (ins MEMrr:$addr, FPRegs:$src),
366                   "st $src, [$addr]",
367                   [(store FPRegs:$src, ADDRrr:$addr)]>;
368def STFri   : F3_2<3, 0b100100,
369                   (outs), (ins MEMri:$addr, FPRegs:$src),
370                   "st $src, [$addr]",
371                   [(store FPRegs:$src, ADDRri:$addr)]>;
372def STDFrr  : F3_1<3, 0b100111,
373                   (outs), (ins MEMrr:$addr, DFPRegs:$src),
374                   "std  $src, [$addr]",
375                   [(store DFPRegs:$src, ADDRrr:$addr)]>;
376def STDFri  : F3_2<3, 0b100111,
377                   (outs), (ins MEMri:$addr, DFPRegs:$src),
378                   "std $src, [$addr]",
379                   [(store DFPRegs:$src, ADDRri:$addr)]>;
380
381// Section B.9 - SETHI Instruction, p. 104
382def SETHIi: F2_1<0b100,
383                 (outs IntRegs:$dst), (ins i32imm:$src),
384                 "sethi $src, $dst",
385                 [(set IntRegs:$dst, SETHIimm:$src)]>;
386
387// Section B.10 - NOP Instruction, p. 105
388// (It's a special case of SETHI)
389let rd = 0, imm22 = 0 in
390  def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
391
392// Section B.11 - Logical Instructions, p. 106
393defm AND    : F3_12<"and", 0b000001, and>;
394
395def ANDNrr  : F3_1<2, 0b000101,
396                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
397                   "andn $b, $c, $dst",
398                   [(set IntRegs:$dst, (and IntRegs:$b, (not IntRegs:$c)))]>;
399def ANDNri  : F3_2<2, 0b000101,
400                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
401                   "andn $b, $c, $dst", []>;
402
403defm OR     : F3_12<"or", 0b000010, or>;
404
405def ORNrr   : F3_1<2, 0b000110,
406                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
407                   "orn $b, $c, $dst",
408                   [(set IntRegs:$dst, (or IntRegs:$b, (not IntRegs:$c)))]>;
409def ORNri   : F3_2<2, 0b000110,
410                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
411                   "orn $b, $c, $dst", []>;
412defm XOR    : F3_12<"xor", 0b000011, xor>;
413
414def XNORrr  : F3_1<2, 0b000111,
415                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
416                   "xnor $b, $c, $dst",
417                   [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>;
418def XNORri  : F3_2<2, 0b000111,
419                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
420                   "xnor $b, $c, $dst", []>;
421
422// Section B.12 - Shift Instructions, p. 107
423defm SLL : F3_12<"sll", 0b100101, shl>;
424defm SRL : F3_12<"srl", 0b100110, srl>;
425defm SRA : F3_12<"sra", 0b100111, sra>;
426
427// Section B.13 - Add Instructions, p. 108
428defm ADD   : F3_12<"add", 0b000000, add>;
429
430// "LEA" forms of add (patterns to make tblgen happy)
431def LEA_ADDri   : F3_2<2, 0b000000,
432                   (outs IntRegs:$dst), (ins MEMri:$addr),
433                   "add ${addr:arith}, $dst",
434                   [(set IntRegs:$dst, ADDRri:$addr)]>;
435
436let Defs = [ICC] in                   
437  defm ADDCC  : F3_12<"addcc", 0b010000, addc>;
438
439defm ADDX  : F3_12<"addx", 0b001000, adde>;
440
441// Section B.15 - Subtract Instructions, p. 110
442defm SUB    : F3_12  <"sub"  , 0b000100, sub>;
443defm SUBX   : F3_12  <"subx" , 0b001100, sube>;
444
445let Defs = [ICC] in {
446  defm SUBCC  : F3_12  <"subcc", 0b010100, SPcmpicc>;
447
448  def SUBXCCrr: F3_1<2, 0b011100, 
449                (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
450                "subxcc $b, $c, $dst", []>;
451}
452
453// Section B.18 - Multiply Instructions, p. 113
454defm UMUL : F3_12np<"umul", 0b001010>;
455defm SMUL : F3_12  <"smul", 0b001011, mul>;
456
457
458// Section B.19 - Divide Instructions, p. 115
459defm UDIV : F3_12np<"udiv", 0b001110>;
460defm SDIV : F3_12np<"sdiv", 0b001111>;
461
462// Section B.20 - SAVE and RESTORE, p. 117
463defm SAVE    : F3_12np<"save"   , 0b111100>;
464defm RESTORE : F3_12np<"restore", 0b111101>;
465
466// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
467
468// conditional branch class:
469class BranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
470 : F2_2<cc, 0b010, (outs), ins, asmstr, pattern> {
471  let isBranch = 1;
472  let isTerminator = 1;
473  let hasDelaySlot = 1;
474}
475
476let isBarrier = 1 in
477  def BA   : BranchSP<0b1000, (ins brtarget:$dst),
478                      "ba $dst",
479                      [(br bb:$dst)]>;
480
481// FIXME: the encoding for the JIT should look at the condition field.
482let Uses = [ICC] in
483  def BCOND : BranchSP<0, (ins brtarget:$dst, CCOp:$cc),
484                         "b$cc $dst",
485                        [(SPbricc bb:$dst, imm:$cc)]>;
486
487
488// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
489
490// floating-point conditional branch class:
491class FPBranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
492 : F2_2<cc, 0b110, (outs), ins, asmstr, pattern> {
493  let isBranch = 1;
494  let isTerminator = 1;
495  let hasDelaySlot = 1;
496}
497
498// FIXME: the encoding for the JIT should look at the condition field.
499let Uses = [FCC] in
500  def FBCOND  : FPBranchSP<0, (ins brtarget:$dst, CCOp:$cc),
501                              "fb$cc $dst",
502                              [(SPbrfcc bb:$dst, imm:$cc)]>;
503
504
505// Section B.24 - Call and Link Instruction, p. 125
506// This is the only Format 1 instruction
507let Uses = [O0, O1, O2, O3, O4, O5],
508    hasDelaySlot = 1, isCall = 1,
509    Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
510    D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15] in { 
511  def CALL : InstSP<(outs), (ins calltarget:$dst),
512                    "call $dst", []> {
513    bits<30> disp;
514    let op = 1;
515    let Inst{29-0} = disp;
516  }
517  
518  // indirect calls
519  def JMPLrr : F3_1<2, 0b111000,
520                    (outs), (ins MEMrr:$ptr),
521                    "call $ptr",
522                    [(call ADDRrr:$ptr)]>;
523  def JMPLri : F3_2<2, 0b111000,
524                    (outs), (ins MEMri:$ptr),
525                    "call $ptr",
526                    [(call ADDRri:$ptr)]>;
527}
528
529// Section B.28 - Read State Register Instructions
530def RDY : F3_1<2, 0b101000,
531               (outs IntRegs:$dst), (ins),
532               "rd %y, $dst", []>;
533
534// Section B.29 - Write State Register Instructions
535def WRYrr : F3_1<2, 0b110000,
536                 (outs), (ins IntRegs:$b, IntRegs:$c),
537                 "wr $b, $c, %y", []>;
538def WRYri : F3_2<2, 0b110000,
539                 (outs), (ins IntRegs:$b, i32imm:$c),
540                 "wr $b, $c, %y", []>;
541
542// Convert Integer to Floating-point Instructions, p. 141
543def FITOS : F3_3<2, 0b110100, 0b011000100,
544                 (outs FPRegs:$dst), (ins FPRegs:$src),
545                 "fitos $src, $dst",
546                 [(set FPRegs:$dst, (SPitof FPRegs:$src))]>;
547def FITOD : F3_3<2, 0b110100, 0b011001000, 
548                 (outs DFPRegs:$dst), (ins FPRegs:$src),
549                 "fitod $src, $dst",
550                 [(set DFPRegs:$dst, (SPitof FPRegs:$src))]>;
551
552// Convert Floating-point to Integer Instructions, p. 142
553def FSTOI : F3_3<2, 0b110100, 0b011010001,
554                 (outs FPRegs:$dst), (ins FPRegs:$src),
555                 "fstoi $src, $dst",
556                 [(set FPRegs:$dst, (SPftoi FPRegs:$src))]>;
557def FDTOI : F3_3<2, 0b110100, 0b011010010,
558                 (outs FPRegs:$dst), (ins DFPRegs:$src),
559                 "fdtoi $src, $dst",
560                 [(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>;
561
562// Convert between Floating-point Formats Instructions, p. 143
563def FSTOD : F3_3<2, 0b110100, 0b011001001, 
564                 (outs DFPRegs:$dst), (ins FPRegs:$src),
565                 "fstod $src, $dst",
566                 [(set DFPRegs:$dst, (fextend FPRegs:$src))]>;
567def FDTOS : F3_3<2, 0b110100, 0b011000110,
568                 (outs FPRegs:$dst), (ins DFPRegs:$src),
569                 "fdtos $src, $dst",
570                 [(set FPRegs:$dst, (fround DFPRegs:$src))]>;
571
572// Floating-point Move Instructions, p. 144
573def FMOVS : F3_3<2, 0b110100, 0b000000001,
574                 (outs FPRegs:$dst), (ins FPRegs:$src),
575                 "fmovs $src, $dst", []>;
576def FNEGS : F3_3<2, 0b110100, 0b000000101, 
577                 (outs FPRegs:$dst), (ins FPRegs:$src),
578                 "fnegs $src, $dst",
579                 [(set FPRegs:$dst, (fneg FPRegs:$src))]>;
580def FABSS : F3_3<2, 0b110100, 0b000001001, 
581                 (outs FPRegs:$dst), (ins FPRegs:$src),
582                 "fabss $src, $dst",
583                 [(set FPRegs:$dst, (fabs FPRegs:$src))]>;
584
585
586// Floating-point Square Root Instructions, p.145
587def FSQRTS : F3_3<2, 0b110100, 0b000101001, 
588                  (outs FPRegs:$dst), (ins FPRegs:$src),
589                  "fsqrts $src, $dst",
590                  [(set FPRegs:$dst, (fsqrt FPRegs:$src))]>;
591def FSQRTD : F3_3<2, 0b110100, 0b000101010, 
592                  (outs DFPRegs:$dst), (ins DFPRegs:$src),
593                  "fsqrtd $src, $dst",
594                  [(set DFPRegs:$dst, (fsqrt DFPRegs:$src))]>;
595
596
597
598// Floating-point Add and Subtract Instructions, p. 146
599def FADDS  : F3_3<2, 0b110100, 0b001000001,
600                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
601                  "fadds $src1, $src2, $dst",
602                  [(set FPRegs:$dst, (fadd FPRegs:$src1, FPRegs:$src2))]>;
603def FADDD  : F3_3<2, 0b110100, 0b001000010,
604                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
605                  "faddd $src1, $src2, $dst",
606                  [(set DFPRegs:$dst, (fadd DFPRegs:$src1, DFPRegs:$src2))]>;
607def FSUBS  : F3_3<2, 0b110100, 0b001000101,
608                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
609                  "fsubs $src1, $src2, $dst",
610                  [(set FPRegs:$dst, (fsub FPRegs:$src1, FPRegs:$src2))]>;
611def FSUBD  : F3_3<2, 0b110100, 0b001000110,
612                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
613                  "fsubd $src1, $src2, $dst",
614                  [(set DFPRegs:$dst, (fsub DFPRegs:$src1, DFPRegs:$src2))]>;
615
616// Floating-point Multiply and Divide Instructions, p. 147
617def FMULS  : F3_3<2, 0b110100, 0b001001001,
618                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
619                  "fmuls $src1, $src2, $dst",
620                  [(set FPRegs:$dst, (fmul FPRegs:$src1, FPRegs:$src2))]>;
621def FMULD  : F3_3<2, 0b110100, 0b001001010,
622                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
623                  "fmuld $src1, $src2, $dst",
624                  [(set DFPRegs:$dst, (fmul DFPRegs:$src1, DFPRegs:$src2))]>;
625def FSMULD : F3_3<2, 0b110100, 0b001101001,
626                  (outs DFPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
627                  "fsmuld $src1, $src2, $dst",
628                  [(set DFPRegs:$dst, (fmul (fextend FPRegs:$src1),
629                                            (fextend FPRegs:$src2)))]>;
630def FDIVS  : F3_3<2, 0b110100, 0b001001101,
631                 (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
632                 "fdivs $src1, $src2, $dst",
633                 [(set FPRegs:$dst, (fdiv FPRegs:$src1, FPRegs:$src2))]>;
634def FDIVD  : F3_3<2, 0b110100, 0b001001110,
635                 (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
636                 "fdivd $src1, $src2, $dst",
637                 [(set DFPRegs:$dst, (fdiv DFPRegs:$src1, DFPRegs:$src2))]>;
638
639// Floating-point Compare Instructions, p. 148
640// Note: the 2nd template arg is different for these guys.
641// Note 2: the result of a FCMP is not available until the 2nd cycle
642// after the instr is retired, but there is no interlock. This behavior
643// is modelled with a forced noop after the instruction.
644let Defs = [FCC] in {
645  def FCMPS  : F3_3<2, 0b110101, 0b001010001,
646                   (outs), (ins FPRegs:$src1, FPRegs:$src2),
647                   "fcmps $src1, $src2\n\tnop",
648                   [(SPcmpfcc FPRegs:$src1, FPRegs:$src2)]>;
649  def FCMPD  : F3_3<2, 0b110101, 0b001010010,
650                   (outs), (ins DFPRegs:$src1, DFPRegs:$src2),
651                   "fcmpd $src1, $src2\n\tnop",
652                   [(SPcmpfcc DFPRegs:$src1, DFPRegs:$src2)]>;
653}
654
655//===----------------------------------------------------------------------===//
656// V9 Instructions
657//===----------------------------------------------------------------------===//
658
659// V9 Conditional Moves.
660let Predicates = [HasV9], Constraints = "$T = $dst" in {
661  // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
662  // FIXME: Add instruction encodings for the JIT some day.
663  def MOVICCrr
664    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc),
665             "mov$cc %icc, $F, $dst",
666             [(set IntRegs:$dst,
667                         (SPselecticc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
668  def MOVICCri
669    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc),
670             "mov$cc %icc, $F, $dst",
671             [(set IntRegs:$dst,
672                          (SPselecticc simm11:$F, IntRegs:$T, imm:$cc))]>;
673
674  def MOVFCCrr
675    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc),
676             "mov$cc %fcc0, $F, $dst",
677             [(set IntRegs:$dst,
678                         (SPselectfcc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
679  def MOVFCCri
680    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc),
681             "mov$cc %fcc0, $F, $dst",
682             [(set IntRegs:$dst,
683                          (SPselectfcc simm11:$F, IntRegs:$T, imm:$cc))]>;
684
685  def FMOVS_ICC
686    : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc),
687             "fmovs$cc %icc, $F, $dst",
688             [(set FPRegs:$dst,
689                         (SPselecticc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
690  def FMOVD_ICC
691    : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
692             "fmovd$cc %icc, $F, $dst",
693             [(set DFPRegs:$dst,
694                         (SPselecticc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
695  def FMOVS_FCC
696    : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc),
697             "fmovs$cc %fcc0, $F, $dst",
698             [(set FPRegs:$dst,
699                         (SPselectfcc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
700  def FMOVD_FCC
701    : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
702             "fmovd$cc %fcc0, $F, $dst",
703             [(set DFPRegs:$dst,
704                         (SPselectfcc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
705
706}
707
708// Floating-Point Move Instructions, p. 164 of the V9 manual.
709let Predicates = [HasV9] in {
710  def FMOVD : F3_3<2, 0b110100, 0b000000010,
711                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
712                   "fmovd $src, $dst", []>;
713  def FNEGD : F3_3<2, 0b110100, 0b000000110, 
714                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
715                   "fnegd $src, $dst",
716                   [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
717  def FABSD : F3_3<2, 0b110100, 0b000001010, 
718                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
719                   "fabsd $src, $dst",
720                   [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
721}
722
723// POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
724// the top 32-bits before using it.  To do this clearing, we use a SLLri X,0.
725def POPCrr : F3_1<2, 0b101110, 
726                  (outs IntRegs:$dst), (ins IntRegs:$src),
727                  "popc $src, $dst", []>, Requires<[HasV9]>;
728def : Pat<(ctpop IntRegs:$src),
729          (POPCrr (SLLri IntRegs:$src, 0))>;
730
731//===----------------------------------------------------------------------===//
732// Non-Instruction Patterns
733//===----------------------------------------------------------------------===//
734
735// Small immediates.
736def : Pat<(i32 simm13:$val),
737          (ORri G0, imm:$val)>;
738// Arbitrary immediates.
739def : Pat<(i32 imm:$val),
740          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
741
742// subc
743def : Pat<(subc IntRegs:$b, IntRegs:$c),
744          (SUBCCrr IntRegs:$b, IntRegs:$c)>;
745def : Pat<(subc IntRegs:$b, simm13:$val),
746          (SUBCCri IntRegs:$b, imm:$val)>;
747
748// Global addresses, constant pool entries
749def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
750def : Pat<(SPlo tglobaladdr:$in), (ORri G0, tglobaladdr:$in)>;
751def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
752def : Pat<(SPlo tconstpool:$in), (ORri G0, tconstpool:$in)>;
753
754// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
755def : Pat<(add IntRegs:$r, (SPlo tglobaladdr:$in)),
756          (ADDri IntRegs:$r, tglobaladdr:$in)>;
757def : Pat<(add IntRegs:$r, (SPlo tconstpool:$in)),
758          (ADDri IntRegs:$r, tconstpool:$in)>;
759
760// Calls: 
761def : Pat<(call tglobaladdr:$dst),
762          (CALL tglobaladdr:$dst)>;
763def : Pat<(call texternalsym:$dst),
764          (CALL texternalsym:$dst)>;
765
766// Map integer extload's to zextloads.
767def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
768def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
769def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
770def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
771def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
772def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
773
774// zextload bool -> zextload byte
775def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
776def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
777