1//===-- SparcInstrInfo.td - Target Description for Sparc Target -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Sparc instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18include "SparcInstrFormats.td"
19
20//===----------------------------------------------------------------------===//
21// Feature predicates.
22//===----------------------------------------------------------------------===//
23
24// True when generating 32-bit code.
25def Is32Bit : Predicate<"!Subtarget->is64Bit()">;
26
27// True when generating 64-bit code. This also implies HasV9.
28def Is64Bit : Predicate<"Subtarget->is64Bit()">;
29
30// HasV9 - This predicate is true when the target processor supports V9
31// instructions.  Note that the machine may be running in 32-bit mode.
32def HasV9   : Predicate<"Subtarget->isV9()">,
33              AssemblerPredicate<"FeatureV9">;
34
35// HasNoV9 - This predicate is true when the target doesn't have V9
36// instructions.  Use of this is just a hack for the isel not having proper
37// costs for V8 instructions that are more expensive than their V9 ones.
38def HasNoV9 : Predicate<"!Subtarget->isV9()">;
39
40// HasVIS - This is true when the target processor has VIS extensions.
41def HasVIS : Predicate<"Subtarget->isVIS()">,
42             AssemblerPredicate<"FeatureVIS">;
43def HasVIS2 : Predicate<"Subtarget->isVIS2()">,
44             AssemblerPredicate<"FeatureVIS2">;
45def HasVIS3 : Predicate<"Subtarget->isVIS3()">,
46             AssemblerPredicate<"FeatureVIS3">;
47
48// HasHardQuad - This is true when the target processor supports quad floating
49// point instructions.
50def HasHardQuad : Predicate<"Subtarget->hasHardQuad()">;
51
52// UseDeprecatedInsts - This predicate is true when the target processor is a
53// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
54// to use when appropriate.  In either of these cases, the instruction selector
55// will pick deprecated instructions.
56def UseDeprecatedInsts : Predicate<"Subtarget->useDeprecatedV8Instructions()">;
57
58//===----------------------------------------------------------------------===//
59// Instruction Pattern Stuff
60//===----------------------------------------------------------------------===//
61
62def simm11  : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>;
63
64def simm13  : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>;
65
66def LO10 : SDNodeXForm<imm, [{
67  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023, SDLoc(N),
68                                   MVT::i32);
69}]>;
70
71def HI22 : SDNodeXForm<imm, [{
72  // Transformation function: shift the immediate value down into the low bits.
73  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, SDLoc(N),
74                                   MVT::i32);
75}]>;
76
77def SETHIimm : PatLeaf<(imm), [{
78  return isShiftedUInt<22, 10>(N->getZExtValue());
79}], HI22>;
80
81// Addressing modes.
82def ADDRrr : ComplexPattern<iPTR, 2, "SelectADDRrr", [], []>;
83def ADDRri : ComplexPattern<iPTR, 2, "SelectADDRri", [frameindex], []>;
84
85// Address operands
86def SparcMEMrrAsmOperand : AsmOperandClass {
87  let Name = "MEMrr";
88  let ParserMethod = "parseMEMOperand";
89}
90
91def SparcMEMriAsmOperand : AsmOperandClass {
92  let Name = "MEMri";
93  let ParserMethod = "parseMEMOperand";
94}
95
96def MEMrr : Operand<iPTR> {
97  let PrintMethod = "printMemOperand";
98  let MIOperandInfo = (ops ptr_rc, ptr_rc);
99  let ParserMatchClass = SparcMEMrrAsmOperand;
100}
101def MEMri : Operand<iPTR> {
102  let PrintMethod = "printMemOperand";
103  let MIOperandInfo = (ops ptr_rc, i32imm);
104  let ParserMatchClass = SparcMEMriAsmOperand;
105}
106
107def TLSSym : Operand<iPTR>;
108
109// Branch targets have OtherVT type.
110def brtarget : Operand<OtherVT> {
111  let EncoderMethod = "getBranchTargetOpValue";
112}
113
114def bprtarget : Operand<OtherVT> {
115  let EncoderMethod = "getBranchPredTargetOpValue";
116}
117
118def bprtarget16 : Operand<OtherVT> {
119  let EncoderMethod = "getBranchOnRegTargetOpValue";
120}
121
122def calltarget : Operand<i32> {
123  let EncoderMethod = "getCallTargetOpValue";
124  let DecoderMethod = "DecodeCall";
125}
126
127def simm13Op : Operand<i32> {
128  let DecoderMethod = "DecodeSIMM13";
129}
130
131// Operand for printing out a condition code.
132let PrintMethod = "printCCOperand" in
133  def CCOp : Operand<i32>;
134
135def SDTSPcmpicc :
136SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>;
137def SDTSPcmpfcc :
138SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
139def SDTSPbrcc :
140SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
141def SDTSPselectcc :
142SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
143def SDTSPFTOI :
144SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
145def SDTSPITOF :
146SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
147def SDTSPFTOX :
148SDTypeProfile<1, 1, [SDTCisVT<0, f64>, SDTCisFP<1>]>;
149def SDTSPXTOF :
150SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f64>]>;
151
152def SDTSPtlsadd :
153SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
154def SDTSPtlsld :
155SDTypeProfile<1, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>;
156
157def SPcmpicc : SDNode<"SPISD::CMPICC", SDTSPcmpicc, [SDNPOutGlue]>;
158def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>;
159def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
160def SPbrxcc : SDNode<"SPISD::BRXCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
161def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
162
163def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
164def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
165
166def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>;
167def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>;
168def SPftox  : SDNode<"SPISD::FTOX", SDTSPFTOX>;
169def SPxtof  : SDNode<"SPISD::XTOF", SDTSPXTOF>;
170
171def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>;
172def SPselectxcc : SDNode<"SPISD::SELECT_XCC", SDTSPselectcc, [SDNPInGlue]>;
173def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>;
174
175//  These are target-independent nodes, but have target-specific formats.
176def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
177def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
178                                        SDTCisVT<1, i32> ]>;
179
180def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
181                           [SDNPHasChain, SDNPOutGlue]>;
182def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
183                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
184
185def SDT_SPCall    : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>;
186def call          : SDNode<"SPISD::CALL", SDT_SPCall,
187                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
188                            SDNPVariadic]>;
189
190def SDT_SPRet     : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
191def retflag       : SDNode<"SPISD::RET_FLAG", SDT_SPRet,
192                           [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
193
194def flushw        : SDNode<"SPISD::FLUSHW", SDTNone,
195                           [SDNPHasChain, SDNPSideEffect, SDNPMayStore]>;
196
197def tlsadd        : SDNode<"SPISD::TLS_ADD", SDTSPtlsadd>;
198def tlsld         : SDNode<"SPISD::TLS_LD",  SDTSPtlsld>;
199def tlscall       : SDNode<"SPISD::TLS_CALL", SDT_SPCall,
200                            [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
201                             SDNPVariadic]>;
202
203def getPCX        : Operand<iPTR> {
204  let PrintMethod = "printGetPCX";
205}
206
207//===----------------------------------------------------------------------===//
208// SPARC Flag Conditions
209//===----------------------------------------------------------------------===//
210
211// Note that these values must be kept in sync with the CCOp::CondCode enum
212// values.
213class ICC_VAL<int N> : PatLeaf<(i32 N)>;
214def ICC_NE  : ICC_VAL< 9>;  // Not Equal
215def ICC_E   : ICC_VAL< 1>;  // Equal
216def ICC_G   : ICC_VAL<10>;  // Greater
217def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
218def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
219def ICC_L   : ICC_VAL< 3>;  // Less
220def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
221def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
222def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
223def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
224def ICC_POS : ICC_VAL<14>;  // Positive
225def ICC_NEG : ICC_VAL< 6>;  // Negative
226def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
227def ICC_VS  : ICC_VAL< 7>;  // Overflow Set
228
229class FCC_VAL<int N> : PatLeaf<(i32 N)>;
230def FCC_U   : FCC_VAL<23>;  // Unordered
231def FCC_G   : FCC_VAL<22>;  // Greater
232def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
233def FCC_L   : FCC_VAL<20>;  // Less
234def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
235def FCC_LG  : FCC_VAL<18>;  // Less or Greater
236def FCC_NE  : FCC_VAL<17>;  // Not Equal
237def FCC_E   : FCC_VAL<25>;  // Equal
238def FCC_UE  : FCC_VAL<24>;  // Unordered or Equal
239def FCC_GE  : FCC_VAL<25>;  // Greater or Equal
240def FCC_UGE : FCC_VAL<26>;  // Unordered or Greater or Equal
241def FCC_LE  : FCC_VAL<27>;  // Less or Equal
242def FCC_ULE : FCC_VAL<28>;  // Unordered or Less or Equal
243def FCC_O   : FCC_VAL<29>;  // Ordered
244
245//===----------------------------------------------------------------------===//
246// Instruction Class Templates
247//===----------------------------------------------------------------------===//
248
249/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
250multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode,
251                 RegisterClass RC, ValueType Ty, Operand immOp> {
252  def rr  : F3_1<2, Op3Val,
253                 (outs RC:$rd), (ins RC:$rs1, RC:$rs2),
254                 !strconcat(OpcStr, " $rs1, $rs2, $rd"),
255                 [(set Ty:$rd, (OpNode Ty:$rs1, Ty:$rs2))]>;
256  def ri  : F3_2<2, Op3Val,
257                 (outs RC:$rd), (ins RC:$rs1, immOp:$simm13),
258                 !strconcat(OpcStr, " $rs1, $simm13, $rd"),
259                 [(set Ty:$rd, (OpNode Ty:$rs1, (Ty simm13:$simm13)))]>;
260}
261
262/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
263/// pattern.
264multiclass F3_12np<string OpcStr, bits<6> Op3Val> {
265  def rr  : F3_1<2, Op3Val,
266                 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
267                 !strconcat(OpcStr, " $rs1, $rs2, $rd"), []>;
268  def ri  : F3_2<2, Op3Val,
269                 (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
270                 !strconcat(OpcStr, " $rs1, $simm13, $rd"), []>;
271}
272
273// Load multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot.
274multiclass Load<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
275           RegisterClass RC, ValueType Ty> {
276  def rr  : F3_1<3, Op3Val,
277                 (outs RC:$dst), (ins MEMrr:$addr),
278                 !strconcat(OpcStr, " [$addr], $dst"),
279                 [(set Ty:$dst, (OpNode ADDRrr:$addr))]>;
280  def ri  : F3_2<3, Op3Val,
281                 (outs RC:$dst), (ins MEMri:$addr),
282                 !strconcat(OpcStr, " [$addr], $dst"),
283                 [(set Ty:$dst, (OpNode ADDRri:$addr))]>;
284}
285
286// TODO: Instructions of the LoadASI class are currently asm only; hooking up
287// CodeGen's address spaces to use these is a future task.
288class LoadASI<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
289              RegisterClass RC, ValueType Ty> :
290  F3_1_asi<3, Op3Val, (outs RC:$dst), (ins MEMrr:$addr, i8imm:$asi),
291                !strconcat(OpcStr, "a [$addr] $asi, $dst"),
292                []>;
293
294// LoadA multiclass - As above, but also define alternate address space variant
295multiclass LoadA<string OpcStr, bits<6> Op3Val, bits<6> LoadAOp3Val,
296                 SDPatternOperator OpNode, RegisterClass RC, ValueType Ty> :
297             Load<OpcStr, Op3Val, OpNode, RC, Ty> {
298  def Arr  : LoadASI<OpcStr, LoadAOp3Val, OpNode, RC, Ty>;
299}
300
301// The LDSTUB instruction is supported for asm only.
302// It is unlikely that general-purpose code could make use of it.
303// CAS is preferred for sparc v9.
304def LDSTUBrr : F3_1<3, 0b001101, (outs IntRegs:$dst), (ins MEMrr:$addr),
305                  "ldstub [$addr], $dst", []>;
306def LDSTUBri : F3_2<3, 0b001101, (outs IntRegs:$dst), (ins MEMri:$addr),
307                  "ldstub [$addr], $dst", []>;
308def LDSTUBArr : F3_1_asi<3, 0b011101, (outs IntRegs:$dst),
309                         (ins MEMrr:$addr, i8imm:$asi),
310                         "ldstuba [$addr] $asi, $dst", []>;
311
312// Store multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot.
313multiclass Store<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
314           RegisterClass RC, ValueType Ty> {
315  def rr  : F3_1<3, Op3Val,
316                 (outs), (ins MEMrr:$addr, RC:$rd),
317                 !strconcat(OpcStr, " $rd, [$addr]"),
318                 [(OpNode Ty:$rd, ADDRrr:$addr)]>;
319  def ri  : F3_2<3, Op3Val,
320                 (outs), (ins MEMri:$addr, RC:$rd),
321                 !strconcat(OpcStr, " $rd, [$addr]"),
322                 [(OpNode Ty:$rd, ADDRri:$addr)]>;
323}
324
325// TODO: Instructions of the StoreASI class are currently asm only; hooking up
326// CodeGen's address spaces to use these is a future task.
327class StoreASI<string OpcStr, bits<6> Op3Val,
328                  SDPatternOperator OpNode, RegisterClass RC, ValueType Ty> :
329  F3_1_asi<3, Op3Val, (outs), (ins MEMrr:$addr, RC:$rd, i8imm:$asi),
330                  !strconcat(OpcStr, "a $rd, [$addr] $asi"),
331                  []>;
332
333multiclass StoreA<string OpcStr, bits<6> Op3Val, bits<6> StoreAOp3Val,
334                  SDPatternOperator OpNode, RegisterClass RC, ValueType Ty> :
335             Store<OpcStr, Op3Val, OpNode, RC, Ty> {
336  def Arr : StoreASI<OpcStr, StoreAOp3Val, OpNode, RC, Ty>;
337}
338
339//===----------------------------------------------------------------------===//
340// Instructions
341//===----------------------------------------------------------------------===//
342
343// Pseudo instructions.
344class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
345   : InstSP<outs, ins, asmstr, pattern> {
346  let isCodeGenOnly = 1;
347  let isPseudo = 1;
348}
349
350// GETPCX for PIC
351let Defs = [O7] in {
352  def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >;
353}
354
355let Defs = [O6], Uses = [O6] in {
356def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
357                               "!ADJCALLSTACKDOWN $amt",
358                               [(callseq_start timm:$amt)]>;
359def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
360                            "!ADJCALLSTACKUP $amt1",
361                            [(callseq_end timm:$amt1, timm:$amt2)]>;
362}
363
364let hasSideEffects = 1, mayStore = 1 in {
365  let rd = 0, rs1 = 0, rs2 = 0 in
366    def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins),
367                      "flushw",
368                      [(flushw)]>, Requires<[HasV9]>;
369  let rd = 0, rs1 = 1, simm13 = 3 in
370    def TA3 : F3_2<0b10, 0b111010, (outs), (ins),
371                   "ta 3",
372                   [(flushw)]>;
373}
374
375// SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded after
376// instruction selection into a branch sequence.  This has to handle all
377// permutations of selection between i32/f32/f64 on ICC and FCC.
378// Expanded after instruction selection.
379let Uses = [ICC], usesCustomInserter = 1 in {
380  def SELECT_CC_Int_ICC
381   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
382            "; SELECT_CC_Int_ICC PSEUDO!",
383            [(set i32:$dst, (SPselecticc i32:$T, i32:$F, imm:$Cond))]>;
384  def SELECT_CC_FP_ICC
385   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
386            "; SELECT_CC_FP_ICC PSEUDO!",
387            [(set f32:$dst, (SPselecticc f32:$T, f32:$F, imm:$Cond))]>;
388
389  def SELECT_CC_DFP_ICC
390   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
391            "; SELECT_CC_DFP_ICC PSEUDO!",
392            [(set f64:$dst, (SPselecticc f64:$T, f64:$F, imm:$Cond))]>;
393
394  def SELECT_CC_QFP_ICC
395   : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
396            "; SELECT_CC_QFP_ICC PSEUDO!",
397            [(set f128:$dst, (SPselecticc f128:$T, f128:$F, imm:$Cond))]>;
398}
399
400let usesCustomInserter = 1, Uses = [FCC0] in {
401
402  def SELECT_CC_Int_FCC
403   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
404            "; SELECT_CC_Int_FCC PSEUDO!",
405            [(set i32:$dst, (SPselectfcc i32:$T, i32:$F, imm:$Cond))]>;
406
407  def SELECT_CC_FP_FCC
408   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
409            "; SELECT_CC_FP_FCC PSEUDO!",
410            [(set f32:$dst, (SPselectfcc f32:$T, f32:$F, imm:$Cond))]>;
411  def SELECT_CC_DFP_FCC
412   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
413            "; SELECT_CC_DFP_FCC PSEUDO!",
414            [(set f64:$dst, (SPselectfcc f64:$T, f64:$F, imm:$Cond))]>;
415  def SELECT_CC_QFP_FCC
416   : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
417            "; SELECT_CC_QFP_FCC PSEUDO!",
418            [(set f128:$dst, (SPselectfcc f128:$T, f128:$F, imm:$Cond))]>;
419}
420
421// Section B.1 - Load Integer Instructions, p. 90
422let DecoderMethod = "DecodeLoadInt" in {
423  defm LDSB : LoadA<"ldsb", 0b001001, 0b011001, sextloadi8,  IntRegs, i32>;
424  defm LDSH : LoadA<"ldsh", 0b001010, 0b011010, sextloadi16, IntRegs, i32>;
425  defm LDUB : LoadA<"ldub", 0b000001, 0b010001, zextloadi8,  IntRegs, i32>;
426  defm LDUH : LoadA<"lduh", 0b000010, 0b010010, zextloadi16, IntRegs, i32>;
427  defm LD   : LoadA<"ld",   0b000000, 0b010000, load,        IntRegs, i32>;
428}
429
430let DecoderMethod = "DecodeLoadIntPair" in
431  defm LDD : LoadA<"ldd", 0b000011, 0b010011, load, IntPair, v2i32>;
432
433// Section B.2 - Load Floating-point Instructions, p. 92
434let DecoderMethod = "DecodeLoadFP" in {
435  defm LDF   : Load<"ld",  0b100000, load,    FPRegs,  f32>;
436  def LDFArr : LoadASI<"ld",  0b110000, load, FPRegs,  f32>,
437                Requires<[HasV9]>;
438}
439let DecoderMethod = "DecodeLoadDFP" in {
440  defm LDDF   : Load<"ldd", 0b100011, load,    DFPRegs, f64>;
441  def LDDFArr : LoadASI<"ldd", 0b110011, load, DFPRegs, f64>,
442                 Requires<[HasV9]>;
443}
444let DecoderMethod = "DecodeLoadQFP" in
445  defm LDQF  : LoadA<"ldq", 0b100010, 0b110010, load, QFPRegs, f128>,
446               Requires<[HasV9, HasHardQuad]>;
447
448let DecoderMethod = "DecodeLoadFP" in
449  let Defs = [FSR] in {
450    let rd = 0 in {
451      def LDFSRrr : F3_1<3, 0b100001, (outs), (ins MEMrr:$addr),
452                     "ld [$addr], %fsr", []>;
453      def LDFSRri : F3_2<3, 0b100001, (outs), (ins MEMri:$addr),
454                     "ld [$addr], %fsr", []>;
455    }
456    let rd = 1 in {
457      def LDXFSRrr : F3_1<3, 0b100001, (outs), (ins MEMrr:$addr),
458                     "ldx [$addr], %fsr", []>, Requires<[HasV9]>;
459      def LDXFSRri : F3_2<3, 0b100001, (outs), (ins MEMri:$addr),
460                     "ldx [$addr], %fsr", []>, Requires<[HasV9]>;
461    }
462  }
463
464// Section B.4 - Store Integer Instructions, p. 95
465let DecoderMethod = "DecodeStoreInt" in {
466  defm STB   : StoreA<"stb", 0b000101, 0b010101, truncstorei8,  IntRegs, i32>;
467  defm STH   : StoreA<"sth", 0b000110, 0b010110, truncstorei16, IntRegs, i32>;
468  defm ST    : StoreA<"st",  0b000100, 0b010100, store,         IntRegs, i32>;
469}
470
471let DecoderMethod = "DecodeStoreIntPair" in
472  defm STD   : StoreA<"std", 0b000111, 0b010111, store, IntPair, v2i32>;
473
474// Section B.5 - Store Floating-point Instructions, p. 97
475let DecoderMethod = "DecodeStoreFP" in {
476  defm STF   : Store<"st",  0b100100, store,         FPRegs,  f32>;
477  def STFArr : StoreASI<"st",  0b110100, store,      FPRegs,  f32>,
478               Requires<[HasV9]>;
479}
480let DecoderMethod = "DecodeStoreDFP" in {
481  defm STDF   : Store<"std", 0b100111, store,         DFPRegs, f64>;
482  def STDFArr : StoreASI<"std", 0b110111, store,      DFPRegs, f64>,
483                Requires<[HasV9]>;
484}
485let DecoderMethod = "DecodeStoreQFP" in
486  defm STQF  : StoreA<"stq", 0b100110, 0b110110, store, QFPRegs, f128>,
487               Requires<[HasV9, HasHardQuad]>;
488
489let DecoderMethod = "DecodeStoreFP" in
490  let Defs = [FSR] in {
491    let rd = 0 in {
492      def STFSRrr : F3_1<3, 0b100101, (outs MEMrr:$addr), (ins),
493                     "st %fsr, [$addr]", []>;
494      def STFSRri : F3_2<3, 0b100101, (outs MEMri:$addr), (ins),
495                     "st %fsr, [$addr]", []>;
496    }
497    let rd = 1 in {
498      def STXFSRrr : F3_1<3, 0b100101, (outs MEMrr:$addr), (ins),
499                     "stx %fsr, [$addr]", []>, Requires<[HasV9]>;
500      def STXFSRri : F3_2<3, 0b100101, (outs MEMri:$addr), (ins),
501                     "stx %fsr, [$addr]", []>, Requires<[HasV9]>;
502    }
503  }
504
505// Section B.8 - SWAP Register with Memory Instruction
506// (Atomic swap)
507let Constraints = "$val = $dst", DecoderMethod = "DecodeSWAP" in {
508  def SWAPrr : F3_1<3, 0b001111,
509                 (outs IntRegs:$dst), (ins MEMrr:$addr, IntRegs:$val),
510                 "swap [$addr], $dst",
511                 [(set i32:$dst, (atomic_swap_32 ADDRrr:$addr, i32:$val))]>;
512  def SWAPri : F3_2<3, 0b001111,
513                 (outs IntRegs:$dst), (ins MEMri:$addr, IntRegs:$val),
514                 "swap [$addr], $dst",
515                 [(set i32:$dst, (atomic_swap_32 ADDRri:$addr, i32:$val))]>;
516  def SWAPArr : F3_1_asi<3, 0b011111,
517                 (outs IntRegs:$dst), (ins MEMrr:$addr, i8imm:$asi, IntRegs:$val),
518                 "swapa [$addr] $asi, $dst",
519                 [/*FIXME: pattern?*/]>;
520}
521
522
523// Section B.9 - SETHI Instruction, p. 104
524def SETHIi: F2_1<0b100,
525                 (outs IntRegs:$rd), (ins i32imm:$imm22),
526                 "sethi $imm22, $rd",
527                 [(set i32:$rd, SETHIimm:$imm22)]>;
528
529// Section B.10 - NOP Instruction, p. 105
530// (It's a special case of SETHI)
531let rd = 0, imm22 = 0 in
532  def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
533
534// Section B.11 - Logical Instructions, p. 106
535defm AND    : F3_12<"and", 0b000001, and, IntRegs, i32, simm13Op>;
536
537def ANDNrr  : F3_1<2, 0b000101,
538                   (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
539                   "andn $rs1, $rs2, $rd",
540                   [(set i32:$rd, (and i32:$rs1, (not i32:$rs2)))]>;
541def ANDNri  : F3_2<2, 0b000101,
542                   (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
543                   "andn $rs1, $simm13, $rd", []>;
544
545defm OR     : F3_12<"or", 0b000010, or, IntRegs, i32, simm13Op>;
546
547def ORNrr   : F3_1<2, 0b000110,
548                   (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
549                   "orn $rs1, $rs2, $rd",
550                   [(set i32:$rd, (or i32:$rs1, (not i32:$rs2)))]>;
551def ORNri   : F3_2<2, 0b000110,
552                   (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
553                   "orn $rs1, $simm13, $rd", []>;
554defm XOR    : F3_12<"xor", 0b000011, xor, IntRegs, i32, simm13Op>;
555
556def XNORrr  : F3_1<2, 0b000111,
557                   (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
558                   "xnor $rs1, $rs2, $rd",
559                   [(set i32:$rd, (not (xor i32:$rs1, i32:$rs2)))]>;
560def XNORri  : F3_2<2, 0b000111,
561                   (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
562                   "xnor $rs1, $simm13, $rd", []>;
563
564let Defs = [ICC] in {
565  defm ANDCC  : F3_12np<"andcc",  0b010001>;
566  defm ANDNCC : F3_12np<"andncc", 0b010101>;
567  defm ORCC   : F3_12np<"orcc",   0b010010>;
568  defm ORNCC  : F3_12np<"orncc",  0b010110>;
569  defm XORCC  : F3_12np<"xorcc",  0b010011>;
570  defm XNORCC : F3_12np<"xnorcc", 0b010111>;
571}
572
573// Section B.12 - Shift Instructions, p. 107
574defm SLL : F3_12<"sll", 0b100101, shl, IntRegs, i32, simm13Op>;
575defm SRL : F3_12<"srl", 0b100110, srl, IntRegs, i32, simm13Op>;
576defm SRA : F3_12<"sra", 0b100111, sra, IntRegs, i32, simm13Op>;
577
578// Section B.13 - Add Instructions, p. 108
579defm ADD   : F3_12<"add", 0b000000, add, IntRegs, i32, simm13Op>;
580
581// "LEA" forms of add (patterns to make tblgen happy)
582let Predicates = [Is32Bit], isCodeGenOnly = 1 in
583  def LEA_ADDri   : F3_2<2, 0b000000,
584                     (outs IntRegs:$dst), (ins MEMri:$addr),
585                     "add ${addr:arith}, $dst",
586                     [(set iPTR:$dst, ADDRri:$addr)]>;
587
588let Defs = [ICC] in
589  defm ADDCC  : F3_12<"addcc", 0b010000, addc, IntRegs, i32, simm13Op>;
590
591let Uses = [ICC] in
592  defm ADDC   : F3_12np<"addx", 0b001000>;
593
594let Uses = [ICC], Defs = [ICC] in
595  defm ADDE  : F3_12<"addxcc", 0b011000, adde, IntRegs, i32, simm13Op>;
596
597// Section B.15 - Subtract Instructions, p. 110
598defm SUB    : F3_12  <"sub"  , 0b000100, sub, IntRegs, i32, simm13Op>;
599let Uses = [ICC], Defs = [ICC] in
600  defm SUBE   : F3_12  <"subxcc" , 0b011100, sube, IntRegs, i32, simm13Op>;
601
602let Defs = [ICC] in
603  defm SUBCC  : F3_12  <"subcc", 0b010100, subc, IntRegs, i32, simm13Op>;
604
605let Uses = [ICC] in
606  defm SUBC   : F3_12np <"subx", 0b001100>;
607
608// cmp (from Section A.3) is a specialized alias for subcc
609let Defs = [ICC], rd = 0 in {
610  def CMPrr   : F3_1<2, 0b010100,
611                     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
612                     "cmp $rs1, $rs2",
613                     [(SPcmpicc i32:$rs1, i32:$rs2)]>;
614  def CMPri   : F3_2<2, 0b010100,
615                     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
616                     "cmp $rs1, $simm13",
617                     [(SPcmpicc i32:$rs1, (i32 simm13:$simm13))]>;
618}
619
620// Section B.18 - Multiply Instructions, p. 113
621let Defs = [Y] in {
622  defm UMUL : F3_12np<"umul", 0b001010>;
623  defm SMUL : F3_12  <"smul", 0b001011, mul, IntRegs, i32, simm13Op>;
624}
625
626let Defs = [Y, ICC] in {
627  defm UMULCC : F3_12np<"umulcc", 0b011010>;
628  defm SMULCC : F3_12np<"smulcc", 0b011011>;
629}
630
631let Defs = [Y, ICC], Uses = [Y, ICC] in {
632  defm MULSCC : F3_12np<"mulscc", 0b100100>;
633}
634
635// Section B.19 - Divide Instructions, p. 115
636let Uses = [Y], Defs = [Y] in {
637  defm UDIV : F3_12np<"udiv", 0b001110>;
638  defm SDIV : F3_12np<"sdiv", 0b001111>;
639}
640
641let Uses = [Y], Defs = [Y, ICC] in {
642  defm UDIVCC : F3_12np<"udivcc", 0b011110>;
643  defm SDIVCC : F3_12np<"sdivcc", 0b011111>;
644}
645
646// Section B.20 - SAVE and RESTORE, p. 117
647defm SAVE    : F3_12np<"save"   , 0b111100>;
648defm RESTORE : F3_12np<"restore", 0b111101>;
649
650// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
651
652// unconditional branch class.
653class BranchAlways<dag ins, string asmstr, list<dag> pattern>
654  : F2_2<0b010, 0, (outs), ins, asmstr, pattern> {
655  let isBranch     = 1;
656  let isTerminator = 1;
657  let hasDelaySlot = 1;
658  let isBarrier    = 1;
659}
660
661let cond = 8 in
662  def BA : BranchAlways<(ins brtarget:$imm22), "ba $imm22", [(br bb:$imm22)]>;
663
664
665let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
666
667// conditional branch class:
668class BranchSP<dag ins, string asmstr, list<dag> pattern>
669 : F2_2<0b010, 0, (outs), ins, asmstr, pattern>;
670
671// conditional branch with annul class:
672class BranchSPA<dag ins, string asmstr, list<dag> pattern>
673 : F2_2<0b010, 1, (outs), ins, asmstr, pattern>;
674
675// Conditional branch class on %icc|%xcc with predication:
676multiclass IPredBranch<string regstr, list<dag> CCPattern> {
677  def CC    : F2_3<0b001, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond),
678                  !strconcat("b$cond ", !strconcat(regstr, ", $imm19")),
679                   CCPattern>;
680  def CCA   : F2_3<0b001, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond),
681                  !strconcat("b$cond,a ", !strconcat(regstr, ", $imm19")),
682                   []>;
683  def CCNT  : F2_3<0b001, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond),
684                   !strconcat("b$cond,pn ", !strconcat(regstr, ", $imm19")),
685                   []>;
686  def CCANT : F2_3<0b001, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond),
687                   !strconcat("b$cond,a,pn ", !strconcat(regstr, ", $imm19")),
688                   []>;
689}
690
691} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1
692
693
694// Indirect branch instructions.
695let isTerminator = 1, isBarrier = 1,  hasDelaySlot = 1, isBranch =1,
696     isIndirectBranch = 1, rd = 0, isCodeGenOnly = 1 in {
697  def BINDrr  : F3_1<2, 0b111000,
698                   (outs), (ins MEMrr:$ptr),
699                   "jmp $ptr",
700                   [(brind ADDRrr:$ptr)]>;
701  def BINDri  : F3_2<2, 0b111000,
702                   (outs), (ins MEMri:$ptr),
703                   "jmp $ptr",
704                   [(brind ADDRri:$ptr)]>;
705}
706
707let Uses = [ICC] in {
708  def BCOND : BranchSP<(ins brtarget:$imm22, CCOp:$cond),
709                         "b$cond $imm22",
710                        [(SPbricc bb:$imm22, imm:$cond)]>;
711  def BCONDA : BranchSPA<(ins brtarget:$imm22, CCOp:$cond),
712                         "b$cond,a $imm22", []>;
713
714  let Predicates = [HasV9], cc = 0b00 in
715    defm BPI : IPredBranch<"%icc", []>;
716}
717
718// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
719
720let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
721
722// floating-point conditional branch class:
723class FPBranchSP<dag ins, string asmstr, list<dag> pattern>
724 : F2_2<0b110, 0, (outs), ins, asmstr, pattern>;
725
726// floating-point conditional branch with annul class:
727class FPBranchSPA<dag ins, string asmstr, list<dag> pattern>
728 : F2_2<0b110, 1, (outs), ins, asmstr, pattern>;
729
730// Conditional branch class on %fcc0-%fcc3 with predication:
731multiclass FPredBranch {
732  def CC    : F2_3<0b101, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond,
733                                         FCCRegs:$cc),
734                  "fb$cond $cc, $imm19", []>;
735  def CCA   : F2_3<0b101, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond,
736                                         FCCRegs:$cc),
737                  "fb$cond,a $cc, $imm19", []>;
738  def CCNT  : F2_3<0b101, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond,
739                                         FCCRegs:$cc),
740                  "fb$cond,pn $cc, $imm19", []>;
741  def CCANT : F2_3<0b101, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond,
742                                         FCCRegs:$cc),
743                  "fb$cond,a,pn $cc, $imm19", []>;
744}
745} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1
746
747let Uses = [FCC0] in {
748  def FBCOND  : FPBranchSP<(ins brtarget:$imm22, CCOp:$cond),
749                              "fb$cond $imm22",
750                              [(SPbrfcc bb:$imm22, imm:$cond)]>;
751  def FBCONDA : FPBranchSPA<(ins brtarget:$imm22, CCOp:$cond),
752                             "fb$cond,a $imm22", []>;
753}
754
755let Predicates = [HasV9] in
756  defm BPF : FPredBranch;
757
758
759// Section B.24 - Call and Link Instruction, p. 125
760// This is the only Format 1 instruction
761let Uses = [O6],
762    hasDelaySlot = 1, isCall = 1 in {
763  def CALL : InstSP<(outs), (ins calltarget:$disp, variable_ops),
764                    "call $disp", []> {
765    bits<30> disp;
766    let op = 1;
767    let Inst{29-0} = disp;
768  }
769
770  // indirect calls: special cases of JMPL.
771  let isCodeGenOnly = 1, rd = 15 in {
772    def CALLrr : F3_1<2, 0b111000,
773                      (outs), (ins MEMrr:$ptr, variable_ops),
774                      "call $ptr",
775                      [(call ADDRrr:$ptr)]>;
776    def CALLri : F3_2<2, 0b111000,
777                      (outs), (ins MEMri:$ptr, variable_ops),
778                      "call $ptr",
779                      [(call ADDRri:$ptr)]>;
780  }
781}
782
783// Section B.25 - Jump and Link Instruction
784
785// JMPL Instruction.
786let isTerminator = 1, hasDelaySlot = 1, isBarrier = 1,
787    DecoderMethod = "DecodeJMPL" in {
788  def JMPLrr: F3_1<2, 0b111000, (outs IntRegs:$dst), (ins MEMrr:$addr),
789                  "jmpl $addr, $dst", []>;
790  def JMPLri: F3_2<2, 0b111000, (outs IntRegs:$dst), (ins MEMri:$addr),
791                  "jmpl $addr, $dst", []>;
792}
793
794// Section A.3 - Synthetic Instructions, p. 85
795// special cases of JMPL:
796let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1,
797    isCodeGenOnly = 1 in {
798  let rd = 0, rs1 = 15 in
799    def RETL: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
800                   "jmp %o7+$val", [(retflag simm13:$val)]>;
801
802  let rd = 0, rs1 = 31 in
803    def RET: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
804                  "jmp %i7+$val", []>;
805}
806
807// Section B.26 - Return from Trap Instruction
808let isReturn = 1, isTerminator = 1, hasDelaySlot = 1,
809     isBarrier = 1, rd = 0, DecoderMethod = "DecodeReturn" in {
810  def RETTrr : F3_1<2, 0b111001, (outs), (ins MEMrr:$addr),
811                       "rett $addr", []>;
812  def RETTri : F3_2<2, 0b111001, (outs), (ins MEMri:$addr),
813                       "rett $addr", []>;
814}
815
816
817// Section B.27 - Trap on Integer Condition Codes Instruction
818multiclass TRAP<string regStr> {
819  def rr : TRAPSPrr<0b111010, (outs), (ins IntRegs:$rs1, IntRegs:$rs2,
820                                       CCOp:$cond),
821              !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $rs2"), []>;
822  def ri : TRAPSPri<0b111010, (outs), (ins IntRegs:$rs1, i32imm:$imm,
823                                      CCOp:$cond),
824              !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $imm"), []>;
825}
826
827let hasSideEffects = 1, Uses = [ICC], cc = 0b00 in
828  defm TICC : TRAP<"%icc">;
829
830let isBarrier = 1, isTerminator = 1, rd = 0b01000, rs1 = 0, simm13 = 5 in
831  def TA5 : F3_2<0b10, 0b111010, (outs), (ins), "ta 5", [(trap)]>;
832
833// Section B.28 - Read State Register Instructions
834let rs2 = 0 in
835  def RDASR : F3_1<2, 0b101000,
836                 (outs IntRegs:$rd), (ins ASRRegs:$rs1),
837                 "rd $rs1, $rd", []>;
838
839// PSR, WIM, and TBR don't exist on the SparcV9, only the V8.
840let Predicates = [HasNoV9] in {
841  let rs2 = 0, rs1 = 0, Uses=[PSR] in
842    def RDPSR : F3_1<2, 0b101001,
843		     (outs IntRegs:$rd), (ins),
844		     "rd %psr, $rd", []>;
845
846  let rs2 = 0, rs1 = 0, Uses=[WIM] in
847    def RDWIM : F3_1<2, 0b101010,
848		     (outs IntRegs:$rd), (ins),
849		     "rd %wim, $rd", []>;
850
851  let rs2 = 0, rs1 = 0, Uses=[TBR] in
852    def RDTBR : F3_1<2, 0b101011,
853		     (outs IntRegs:$rd), (ins),
854		     "rd %tbr, $rd", []>;
855}
856
857// Section B.29 - Write State Register Instructions
858def WRASRrr : F3_1<2, 0b110000,
859                 (outs ASRRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
860                 "wr $rs1, $rs2, $rd", []>;
861def WRASRri : F3_2<2, 0b110000,
862                 (outs ASRRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
863                 "wr $rs1, $simm13, $rd", []>;
864
865// PSR, WIM, and TBR don't exist on the SparcV9, only the V8.
866let Predicates = [HasNoV9] in {
867  let Defs = [PSR], rd=0 in {
868    def WRPSRrr : F3_1<2, 0b110001,
869		     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
870		     "wr $rs1, $rs2, %psr", []>;
871    def WRPSRri : F3_2<2, 0b110001,
872		     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
873		     "wr $rs1, $simm13, %psr", []>;
874  }
875
876  let Defs = [WIM], rd=0 in {
877    def WRWIMrr : F3_1<2, 0b110010,
878		     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
879		     "wr $rs1, $rs2, %wim", []>;
880    def WRWIMri : F3_2<2, 0b110010,
881		     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
882		     "wr $rs1, $simm13, %wim", []>;
883  }
884
885  let Defs = [TBR], rd=0 in {
886    def WRTBRrr : F3_1<2, 0b110011,
887		     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
888		     "wr $rs1, $rs2, %tbr", []>;
889    def WRTBRri : F3_2<2, 0b110011,
890		     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
891		     "wr $rs1, $simm13, %tbr", []>;
892  }
893}
894
895// Section B.30 - STBAR Instruction
896let hasSideEffects = 1, rd = 0, rs1 = 0b01111, rs2 = 0 in
897  def STBAR : F3_1<2, 0b101000, (outs), (ins), "stbar", []>;
898
899
900// Section B.31 - Unimplmented Instruction
901let rd = 0 in
902  def UNIMP : F2_1<0b000, (outs), (ins i32imm:$imm22),
903                  "unimp $imm22", []>;
904
905// Section B.32 - Flush Instruction Memory
906let rd = 0 in {
907  def FLUSHrr : F3_1<2, 0b111011, (outs), (ins MEMrr:$addr),
908                       "flush $addr", []>;
909  def FLUSHri : F3_2<2, 0b111011, (outs), (ins MEMri:$addr),
910                       "flush $addr", []>;
911
912  // The no-arg FLUSH is only here for the benefit of the InstAlias
913  // "flush", which cannot seem to use FLUSHrr, due to the inability
914  // to construct a MEMrr with fixed G0 registers.
915  let rs1 = 0, rs2 = 0 in
916    def FLUSH   : F3_1<2, 0b111011, (outs), (ins), "flush %g0", []>;
917}
918
919// Section B.33 - Floating-point Operate (FPop) Instructions
920
921// Convert Integer to Floating-point Instructions, p. 141
922def FITOS : F3_3u<2, 0b110100, 0b011000100,
923                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
924                 "fitos $rs2, $rd",
925                 [(set FPRegs:$rd, (SPitof FPRegs:$rs2))]>;
926def FITOD : F3_3u<2, 0b110100, 0b011001000,
927                 (outs DFPRegs:$rd), (ins FPRegs:$rs2),
928                 "fitod $rs2, $rd",
929                 [(set DFPRegs:$rd, (SPitof FPRegs:$rs2))]>;
930def FITOQ : F3_3u<2, 0b110100, 0b011001100,
931                 (outs QFPRegs:$rd), (ins FPRegs:$rs2),
932                 "fitoq $rs2, $rd",
933                 [(set QFPRegs:$rd, (SPitof FPRegs:$rs2))]>,
934                 Requires<[HasHardQuad]>;
935
936// Convert Floating-point to Integer Instructions, p. 142
937def FSTOI : F3_3u<2, 0b110100, 0b011010001,
938                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
939                 "fstoi $rs2, $rd",
940                 [(set FPRegs:$rd, (SPftoi FPRegs:$rs2))]>;
941def FDTOI : F3_3u<2, 0b110100, 0b011010010,
942                 (outs FPRegs:$rd), (ins DFPRegs:$rs2),
943                 "fdtoi $rs2, $rd",
944                 [(set FPRegs:$rd, (SPftoi DFPRegs:$rs2))]>;
945def FQTOI : F3_3u<2, 0b110100, 0b011010011,
946                 (outs FPRegs:$rd), (ins QFPRegs:$rs2),
947                 "fqtoi $rs2, $rd",
948                 [(set FPRegs:$rd, (SPftoi QFPRegs:$rs2))]>,
949                 Requires<[HasHardQuad]>;
950
951// Convert between Floating-point Formats Instructions, p. 143
952def FSTOD : F3_3u<2, 0b110100, 0b011001001,
953                 (outs DFPRegs:$rd), (ins FPRegs:$rs2),
954                 "fstod $rs2, $rd",
955                 [(set f64:$rd, (fextend f32:$rs2))]>;
956def FSTOQ : F3_3u<2, 0b110100, 0b011001101,
957                 (outs QFPRegs:$rd), (ins FPRegs:$rs2),
958                 "fstoq $rs2, $rd",
959                 [(set f128:$rd, (fextend f32:$rs2))]>,
960                 Requires<[HasHardQuad]>;
961def FDTOS : F3_3u<2, 0b110100, 0b011000110,
962                 (outs FPRegs:$rd), (ins DFPRegs:$rs2),
963                 "fdtos $rs2, $rd",
964                 [(set f32:$rd, (fround f64:$rs2))]>;
965def FDTOQ : F3_3u<2, 0b110100, 0b011001110,
966                 (outs QFPRegs:$rd), (ins DFPRegs:$rs2),
967                 "fdtoq $rs2, $rd",
968                 [(set f128:$rd, (fextend f64:$rs2))]>,
969                 Requires<[HasHardQuad]>;
970def FQTOS : F3_3u<2, 0b110100, 0b011000111,
971                 (outs FPRegs:$rd), (ins QFPRegs:$rs2),
972                 "fqtos $rs2, $rd",
973                 [(set f32:$rd, (fround f128:$rs2))]>,
974                 Requires<[HasHardQuad]>;
975def FQTOD : F3_3u<2, 0b110100, 0b011001011,
976                 (outs DFPRegs:$rd), (ins QFPRegs:$rs2),
977                 "fqtod $rs2, $rd",
978                 [(set f64:$rd, (fround f128:$rs2))]>,
979                 Requires<[HasHardQuad]>;
980
981// Floating-point Move Instructions, p. 144
982def FMOVS : F3_3u<2, 0b110100, 0b000000001,
983                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
984                 "fmovs $rs2, $rd", []>;
985def FNEGS : F3_3u<2, 0b110100, 0b000000101,
986                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
987                 "fnegs $rs2, $rd",
988                 [(set f32:$rd, (fneg f32:$rs2))]>;
989def FABSS : F3_3u<2, 0b110100, 0b000001001,
990                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
991                 "fabss $rs2, $rd",
992                 [(set f32:$rd, (fabs f32:$rs2))]>;
993
994
995// Floating-point Square Root Instructions, p.145
996def FSQRTS : F3_3u<2, 0b110100, 0b000101001,
997                  (outs FPRegs:$rd), (ins FPRegs:$rs2),
998                  "fsqrts $rs2, $rd",
999                  [(set f32:$rd, (fsqrt f32:$rs2))]>;
1000def FSQRTD : F3_3u<2, 0b110100, 0b000101010,
1001                  (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
1002                  "fsqrtd $rs2, $rd",
1003                  [(set f64:$rd, (fsqrt f64:$rs2))]>;
1004def FSQRTQ : F3_3u<2, 0b110100, 0b000101011,
1005                  (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
1006                  "fsqrtq $rs2, $rd",
1007                  [(set f128:$rd, (fsqrt f128:$rs2))]>,
1008                  Requires<[HasHardQuad]>;
1009
1010
1011
1012// Floating-point Add and Subtract Instructions, p. 146
1013def FADDS  : F3_3<2, 0b110100, 0b001000001,
1014                  (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1015                  "fadds $rs1, $rs2, $rd",
1016                  [(set f32:$rd, (fadd f32:$rs1, f32:$rs2))]>;
1017def FADDD  : F3_3<2, 0b110100, 0b001000010,
1018                  (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1019                  "faddd $rs1, $rs2, $rd",
1020                  [(set f64:$rd, (fadd f64:$rs1, f64:$rs2))]>;
1021def FADDQ  : F3_3<2, 0b110100, 0b001000011,
1022                  (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1023                  "faddq $rs1, $rs2, $rd",
1024                  [(set f128:$rd, (fadd f128:$rs1, f128:$rs2))]>,
1025                  Requires<[HasHardQuad]>;
1026
1027def FSUBS  : F3_3<2, 0b110100, 0b001000101,
1028                  (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1029                  "fsubs $rs1, $rs2, $rd",
1030                  [(set f32:$rd, (fsub f32:$rs1, f32:$rs2))]>;
1031def FSUBD  : F3_3<2, 0b110100, 0b001000110,
1032                  (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1033                  "fsubd $rs1, $rs2, $rd",
1034                  [(set f64:$rd, (fsub f64:$rs1, f64:$rs2))]>;
1035def FSUBQ  : F3_3<2, 0b110100, 0b001000111,
1036                  (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1037                  "fsubq $rs1, $rs2, $rd",
1038                  [(set f128:$rd, (fsub f128:$rs1, f128:$rs2))]>,
1039                  Requires<[HasHardQuad]>;
1040
1041
1042// Floating-point Multiply and Divide Instructions, p. 147
1043def FMULS  : F3_3<2, 0b110100, 0b001001001,
1044                  (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1045                  "fmuls $rs1, $rs2, $rd",
1046                  [(set f32:$rd, (fmul f32:$rs1, f32:$rs2))]>;
1047def FMULD  : F3_3<2, 0b110100, 0b001001010,
1048                  (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1049                  "fmuld $rs1, $rs2, $rd",
1050                  [(set f64:$rd, (fmul f64:$rs1, f64:$rs2))]>;
1051def FMULQ  : F3_3<2, 0b110100, 0b001001011,
1052                  (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1053                  "fmulq $rs1, $rs2, $rd",
1054                  [(set f128:$rd, (fmul f128:$rs1, f128:$rs2))]>,
1055                  Requires<[HasHardQuad]>;
1056
1057def FSMULD : F3_3<2, 0b110100, 0b001101001,
1058                  (outs DFPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1059                  "fsmuld $rs1, $rs2, $rd",
1060                  [(set f64:$rd, (fmul (fextend f32:$rs1),
1061                                        (fextend f32:$rs2)))]>;
1062def FDMULQ : F3_3<2, 0b110100, 0b001101110,
1063                  (outs QFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1064                  "fdmulq $rs1, $rs2, $rd",
1065                  [(set f128:$rd, (fmul (fextend f64:$rs1),
1066                                         (fextend f64:$rs2)))]>,
1067                  Requires<[HasHardQuad]>;
1068
1069def FDIVS  : F3_3<2, 0b110100, 0b001001101,
1070                 (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1071                 "fdivs $rs1, $rs2, $rd",
1072                 [(set f32:$rd, (fdiv f32:$rs1, f32:$rs2))]>;
1073def FDIVD  : F3_3<2, 0b110100, 0b001001110,
1074                 (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1075                 "fdivd $rs1, $rs2, $rd",
1076                 [(set f64:$rd, (fdiv f64:$rs1, f64:$rs2))]>;
1077def FDIVQ  : F3_3<2, 0b110100, 0b001001111,
1078                 (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1079                 "fdivq $rs1, $rs2, $rd",
1080                 [(set f128:$rd, (fdiv f128:$rs1, f128:$rs2))]>,
1081                 Requires<[HasHardQuad]>;
1082
1083// Floating-point Compare Instructions, p. 148
1084// Note: the 2nd template arg is different for these guys.
1085// Note 2: the result of a FCMP is not available until the 2nd cycle
1086// after the instr is retired, but there is no interlock in Sparc V8.
1087// This behavior is modeled with a forced noop after the instruction in
1088// DelaySlotFiller.
1089
1090let Defs = [FCC0], rd = 0, isCodeGenOnly = 1 in {
1091  def FCMPS  : F3_3c<2, 0b110101, 0b001010001,
1092                   (outs), (ins FPRegs:$rs1, FPRegs:$rs2),
1093                   "fcmps $rs1, $rs2",
1094                   [(SPcmpfcc f32:$rs1, f32:$rs2)]>;
1095  def FCMPD  : F3_3c<2, 0b110101, 0b001010010,
1096                   (outs), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1097                   "fcmpd $rs1, $rs2",
1098                   [(SPcmpfcc f64:$rs1, f64:$rs2)]>;
1099  def FCMPQ  : F3_3c<2, 0b110101, 0b001010011,
1100                   (outs), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1101                   "fcmpq $rs1, $rs2",
1102                   [(SPcmpfcc f128:$rs1, f128:$rs2)]>,
1103                   Requires<[HasHardQuad]>;
1104}
1105
1106//===----------------------------------------------------------------------===//
1107// Instructions for Thread Local Storage(TLS).
1108//===----------------------------------------------------------------------===//
1109let isCodeGenOnly = 1, isAsmParserOnly = 1 in {
1110def TLS_ADDrr : F3_1<2, 0b000000,
1111                    (outs IntRegs:$rd),
1112                    (ins IntRegs:$rs1, IntRegs:$rs2, TLSSym:$sym),
1113                    "add $rs1, $rs2, $rd, $sym",
1114                    [(set i32:$rd,
1115                        (tlsadd i32:$rs1, i32:$rs2, tglobaltlsaddr:$sym))]>;
1116
1117let mayLoad = 1 in
1118  def TLS_LDrr : F3_1<3, 0b000000,
1119                      (outs IntRegs:$dst), (ins MEMrr:$addr, TLSSym:$sym),
1120                      "ld [$addr], $dst, $sym",
1121                      [(set i32:$dst,
1122                          (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>;
1123
1124let Uses = [O6], isCall = 1, hasDelaySlot = 1 in
1125  def TLS_CALL : InstSP<(outs),
1126                        (ins calltarget:$disp, TLSSym:$sym, variable_ops),
1127                        "call $disp, $sym",
1128                        [(tlscall texternalsym:$disp, tglobaltlsaddr:$sym)]> {
1129  bits<30> disp;
1130  let op = 1;
1131  let Inst{29-0} = disp;
1132}
1133}
1134
1135//===----------------------------------------------------------------------===//
1136// V9 Instructions
1137//===----------------------------------------------------------------------===//
1138
1139// V9 Conditional Moves.
1140let Predicates = [HasV9], Constraints = "$f = $rd" in {
1141  // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
1142  let Uses = [ICC], intcc = 1, cc = 0b00 in {
1143    def MOVICCrr
1144      : F4_1<0b101100, (outs IntRegs:$rd),
1145             (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
1146             "mov$cond %icc, $rs2, $rd",
1147             [(set i32:$rd, (SPselecticc i32:$rs2, i32:$f, imm:$cond))]>;
1148
1149    def MOVICCri
1150      : F4_2<0b101100, (outs IntRegs:$rd),
1151             (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
1152             "mov$cond %icc, $simm11, $rd",
1153             [(set i32:$rd,
1154                    (SPselecticc simm11:$simm11, i32:$f, imm:$cond))]>;
1155  }
1156
1157  let Uses = [FCC0], intcc = 0, cc = 0b00 in {
1158    def MOVFCCrr
1159      : F4_1<0b101100, (outs IntRegs:$rd),
1160             (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
1161             "mov$cond %fcc0, $rs2, $rd",
1162             [(set i32:$rd, (SPselectfcc i32:$rs2, i32:$f, imm:$cond))]>;
1163    def MOVFCCri
1164      : F4_2<0b101100, (outs IntRegs:$rd),
1165             (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
1166             "mov$cond %fcc0, $simm11, $rd",
1167             [(set i32:$rd,
1168                    (SPselectfcc simm11:$simm11, i32:$f, imm:$cond))]>;
1169  }
1170
1171  let Uses = [ICC], intcc = 1, opf_cc = 0b00 in {
1172    def FMOVS_ICC
1173      : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
1174             (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
1175             "fmovs$cond %icc, $rs2, $rd",
1176             [(set f32:$rd, (SPselecticc f32:$rs2, f32:$f, imm:$cond))]>;
1177    def FMOVD_ICC
1178      : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
1179               (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
1180               "fmovd$cond %icc, $rs2, $rd",
1181               [(set f64:$rd, (SPselecticc f64:$rs2, f64:$f, imm:$cond))]>;
1182    def FMOVQ_ICC
1183      : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
1184               (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
1185               "fmovq$cond %icc, $rs2, $rd",
1186               [(set f128:$rd, (SPselecticc f128:$rs2, f128:$f, imm:$cond))]>,
1187               Requires<[HasHardQuad]>;
1188  }
1189
1190  let Uses = [FCC0], intcc = 0, opf_cc = 0b00 in {
1191    def FMOVS_FCC
1192      : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
1193             (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
1194             "fmovs$cond %fcc0, $rs2, $rd",
1195             [(set f32:$rd, (SPselectfcc f32:$rs2, f32:$f, imm:$cond))]>;
1196    def FMOVD_FCC
1197      : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
1198             (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
1199             "fmovd$cond %fcc0, $rs2, $rd",
1200             [(set f64:$rd, (SPselectfcc f64:$rs2, f64:$f, imm:$cond))]>;
1201    def FMOVQ_FCC
1202      : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
1203             (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
1204             "fmovq$cond %fcc0, $rs2, $rd",
1205             [(set f128:$rd, (SPselectfcc f128:$rs2, f128:$f, imm:$cond))]>,
1206             Requires<[HasHardQuad]>;
1207  }
1208
1209}
1210
1211// Floating-Point Move Instructions, p. 164 of the V9 manual.
1212let Predicates = [HasV9] in {
1213  def FMOVD : F3_3u<2, 0b110100, 0b000000010,
1214                   (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
1215                   "fmovd $rs2, $rd", []>;
1216  def FMOVQ : F3_3u<2, 0b110100, 0b000000011,
1217                   (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
1218                   "fmovq $rs2, $rd", []>,
1219                   Requires<[HasHardQuad]>;
1220  def FNEGD : F3_3u<2, 0b110100, 0b000000110,
1221                   (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
1222                   "fnegd $rs2, $rd",
1223                   [(set f64:$rd, (fneg f64:$rs2))]>;
1224  def FNEGQ : F3_3u<2, 0b110100, 0b000000111,
1225                   (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
1226                   "fnegq $rs2, $rd",
1227                   [(set f128:$rd, (fneg f128:$rs2))]>,
1228                   Requires<[HasHardQuad]>;
1229  def FABSD : F3_3u<2, 0b110100, 0b000001010,
1230                   (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
1231                   "fabsd $rs2, $rd",
1232                   [(set f64:$rd, (fabs f64:$rs2))]>;
1233  def FABSQ : F3_3u<2, 0b110100, 0b000001011,
1234                   (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
1235                   "fabsq $rs2, $rd",
1236                   [(set f128:$rd, (fabs f128:$rs2))]>,
1237                   Requires<[HasHardQuad]>;
1238}
1239
1240// Floating-point compare instruction with %fcc0-%fcc3.
1241def V9FCMPS  : F3_3c<2, 0b110101, 0b001010001,
1242               (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1243               "fcmps $rd, $rs1, $rs2", []>;
1244def V9FCMPD  : F3_3c<2, 0b110101, 0b001010010,
1245                (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1246                "fcmpd $rd, $rs1, $rs2", []>;
1247def V9FCMPQ  : F3_3c<2, 0b110101, 0b001010011,
1248                (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1249                "fcmpq $rd, $rs1, $rs2", []>,
1250                 Requires<[HasHardQuad]>;
1251
1252let hasSideEffects = 1 in {
1253  def V9FCMPES  : F3_3c<2, 0b110101, 0b001010101,
1254                   (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1255                   "fcmpes $rd, $rs1, $rs2", []>;
1256  def V9FCMPED  : F3_3c<2, 0b110101, 0b001010110,
1257                   (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1258                   "fcmped $rd, $rs1, $rs2", []>;
1259  def V9FCMPEQ  : F3_3c<2, 0b110101, 0b001010111,
1260                   (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1261                   "fcmpeq $rd, $rs1, $rs2", []>,
1262                   Requires<[HasHardQuad]>;
1263}
1264
1265// Floating point conditional move instrucitons with %fcc0-%fcc3.
1266let Predicates = [HasV9] in {
1267  let Constraints = "$f = $rd", intcc = 0 in {
1268    def V9MOVFCCrr
1269      : F4_1<0b101100, (outs IntRegs:$rd),
1270             (ins FCCRegs:$cc, IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
1271             "mov$cond $cc, $rs2, $rd", []>;
1272    def V9MOVFCCri
1273      : F4_2<0b101100, (outs IntRegs:$rd),
1274             (ins FCCRegs:$cc, i32imm:$simm11, IntRegs:$f, CCOp:$cond),
1275             "mov$cond $cc, $simm11, $rd", []>;
1276    def V9FMOVS_FCC
1277      : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
1278             (ins FCCRegs:$opf_cc, FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
1279             "fmovs$cond $opf_cc, $rs2, $rd", []>;
1280    def V9FMOVD_FCC
1281      : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
1282             (ins FCCRegs:$opf_cc, DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
1283             "fmovd$cond $opf_cc, $rs2, $rd", []>;
1284    def V9FMOVQ_FCC
1285      : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
1286             (ins FCCRegs:$opf_cc, QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
1287             "fmovq$cond $opf_cc, $rs2, $rd", []>,
1288             Requires<[HasHardQuad]>;
1289  } // Constraints = "$f = $rd", ...
1290} // let Predicates = [hasV9]
1291
1292
1293// POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
1294// the top 32-bits before using it.  To do this clearing, we use a SRLri X,0.
1295let rs1 = 0 in
1296  def POPCrr : F3_1<2, 0b101110,
1297                    (outs IntRegs:$rd), (ins IntRegs:$rs2),
1298                    "popc $rs2, $rd", []>, Requires<[HasV9]>;
1299def : Pat<(ctpop i32:$src),
1300          (POPCrr (SRLri $src, 0))>;
1301
1302let Predicates = [HasV9], hasSideEffects = 1, rd = 0, rs1 = 0b01111 in
1303 def MEMBARi : F3_2<2, 0b101000, (outs), (ins simm13Op:$simm13),
1304                    "membar $simm13", []>;
1305
1306// TODO: Should add a CASArr variant. In fact, the CAS instruction,
1307// unlike other instructions, only comes in a form which requires an
1308// ASI be provided. The ASI value hardcoded here is ASI_PRIMARY, the
1309// default unprivileged ASI for SparcV9.  (Also of note: some modern
1310// SparcV8 implementations provide CASA as an extension, but require
1311// the use of SparcV8's default ASI, 0xA ("User Data") instead.)
1312let Predicates = [HasV9], Constraints = "$swap = $rd", asi = 0b10000000 in
1313  def CASrr: F3_1_asi<3, 0b111100,
1314                (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2,
1315                                     IntRegs:$swap),
1316                 "cas [$rs1], $rs2, $rd",
1317                 [(set i32:$rd,
1318                     (atomic_cmp_swap iPTR:$rs1, i32:$rs2, i32:$swap))]>;
1319
1320let Defs = [ICC] in {
1321defm TADDCC   : F3_12np<"taddcc",   0b100000>;
1322defm TSUBCC   : F3_12np<"tsubcc",   0b100001>;
1323
1324let hasSideEffects = 1 in {
1325  defm TADDCCTV : F3_12np<"taddcctv", 0b100010>;
1326  defm TSUBCCTV : F3_12np<"tsubcctv", 0b100011>;
1327}
1328}
1329
1330
1331// Section A.43 - Read Privileged Register Instructions
1332let Predicates = [HasV9] in {
1333let rs2 = 0 in
1334  def RDPR : F3_1<2, 0b101010,
1335                 (outs IntRegs:$rd), (ins PRRegs:$rs1),
1336                 "rdpr $rs1, $rd", []>;
1337}
1338
1339// Section A.62 - Write Privileged Register Instructions
1340let Predicates = [HasV9] in {
1341  def WRPRrr : F3_1<2, 0b110010,
1342                   (outs PRRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
1343                   "wrpr $rs1, $rs2, $rd", []>;
1344  def WRPRri : F3_2<2, 0b110010,
1345                   (outs PRRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
1346                   "wrpr $rs1, $simm13, $rd", []>;
1347}
1348
1349//===----------------------------------------------------------------------===//
1350// Non-Instruction Patterns
1351//===----------------------------------------------------------------------===//
1352
1353// Small immediates.
1354def : Pat<(i32 simm13:$val),
1355          (ORri (i32 G0), imm:$val)>;
1356// Arbitrary immediates.
1357def : Pat<(i32 imm:$val),
1358          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
1359
1360
1361// Global addresses, constant pool entries
1362let Predicates = [Is32Bit] in {
1363
1364def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
1365def : Pat<(SPlo tglobaladdr:$in), (ORri (i32 G0), tglobaladdr:$in)>;
1366def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
1367def : Pat<(SPlo tconstpool:$in), (ORri (i32 G0), tconstpool:$in)>;
1368
1369// GlobalTLS addresses
1370def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>;
1371def : Pat<(SPlo tglobaltlsaddr:$in), (ORri (i32 G0), tglobaltlsaddr:$in)>;
1372def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
1373          (ADDri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
1374def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
1375          (XORri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
1376
1377// Blockaddress
1378def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>;
1379def : Pat<(SPlo tblockaddress:$in), (ORri (i32 G0), tblockaddress:$in)>;
1380
1381// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
1382def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDri $r, tglobaladdr:$in)>;
1383def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)),  (ADDri $r, tconstpool:$in)>;
1384def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)),
1385                        (ADDri $r, tblockaddress:$in)>;
1386}
1387
1388// Calls:
1389def : Pat<(call tglobaladdr:$dst),
1390          (CALL tglobaladdr:$dst)>;
1391def : Pat<(call texternalsym:$dst),
1392          (CALL texternalsym:$dst)>;
1393
1394// Map integer extload's to zextloads.
1395def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
1396def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
1397def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
1398def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
1399def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
1400def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
1401
1402// zextload bool -> zextload byte
1403def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
1404def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
1405
1406// store 0, addr -> store %g0, addr
1407def : Pat<(store (i32 0), ADDRrr:$dst), (STrr ADDRrr:$dst, (i32 G0))>;
1408def : Pat<(store (i32 0), ADDRri:$dst), (STri ADDRri:$dst, (i32 G0))>;
1409
1410// store bar for all atomic_fence in V8.
1411let Predicates = [HasNoV9] in
1412  def : Pat<(atomic_fence imm, imm), (STBAR)>;
1413
1414// atomic_load_32 addr -> load addr
1415def : Pat<(i32 (atomic_load ADDRrr:$src)), (LDrr ADDRrr:$src)>;
1416def : Pat<(i32 (atomic_load ADDRri:$src)), (LDri ADDRri:$src)>;
1417
1418// atomic_store_32 val, addr -> store val, addr
1419def : Pat<(atomic_store ADDRrr:$dst, i32:$val), (STrr ADDRrr:$dst, $val)>;
1420def : Pat<(atomic_store ADDRri:$dst, i32:$val), (STri ADDRri:$dst, $val)>;
1421
1422// extract_vector
1423def : Pat<(extractelt (v2i32 IntPair:$Rn), 0),
1424          (i32 (EXTRACT_SUBREG IntPair:$Rn, sub_even))>;
1425def : Pat<(extractelt (v2i32 IntPair:$Rn), 1),
1426          (i32 (EXTRACT_SUBREG IntPair:$Rn, sub_odd))>;
1427
1428// build_vector
1429def : Pat<(build_vector (i32 IntRegs:$a1), (i32 IntRegs:$a2)),
1430          (INSERT_SUBREG
1431	    (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)), (i32 IntRegs:$a1), sub_even),
1432            (i32 IntRegs:$a2), sub_odd)>;
1433
1434
1435include "SparcInstr64Bit.td"
1436include "SparcInstrVIS.td"
1437include "SparcInstrAliases.td"
1438