1276789Sdim//===-- MipsSEISelLowering.cpp - MipsSE DAG Lowering Interface --*- C++ -*-===//
2276789Sdim//
3276789Sdim//                     The LLVM Compiler Infrastructure
4276789Sdim//
5276789Sdim// This file is distributed under the University of Illinois Open Source
6276789Sdim// License. See LICENSE.TXT for details.
7276789Sdim//
8276789Sdim//===----------------------------------------------------------------------===//
9276789Sdim//
10276789Sdim// Subclass of MipsTargetLowering specialized for mips32/64.
11276789Sdim//
12276789Sdim//===----------------------------------------------------------------------===//
13276789Sdim#include "MipsSEISelLowering.h"
14276789Sdim#include "MipsMachineFunction.h"
15276789Sdim#include "MipsRegisterInfo.h"
16276789Sdim#include "MipsTargetMachine.h"
17276789Sdim#include "llvm/CodeGen/MachineInstrBuilder.h"
18276789Sdim#include "llvm/CodeGen/MachineRegisterInfo.h"
19276789Sdim#include "llvm/IR/Intrinsics.h"
20276789Sdim#include "llvm/Support/CommandLine.h"
21276789Sdim#include "llvm/Support/Debug.h"
22276789Sdim#include "llvm/Support/raw_ostream.h"
23276789Sdim#include "llvm/Target/TargetInstrInfo.h"
24276789Sdim
25276789Sdimusing namespace llvm;
26276789Sdim
27276789Sdim#define DEBUG_TYPE "mips-isel"
28276789Sdim
29276789Sdimstatic cl::opt<bool>
30276789SdimEnableMipsTailCalls("enable-mips-tail-calls", cl::Hidden,
31276789Sdim                    cl::desc("MIPS: Enable tail calls."), cl::init(false));
32276789Sdim
33276789Sdimstatic cl::opt<bool> NoDPLoadStore("mno-ldc1-sdc1", cl::init(false),
34276789Sdim                                   cl::desc("Expand double precision loads and "
35276789Sdim                                            "stores to their single precision "
36276789Sdim                                            "counterparts"));
37276789Sdim
38276789SdimMipsSETargetLowering::MipsSETargetLowering(const MipsTargetMachine &TM,
39276789Sdim                                           const MipsSubtarget &STI)
40276789Sdim    : MipsTargetLowering(TM, STI) {
41276789Sdim  // Set up the register classes
42276789Sdim  addRegisterClass(MVT::i32, &Mips::GPR32RegClass);
43276789Sdim
44276789Sdim  if (Subtarget.isGP64bit())
45276789Sdim    addRegisterClass(MVT::i64, &Mips::GPR64RegClass);
46276789Sdim
47  if (Subtarget.hasDSP() || Subtarget.hasMSA()) {
48    // Expand all truncating stores and extending loads.
49    for (MVT VT0 : MVT::vector_valuetypes()) {
50      for (MVT VT1 : MVT::vector_valuetypes()) {
51        setTruncStoreAction(VT0, VT1, Expand);
52        setLoadExtAction(ISD::SEXTLOAD, VT0, VT1, Expand);
53        setLoadExtAction(ISD::ZEXTLOAD, VT0, VT1, Expand);
54        setLoadExtAction(ISD::EXTLOAD, VT0, VT1, Expand);
55      }
56    }
57  }
58
59  if (Subtarget.hasDSP()) {
60    MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8};
61
62    for (unsigned i = 0; i < array_lengthof(VecTys); ++i) {
63      addRegisterClass(VecTys[i], &Mips::DSPRRegClass);
64
65      // Expand all builtin opcodes.
66      for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
67        setOperationAction(Opc, VecTys[i], Expand);
68
69      setOperationAction(ISD::ADD, VecTys[i], Legal);
70      setOperationAction(ISD::SUB, VecTys[i], Legal);
71      setOperationAction(ISD::LOAD, VecTys[i], Legal);
72      setOperationAction(ISD::STORE, VecTys[i], Legal);
73      setOperationAction(ISD::BITCAST, VecTys[i], Legal);
74    }
75
76    setTargetDAGCombine(ISD::SHL);
77    setTargetDAGCombine(ISD::SRA);
78    setTargetDAGCombine(ISD::SRL);
79    setTargetDAGCombine(ISD::SETCC);
80    setTargetDAGCombine(ISD::VSELECT);
81  }
82
83  if (Subtarget.hasDSPR2())
84    setOperationAction(ISD::MUL, MVT::v2i16, Legal);
85
86  if (Subtarget.hasMSA()) {
87    addMSAIntType(MVT::v16i8, &Mips::MSA128BRegClass);
88    addMSAIntType(MVT::v8i16, &Mips::MSA128HRegClass);
89    addMSAIntType(MVT::v4i32, &Mips::MSA128WRegClass);
90    addMSAIntType(MVT::v2i64, &Mips::MSA128DRegClass);
91    addMSAFloatType(MVT::v8f16, &Mips::MSA128HRegClass);
92    addMSAFloatType(MVT::v4f32, &Mips::MSA128WRegClass);
93    addMSAFloatType(MVT::v2f64, &Mips::MSA128DRegClass);
94
95    setTargetDAGCombine(ISD::AND);
96    setTargetDAGCombine(ISD::OR);
97    setTargetDAGCombine(ISD::SRA);
98    setTargetDAGCombine(ISD::VSELECT);
99    setTargetDAGCombine(ISD::XOR);
100  }
101
102  if (!Subtarget.useSoftFloat()) {
103    addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
104
105    // When dealing with single precision only, use libcalls
106    if (!Subtarget.isSingleFloat()) {
107      if (Subtarget.isFP64bit())
108        addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
109      else
110        addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
111    }
112  }
113
114  setOperationAction(ISD::SMUL_LOHI,          MVT::i32, Custom);
115  setOperationAction(ISD::UMUL_LOHI,          MVT::i32, Custom);
116  setOperationAction(ISD::MULHS,              MVT::i32, Custom);
117  setOperationAction(ISD::MULHU,              MVT::i32, Custom);
118
119  if (Subtarget.hasCnMips())
120    setOperationAction(ISD::MUL,              MVT::i64, Legal);
121  else if (Subtarget.isGP64bit())
122    setOperationAction(ISD::MUL,              MVT::i64, Custom);
123
124  if (Subtarget.isGP64bit()) {
125    setOperationAction(ISD::SMUL_LOHI,        MVT::i64, Custom);
126    setOperationAction(ISD::UMUL_LOHI,        MVT::i64, Custom);
127    setOperationAction(ISD::MULHS,            MVT::i64, Custom);
128    setOperationAction(ISD::MULHU,            MVT::i64, Custom);
129    setOperationAction(ISD::SDIVREM,          MVT::i64, Custom);
130    setOperationAction(ISD::UDIVREM,          MVT::i64, Custom);
131  }
132
133  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
134  setOperationAction(ISD::INTRINSIC_W_CHAIN,  MVT::i64, Custom);
135
136  setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
137  setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
138  setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Custom);
139  setOperationAction(ISD::LOAD,               MVT::i32, Custom);
140  setOperationAction(ISD::STORE,              MVT::i32, Custom);
141
142  setTargetDAGCombine(ISD::ADDE);
143  setTargetDAGCombine(ISD::SUBE);
144  setTargetDAGCombine(ISD::MUL);
145
146  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
147  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
148  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
149
150  if (NoDPLoadStore) {
151    setOperationAction(ISD::LOAD, MVT::f64, Custom);
152    setOperationAction(ISD::STORE, MVT::f64, Custom);
153  }
154
155  if (Subtarget.hasMips32r6()) {
156    // MIPS32r6 replaces the accumulator-based multiplies with a three register
157    // instruction
158    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
159    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
160    setOperationAction(ISD::MUL, MVT::i32, Legal);
161    setOperationAction(ISD::MULHS, MVT::i32, Legal);
162    setOperationAction(ISD::MULHU, MVT::i32, Legal);
163
164    // MIPS32r6 replaces the accumulator-based division/remainder with separate
165    // three register division and remainder instructions.
166    setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
167    setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
168    setOperationAction(ISD::SDIV, MVT::i32, Legal);
169    setOperationAction(ISD::UDIV, MVT::i32, Legal);
170    setOperationAction(ISD::SREM, MVT::i32, Legal);
171    setOperationAction(ISD::UREM, MVT::i32, Legal);
172
173    // MIPS32r6 replaces conditional moves with an equivalent that removes the
174    // need for three GPR read ports.
175    setOperationAction(ISD::SETCC, MVT::i32, Legal);
176    setOperationAction(ISD::SELECT, MVT::i32, Legal);
177    setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
178
179    setOperationAction(ISD::SETCC, MVT::f32, Legal);
180    setOperationAction(ISD::SELECT, MVT::f32, Legal);
181    setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
182
183    assert(Subtarget.isFP64bit() && "FR=1 is required for MIPS32r6");
184    setOperationAction(ISD::SETCC, MVT::f64, Legal);
185    setOperationAction(ISD::SELECT, MVT::f64, Legal);
186    setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
187
188    setOperationAction(ISD::BRCOND, MVT::Other, Legal);
189
190    // Floating point > and >= are supported via < and <=
191    setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
192    setCondCodeAction(ISD::SETOGT, MVT::f32, Expand);
193    setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
194    setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
195
196    setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
197    setCondCodeAction(ISD::SETOGT, MVT::f64, Expand);
198    setCondCodeAction(ISD::SETUGE, MVT::f64, Expand);
199    setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
200  }
201
202  if (Subtarget.hasMips64r6()) {
203    // MIPS64r6 replaces the accumulator-based multiplies with a three register
204    // instruction
205    setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
206    setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
207    setOperationAction(ISD::MUL, MVT::i64, Legal);
208    setOperationAction(ISD::MULHS, MVT::i64, Legal);
209    setOperationAction(ISD::MULHU, MVT::i64, Legal);
210
211    // MIPS32r6 replaces the accumulator-based division/remainder with separate
212    // three register division and remainder instructions.
213    setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
214    setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
215    setOperationAction(ISD::SDIV, MVT::i64, Legal);
216    setOperationAction(ISD::UDIV, MVT::i64, Legal);
217    setOperationAction(ISD::SREM, MVT::i64, Legal);
218    setOperationAction(ISD::UREM, MVT::i64, Legal);
219
220    // MIPS64r6 replaces conditional moves with an equivalent that removes the
221    // need for three GPR read ports.
222    setOperationAction(ISD::SETCC, MVT::i64, Legal);
223    setOperationAction(ISD::SELECT, MVT::i64, Legal);
224    setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
225  }
226
227  computeRegisterProperties(Subtarget.getRegisterInfo());
228}
229
230const MipsTargetLowering *
231llvm::createMipsSETargetLowering(const MipsTargetMachine &TM,
232                                 const MipsSubtarget &STI) {
233  return new MipsSETargetLowering(TM, STI);
234}
235
236const TargetRegisterClass *
237MipsSETargetLowering::getRepRegClassFor(MVT VT) const {
238  if (VT == MVT::Untyped)
239    return Subtarget.hasDSP() ? &Mips::ACC64DSPRegClass : &Mips::ACC64RegClass;
240
241  return TargetLowering::getRepRegClassFor(VT);
242}
243
244// Enable MSA support for the given integer type and Register class.
245void MipsSETargetLowering::
246addMSAIntType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
247  addRegisterClass(Ty, RC);
248
249  // Expand all builtin opcodes.
250  for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
251    setOperationAction(Opc, Ty, Expand);
252
253  setOperationAction(ISD::BITCAST, Ty, Legal);
254  setOperationAction(ISD::LOAD, Ty, Legal);
255  setOperationAction(ISD::STORE, Ty, Legal);
256  setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Custom);
257  setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
258  setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
259
260  setOperationAction(ISD::ADD, Ty, Legal);
261  setOperationAction(ISD::AND, Ty, Legal);
262  setOperationAction(ISD::CTLZ, Ty, Legal);
263  setOperationAction(ISD::CTPOP, Ty, Legal);
264  setOperationAction(ISD::MUL, Ty, Legal);
265  setOperationAction(ISD::OR, Ty, Legal);
266  setOperationAction(ISD::SDIV, Ty, Legal);
267  setOperationAction(ISD::SREM, Ty, Legal);
268  setOperationAction(ISD::SHL, Ty, Legal);
269  setOperationAction(ISD::SRA, Ty, Legal);
270  setOperationAction(ISD::SRL, Ty, Legal);
271  setOperationAction(ISD::SUB, Ty, Legal);
272  setOperationAction(ISD::UDIV, Ty, Legal);
273  setOperationAction(ISD::UREM, Ty, Legal);
274  setOperationAction(ISD::VECTOR_SHUFFLE, Ty, Custom);
275  setOperationAction(ISD::VSELECT, Ty, Legal);
276  setOperationAction(ISD::XOR, Ty, Legal);
277
278  if (Ty == MVT::v4i32 || Ty == MVT::v2i64) {
279    setOperationAction(ISD::FP_TO_SINT, Ty, Legal);
280    setOperationAction(ISD::FP_TO_UINT, Ty, Legal);
281    setOperationAction(ISD::SINT_TO_FP, Ty, Legal);
282    setOperationAction(ISD::UINT_TO_FP, Ty, Legal);
283  }
284
285  setOperationAction(ISD::SETCC, Ty, Legal);
286  setCondCodeAction(ISD::SETNE, Ty, Expand);
287  setCondCodeAction(ISD::SETGE, Ty, Expand);
288  setCondCodeAction(ISD::SETGT, Ty, Expand);
289  setCondCodeAction(ISD::SETUGE, Ty, Expand);
290  setCondCodeAction(ISD::SETUGT, Ty, Expand);
291}
292
293// Enable MSA support for the given floating-point type and Register class.
294void MipsSETargetLowering::
295addMSAFloatType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
296  addRegisterClass(Ty, RC);
297
298  // Expand all builtin opcodes.
299  for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
300    setOperationAction(Opc, Ty, Expand);
301
302  setOperationAction(ISD::LOAD, Ty, Legal);
303  setOperationAction(ISD::STORE, Ty, Legal);
304  setOperationAction(ISD::BITCAST, Ty, Legal);
305  setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Legal);
306  setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
307  setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
308
309  if (Ty != MVT::v8f16) {
310    setOperationAction(ISD::FABS,  Ty, Legal);
311    setOperationAction(ISD::FADD,  Ty, Legal);
312    setOperationAction(ISD::FDIV,  Ty, Legal);
313    setOperationAction(ISD::FEXP2, Ty, Legal);
314    setOperationAction(ISD::FLOG2, Ty, Legal);
315    setOperationAction(ISD::FMA,   Ty, Legal);
316    setOperationAction(ISD::FMUL,  Ty, Legal);
317    setOperationAction(ISD::FRINT, Ty, Legal);
318    setOperationAction(ISD::FSQRT, Ty, Legal);
319    setOperationAction(ISD::FSUB,  Ty, Legal);
320    setOperationAction(ISD::VSELECT, Ty, Legal);
321
322    setOperationAction(ISD::SETCC, Ty, Legal);
323    setCondCodeAction(ISD::SETOGE, Ty, Expand);
324    setCondCodeAction(ISD::SETOGT, Ty, Expand);
325    setCondCodeAction(ISD::SETUGE, Ty, Expand);
326    setCondCodeAction(ISD::SETUGT, Ty, Expand);
327    setCondCodeAction(ISD::SETGE,  Ty, Expand);
328    setCondCodeAction(ISD::SETGT,  Ty, Expand);
329  }
330}
331
332bool
333MipsSETargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
334                                                     unsigned,
335                                                     unsigned,
336                                                     bool *Fast) const {
337  MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
338
339  if (Subtarget.systemSupportsUnalignedAccess()) {
340    // MIPS32r6/MIPS64r6 is required to support unaligned access. It's
341    // implementation defined whether this is handled by hardware, software, or
342    // a hybrid of the two but it's expected that most implementations will
343    // handle the majority of cases in hardware.
344    if (Fast)
345      *Fast = true;
346    return true;
347  }
348
349  switch (SVT) {
350  case MVT::i64:
351  case MVT::i32:
352    if (Fast)
353      *Fast = true;
354    return true;
355  default:
356    return false;
357  }
358}
359
360SDValue MipsSETargetLowering::LowerOperation(SDValue Op,
361                                             SelectionDAG &DAG) const {
362  switch(Op.getOpcode()) {
363  case ISD::LOAD:  return lowerLOAD(Op, DAG);
364  case ISD::STORE: return lowerSTORE(Op, DAG);
365  case ISD::SMUL_LOHI: return lowerMulDiv(Op, MipsISD::Mult, true, true, DAG);
366  case ISD::UMUL_LOHI: return lowerMulDiv(Op, MipsISD::Multu, true, true, DAG);
367  case ISD::MULHS:     return lowerMulDiv(Op, MipsISD::Mult, false, true, DAG);
368  case ISD::MULHU:     return lowerMulDiv(Op, MipsISD::Multu, false, true, DAG);
369  case ISD::MUL:       return lowerMulDiv(Op, MipsISD::Mult, true, false, DAG);
370  case ISD::SDIVREM:   return lowerMulDiv(Op, MipsISD::DivRem, true, true, DAG);
371  case ISD::UDIVREM:   return lowerMulDiv(Op, MipsISD::DivRemU, true, true,
372                                          DAG);
373  case ISD::INTRINSIC_WO_CHAIN: return lowerINTRINSIC_WO_CHAIN(Op, DAG);
374  case ISD::INTRINSIC_W_CHAIN:  return lowerINTRINSIC_W_CHAIN(Op, DAG);
375  case ISD::INTRINSIC_VOID:     return lowerINTRINSIC_VOID(Op, DAG);
376  case ISD::EXTRACT_VECTOR_ELT: return lowerEXTRACT_VECTOR_ELT(Op, DAG);
377  case ISD::BUILD_VECTOR:       return lowerBUILD_VECTOR(Op, DAG);
378  case ISD::VECTOR_SHUFFLE:     return lowerVECTOR_SHUFFLE(Op, DAG);
379  }
380
381  return MipsTargetLowering::LowerOperation(Op, DAG);
382}
383
384// selectMADD -
385// Transforms a subgraph in CurDAG if the following pattern is found:
386//  (addc multLo, Lo0), (adde multHi, Hi0),
387// where,
388//  multHi/Lo: product of multiplication
389//  Lo0: initial value of Lo register
390//  Hi0: initial value of Hi register
391// Return true if pattern matching was successful.
392static bool selectMADD(SDNode *ADDENode, SelectionDAG *CurDAG) {
393  // ADDENode's second operand must be a flag output of an ADDC node in order
394  // for the matching to be successful.
395  SDNode *ADDCNode = ADDENode->getOperand(2).getNode();
396
397  if (ADDCNode->getOpcode() != ISD::ADDC)
398    return false;
399
400  SDValue MultHi = ADDENode->getOperand(0);
401  SDValue MultLo = ADDCNode->getOperand(0);
402  SDNode *MultNode = MultHi.getNode();
403  unsigned MultOpc = MultHi.getOpcode();
404
405  // MultHi and MultLo must be generated by the same node,
406  if (MultLo.getNode() != MultNode)
407    return false;
408
409  // and it must be a multiplication.
410  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
411    return false;
412
413  // MultLo amd MultHi must be the first and second output of MultNode
414  // respectively.
415  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
416    return false;
417
418  // Transform this to a MADD only if ADDENode and ADDCNode are the only users
419  // of the values of MultNode, in which case MultNode will be removed in later
420  // phases.
421  // If there exist users other than ADDENode or ADDCNode, this function returns
422  // here, which will result in MultNode being mapped to a single MULT
423  // instruction node rather than a pair of MULT and MADD instructions being
424  // produced.
425  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
426    return false;
427
428  SDLoc DL(ADDENode);
429
430  // Initialize accumulator.
431  SDValue ACCIn = CurDAG->getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
432                                  ADDCNode->getOperand(1),
433                                  ADDENode->getOperand(1));
434
435  // create MipsMAdd(u) node
436  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
437
438  SDValue MAdd = CurDAG->getNode(MultOpc, DL, MVT::Untyped,
439                                 MultNode->getOperand(0),// Factor 0
440                                 MultNode->getOperand(1),// Factor 1
441                                 ACCIn);
442
443  // replace uses of adde and addc here
444  if (!SDValue(ADDCNode, 0).use_empty()) {
445    SDValue LoOut = CurDAG->getNode(MipsISD::MFLO, DL, MVT::i32, MAdd);
446    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), LoOut);
447  }
448  if (!SDValue(ADDENode, 0).use_empty()) {
449    SDValue HiOut = CurDAG->getNode(MipsISD::MFHI, DL, MVT::i32, MAdd);
450    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), HiOut);
451  }
452
453  return true;
454}
455
456// selectMSUB -
457// Transforms a subgraph in CurDAG if the following pattern is found:
458//  (addc Lo0, multLo), (sube Hi0, multHi),
459// where,
460//  multHi/Lo: product of multiplication
461//  Lo0: initial value of Lo register
462//  Hi0: initial value of Hi register
463// Return true if pattern matching was successful.
464static bool selectMSUB(SDNode *SUBENode, SelectionDAG *CurDAG) {
465  // SUBENode's second operand must be a flag output of an SUBC node in order
466  // for the matching to be successful.
467  SDNode *SUBCNode = SUBENode->getOperand(2).getNode();
468
469  if (SUBCNode->getOpcode() != ISD::SUBC)
470    return false;
471
472  SDValue MultHi = SUBENode->getOperand(1);
473  SDValue MultLo = SUBCNode->getOperand(1);
474  SDNode *MultNode = MultHi.getNode();
475  unsigned MultOpc = MultHi.getOpcode();
476
477  // MultHi and MultLo must be generated by the same node,
478  if (MultLo.getNode() != MultNode)
479    return false;
480
481  // and it must be a multiplication.
482  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
483    return false;
484
485  // MultLo amd MultHi must be the first and second output of MultNode
486  // respectively.
487  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
488    return false;
489
490  // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
491  // of the values of MultNode, in which case MultNode will be removed in later
492  // phases.
493  // If there exist users other than SUBENode or SUBCNode, this function returns
494  // here, which will result in MultNode being mapped to a single MULT
495  // instruction node rather than a pair of MULT and MSUB instructions being
496  // produced.
497  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
498    return false;
499
500  SDLoc DL(SUBENode);
501
502  // Initialize accumulator.
503  SDValue ACCIn = CurDAG->getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
504                                  SUBCNode->getOperand(0),
505                                  SUBENode->getOperand(0));
506
507  // create MipsSub(u) node
508  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
509
510  SDValue MSub = CurDAG->getNode(MultOpc, DL, MVT::Glue,
511                                 MultNode->getOperand(0),// Factor 0
512                                 MultNode->getOperand(1),// Factor 1
513                                 ACCIn);
514
515  // replace uses of sube and subc here
516  if (!SDValue(SUBCNode, 0).use_empty()) {
517    SDValue LoOut = CurDAG->getNode(MipsISD::MFLO, DL, MVT::i32, MSub);
518    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), LoOut);
519  }
520  if (!SDValue(SUBENode, 0).use_empty()) {
521    SDValue HiOut = CurDAG->getNode(MipsISD::MFHI, DL, MVT::i32, MSub);
522    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), HiOut);
523  }
524
525  return true;
526}
527
528static SDValue performADDECombine(SDNode *N, SelectionDAG &DAG,
529                                  TargetLowering::DAGCombinerInfo &DCI,
530                                  const MipsSubtarget &Subtarget) {
531  if (DCI.isBeforeLegalize())
532    return SDValue();
533
534  if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() &&
535      N->getValueType(0) == MVT::i32 && selectMADD(N, &DAG))
536    return SDValue(N, 0);
537
538  return SDValue();
539}
540
541// Fold zero extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT
542//
543// Performs the following transformations:
544// - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to zero extension if its
545//   sign/zero-extension is completely overwritten by the new one performed by
546//   the ISD::AND.
547// - Removes redundant zero extensions performed by an ISD::AND.
548static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
549                                 TargetLowering::DAGCombinerInfo &DCI,
550                                 const MipsSubtarget &Subtarget) {
551  if (!Subtarget.hasMSA())
552    return SDValue();
553
554  SDValue Op0 = N->getOperand(0);
555  SDValue Op1 = N->getOperand(1);
556  unsigned Op0Opcode = Op0->getOpcode();
557
558  // (and (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d)
559  // where $d + 1 == 2^n and n == 32
560  // or    $d + 1 == 2^n and n <= 32 and ZExt
561  // -> (MipsVExtractZExt $a, $b, $c)
562  if (Op0Opcode == MipsISD::VEXTRACT_SEXT_ELT ||
563      Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT) {
564    ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(Op1);
565
566    if (!Mask)
567      return SDValue();
568
569    int32_t Log2IfPositive = (Mask->getAPIntValue() + 1).exactLogBase2();
570
571    if (Log2IfPositive <= 0)
572      return SDValue(); // Mask+1 is not a power of 2
573
574    SDValue Op0Op2 = Op0->getOperand(2);
575    EVT ExtendTy = cast<VTSDNode>(Op0Op2)->getVT();
576    unsigned ExtendTySize = ExtendTy.getSizeInBits();
577    unsigned Log2 = Log2IfPositive;
578
579    if ((Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT && Log2 >= ExtendTySize) ||
580        Log2 == ExtendTySize) {
581      SDValue Ops[] = { Op0->getOperand(0), Op0->getOperand(1), Op0Op2 };
582      return DAG.getNode(MipsISD::VEXTRACT_ZEXT_ELT, SDLoc(Op0),
583                         Op0->getVTList(),
584                         makeArrayRef(Ops, Op0->getNumOperands()));
585    }
586  }
587
588  return SDValue();
589}
590
591// Determine if the specified node is a constant vector splat.
592//
593// Returns true and sets Imm if:
594// * N is a ISD::BUILD_VECTOR representing a constant splat
595//
596// This function is quite similar to MipsSEDAGToDAGISel::selectVSplat. The
597// differences are that it assumes the MSA has already been checked and the
598// arbitrary requirement for a maximum of 32-bit integers isn't applied (and
599// must not be in order for binsri.d to be selectable).
600static bool isVSplat(SDValue N, APInt &Imm, bool IsLittleEndian) {
601  BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N.getNode());
602
603  if (!Node)
604    return false;
605
606  APInt SplatValue, SplatUndef;
607  unsigned SplatBitSize;
608  bool HasAnyUndefs;
609
610  if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
611                             8, !IsLittleEndian))
612    return false;
613
614  Imm = SplatValue;
615
616  return true;
617}
618
619// Test whether the given node is an all-ones build_vector.
620static bool isVectorAllOnes(SDValue N) {
621  // Look through bitcasts. Endianness doesn't matter because we are looking
622  // for an all-ones value.
623  if (N->getOpcode() == ISD::BITCAST)
624    N = N->getOperand(0);
625
626  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
627
628  if (!BVN)
629    return false;
630
631  APInt SplatValue, SplatUndef;
632  unsigned SplatBitSize;
633  bool HasAnyUndefs;
634
635  // Endianness doesn't matter in this context because we are looking for
636  // an all-ones value.
637  if (BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs))
638    return SplatValue.isAllOnesValue();
639
640  return false;
641}
642
643// Test whether N is the bitwise inverse of OfNode.
644static bool isBitwiseInverse(SDValue N, SDValue OfNode) {
645  if (N->getOpcode() != ISD::XOR)
646    return false;
647
648  if (isVectorAllOnes(N->getOperand(0)))
649    return N->getOperand(1) == OfNode;
650
651  if (isVectorAllOnes(N->getOperand(1)))
652    return N->getOperand(0) == OfNode;
653
654  return false;
655}
656
657// Perform combines where ISD::OR is the root node.
658//
659// Performs the following transformations:
660// - (or (and $a, $mask), (and $b, $inv_mask)) => (vselect $mask, $a, $b)
661//   where $inv_mask is the bitwise inverse of $mask and the 'or' has a 128-bit
662//   vector type.
663static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
664                                TargetLowering::DAGCombinerInfo &DCI,
665                                const MipsSubtarget &Subtarget) {
666  if (!Subtarget.hasMSA())
667    return SDValue();
668
669  EVT Ty = N->getValueType(0);
670
671  if (!Ty.is128BitVector())
672    return SDValue();
673
674  SDValue Op0 = N->getOperand(0);
675  SDValue Op1 = N->getOperand(1);
676
677  if (Op0->getOpcode() == ISD::AND && Op1->getOpcode() == ISD::AND) {
678    SDValue Op0Op0 = Op0->getOperand(0);
679    SDValue Op0Op1 = Op0->getOperand(1);
680    SDValue Op1Op0 = Op1->getOperand(0);
681    SDValue Op1Op1 = Op1->getOperand(1);
682    bool IsLittleEndian = !Subtarget.isLittle();
683
684    SDValue IfSet, IfClr, Cond;
685    bool IsConstantMask = false;
686    APInt Mask, InvMask;
687
688    // If Op0Op0 is an appropriate mask, try to find it's inverse in either
689    // Op1Op0, or Op1Op1. Keep track of the Cond, IfSet, and IfClr nodes, while
690    // looking.
691    // IfClr will be set if we find a valid match.
692    if (isVSplat(Op0Op0, Mask, IsLittleEndian)) {
693      Cond = Op0Op0;
694      IfSet = Op0Op1;
695
696      if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
697          Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
698        IfClr = Op1Op1;
699      else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
700               Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
701        IfClr = Op1Op0;
702
703      IsConstantMask = true;
704    }
705
706    // If IfClr is not yet set, and Op0Op1 is an appropriate mask, try the same
707    // thing again using this mask.
708    // IfClr will be set if we find a valid match.
709    if (!IfClr.getNode() && isVSplat(Op0Op1, Mask, IsLittleEndian)) {
710      Cond = Op0Op1;
711      IfSet = Op0Op0;
712
713      if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
714          Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
715        IfClr = Op1Op1;
716      else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
717               Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
718        IfClr = Op1Op0;
719
720      IsConstantMask = true;
721    }
722
723    // If IfClr is not yet set, try looking for a non-constant match.
724    // IfClr will be set if we find a valid match amongst the eight
725    // possibilities.
726    if (!IfClr.getNode()) {
727      if (isBitwiseInverse(Op0Op0, Op1Op0)) {
728        Cond = Op1Op0;
729        IfSet = Op1Op1;
730        IfClr = Op0Op1;
731      } else if (isBitwiseInverse(Op0Op1, Op1Op0)) {
732        Cond = Op1Op0;
733        IfSet = Op1Op1;
734        IfClr = Op0Op0;
735      } else if (isBitwiseInverse(Op0Op0, Op1Op1)) {
736        Cond = Op1Op1;
737        IfSet = Op1Op0;
738        IfClr = Op0Op1;
739      } else if (isBitwiseInverse(Op0Op1, Op1Op1)) {
740        Cond = Op1Op1;
741        IfSet = Op1Op0;
742        IfClr = Op0Op0;
743      } else if (isBitwiseInverse(Op1Op0, Op0Op0)) {
744        Cond = Op0Op0;
745        IfSet = Op0Op1;
746        IfClr = Op1Op1;
747      } else if (isBitwiseInverse(Op1Op1, Op0Op0)) {
748        Cond = Op0Op0;
749        IfSet = Op0Op1;
750        IfClr = Op1Op0;
751      } else if (isBitwiseInverse(Op1Op0, Op0Op1)) {
752        Cond = Op0Op1;
753        IfSet = Op0Op0;
754        IfClr = Op1Op1;
755      } else if (isBitwiseInverse(Op1Op1, Op0Op1)) {
756        Cond = Op0Op1;
757        IfSet = Op0Op0;
758        IfClr = Op1Op0;
759      }
760    }
761
762    // At this point, IfClr will be set if we have a valid match.
763    if (!IfClr.getNode())
764      return SDValue();
765
766    assert(Cond.getNode() && IfSet.getNode());
767
768    // Fold degenerate cases.
769    if (IsConstantMask) {
770      if (Mask.isAllOnesValue())
771        return IfSet;
772      else if (Mask == 0)
773        return IfClr;
774    }
775
776    // Transform the DAG into an equivalent VSELECT.
777    return DAG.getNode(ISD::VSELECT, SDLoc(N), Ty, Cond, IfSet, IfClr);
778  }
779
780  return SDValue();
781}
782
783static SDValue performSUBECombine(SDNode *N, SelectionDAG &DAG,
784                                  TargetLowering::DAGCombinerInfo &DCI,
785                                  const MipsSubtarget &Subtarget) {
786  if (DCI.isBeforeLegalize())
787    return SDValue();
788
789  if (Subtarget.hasMips32() && N->getValueType(0) == MVT::i32 &&
790      selectMSUB(N, &DAG))
791    return SDValue(N, 0);
792
793  return SDValue();
794}
795
796static SDValue genConstMult(SDValue X, uint64_t C, SDLoc DL, EVT VT,
797                            EVT ShiftTy, SelectionDAG &DAG) {
798  // Clear the upper (64 - VT.sizeInBits) bits.
799  C &= ((uint64_t)-1) >> (64 - VT.getSizeInBits());
800
801  // Return 0.
802  if (C == 0)
803    return DAG.getConstant(0, DL, VT);
804
805  // Return x.
806  if (C == 1)
807    return X;
808
809  // If c is power of 2, return (shl x, log2(c)).
810  if (isPowerOf2_64(C))
811    return DAG.getNode(ISD::SHL, DL, VT, X,
812                       DAG.getConstant(Log2_64(C), DL, ShiftTy));
813
814  unsigned Log2Ceil = Log2_64_Ceil(C);
815  uint64_t Floor = 1LL << Log2_64(C);
816  uint64_t Ceil = Log2Ceil == 64 ? 0LL : 1LL << Log2Ceil;
817
818  // If |c - floor_c| <= |c - ceil_c|,
819  // where floor_c = pow(2, floor(log2(c))) and ceil_c = pow(2, ceil(log2(c))),
820  // return (add constMult(x, floor_c), constMult(x, c - floor_c)).
821  if (C - Floor <= Ceil - C) {
822    SDValue Op0 = genConstMult(X, Floor, DL, VT, ShiftTy, DAG);
823    SDValue Op1 = genConstMult(X, C - Floor, DL, VT, ShiftTy, DAG);
824    return DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
825  }
826
827  // If |c - floor_c| > |c - ceil_c|,
828  // return (sub constMult(x, ceil_c), constMult(x, ceil_c - c)).
829  SDValue Op0 = genConstMult(X, Ceil, DL, VT, ShiftTy, DAG);
830  SDValue Op1 = genConstMult(X, Ceil - C, DL, VT, ShiftTy, DAG);
831  return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
832}
833
834static SDValue performMULCombine(SDNode *N, SelectionDAG &DAG,
835                                 const TargetLowering::DAGCombinerInfo &DCI,
836                                 const MipsSETargetLowering *TL) {
837  EVT VT = N->getValueType(0);
838
839  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
840    if (!VT.isVector())
841      return genConstMult(N->getOperand(0), C->getZExtValue(), SDLoc(N), VT,
842                          TL->getScalarShiftAmountTy(DAG.getDataLayout(), VT),
843                          DAG);
844
845  return SDValue(N, 0);
846}
847
848static SDValue performDSPShiftCombine(unsigned Opc, SDNode *N, EVT Ty,
849                                      SelectionDAG &DAG,
850                                      const MipsSubtarget &Subtarget) {
851  // See if this is a vector splat immediate node.
852  APInt SplatValue, SplatUndef;
853  unsigned SplatBitSize;
854  bool HasAnyUndefs;
855  unsigned EltSize = Ty.getVectorElementType().getSizeInBits();
856  BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
857
858  if (!Subtarget.hasDSP())
859    return SDValue();
860
861  if (!BV ||
862      !BV->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
863                           EltSize, !Subtarget.isLittle()) ||
864      (SplatBitSize != EltSize) ||
865      (SplatValue.getZExtValue() >= EltSize))
866    return SDValue();
867
868  SDLoc DL(N);
869  return DAG.getNode(Opc, DL, Ty, N->getOperand(0),
870                     DAG.getConstant(SplatValue.getZExtValue(), DL, MVT::i32));
871}
872
873static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
874                                 TargetLowering::DAGCombinerInfo &DCI,
875                                 const MipsSubtarget &Subtarget) {
876  EVT Ty = N->getValueType(0);
877
878  if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
879    return SDValue();
880
881  return performDSPShiftCombine(MipsISD::SHLL_DSP, N, Ty, DAG, Subtarget);
882}
883
884// Fold sign-extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT for MSA and fold
885// constant splats into MipsISD::SHRA_DSP for DSPr2.
886//
887// Performs the following transformations:
888// - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to sign extension if its
889//   sign/zero-extension is completely overwritten by the new one performed by
890//   the ISD::SRA and ISD::SHL nodes.
891// - Removes redundant sign extensions performed by an ISD::SRA and ISD::SHL
892//   sequence.
893//
894// See performDSPShiftCombine for more information about the transformation
895// used for DSPr2.
896static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG,
897                                 TargetLowering::DAGCombinerInfo &DCI,
898                                 const MipsSubtarget &Subtarget) {
899  EVT Ty = N->getValueType(0);
900
901  if (Subtarget.hasMSA()) {
902    SDValue Op0 = N->getOperand(0);
903    SDValue Op1 = N->getOperand(1);
904
905    // (sra (shl (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d), imm:$d)
906    // where $d + sizeof($c) == 32
907    // or    $d + sizeof($c) <= 32 and SExt
908    // -> (MipsVExtractSExt $a, $b, $c)
909    if (Op0->getOpcode() == ISD::SHL && Op1 == Op0->getOperand(1)) {
910      SDValue Op0Op0 = Op0->getOperand(0);
911      ConstantSDNode *ShAmount = dyn_cast<ConstantSDNode>(Op1);
912
913      if (!ShAmount)
914        return SDValue();
915
916      if (Op0Op0->getOpcode() != MipsISD::VEXTRACT_SEXT_ELT &&
917          Op0Op0->getOpcode() != MipsISD::VEXTRACT_ZEXT_ELT)
918        return SDValue();
919
920      EVT ExtendTy = cast<VTSDNode>(Op0Op0->getOperand(2))->getVT();
921      unsigned TotalBits = ShAmount->getZExtValue() + ExtendTy.getSizeInBits();
922
923      if (TotalBits == 32 ||
924          (Op0Op0->getOpcode() == MipsISD::VEXTRACT_SEXT_ELT &&
925           TotalBits <= 32)) {
926        SDValue Ops[] = { Op0Op0->getOperand(0), Op0Op0->getOperand(1),
927                          Op0Op0->getOperand(2) };
928        return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, SDLoc(Op0Op0),
929                           Op0Op0->getVTList(),
930                           makeArrayRef(Ops, Op0Op0->getNumOperands()));
931      }
932    }
933  }
934
935  if ((Ty != MVT::v2i16) && ((Ty != MVT::v4i8) || !Subtarget.hasDSPR2()))
936    return SDValue();
937
938  return performDSPShiftCombine(MipsISD::SHRA_DSP, N, Ty, DAG, Subtarget);
939}
940
941
942static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG,
943                                 TargetLowering::DAGCombinerInfo &DCI,
944                                 const MipsSubtarget &Subtarget) {
945  EVT Ty = N->getValueType(0);
946
947  if (((Ty != MVT::v2i16) || !Subtarget.hasDSPR2()) && (Ty != MVT::v4i8))
948    return SDValue();
949
950  return performDSPShiftCombine(MipsISD::SHRL_DSP, N, Ty, DAG, Subtarget);
951}
952
953static bool isLegalDSPCondCode(EVT Ty, ISD::CondCode CC) {
954  bool IsV216 = (Ty == MVT::v2i16);
955
956  switch (CC) {
957  case ISD::SETEQ:
958  case ISD::SETNE:  return true;
959  case ISD::SETLT:
960  case ISD::SETLE:
961  case ISD::SETGT:
962  case ISD::SETGE:  return IsV216;
963  case ISD::SETULT:
964  case ISD::SETULE:
965  case ISD::SETUGT:
966  case ISD::SETUGE: return !IsV216;
967  default:          return false;
968  }
969}
970
971static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG) {
972  EVT Ty = N->getValueType(0);
973
974  if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
975    return SDValue();
976
977  if (!isLegalDSPCondCode(Ty, cast<CondCodeSDNode>(N->getOperand(2))->get()))
978    return SDValue();
979
980  return DAG.getNode(MipsISD::SETCC_DSP, SDLoc(N), Ty, N->getOperand(0),
981                     N->getOperand(1), N->getOperand(2));
982}
983
984static SDValue performVSELECTCombine(SDNode *N, SelectionDAG &DAG) {
985  EVT Ty = N->getValueType(0);
986
987  if (Ty.is128BitVector() && Ty.isInteger()) {
988    // Try the following combines:
989    //   (vselect (setcc $a, $b, SETLT), $b, $a)) -> (vsmax $a, $b)
990    //   (vselect (setcc $a, $b, SETLE), $b, $a)) -> (vsmax $a, $b)
991    //   (vselect (setcc $a, $b, SETLT), $a, $b)) -> (vsmin $a, $b)
992    //   (vselect (setcc $a, $b, SETLE), $a, $b)) -> (vsmin $a, $b)
993    //   (vselect (setcc $a, $b, SETULT), $b, $a)) -> (vumax $a, $b)
994    //   (vselect (setcc $a, $b, SETULE), $b, $a)) -> (vumax $a, $b)
995    //   (vselect (setcc $a, $b, SETULT), $a, $b)) -> (vumin $a, $b)
996    //   (vselect (setcc $a, $b, SETULE), $a, $b)) -> (vumin $a, $b)
997    // SETGT/SETGE/SETUGT/SETUGE variants of these will show up initially but
998    // will be expanded to equivalent SETLT/SETLE/SETULT/SETULE versions by the
999    // legalizer.
1000    SDValue Op0 = N->getOperand(0);
1001
1002    if (Op0->getOpcode() != ISD::SETCC)
1003      return SDValue();
1004
1005    ISD::CondCode CondCode = cast<CondCodeSDNode>(Op0->getOperand(2))->get();
1006    bool Signed;
1007
1008    if (CondCode == ISD::SETLT  || CondCode == ISD::SETLE)
1009      Signed = true;
1010    else if (CondCode == ISD::SETULT || CondCode == ISD::SETULE)
1011      Signed = false;
1012    else
1013      return SDValue();
1014
1015    SDValue Op1 = N->getOperand(1);
1016    SDValue Op2 = N->getOperand(2);
1017    SDValue Op0Op0 = Op0->getOperand(0);
1018    SDValue Op0Op1 = Op0->getOperand(1);
1019
1020    if (Op1 == Op0Op0 && Op2 == Op0Op1)
1021      return DAG.getNode(Signed ? MipsISD::VSMIN : MipsISD::VUMIN, SDLoc(N),
1022                         Ty, Op1, Op2);
1023    else if (Op1 == Op0Op1 && Op2 == Op0Op0)
1024      return DAG.getNode(Signed ? MipsISD::VSMAX : MipsISD::VUMAX, SDLoc(N),
1025                         Ty, Op1, Op2);
1026  } else if ((Ty == MVT::v2i16) || (Ty == MVT::v4i8)) {
1027    SDValue SetCC = N->getOperand(0);
1028
1029    if (SetCC.getOpcode() != MipsISD::SETCC_DSP)
1030      return SDValue();
1031
1032    return DAG.getNode(MipsISD::SELECT_CC_DSP, SDLoc(N), Ty,
1033                       SetCC.getOperand(0), SetCC.getOperand(1),
1034                       N->getOperand(1), N->getOperand(2), SetCC.getOperand(2));
1035  }
1036
1037  return SDValue();
1038}
1039
1040static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG,
1041                                 const MipsSubtarget &Subtarget) {
1042  EVT Ty = N->getValueType(0);
1043
1044  if (Subtarget.hasMSA() && Ty.is128BitVector() && Ty.isInteger()) {
1045    // Try the following combines:
1046    //   (xor (or $a, $b), (build_vector allones))
1047    //   (xor (or $a, $b), (bitcast (build_vector allones)))
1048    SDValue Op0 = N->getOperand(0);
1049    SDValue Op1 = N->getOperand(1);
1050    SDValue NotOp;
1051
1052    if (ISD::isBuildVectorAllOnes(Op0.getNode()))
1053      NotOp = Op1;
1054    else if (ISD::isBuildVectorAllOnes(Op1.getNode()))
1055      NotOp = Op0;
1056    else
1057      return SDValue();
1058
1059    if (NotOp->getOpcode() == ISD::OR)
1060      return DAG.getNode(MipsISD::VNOR, SDLoc(N), Ty, NotOp->getOperand(0),
1061                         NotOp->getOperand(1));
1062  }
1063
1064  return SDValue();
1065}
1066
1067SDValue
1068MipsSETargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1069  SelectionDAG &DAG = DCI.DAG;
1070  SDValue Val;
1071
1072  switch (N->getOpcode()) {
1073  case ISD::ADDE:
1074    return performADDECombine(N, DAG, DCI, Subtarget);
1075  case ISD::AND:
1076    Val = performANDCombine(N, DAG, DCI, Subtarget);
1077    break;
1078  case ISD::OR:
1079    Val = performORCombine(N, DAG, DCI, Subtarget);
1080    break;
1081  case ISD::SUBE:
1082    return performSUBECombine(N, DAG, DCI, Subtarget);
1083  case ISD::MUL:
1084    return performMULCombine(N, DAG, DCI, this);
1085  case ISD::SHL:
1086    return performSHLCombine(N, DAG, DCI, Subtarget);
1087  case ISD::SRA:
1088    return performSRACombine(N, DAG, DCI, Subtarget);
1089  case ISD::SRL:
1090    return performSRLCombine(N, DAG, DCI, Subtarget);
1091  case ISD::VSELECT:
1092    return performVSELECTCombine(N, DAG);
1093  case ISD::XOR:
1094    Val = performXORCombine(N, DAG, Subtarget);
1095    break;
1096  case ISD::SETCC:
1097    Val = performSETCCCombine(N, DAG);
1098    break;
1099  }
1100
1101  if (Val.getNode()) {
1102    DEBUG(dbgs() << "\nMipsSE DAG Combine:\n";
1103          N->printrWithDepth(dbgs(), &DAG);
1104          dbgs() << "\n=> \n";
1105          Val.getNode()->printrWithDepth(dbgs(), &DAG);
1106          dbgs() << "\n");
1107    return Val;
1108  }
1109
1110  return MipsTargetLowering::PerformDAGCombine(N, DCI);
1111}
1112
1113MachineBasicBlock *
1114MipsSETargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
1115                                                  MachineBasicBlock *BB) const {
1116  switch (MI->getOpcode()) {
1117  default:
1118    return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
1119  case Mips::BPOSGE32_PSEUDO:
1120    return emitBPOSGE32(MI, BB);
1121  case Mips::SNZ_B_PSEUDO:
1122    return emitMSACBranchPseudo(MI, BB, Mips::BNZ_B);
1123  case Mips::SNZ_H_PSEUDO:
1124    return emitMSACBranchPseudo(MI, BB, Mips::BNZ_H);
1125  case Mips::SNZ_W_PSEUDO:
1126    return emitMSACBranchPseudo(MI, BB, Mips::BNZ_W);
1127  case Mips::SNZ_D_PSEUDO:
1128    return emitMSACBranchPseudo(MI, BB, Mips::BNZ_D);
1129  case Mips::SNZ_V_PSEUDO:
1130    return emitMSACBranchPseudo(MI, BB, Mips::BNZ_V);
1131  case Mips::SZ_B_PSEUDO:
1132    return emitMSACBranchPseudo(MI, BB, Mips::BZ_B);
1133  case Mips::SZ_H_PSEUDO:
1134    return emitMSACBranchPseudo(MI, BB, Mips::BZ_H);
1135  case Mips::SZ_W_PSEUDO:
1136    return emitMSACBranchPseudo(MI, BB, Mips::BZ_W);
1137  case Mips::SZ_D_PSEUDO:
1138    return emitMSACBranchPseudo(MI, BB, Mips::BZ_D);
1139  case Mips::SZ_V_PSEUDO:
1140    return emitMSACBranchPseudo(MI, BB, Mips::BZ_V);
1141  case Mips::COPY_FW_PSEUDO:
1142    return emitCOPY_FW(MI, BB);
1143  case Mips::COPY_FD_PSEUDO:
1144    return emitCOPY_FD(MI, BB);
1145  case Mips::INSERT_FW_PSEUDO:
1146    return emitINSERT_FW(MI, BB);
1147  case Mips::INSERT_FD_PSEUDO:
1148    return emitINSERT_FD(MI, BB);
1149  case Mips::INSERT_B_VIDX_PSEUDO:
1150  case Mips::INSERT_B_VIDX64_PSEUDO:
1151    return emitINSERT_DF_VIDX(MI, BB, 1, false);
1152  case Mips::INSERT_H_VIDX_PSEUDO:
1153  case Mips::INSERT_H_VIDX64_PSEUDO:
1154    return emitINSERT_DF_VIDX(MI, BB, 2, false);
1155  case Mips::INSERT_W_VIDX_PSEUDO:
1156  case Mips::INSERT_W_VIDX64_PSEUDO:
1157    return emitINSERT_DF_VIDX(MI, BB, 4, false);
1158  case Mips::INSERT_D_VIDX_PSEUDO:
1159  case Mips::INSERT_D_VIDX64_PSEUDO:
1160    return emitINSERT_DF_VIDX(MI, BB, 8, false);
1161  case Mips::INSERT_FW_VIDX_PSEUDO:
1162  case Mips::INSERT_FW_VIDX64_PSEUDO:
1163    return emitINSERT_DF_VIDX(MI, BB, 4, true);
1164  case Mips::INSERT_FD_VIDX_PSEUDO:
1165  case Mips::INSERT_FD_VIDX64_PSEUDO:
1166    return emitINSERT_DF_VIDX(MI, BB, 8, true);
1167  case Mips::FILL_FW_PSEUDO:
1168    return emitFILL_FW(MI, BB);
1169  case Mips::FILL_FD_PSEUDO:
1170    return emitFILL_FD(MI, BB);
1171  case Mips::FEXP2_W_1_PSEUDO:
1172    return emitFEXP2_W_1(MI, BB);
1173  case Mips::FEXP2_D_1_PSEUDO:
1174    return emitFEXP2_D_1(MI, BB);
1175  }
1176}
1177
1178bool MipsSETargetLowering::isEligibleForTailCallOptimization(
1179    const CCState &CCInfo, unsigned NextStackOffset,
1180    const MipsFunctionInfo &FI) const {
1181  if (!EnableMipsTailCalls)
1182    return false;
1183
1184  // Exception has to be cleared with eret.
1185  if (FI.isISR())
1186    return false;
1187
1188  // Return false if either the callee or caller has a byval argument.
1189  if (CCInfo.getInRegsParamsCount() > 0 || FI.hasByvalArg())
1190    return false;
1191
1192  // Return true if the callee's argument area is no larger than the
1193  // caller's.
1194  return NextStackOffset <= FI.getIncomingArgSize();
1195}
1196
1197void MipsSETargetLowering::
1198getOpndList(SmallVectorImpl<SDValue> &Ops,
1199            std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
1200            bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
1201            bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
1202            SDValue Chain) const {
1203  Ops.push_back(Callee);
1204  MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
1205                                  InternalLinkage, IsCallReloc, CLI, Callee,
1206                                  Chain);
1207}
1208
1209SDValue MipsSETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1210  LoadSDNode &Nd = *cast<LoadSDNode>(Op);
1211
1212  if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
1213    return MipsTargetLowering::lowerLOAD(Op, DAG);
1214
1215  // Replace a double precision load with two i32 loads and a buildpair64.
1216  SDLoc DL(Op);
1217  SDValue Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
1218  EVT PtrVT = Ptr.getValueType();
1219
1220  // i32 load from lower address.
1221  SDValue Lo = DAG.getLoad(MVT::i32, DL, Chain, Ptr,
1222                           MachinePointerInfo(), Nd.isVolatile(),
1223                           Nd.isNonTemporal(), Nd.isInvariant(),
1224                           Nd.getAlignment());
1225
1226  // i32 load from higher address.
1227  Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, DL, PtrVT));
1228  SDValue Hi = DAG.getLoad(MVT::i32, DL, Lo.getValue(1), Ptr,
1229                           MachinePointerInfo(), Nd.isVolatile(),
1230                           Nd.isNonTemporal(), Nd.isInvariant(),
1231                           std::min(Nd.getAlignment(), 4U));
1232
1233  if (!Subtarget.isLittle())
1234    std::swap(Lo, Hi);
1235
1236  SDValue BP = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
1237  SDValue Ops[2] = {BP, Hi.getValue(1)};
1238  return DAG.getMergeValues(Ops, DL);
1239}
1240
1241SDValue MipsSETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1242  StoreSDNode &Nd = *cast<StoreSDNode>(Op);
1243
1244  if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
1245    return MipsTargetLowering::lowerSTORE(Op, DAG);
1246
1247  // Replace a double precision store with two extractelement64s and i32 stores.
1248  SDLoc DL(Op);
1249  SDValue Val = Nd.getValue(), Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
1250  EVT PtrVT = Ptr.getValueType();
1251  SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1252                           Val, DAG.getConstant(0, DL, MVT::i32));
1253  SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1254                           Val, DAG.getConstant(1, DL, MVT::i32));
1255
1256  if (!Subtarget.isLittle())
1257    std::swap(Lo, Hi);
1258
1259  // i32 store to lower address.
1260  Chain = DAG.getStore(Chain, DL, Lo, Ptr, MachinePointerInfo(),
1261                       Nd.isVolatile(), Nd.isNonTemporal(), Nd.getAlignment(),
1262                       Nd.getAAInfo());
1263
1264  // i32 store to higher address.
1265  Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, DL, PtrVT));
1266  return DAG.getStore(Chain, DL, Hi, Ptr, MachinePointerInfo(),
1267                      Nd.isVolatile(), Nd.isNonTemporal(),
1268                      std::min(Nd.getAlignment(), 4U), Nd.getAAInfo());
1269}
1270
1271SDValue MipsSETargetLowering::lowerMulDiv(SDValue Op, unsigned NewOpc,
1272                                          bool HasLo, bool HasHi,
1273                                          SelectionDAG &DAG) const {
1274  // MIPS32r6/MIPS64r6 removed accumulator based multiplies.
1275  assert(!Subtarget.hasMips32r6());
1276
1277  EVT Ty = Op.getOperand(0).getValueType();
1278  SDLoc DL(Op);
1279  SDValue Mult = DAG.getNode(NewOpc, DL, MVT::Untyped,
1280                             Op.getOperand(0), Op.getOperand(1));
1281  SDValue Lo, Hi;
1282
1283  if (HasLo)
1284    Lo = DAG.getNode(MipsISD::MFLO, DL, Ty, Mult);
1285  if (HasHi)
1286    Hi = DAG.getNode(MipsISD::MFHI, DL, Ty, Mult);
1287
1288  if (!HasLo || !HasHi)
1289    return HasLo ? Lo : Hi;
1290
1291  SDValue Vals[] = { Lo, Hi };
1292  return DAG.getMergeValues(Vals, DL);
1293}
1294
1295
1296static SDValue initAccumulator(SDValue In, SDLoc DL, SelectionDAG &DAG) {
1297  SDValue InLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
1298                             DAG.getConstant(0, DL, MVT::i32));
1299  SDValue InHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
1300                             DAG.getConstant(1, DL, MVT::i32));
1301  return DAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped, InLo, InHi);
1302}
1303
1304static SDValue extractLOHI(SDValue Op, SDLoc DL, SelectionDAG &DAG) {
1305  SDValue Lo = DAG.getNode(MipsISD::MFLO, DL, MVT::i32, Op);
1306  SDValue Hi = DAG.getNode(MipsISD::MFHI, DL, MVT::i32, Op);
1307  return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
1308}
1309
1310// This function expands mips intrinsic nodes which have 64-bit input operands
1311// or output values.
1312//
1313// out64 = intrinsic-node in64
1314// =>
1315// lo = copy (extract-element (in64, 0))
1316// hi = copy (extract-element (in64, 1))
1317// mips-specific-node
1318// v0 = copy lo
1319// v1 = copy hi
1320// out64 = merge-values (v0, v1)
1321//
1322static SDValue lowerDSPIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
1323  SDLoc DL(Op);
1324  bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other;
1325  SmallVector<SDValue, 3> Ops;
1326  unsigned OpNo = 0;
1327
1328  // See if Op has a chain input.
1329  if (HasChainIn)
1330    Ops.push_back(Op->getOperand(OpNo++));
1331
1332  // The next operand is the intrinsic opcode.
1333  assert(Op->getOperand(OpNo).getOpcode() == ISD::TargetConstant);
1334
1335  // See if the next operand has type i64.
1336  SDValue Opnd = Op->getOperand(++OpNo), In64;
1337
1338  if (Opnd.getValueType() == MVT::i64)
1339    In64 = initAccumulator(Opnd, DL, DAG);
1340  else
1341    Ops.push_back(Opnd);
1342
1343  // Push the remaining operands.
1344  for (++OpNo ; OpNo < Op->getNumOperands(); ++OpNo)
1345    Ops.push_back(Op->getOperand(OpNo));
1346
1347  // Add In64 to the end of the list.
1348  if (In64.getNode())
1349    Ops.push_back(In64);
1350
1351  // Scan output.
1352  SmallVector<EVT, 2> ResTys;
1353
1354  for (SDNode::value_iterator I = Op->value_begin(), E = Op->value_end();
1355       I != E; ++I)
1356    ResTys.push_back((*I == MVT::i64) ? MVT::Untyped : *I);
1357
1358  // Create node.
1359  SDValue Val = DAG.getNode(Opc, DL, ResTys, Ops);
1360  SDValue Out = (ResTys[0] == MVT::Untyped) ? extractLOHI(Val, DL, DAG) : Val;
1361
1362  if (!HasChainIn)
1363    return Out;
1364
1365  assert(Val->getValueType(1) == MVT::Other);
1366  SDValue Vals[] = { Out, SDValue(Val.getNode(), 1) };
1367  return DAG.getMergeValues(Vals, DL);
1368}
1369
1370// Lower an MSA copy intrinsic into the specified SelectionDAG node
1371static SDValue lowerMSACopyIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
1372  SDLoc DL(Op);
1373  SDValue Vec = Op->getOperand(1);
1374  SDValue Idx = Op->getOperand(2);
1375  EVT ResTy = Op->getValueType(0);
1376  EVT EltTy = Vec->getValueType(0).getVectorElementType();
1377
1378  SDValue Result = DAG.getNode(Opc, DL, ResTy, Vec, Idx,
1379                               DAG.getValueType(EltTy));
1380
1381  return Result;
1382}
1383
1384static SDValue lowerMSASplatZExt(SDValue Op, unsigned OpNr, SelectionDAG &DAG) {
1385  EVT ResVecTy = Op->getValueType(0);
1386  EVT ViaVecTy = ResVecTy;
1387  SDLoc DL(Op);
1388
1389  // When ResVecTy == MVT::v2i64, LaneA is the upper 32 bits of the lane and
1390  // LaneB is the lower 32-bits. Otherwise LaneA and LaneB are alternating
1391  // lanes.
1392  SDValue LaneA;
1393  SDValue LaneB = Op->getOperand(2);
1394
1395  if (ResVecTy == MVT::v2i64) {
1396    LaneA = DAG.getConstant(0, DL, MVT::i32);
1397    ViaVecTy = MVT::v4i32;
1398  } else
1399    LaneA = LaneB;
1400
1401  SDValue Ops[16] = { LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB,
1402                      LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB };
1403
1404  SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, DL, ViaVecTy,
1405                       makeArrayRef(Ops, ViaVecTy.getVectorNumElements()));
1406
1407  if (ViaVecTy != ResVecTy)
1408    Result = DAG.getNode(ISD::BITCAST, DL, ResVecTy, Result);
1409
1410  return Result;
1411}
1412
1413static SDValue lowerMSASplatImm(SDValue Op, unsigned ImmOp, SelectionDAG &DAG) {
1414  return DAG.getConstant(Op->getConstantOperandVal(ImmOp), SDLoc(Op),
1415                         Op->getValueType(0));
1416}
1417
1418static SDValue getBuildVectorSplat(EVT VecTy, SDValue SplatValue,
1419                                   bool BigEndian, SelectionDAG &DAG) {
1420  EVT ViaVecTy = VecTy;
1421  SDValue SplatValueA = SplatValue;
1422  SDValue SplatValueB = SplatValue;
1423  SDLoc DL(SplatValue);
1424
1425  if (VecTy == MVT::v2i64) {
1426    // v2i64 BUILD_VECTOR must be performed via v4i32 so split into i32's.
1427    ViaVecTy = MVT::v4i32;
1428
1429    SplatValueA = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValue);
1430    SplatValueB = DAG.getNode(ISD::SRL, DL, MVT::i64, SplatValue,
1431                              DAG.getConstant(32, DL, MVT::i32));
1432    SplatValueB = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValueB);
1433  }
1434
1435  // We currently hold the parts in little endian order. Swap them if
1436  // necessary.
1437  if (BigEndian)
1438    std::swap(SplatValueA, SplatValueB);
1439
1440  SDValue Ops[16] = { SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1441                      SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1442                      SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1443                      SplatValueA, SplatValueB, SplatValueA, SplatValueB };
1444
1445  SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, DL, ViaVecTy,
1446                       makeArrayRef(Ops, ViaVecTy.getVectorNumElements()));
1447
1448  if (VecTy != ViaVecTy)
1449    Result = DAG.getNode(ISD::BITCAST, DL, VecTy, Result);
1450
1451  return Result;
1452}
1453
1454static SDValue lowerMSABinaryBitImmIntr(SDValue Op, SelectionDAG &DAG,
1455                                        unsigned Opc, SDValue Imm,
1456                                        bool BigEndian) {
1457  EVT VecTy = Op->getValueType(0);
1458  SDValue Exp2Imm;
1459  SDLoc DL(Op);
1460
1461  // The DAG Combiner can't constant fold bitcasted vectors yet so we must do it
1462  // here for now.
1463  if (VecTy == MVT::v2i64) {
1464    if (ConstantSDNode *CImm = dyn_cast<ConstantSDNode>(Imm)) {
1465      APInt BitImm = APInt(64, 1) << CImm->getAPIntValue();
1466
1467      SDValue BitImmHiOp = DAG.getConstant(BitImm.lshr(32).trunc(32), DL,
1468                                           MVT::i32);
1469      SDValue BitImmLoOp = DAG.getConstant(BitImm.trunc(32), DL, MVT::i32);
1470
1471      if (BigEndian)
1472        std::swap(BitImmLoOp, BitImmHiOp);
1473
1474      Exp2Imm =
1475          DAG.getNode(ISD::BITCAST, DL, MVT::v2i64,
1476                      DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v4i32, BitImmLoOp,
1477                                  BitImmHiOp, BitImmLoOp, BitImmHiOp));
1478    }
1479  }
1480
1481  if (!Exp2Imm.getNode()) {
1482    // We couldnt constant fold, do a vector shift instead
1483
1484    // Extend i32 to i64 if necessary. Sign or zero extend doesn't matter since
1485    // only values 0-63 are valid.
1486    if (VecTy == MVT::v2i64)
1487      Imm = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Imm);
1488
1489    Exp2Imm = getBuildVectorSplat(VecTy, Imm, BigEndian, DAG);
1490
1491    Exp2Imm = DAG.getNode(ISD::SHL, DL, VecTy, DAG.getConstant(1, DL, VecTy),
1492                          Exp2Imm);
1493  }
1494
1495  return DAG.getNode(Opc, DL, VecTy, Op->getOperand(1), Exp2Imm);
1496}
1497
1498static SDValue lowerMSABitClear(SDValue Op, SelectionDAG &DAG) {
1499  EVT ResTy = Op->getValueType(0);
1500  SDLoc DL(Op);
1501  SDValue One = DAG.getConstant(1, DL, ResTy);
1502  SDValue Bit = DAG.getNode(ISD::SHL, DL, ResTy, One, Op->getOperand(2));
1503
1504  return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1),
1505                     DAG.getNOT(DL, Bit, ResTy));
1506}
1507
1508static SDValue lowerMSABitClearImm(SDValue Op, SelectionDAG &DAG) {
1509  SDLoc DL(Op);
1510  EVT ResTy = Op->getValueType(0);
1511  APInt BitImm = APInt(ResTy.getVectorElementType().getSizeInBits(), 1)
1512                 << cast<ConstantSDNode>(Op->getOperand(2))->getAPIntValue();
1513  SDValue BitMask = DAG.getConstant(~BitImm, DL, ResTy);
1514
1515  return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1), BitMask);
1516}
1517
1518SDValue MipsSETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
1519                                                      SelectionDAG &DAG) const {
1520  SDLoc DL(Op);
1521
1522  switch (cast<ConstantSDNode>(Op->getOperand(0))->getZExtValue()) {
1523  default:
1524    return SDValue();
1525  case Intrinsic::mips_shilo:
1526    return lowerDSPIntr(Op, DAG, MipsISD::SHILO);
1527  case Intrinsic::mips_dpau_h_qbl:
1528    return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL);
1529  case Intrinsic::mips_dpau_h_qbr:
1530    return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR);
1531  case Intrinsic::mips_dpsu_h_qbl:
1532    return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL);
1533  case Intrinsic::mips_dpsu_h_qbr:
1534    return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR);
1535  case Intrinsic::mips_dpa_w_ph:
1536    return lowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH);
1537  case Intrinsic::mips_dps_w_ph:
1538    return lowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH);
1539  case Intrinsic::mips_dpax_w_ph:
1540    return lowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH);
1541  case Intrinsic::mips_dpsx_w_ph:
1542    return lowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH);
1543  case Intrinsic::mips_mulsa_w_ph:
1544    return lowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH);
1545  case Intrinsic::mips_mult:
1546    return lowerDSPIntr(Op, DAG, MipsISD::Mult);
1547  case Intrinsic::mips_multu:
1548    return lowerDSPIntr(Op, DAG, MipsISD::Multu);
1549  case Intrinsic::mips_madd:
1550    return lowerDSPIntr(Op, DAG, MipsISD::MAdd);
1551  case Intrinsic::mips_maddu:
1552    return lowerDSPIntr(Op, DAG, MipsISD::MAddu);
1553  case Intrinsic::mips_msub:
1554    return lowerDSPIntr(Op, DAG, MipsISD::MSub);
1555  case Intrinsic::mips_msubu:
1556    return lowerDSPIntr(Op, DAG, MipsISD::MSubu);
1557  case Intrinsic::mips_addv_b:
1558  case Intrinsic::mips_addv_h:
1559  case Intrinsic::mips_addv_w:
1560  case Intrinsic::mips_addv_d:
1561    return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
1562                       Op->getOperand(2));
1563  case Intrinsic::mips_addvi_b:
1564  case Intrinsic::mips_addvi_h:
1565  case Intrinsic::mips_addvi_w:
1566  case Intrinsic::mips_addvi_d:
1567    return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
1568                       lowerMSASplatImm(Op, 2, DAG));
1569  case Intrinsic::mips_and_v:
1570    return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
1571                       Op->getOperand(2));
1572  case Intrinsic::mips_andi_b:
1573    return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
1574                       lowerMSASplatImm(Op, 2, DAG));
1575  case Intrinsic::mips_bclr_b:
1576  case Intrinsic::mips_bclr_h:
1577  case Intrinsic::mips_bclr_w:
1578  case Intrinsic::mips_bclr_d:
1579    return lowerMSABitClear(Op, DAG);
1580  case Intrinsic::mips_bclri_b:
1581  case Intrinsic::mips_bclri_h:
1582  case Intrinsic::mips_bclri_w:
1583  case Intrinsic::mips_bclri_d:
1584    return lowerMSABitClearImm(Op, DAG);
1585  case Intrinsic::mips_binsli_b:
1586  case Intrinsic::mips_binsli_h:
1587  case Intrinsic::mips_binsli_w:
1588  case Intrinsic::mips_binsli_d: {
1589    // binsli_x(IfClear, IfSet, nbits) -> (vselect LBitsMask, IfSet, IfClear)
1590    EVT VecTy = Op->getValueType(0);
1591    EVT EltTy = VecTy.getVectorElementType();
1592    APInt Mask = APInt::getHighBitsSet(EltTy.getSizeInBits(),
1593                                       Op->getConstantOperandVal(3));
1594    return DAG.getNode(ISD::VSELECT, DL, VecTy,
1595                       DAG.getConstant(Mask, DL, VecTy, true),
1596                       Op->getOperand(2), Op->getOperand(1));
1597  }
1598  case Intrinsic::mips_binsri_b:
1599  case Intrinsic::mips_binsri_h:
1600  case Intrinsic::mips_binsri_w:
1601  case Intrinsic::mips_binsri_d: {
1602    // binsri_x(IfClear, IfSet, nbits) -> (vselect RBitsMask, IfSet, IfClear)
1603    EVT VecTy = Op->getValueType(0);
1604    EVT EltTy = VecTy.getVectorElementType();
1605    APInt Mask = APInt::getLowBitsSet(EltTy.getSizeInBits(),
1606                                      Op->getConstantOperandVal(3));
1607    return DAG.getNode(ISD::VSELECT, DL, VecTy,
1608                       DAG.getConstant(Mask, DL, VecTy, true),
1609                       Op->getOperand(2), Op->getOperand(1));
1610  }
1611  case Intrinsic::mips_bmnz_v:
1612    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
1613                       Op->getOperand(2), Op->getOperand(1));
1614  case Intrinsic::mips_bmnzi_b:
1615    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1616                       lowerMSASplatImm(Op, 3, DAG), Op->getOperand(2),
1617                       Op->getOperand(1));
1618  case Intrinsic::mips_bmz_v:
1619    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
1620                       Op->getOperand(1), Op->getOperand(2));
1621  case Intrinsic::mips_bmzi_b:
1622    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1623                       lowerMSASplatImm(Op, 3, DAG), Op->getOperand(1),
1624                       Op->getOperand(2));
1625  case Intrinsic::mips_bneg_b:
1626  case Intrinsic::mips_bneg_h:
1627  case Intrinsic::mips_bneg_w:
1628  case Intrinsic::mips_bneg_d: {
1629    EVT VecTy = Op->getValueType(0);
1630    SDValue One = DAG.getConstant(1, DL, VecTy);
1631
1632    return DAG.getNode(ISD::XOR, DL, VecTy, Op->getOperand(1),
1633                       DAG.getNode(ISD::SHL, DL, VecTy, One,
1634                                   Op->getOperand(2)));
1635  }
1636  case Intrinsic::mips_bnegi_b:
1637  case Intrinsic::mips_bnegi_h:
1638  case Intrinsic::mips_bnegi_w:
1639  case Intrinsic::mips_bnegi_d:
1640    return lowerMSABinaryBitImmIntr(Op, DAG, ISD::XOR, Op->getOperand(2),
1641                                    !Subtarget.isLittle());
1642  case Intrinsic::mips_bnz_b:
1643  case Intrinsic::mips_bnz_h:
1644  case Intrinsic::mips_bnz_w:
1645  case Intrinsic::mips_bnz_d:
1646    return DAG.getNode(MipsISD::VALL_NONZERO, DL, Op->getValueType(0),
1647                       Op->getOperand(1));
1648  case Intrinsic::mips_bnz_v:
1649    return DAG.getNode(MipsISD::VANY_NONZERO, DL, Op->getValueType(0),
1650                       Op->getOperand(1));
1651  case Intrinsic::mips_bsel_v:
1652    // bsel_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
1653    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1654                       Op->getOperand(1), Op->getOperand(3),
1655                       Op->getOperand(2));
1656  case Intrinsic::mips_bseli_b:
1657    // bseli_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
1658    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1659                       Op->getOperand(1), lowerMSASplatImm(Op, 3, DAG),
1660                       Op->getOperand(2));
1661  case Intrinsic::mips_bset_b:
1662  case Intrinsic::mips_bset_h:
1663  case Intrinsic::mips_bset_w:
1664  case Intrinsic::mips_bset_d: {
1665    EVT VecTy = Op->getValueType(0);
1666    SDValue One = DAG.getConstant(1, DL, VecTy);
1667
1668    return DAG.getNode(ISD::OR, DL, VecTy, Op->getOperand(1),
1669                       DAG.getNode(ISD::SHL, DL, VecTy, One,
1670                                   Op->getOperand(2)));
1671  }
1672  case Intrinsic::mips_bseti_b:
1673  case Intrinsic::mips_bseti_h:
1674  case Intrinsic::mips_bseti_w:
1675  case Intrinsic::mips_bseti_d:
1676    return lowerMSABinaryBitImmIntr(Op, DAG, ISD::OR, Op->getOperand(2),
1677                                    !Subtarget.isLittle());
1678  case Intrinsic::mips_bz_b:
1679  case Intrinsic::mips_bz_h:
1680  case Intrinsic::mips_bz_w:
1681  case Intrinsic::mips_bz_d:
1682    return DAG.getNode(MipsISD::VALL_ZERO, DL, Op->getValueType(0),
1683                       Op->getOperand(1));
1684  case Intrinsic::mips_bz_v:
1685    return DAG.getNode(MipsISD::VANY_ZERO, DL, Op->getValueType(0),
1686                       Op->getOperand(1));
1687  case Intrinsic::mips_ceq_b:
1688  case Intrinsic::mips_ceq_h:
1689  case Intrinsic::mips_ceq_w:
1690  case Intrinsic::mips_ceq_d:
1691    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1692                        Op->getOperand(2), ISD::SETEQ);
1693  case Intrinsic::mips_ceqi_b:
1694  case Intrinsic::mips_ceqi_h:
1695  case Intrinsic::mips_ceqi_w:
1696  case Intrinsic::mips_ceqi_d:
1697    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1698                        lowerMSASplatImm(Op, 2, DAG), ISD::SETEQ);
1699  case Intrinsic::mips_cle_s_b:
1700  case Intrinsic::mips_cle_s_h:
1701  case Intrinsic::mips_cle_s_w:
1702  case Intrinsic::mips_cle_s_d:
1703    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1704                        Op->getOperand(2), ISD::SETLE);
1705  case Intrinsic::mips_clei_s_b:
1706  case Intrinsic::mips_clei_s_h:
1707  case Intrinsic::mips_clei_s_w:
1708  case Intrinsic::mips_clei_s_d:
1709    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1710                        lowerMSASplatImm(Op, 2, DAG), ISD::SETLE);
1711  case Intrinsic::mips_cle_u_b:
1712  case Intrinsic::mips_cle_u_h:
1713  case Intrinsic::mips_cle_u_w:
1714  case Intrinsic::mips_cle_u_d:
1715    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1716                        Op->getOperand(2), ISD::SETULE);
1717  case Intrinsic::mips_clei_u_b:
1718  case Intrinsic::mips_clei_u_h:
1719  case Intrinsic::mips_clei_u_w:
1720  case Intrinsic::mips_clei_u_d:
1721    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1722                        lowerMSASplatImm(Op, 2, DAG), ISD::SETULE);
1723  case Intrinsic::mips_clt_s_b:
1724  case Intrinsic::mips_clt_s_h:
1725  case Intrinsic::mips_clt_s_w:
1726  case Intrinsic::mips_clt_s_d:
1727    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1728                        Op->getOperand(2), ISD::SETLT);
1729  case Intrinsic::mips_clti_s_b:
1730  case Intrinsic::mips_clti_s_h:
1731  case Intrinsic::mips_clti_s_w:
1732  case Intrinsic::mips_clti_s_d:
1733    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1734                        lowerMSASplatImm(Op, 2, DAG), ISD::SETLT);
1735  case Intrinsic::mips_clt_u_b:
1736  case Intrinsic::mips_clt_u_h:
1737  case Intrinsic::mips_clt_u_w:
1738  case Intrinsic::mips_clt_u_d:
1739    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1740                        Op->getOperand(2), ISD::SETULT);
1741  case Intrinsic::mips_clti_u_b:
1742  case Intrinsic::mips_clti_u_h:
1743  case Intrinsic::mips_clti_u_w:
1744  case Intrinsic::mips_clti_u_d:
1745    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1746                        lowerMSASplatImm(Op, 2, DAG), ISD::SETULT);
1747  case Intrinsic::mips_copy_s_b:
1748  case Intrinsic::mips_copy_s_h:
1749  case Intrinsic::mips_copy_s_w:
1750    return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
1751  case Intrinsic::mips_copy_s_d:
1752    if (Subtarget.hasMips64())
1753      // Lower directly into VEXTRACT_SEXT_ELT since i64 is legal on Mips64.
1754      return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
1755    else {
1756      // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
1757      // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
1758      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
1759                         Op->getValueType(0), Op->getOperand(1),
1760                         Op->getOperand(2));
1761    }
1762  case Intrinsic::mips_copy_u_b:
1763  case Intrinsic::mips_copy_u_h:
1764  case Intrinsic::mips_copy_u_w:
1765    return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
1766  case Intrinsic::mips_copy_u_d:
1767    if (Subtarget.hasMips64())
1768      // Lower directly into VEXTRACT_ZEXT_ELT since i64 is legal on Mips64.
1769      return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
1770    else {
1771      // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
1772      // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
1773      // Note: When i64 is illegal, this results in copy_s.w instructions
1774      // instead of copy_u.w instructions. This makes no difference to the
1775      // behaviour since i64 is only illegal when the register file is 32-bit.
1776      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
1777                         Op->getValueType(0), Op->getOperand(1),
1778                         Op->getOperand(2));
1779    }
1780  case Intrinsic::mips_div_s_b:
1781  case Intrinsic::mips_div_s_h:
1782  case Intrinsic::mips_div_s_w:
1783  case Intrinsic::mips_div_s_d:
1784    return DAG.getNode(ISD::SDIV, DL, Op->getValueType(0), Op->getOperand(1),
1785                       Op->getOperand(2));
1786  case Intrinsic::mips_div_u_b:
1787  case Intrinsic::mips_div_u_h:
1788  case Intrinsic::mips_div_u_w:
1789  case Intrinsic::mips_div_u_d:
1790    return DAG.getNode(ISD::UDIV, DL, Op->getValueType(0), Op->getOperand(1),
1791                       Op->getOperand(2));
1792  case Intrinsic::mips_fadd_w:
1793  case Intrinsic::mips_fadd_d: {
1794    // TODO: If intrinsics have fast-math-flags, propagate them.
1795    return DAG.getNode(ISD::FADD, DL, Op->getValueType(0), Op->getOperand(1),
1796                       Op->getOperand(2));
1797  }
1798  // Don't lower mips_fcaf_[wd] since LLVM folds SETFALSE condcodes away
1799  case Intrinsic::mips_fceq_w:
1800  case Intrinsic::mips_fceq_d:
1801    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1802                        Op->getOperand(2), ISD::SETOEQ);
1803  case Intrinsic::mips_fcle_w:
1804  case Intrinsic::mips_fcle_d:
1805    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1806                        Op->getOperand(2), ISD::SETOLE);
1807  case Intrinsic::mips_fclt_w:
1808  case Intrinsic::mips_fclt_d:
1809    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1810                        Op->getOperand(2), ISD::SETOLT);
1811  case Intrinsic::mips_fcne_w:
1812  case Intrinsic::mips_fcne_d:
1813    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1814                        Op->getOperand(2), ISD::SETONE);
1815  case Intrinsic::mips_fcor_w:
1816  case Intrinsic::mips_fcor_d:
1817    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1818                        Op->getOperand(2), ISD::SETO);
1819  case Intrinsic::mips_fcueq_w:
1820  case Intrinsic::mips_fcueq_d:
1821    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1822                        Op->getOperand(2), ISD::SETUEQ);
1823  case Intrinsic::mips_fcule_w:
1824  case Intrinsic::mips_fcule_d:
1825    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1826                        Op->getOperand(2), ISD::SETULE);
1827  case Intrinsic::mips_fcult_w:
1828  case Intrinsic::mips_fcult_d:
1829    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1830                        Op->getOperand(2), ISD::SETULT);
1831  case Intrinsic::mips_fcun_w:
1832  case Intrinsic::mips_fcun_d:
1833    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1834                        Op->getOperand(2), ISD::SETUO);
1835  case Intrinsic::mips_fcune_w:
1836  case Intrinsic::mips_fcune_d:
1837    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1838                        Op->getOperand(2), ISD::SETUNE);
1839  case Intrinsic::mips_fdiv_w:
1840  case Intrinsic::mips_fdiv_d: {
1841    // TODO: If intrinsics have fast-math-flags, propagate them.
1842    return DAG.getNode(ISD::FDIV, DL, Op->getValueType(0), Op->getOperand(1),
1843                       Op->getOperand(2));
1844  }
1845  case Intrinsic::mips_ffint_u_w:
1846  case Intrinsic::mips_ffint_u_d:
1847    return DAG.getNode(ISD::UINT_TO_FP, DL, Op->getValueType(0),
1848                       Op->getOperand(1));
1849  case Intrinsic::mips_ffint_s_w:
1850  case Intrinsic::mips_ffint_s_d:
1851    return DAG.getNode(ISD::SINT_TO_FP, DL, Op->getValueType(0),
1852                       Op->getOperand(1));
1853  case Intrinsic::mips_fill_b:
1854  case Intrinsic::mips_fill_h:
1855  case Intrinsic::mips_fill_w:
1856  case Intrinsic::mips_fill_d: {
1857    EVT ResTy = Op->getValueType(0);
1858    SmallVector<SDValue, 16> Ops(ResTy.getVectorNumElements(),
1859                                 Op->getOperand(1));
1860
1861    // If ResTy is v2i64 then the type legalizer will break this node down into
1862    // an equivalent v4i32.
1863    return DAG.getNode(ISD::BUILD_VECTOR, DL, ResTy, Ops);
1864  }
1865  case Intrinsic::mips_fexp2_w:
1866  case Intrinsic::mips_fexp2_d: {
1867    // TODO: If intrinsics have fast-math-flags, propagate them.
1868    EVT ResTy = Op->getValueType(0);
1869    return DAG.getNode(
1870        ISD::FMUL, SDLoc(Op), ResTy, Op->getOperand(1),
1871        DAG.getNode(ISD::FEXP2, SDLoc(Op), ResTy, Op->getOperand(2)));
1872  }
1873  case Intrinsic::mips_flog2_w:
1874  case Intrinsic::mips_flog2_d:
1875    return DAG.getNode(ISD::FLOG2, DL, Op->getValueType(0), Op->getOperand(1));
1876  case Intrinsic::mips_fmadd_w:
1877  case Intrinsic::mips_fmadd_d:
1878    return DAG.getNode(ISD::FMA, SDLoc(Op), Op->getValueType(0),
1879                       Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
1880  case Intrinsic::mips_fmul_w:
1881  case Intrinsic::mips_fmul_d: {
1882    // TODO: If intrinsics have fast-math-flags, propagate them.
1883    return DAG.getNode(ISD::FMUL, DL, Op->getValueType(0), Op->getOperand(1),
1884                       Op->getOperand(2));
1885  }
1886  case Intrinsic::mips_fmsub_w:
1887  case Intrinsic::mips_fmsub_d: {
1888    // TODO: If intrinsics have fast-math-flags, propagate them.
1889    EVT ResTy = Op->getValueType(0);
1890    return DAG.getNode(ISD::FSUB, SDLoc(Op), ResTy, Op->getOperand(1),
1891                       DAG.getNode(ISD::FMUL, SDLoc(Op), ResTy,
1892                                   Op->getOperand(2), Op->getOperand(3)));
1893  }
1894  case Intrinsic::mips_frint_w:
1895  case Intrinsic::mips_frint_d:
1896    return DAG.getNode(ISD::FRINT, DL, Op->getValueType(0), Op->getOperand(1));
1897  case Intrinsic::mips_fsqrt_w:
1898  case Intrinsic::mips_fsqrt_d:
1899    return DAG.getNode(ISD::FSQRT, DL, Op->getValueType(0), Op->getOperand(1));
1900  case Intrinsic::mips_fsub_w:
1901  case Intrinsic::mips_fsub_d: {
1902    // TODO: If intrinsics have fast-math-flags, propagate them.
1903    return DAG.getNode(ISD::FSUB, DL, Op->getValueType(0), Op->getOperand(1),
1904                       Op->getOperand(2));
1905  }
1906  case Intrinsic::mips_ftrunc_u_w:
1907  case Intrinsic::mips_ftrunc_u_d:
1908    return DAG.getNode(ISD::FP_TO_UINT, DL, Op->getValueType(0),
1909                       Op->getOperand(1));
1910  case Intrinsic::mips_ftrunc_s_w:
1911  case Intrinsic::mips_ftrunc_s_d:
1912    return DAG.getNode(ISD::FP_TO_SINT, DL, Op->getValueType(0),
1913                       Op->getOperand(1));
1914  case Intrinsic::mips_ilvev_b:
1915  case Intrinsic::mips_ilvev_h:
1916  case Intrinsic::mips_ilvev_w:
1917  case Intrinsic::mips_ilvev_d:
1918    return DAG.getNode(MipsISD::ILVEV, DL, Op->getValueType(0),
1919                       Op->getOperand(1), Op->getOperand(2));
1920  case Intrinsic::mips_ilvl_b:
1921  case Intrinsic::mips_ilvl_h:
1922  case Intrinsic::mips_ilvl_w:
1923  case Intrinsic::mips_ilvl_d:
1924    return DAG.getNode(MipsISD::ILVL, DL, Op->getValueType(0),
1925                       Op->getOperand(1), Op->getOperand(2));
1926  case Intrinsic::mips_ilvod_b:
1927  case Intrinsic::mips_ilvod_h:
1928  case Intrinsic::mips_ilvod_w:
1929  case Intrinsic::mips_ilvod_d:
1930    return DAG.getNode(MipsISD::ILVOD, DL, Op->getValueType(0),
1931                       Op->getOperand(1), Op->getOperand(2));
1932  case Intrinsic::mips_ilvr_b:
1933  case Intrinsic::mips_ilvr_h:
1934  case Intrinsic::mips_ilvr_w:
1935  case Intrinsic::mips_ilvr_d:
1936    return DAG.getNode(MipsISD::ILVR, DL, Op->getValueType(0),
1937                       Op->getOperand(1), Op->getOperand(2));
1938  case Intrinsic::mips_insert_b:
1939  case Intrinsic::mips_insert_h:
1940  case Intrinsic::mips_insert_w:
1941  case Intrinsic::mips_insert_d:
1942    return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Op), Op->getValueType(0),
1943                       Op->getOperand(1), Op->getOperand(3), Op->getOperand(2));
1944  case Intrinsic::mips_insve_b:
1945  case Intrinsic::mips_insve_h:
1946  case Intrinsic::mips_insve_w:
1947  case Intrinsic::mips_insve_d:
1948    return DAG.getNode(MipsISD::INSVE, DL, Op->getValueType(0),
1949                       Op->getOperand(1), Op->getOperand(2), Op->getOperand(3),
1950                       DAG.getConstant(0, DL, MVT::i32));
1951  case Intrinsic::mips_ldi_b:
1952  case Intrinsic::mips_ldi_h:
1953  case Intrinsic::mips_ldi_w:
1954  case Intrinsic::mips_ldi_d:
1955    return lowerMSASplatImm(Op, 1, DAG);
1956  case Intrinsic::mips_lsa:
1957  case Intrinsic::mips_dlsa: {
1958    EVT ResTy = Op->getValueType(0);
1959    return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
1960                       DAG.getNode(ISD::SHL, SDLoc(Op), ResTy,
1961                                   Op->getOperand(2), Op->getOperand(3)));
1962  }
1963  case Intrinsic::mips_maddv_b:
1964  case Intrinsic::mips_maddv_h:
1965  case Intrinsic::mips_maddv_w:
1966  case Intrinsic::mips_maddv_d: {
1967    EVT ResTy = Op->getValueType(0);
1968    return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
1969                       DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
1970                                   Op->getOperand(2), Op->getOperand(3)));
1971  }
1972  case Intrinsic::mips_max_s_b:
1973  case Intrinsic::mips_max_s_h:
1974  case Intrinsic::mips_max_s_w:
1975  case Intrinsic::mips_max_s_d:
1976    return DAG.getNode(MipsISD::VSMAX, DL, Op->getValueType(0),
1977                       Op->getOperand(1), Op->getOperand(2));
1978  case Intrinsic::mips_max_u_b:
1979  case Intrinsic::mips_max_u_h:
1980  case Intrinsic::mips_max_u_w:
1981  case Intrinsic::mips_max_u_d:
1982    return DAG.getNode(MipsISD::VUMAX, DL, Op->getValueType(0),
1983                       Op->getOperand(1), Op->getOperand(2));
1984  case Intrinsic::mips_maxi_s_b:
1985  case Intrinsic::mips_maxi_s_h:
1986  case Intrinsic::mips_maxi_s_w:
1987  case Intrinsic::mips_maxi_s_d:
1988    return DAG.getNode(MipsISD::VSMAX, DL, Op->getValueType(0),
1989                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1990  case Intrinsic::mips_maxi_u_b:
1991  case Intrinsic::mips_maxi_u_h:
1992  case Intrinsic::mips_maxi_u_w:
1993  case Intrinsic::mips_maxi_u_d:
1994    return DAG.getNode(MipsISD::VUMAX, DL, Op->getValueType(0),
1995                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1996  case Intrinsic::mips_min_s_b:
1997  case Intrinsic::mips_min_s_h:
1998  case Intrinsic::mips_min_s_w:
1999  case Intrinsic::mips_min_s_d:
2000    return DAG.getNode(MipsISD::VSMIN, DL, Op->getValueType(0),
2001                       Op->getOperand(1), Op->getOperand(2));
2002  case Intrinsic::mips_min_u_b:
2003  case Intrinsic::mips_min_u_h:
2004  case Intrinsic::mips_min_u_w:
2005  case Intrinsic::mips_min_u_d:
2006    return DAG.getNode(MipsISD::VUMIN, DL, Op->getValueType(0),
2007                       Op->getOperand(1), Op->getOperand(2));
2008  case Intrinsic::mips_mini_s_b:
2009  case Intrinsic::mips_mini_s_h:
2010  case Intrinsic::mips_mini_s_w:
2011  case Intrinsic::mips_mini_s_d:
2012    return DAG.getNode(MipsISD::VSMIN, DL, Op->getValueType(0),
2013                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2014  case Intrinsic::mips_mini_u_b:
2015  case Intrinsic::mips_mini_u_h:
2016  case Intrinsic::mips_mini_u_w:
2017  case Intrinsic::mips_mini_u_d:
2018    return DAG.getNode(MipsISD::VUMIN, DL, Op->getValueType(0),
2019                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2020  case Intrinsic::mips_mod_s_b:
2021  case Intrinsic::mips_mod_s_h:
2022  case Intrinsic::mips_mod_s_w:
2023  case Intrinsic::mips_mod_s_d:
2024    return DAG.getNode(ISD::SREM, DL, Op->getValueType(0), Op->getOperand(1),
2025                       Op->getOperand(2));
2026  case Intrinsic::mips_mod_u_b:
2027  case Intrinsic::mips_mod_u_h:
2028  case Intrinsic::mips_mod_u_w:
2029  case Intrinsic::mips_mod_u_d:
2030    return DAG.getNode(ISD::UREM, DL, Op->getValueType(0), Op->getOperand(1),
2031                       Op->getOperand(2));
2032  case Intrinsic::mips_mulv_b:
2033  case Intrinsic::mips_mulv_h:
2034  case Intrinsic::mips_mulv_w:
2035  case Intrinsic::mips_mulv_d:
2036    return DAG.getNode(ISD::MUL, DL, Op->getValueType(0), Op->getOperand(1),
2037                       Op->getOperand(2));
2038  case Intrinsic::mips_msubv_b:
2039  case Intrinsic::mips_msubv_h:
2040  case Intrinsic::mips_msubv_w:
2041  case Intrinsic::mips_msubv_d: {
2042    EVT ResTy = Op->getValueType(0);
2043    return DAG.getNode(ISD::SUB, SDLoc(Op), ResTy, Op->getOperand(1),
2044                       DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
2045                                   Op->getOperand(2), Op->getOperand(3)));
2046  }
2047  case Intrinsic::mips_nlzc_b:
2048  case Intrinsic::mips_nlzc_h:
2049  case Intrinsic::mips_nlzc_w:
2050  case Intrinsic::mips_nlzc_d:
2051    return DAG.getNode(ISD::CTLZ, DL, Op->getValueType(0), Op->getOperand(1));
2052  case Intrinsic::mips_nor_v: {
2053    SDValue Res = DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2054                              Op->getOperand(1), Op->getOperand(2));
2055    return DAG.getNOT(DL, Res, Res->getValueType(0));
2056  }
2057  case Intrinsic::mips_nori_b: {
2058    SDValue Res =  DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2059                               Op->getOperand(1),
2060                               lowerMSASplatImm(Op, 2, DAG));
2061    return DAG.getNOT(DL, Res, Res->getValueType(0));
2062  }
2063  case Intrinsic::mips_or_v:
2064    return DAG.getNode(ISD::OR, DL, Op->getValueType(0), Op->getOperand(1),
2065                       Op->getOperand(2));
2066  case Intrinsic::mips_ori_b:
2067    return DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2068                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2069  case Intrinsic::mips_pckev_b:
2070  case Intrinsic::mips_pckev_h:
2071  case Intrinsic::mips_pckev_w:
2072  case Intrinsic::mips_pckev_d:
2073    return DAG.getNode(MipsISD::PCKEV, DL, Op->getValueType(0),
2074                       Op->getOperand(1), Op->getOperand(2));
2075  case Intrinsic::mips_pckod_b:
2076  case Intrinsic::mips_pckod_h:
2077  case Intrinsic::mips_pckod_w:
2078  case Intrinsic::mips_pckod_d:
2079    return DAG.getNode(MipsISD::PCKOD, DL, Op->getValueType(0),
2080                       Op->getOperand(1), Op->getOperand(2));
2081  case Intrinsic::mips_pcnt_b:
2082  case Intrinsic::mips_pcnt_h:
2083  case Intrinsic::mips_pcnt_w:
2084  case Intrinsic::mips_pcnt_d:
2085    return DAG.getNode(ISD::CTPOP, DL, Op->getValueType(0), Op->getOperand(1));
2086  case Intrinsic::mips_shf_b:
2087  case Intrinsic::mips_shf_h:
2088  case Intrinsic::mips_shf_w:
2089    return DAG.getNode(MipsISD::SHF, DL, Op->getValueType(0),
2090                       Op->getOperand(2), Op->getOperand(1));
2091  case Intrinsic::mips_sll_b:
2092  case Intrinsic::mips_sll_h:
2093  case Intrinsic::mips_sll_w:
2094  case Intrinsic::mips_sll_d:
2095    return DAG.getNode(ISD::SHL, DL, Op->getValueType(0), Op->getOperand(1),
2096                       Op->getOperand(2));
2097  case Intrinsic::mips_slli_b:
2098  case Intrinsic::mips_slli_h:
2099  case Intrinsic::mips_slli_w:
2100  case Intrinsic::mips_slli_d:
2101    return DAG.getNode(ISD::SHL, DL, Op->getValueType(0),
2102                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2103  case Intrinsic::mips_splat_b:
2104  case Intrinsic::mips_splat_h:
2105  case Intrinsic::mips_splat_w:
2106  case Intrinsic::mips_splat_d:
2107    // We can't lower via VECTOR_SHUFFLE because it requires constant shuffle
2108    // masks, nor can we lower via BUILD_VECTOR & EXTRACT_VECTOR_ELT because
2109    // EXTRACT_VECTOR_ELT can't extract i64's on MIPS32.
2110    // Instead we lower to MipsISD::VSHF and match from there.
2111    return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2112                       lowerMSASplatZExt(Op, 2, DAG), Op->getOperand(1),
2113                       Op->getOperand(1));
2114  case Intrinsic::mips_splati_b:
2115  case Intrinsic::mips_splati_h:
2116  case Intrinsic::mips_splati_w:
2117  case Intrinsic::mips_splati_d:
2118    return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2119                       lowerMSASplatImm(Op, 2, DAG), Op->getOperand(1),
2120                       Op->getOperand(1));
2121  case Intrinsic::mips_sra_b:
2122  case Intrinsic::mips_sra_h:
2123  case Intrinsic::mips_sra_w:
2124  case Intrinsic::mips_sra_d:
2125    return DAG.getNode(ISD::SRA, DL, Op->getValueType(0), Op->getOperand(1),
2126                       Op->getOperand(2));
2127  case Intrinsic::mips_srai_b:
2128  case Intrinsic::mips_srai_h:
2129  case Intrinsic::mips_srai_w:
2130  case Intrinsic::mips_srai_d:
2131    return DAG.getNode(ISD::SRA, DL, Op->getValueType(0),
2132                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2133  case Intrinsic::mips_srl_b:
2134  case Intrinsic::mips_srl_h:
2135  case Intrinsic::mips_srl_w:
2136  case Intrinsic::mips_srl_d:
2137    return DAG.getNode(ISD::SRL, DL, Op->getValueType(0), Op->getOperand(1),
2138                       Op->getOperand(2));
2139  case Intrinsic::mips_srli_b:
2140  case Intrinsic::mips_srli_h:
2141  case Intrinsic::mips_srli_w:
2142  case Intrinsic::mips_srli_d:
2143    return DAG.getNode(ISD::SRL, DL, Op->getValueType(0),
2144                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2145  case Intrinsic::mips_subv_b:
2146  case Intrinsic::mips_subv_h:
2147  case Intrinsic::mips_subv_w:
2148  case Intrinsic::mips_subv_d:
2149    return DAG.getNode(ISD::SUB, DL, Op->getValueType(0), Op->getOperand(1),
2150                       Op->getOperand(2));
2151  case Intrinsic::mips_subvi_b:
2152  case Intrinsic::mips_subvi_h:
2153  case Intrinsic::mips_subvi_w:
2154  case Intrinsic::mips_subvi_d:
2155    return DAG.getNode(ISD::SUB, DL, Op->getValueType(0),
2156                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2157  case Intrinsic::mips_vshf_b:
2158  case Intrinsic::mips_vshf_h:
2159  case Intrinsic::mips_vshf_w:
2160  case Intrinsic::mips_vshf_d:
2161    return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2162                       Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
2163  case Intrinsic::mips_xor_v:
2164    return DAG.getNode(ISD::XOR, DL, Op->getValueType(0), Op->getOperand(1),
2165                       Op->getOperand(2));
2166  case Intrinsic::mips_xori_b:
2167    return DAG.getNode(ISD::XOR, DL, Op->getValueType(0),
2168                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2169  }
2170}
2171
2172static SDValue lowerMSALoadIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr) {
2173  SDLoc DL(Op);
2174  SDValue ChainIn = Op->getOperand(0);
2175  SDValue Address = Op->getOperand(2);
2176  SDValue Offset  = Op->getOperand(3);
2177  EVT ResTy = Op->getValueType(0);
2178  EVT PtrTy = Address->getValueType(0);
2179
2180  Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
2181
2182  return DAG.getLoad(ResTy, DL, ChainIn, Address, MachinePointerInfo(), false,
2183                     false, false, 16);
2184}
2185
2186SDValue MipsSETargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
2187                                                     SelectionDAG &DAG) const {
2188  unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
2189  switch (Intr) {
2190  default:
2191    return SDValue();
2192  case Intrinsic::mips_extp:
2193    return lowerDSPIntr(Op, DAG, MipsISD::EXTP);
2194  case Intrinsic::mips_extpdp:
2195    return lowerDSPIntr(Op, DAG, MipsISD::EXTPDP);
2196  case Intrinsic::mips_extr_w:
2197    return lowerDSPIntr(Op, DAG, MipsISD::EXTR_W);
2198  case Intrinsic::mips_extr_r_w:
2199    return lowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W);
2200  case Intrinsic::mips_extr_rs_w:
2201    return lowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W);
2202  case Intrinsic::mips_extr_s_h:
2203    return lowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H);
2204  case Intrinsic::mips_mthlip:
2205    return lowerDSPIntr(Op, DAG, MipsISD::MTHLIP);
2206  case Intrinsic::mips_mulsaq_s_w_ph:
2207    return lowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH);
2208  case Intrinsic::mips_maq_s_w_phl:
2209    return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL);
2210  case Intrinsic::mips_maq_s_w_phr:
2211    return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR);
2212  case Intrinsic::mips_maq_sa_w_phl:
2213    return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL);
2214  case Intrinsic::mips_maq_sa_w_phr:
2215    return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR);
2216  case Intrinsic::mips_dpaq_s_w_ph:
2217    return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH);
2218  case Intrinsic::mips_dpsq_s_w_ph:
2219    return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH);
2220  case Intrinsic::mips_dpaq_sa_l_w:
2221    return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W);
2222  case Intrinsic::mips_dpsq_sa_l_w:
2223    return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W);
2224  case Intrinsic::mips_dpaqx_s_w_ph:
2225    return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH);
2226  case Intrinsic::mips_dpaqx_sa_w_ph:
2227    return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH);
2228  case Intrinsic::mips_dpsqx_s_w_ph:
2229    return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH);
2230  case Intrinsic::mips_dpsqx_sa_w_ph:
2231    return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH);
2232  case Intrinsic::mips_ld_b:
2233  case Intrinsic::mips_ld_h:
2234  case Intrinsic::mips_ld_w:
2235  case Intrinsic::mips_ld_d:
2236   return lowerMSALoadIntr(Op, DAG, Intr);
2237  }
2238}
2239
2240static SDValue lowerMSAStoreIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr) {
2241  SDLoc DL(Op);
2242  SDValue ChainIn = Op->getOperand(0);
2243  SDValue Value   = Op->getOperand(2);
2244  SDValue Address = Op->getOperand(3);
2245  SDValue Offset  = Op->getOperand(4);
2246  EVT PtrTy = Address->getValueType(0);
2247
2248  Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
2249
2250  return DAG.getStore(ChainIn, DL, Value, Address, MachinePointerInfo(), false,
2251                      false, 16);
2252}
2253
2254SDValue MipsSETargetLowering::lowerINTRINSIC_VOID(SDValue Op,
2255                                                  SelectionDAG &DAG) const {
2256  unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
2257  switch (Intr) {
2258  default:
2259    return SDValue();
2260  case Intrinsic::mips_st_b:
2261  case Intrinsic::mips_st_h:
2262  case Intrinsic::mips_st_w:
2263  case Intrinsic::mips_st_d:
2264    return lowerMSAStoreIntr(Op, DAG, Intr);
2265  }
2266}
2267
2268/// \brief Check if the given BuildVectorSDNode is a splat.
2269/// This method currently relies on DAG nodes being reused when equivalent,
2270/// so it's possible for this to return false even when isConstantSplat returns
2271/// true.
2272static bool isSplatVector(const BuildVectorSDNode *N) {
2273  unsigned int nOps = N->getNumOperands();
2274  assert(nOps > 1 && "isSplatVector has 0 or 1 sized build vector");
2275
2276  SDValue Operand0 = N->getOperand(0);
2277
2278  for (unsigned int i = 1; i < nOps; ++i) {
2279    if (N->getOperand(i) != Operand0)
2280      return false;
2281  }
2282
2283  return true;
2284}
2285
2286// Lower ISD::EXTRACT_VECTOR_ELT into MipsISD::VEXTRACT_SEXT_ELT.
2287//
2288// The non-value bits resulting from ISD::EXTRACT_VECTOR_ELT are undefined. We
2289// choose to sign-extend but we could have equally chosen zero-extend. The
2290// DAGCombiner will fold any sign/zero extension of the ISD::EXTRACT_VECTOR_ELT
2291// result into this node later (possibly changing it to a zero-extend in the
2292// process).
2293SDValue MipsSETargetLowering::
2294lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
2295  SDLoc DL(Op);
2296  EVT ResTy = Op->getValueType(0);
2297  SDValue Op0 = Op->getOperand(0);
2298  EVT VecTy = Op0->getValueType(0);
2299
2300  if (!VecTy.is128BitVector())
2301    return SDValue();
2302
2303  if (ResTy.isInteger()) {
2304    SDValue Op1 = Op->getOperand(1);
2305    EVT EltTy = VecTy.getVectorElementType();
2306    return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, DL, ResTy, Op0, Op1,
2307                       DAG.getValueType(EltTy));
2308  }
2309
2310  return Op;
2311}
2312
2313static bool isConstantOrUndef(const SDValue Op) {
2314  if (Op->getOpcode() == ISD::UNDEF)
2315    return true;
2316  if (isa<ConstantSDNode>(Op))
2317    return true;
2318  if (isa<ConstantFPSDNode>(Op))
2319    return true;
2320  return false;
2321}
2322
2323static bool isConstantOrUndefBUILD_VECTOR(const BuildVectorSDNode *Op) {
2324  for (unsigned i = 0; i < Op->getNumOperands(); ++i)
2325    if (isConstantOrUndef(Op->getOperand(i)))
2326      return true;
2327  return false;
2328}
2329
2330// Lowers ISD::BUILD_VECTOR into appropriate SelectionDAG nodes for the
2331// backend.
2332//
2333// Lowers according to the following rules:
2334// - Constant splats are legal as-is as long as the SplatBitSize is a power of
2335//   2 less than or equal to 64 and the value fits into a signed 10-bit
2336//   immediate
2337// - Constant splats are lowered to bitconverted BUILD_VECTORs if SplatBitSize
2338//   is a power of 2 less than or equal to 64 and the value does not fit into a
2339//   signed 10-bit immediate
2340// - Non-constant splats are legal as-is.
2341// - Non-constant non-splats are lowered to sequences of INSERT_VECTOR_ELT.
2342// - All others are illegal and must be expanded.
2343SDValue MipsSETargetLowering::lowerBUILD_VECTOR(SDValue Op,
2344                                                SelectionDAG &DAG) const {
2345  BuildVectorSDNode *Node = cast<BuildVectorSDNode>(Op);
2346  EVT ResTy = Op->getValueType(0);
2347  SDLoc DL(Op);
2348  APInt SplatValue, SplatUndef;
2349  unsigned SplatBitSize;
2350  bool HasAnyUndefs;
2351
2352  if (!Subtarget.hasMSA() || !ResTy.is128BitVector())
2353    return SDValue();
2354
2355  if (Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
2356                            HasAnyUndefs, 8,
2357                            !Subtarget.isLittle()) && SplatBitSize <= 64) {
2358    // We can only cope with 8, 16, 32, or 64-bit elements
2359    if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 &&
2360        SplatBitSize != 64)
2361      return SDValue();
2362
2363    // If the value fits into a simm10 then we can use ldi.[bhwd]
2364    // However, if it isn't an integer type we will have to bitcast from an
2365    // integer type first. Also, if there are any undefs, we must lower them
2366    // to defined values first.
2367    if (ResTy.isInteger() && !HasAnyUndefs && SplatValue.isSignedIntN(10))
2368      return Op;
2369
2370    EVT ViaVecTy;
2371
2372    switch (SplatBitSize) {
2373    default:
2374      return SDValue();
2375    case 8:
2376      ViaVecTy = MVT::v16i8;
2377      break;
2378    case 16:
2379      ViaVecTy = MVT::v8i16;
2380      break;
2381    case 32:
2382      ViaVecTy = MVT::v4i32;
2383      break;
2384    case 64:
2385      // There's no fill.d to fall back on for 64-bit values
2386      return SDValue();
2387    }
2388
2389    // SelectionDAG::getConstant will promote SplatValue appropriately.
2390    SDValue Result = DAG.getConstant(SplatValue, DL, ViaVecTy);
2391
2392    // Bitcast to the type we originally wanted
2393    if (ViaVecTy != ResTy)
2394      Result = DAG.getNode(ISD::BITCAST, SDLoc(Node), ResTy, Result);
2395
2396    return Result;
2397  } else if (isSplatVector(Node))
2398    return Op;
2399  else if (!isConstantOrUndefBUILD_VECTOR(Node)) {
2400    // Use INSERT_VECTOR_ELT operations rather than expand to stores.
2401    // The resulting code is the same length as the expansion, but it doesn't
2402    // use memory operations
2403    EVT ResTy = Node->getValueType(0);
2404
2405    assert(ResTy.isVector());
2406
2407    unsigned NumElts = ResTy.getVectorNumElements();
2408    SDValue Vector = DAG.getUNDEF(ResTy);
2409    for (unsigned i = 0; i < NumElts; ++i) {
2410      Vector = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ResTy, Vector,
2411                           Node->getOperand(i),
2412                           DAG.getConstant(i, DL, MVT::i32));
2413    }
2414    return Vector;
2415  }
2416
2417  return SDValue();
2418}
2419
2420// Lower VECTOR_SHUFFLE into SHF (if possible).
2421//
2422// SHF splits the vector into blocks of four elements, then shuffles these
2423// elements according to a <4 x i2> constant (encoded as an integer immediate).
2424//
2425// It is therefore possible to lower into SHF when the mask takes the form:
2426//   <a, b, c, d, a+4, b+4, c+4, d+4, a+8, b+8, c+8, d+8, ...>
2427// When undef's appear they are treated as if they were whatever value is
2428// necessary in order to fit the above forms.
2429//
2430// For example:
2431//   %2 = shufflevector <8 x i16> %0, <8 x i16> undef,
2432//                      <8 x i32> <i32 3, i32 2, i32 1, i32 0,
2433//                                 i32 7, i32 6, i32 5, i32 4>
2434// is lowered to:
2435//   (SHF_H $w0, $w1, 27)
2436// where the 27 comes from:
2437//   3 + (2 << 2) + (1 << 4) + (0 << 6)
2438static SDValue lowerVECTOR_SHUFFLE_SHF(SDValue Op, EVT ResTy,
2439                                       SmallVector<int, 16> Indices,
2440                                       SelectionDAG &DAG) {
2441  int SHFIndices[4] = { -1, -1, -1, -1 };
2442
2443  if (Indices.size() < 4)
2444    return SDValue();
2445
2446  for (unsigned i = 0; i < 4; ++i) {
2447    for (unsigned j = i; j < Indices.size(); j += 4) {
2448      int Idx = Indices[j];
2449
2450      // Convert from vector index to 4-element subvector index
2451      // If an index refers to an element outside of the subvector then give up
2452      if (Idx != -1) {
2453        Idx -= 4 * (j / 4);
2454        if (Idx < 0 || Idx >= 4)
2455          return SDValue();
2456      }
2457
2458      // If the mask has an undef, replace it with the current index.
2459      // Note that it might still be undef if the current index is also undef
2460      if (SHFIndices[i] == -1)
2461        SHFIndices[i] = Idx;
2462
2463      // Check that non-undef values are the same as in the mask. If they
2464      // aren't then give up
2465      if (!(Idx == -1 || Idx == SHFIndices[i]))
2466        return SDValue();
2467    }
2468  }
2469
2470  // Calculate the immediate. Replace any remaining undefs with zero
2471  APInt Imm(32, 0);
2472  for (int i = 3; i >= 0; --i) {
2473    int Idx = SHFIndices[i];
2474
2475    if (Idx == -1)
2476      Idx = 0;
2477
2478    Imm <<= 2;
2479    Imm |= Idx & 0x3;
2480  }
2481
2482  SDLoc DL(Op);
2483  return DAG.getNode(MipsISD::SHF, DL, ResTy,
2484                     DAG.getConstant(Imm, DL, MVT::i32), Op->getOperand(0));
2485}
2486
2487/// Determine whether a range fits a regular pattern of values.
2488/// This function accounts for the possibility of jumping over the End iterator.
2489template <typename ValType>
2490static bool
2491fitsRegularPattern(typename SmallVectorImpl<ValType>::const_iterator Begin,
2492                   unsigned CheckStride,
2493                   typename SmallVectorImpl<ValType>::const_iterator End,
2494                   ValType ExpectedIndex, unsigned ExpectedIndexStride) {
2495  auto &I = Begin;
2496
2497  while (I != End) {
2498    if (*I != -1 && *I != ExpectedIndex)
2499      return false;
2500    ExpectedIndex += ExpectedIndexStride;
2501
2502    // Incrementing past End is undefined behaviour so we must increment one
2503    // step at a time and check for End at each step.
2504    for (unsigned n = 0; n < CheckStride && I != End; ++n, ++I)
2505      ; // Empty loop body.
2506  }
2507  return true;
2508}
2509
2510// Determine whether VECTOR_SHUFFLE is a SPLATI.
2511//
2512// It is a SPLATI when the mask is:
2513//   <x, x, x, ...>
2514// where x is any valid index.
2515//
2516// When undef's appear in the mask they are treated as if they were whatever
2517// value is necessary in order to fit the above form.
2518static bool isVECTOR_SHUFFLE_SPLATI(SDValue Op, EVT ResTy,
2519                                    SmallVector<int, 16> Indices,
2520                                    SelectionDAG &DAG) {
2521  assert((Indices.size() % 2) == 0);
2522
2523  int SplatIndex = -1;
2524  for (const auto &V : Indices) {
2525    if (V != -1) {
2526      SplatIndex = V;
2527      break;
2528    }
2529  }
2530
2531  return fitsRegularPattern<int>(Indices.begin(), 1, Indices.end(), SplatIndex,
2532                                 0);
2533}
2534
2535// Lower VECTOR_SHUFFLE into ILVEV (if possible).
2536//
2537// ILVEV interleaves the even elements from each vector.
2538//
2539// It is possible to lower into ILVEV when the mask consists of two of the
2540// following forms interleaved:
2541//   <0, 2, 4, ...>
2542//   <n, n+2, n+4, ...>
2543// where n is the number of elements in the vector.
2544// For example:
2545//   <0, 0, 2, 2, 4, 4, ...>
2546//   <0, n, 2, n+2, 4, n+4, ...>
2547//
2548// When undef's appear in the mask they are treated as if they were whatever
2549// value is necessary in order to fit the above forms.
2550static SDValue lowerVECTOR_SHUFFLE_ILVEV(SDValue Op, EVT ResTy,
2551                                         SmallVector<int, 16> Indices,
2552                                         SelectionDAG &DAG) {
2553  assert((Indices.size() % 2) == 0);
2554
2555  SDValue Wt;
2556  SDValue Ws;
2557  const auto &Begin = Indices.begin();
2558  const auto &End = Indices.end();
2559
2560  // Check even elements are taken from the even elements of one half or the
2561  // other and pick an operand accordingly.
2562  if (fitsRegularPattern<int>(Begin, 2, End, 0, 2))
2563    Wt = Op->getOperand(0);
2564  else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size(), 2))
2565    Wt = Op->getOperand(1);
2566  else
2567    return SDValue();
2568
2569  // Check odd elements are taken from the even elements of one half or the
2570  // other and pick an operand accordingly.
2571  if (fitsRegularPattern<int>(Begin + 1, 2, End, 0, 2))
2572    Ws = Op->getOperand(0);
2573  else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size(), 2))
2574    Ws = Op->getOperand(1);
2575  else
2576    return SDValue();
2577
2578  return DAG.getNode(MipsISD::ILVEV, SDLoc(Op), ResTy, Ws, Wt);
2579}
2580
2581// Lower VECTOR_SHUFFLE into ILVOD (if possible).
2582//
2583// ILVOD interleaves the odd elements from each vector.
2584//
2585// It is possible to lower into ILVOD when the mask consists of two of the
2586// following forms interleaved:
2587//   <1, 3, 5, ...>
2588//   <n+1, n+3, n+5, ...>
2589// where n is the number of elements in the vector.
2590// For example:
2591//   <1, 1, 3, 3, 5, 5, ...>
2592//   <1, n+1, 3, n+3, 5, n+5, ...>
2593//
2594// When undef's appear in the mask they are treated as if they were whatever
2595// value is necessary in order to fit the above forms.
2596static SDValue lowerVECTOR_SHUFFLE_ILVOD(SDValue Op, EVT ResTy,
2597                                         SmallVector<int, 16> Indices,
2598                                         SelectionDAG &DAG) {
2599  assert((Indices.size() % 2) == 0);
2600
2601  SDValue Wt;
2602  SDValue Ws;
2603  const auto &Begin = Indices.begin();
2604  const auto &End = Indices.end();
2605
2606  // Check even elements are taken from the odd elements of one half or the
2607  // other and pick an operand accordingly.
2608  if (fitsRegularPattern<int>(Begin, 2, End, 1, 2))
2609    Wt = Op->getOperand(0);
2610  else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size() + 1, 2))
2611    Wt = Op->getOperand(1);
2612  else
2613    return SDValue();
2614
2615  // Check odd elements are taken from the odd elements of one half or the
2616  // other and pick an operand accordingly.
2617  if (fitsRegularPattern<int>(Begin + 1, 2, End, 1, 2))
2618    Ws = Op->getOperand(0);
2619  else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size() + 1, 2))
2620    Ws = Op->getOperand(1);
2621  else
2622    return SDValue();
2623
2624  return DAG.getNode(MipsISD::ILVOD, SDLoc(Op), ResTy, Wt, Ws);
2625}
2626
2627// Lower VECTOR_SHUFFLE into ILVR (if possible).
2628//
2629// ILVR interleaves consecutive elements from the right (lowest-indexed) half of
2630// each vector.
2631//
2632// It is possible to lower into ILVR when the mask consists of two of the
2633// following forms interleaved:
2634//   <0, 1, 2, ...>
2635//   <n, n+1, n+2, ...>
2636// where n is the number of elements in the vector.
2637// For example:
2638//   <0, 0, 1, 1, 2, 2, ...>
2639//   <0, n, 1, n+1, 2, n+2, ...>
2640//
2641// When undef's appear in the mask they are treated as if they were whatever
2642// value is necessary in order to fit the above forms.
2643static SDValue lowerVECTOR_SHUFFLE_ILVR(SDValue Op, EVT ResTy,
2644                                        SmallVector<int, 16> Indices,
2645                                        SelectionDAG &DAG) {
2646  assert((Indices.size() % 2) == 0);
2647
2648  SDValue Wt;
2649  SDValue Ws;
2650  const auto &Begin = Indices.begin();
2651  const auto &End = Indices.end();
2652
2653  // Check even elements are taken from the right (lowest-indexed) elements of
2654  // one half or the other and pick an operand accordingly.
2655  if (fitsRegularPattern<int>(Begin, 2, End, 0, 1))
2656    Wt = Op->getOperand(0);
2657  else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size(), 1))
2658    Wt = Op->getOperand(1);
2659  else
2660    return SDValue();
2661
2662  // Check odd elements are taken from the right (lowest-indexed) elements of
2663  // one half or the other and pick an operand accordingly.
2664  if (fitsRegularPattern<int>(Begin + 1, 2, End, 0, 1))
2665    Ws = Op->getOperand(0);
2666  else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size(), 1))
2667    Ws = Op->getOperand(1);
2668  else
2669    return SDValue();
2670
2671  return DAG.getNode(MipsISD::ILVR, SDLoc(Op), ResTy, Ws, Wt);
2672}
2673
2674// Lower VECTOR_SHUFFLE into ILVL (if possible).
2675//
2676// ILVL interleaves consecutive elements from the left (highest-indexed) half
2677// of each vector.
2678//
2679// It is possible to lower into ILVL when the mask consists of two of the
2680// following forms interleaved:
2681//   <x, x+1, x+2, ...>
2682//   <n+x, n+x+1, n+x+2, ...>
2683// where n is the number of elements in the vector and x is half n.
2684// For example:
2685//   <x, x, x+1, x+1, x+2, x+2, ...>
2686//   <x, n+x, x+1, n+x+1, x+2, n+x+2, ...>
2687//
2688// When undef's appear in the mask they are treated as if they were whatever
2689// value is necessary in order to fit the above forms.
2690static SDValue lowerVECTOR_SHUFFLE_ILVL(SDValue Op, EVT ResTy,
2691                                        SmallVector<int, 16> Indices,
2692                                        SelectionDAG &DAG) {
2693  assert((Indices.size() % 2) == 0);
2694
2695  unsigned HalfSize = Indices.size() / 2;
2696  SDValue Wt;
2697  SDValue Ws;
2698  const auto &Begin = Indices.begin();
2699  const auto &End = Indices.end();
2700
2701  // Check even elements are taken from the left (highest-indexed) elements of
2702  // one half or the other and pick an operand accordingly.
2703  if (fitsRegularPattern<int>(Begin, 2, End, HalfSize, 1))
2704    Wt = Op->getOperand(0);
2705  else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size() + HalfSize, 1))
2706    Wt = Op->getOperand(1);
2707  else
2708    return SDValue();
2709
2710  // Check odd elements are taken from the left (highest-indexed) elements of
2711  // one half or the other and pick an operand accordingly.
2712  if (fitsRegularPattern<int>(Begin + 1, 2, End, HalfSize, 1))
2713    Ws = Op->getOperand(0);
2714  else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size() + HalfSize,
2715                                   1))
2716    Ws = Op->getOperand(1);
2717  else
2718    return SDValue();
2719
2720  return DAG.getNode(MipsISD::ILVL, SDLoc(Op), ResTy, Ws, Wt);
2721}
2722
2723// Lower VECTOR_SHUFFLE into PCKEV (if possible).
2724//
2725// PCKEV copies the even elements of each vector into the result vector.
2726//
2727// It is possible to lower into PCKEV when the mask consists of two of the
2728// following forms concatenated:
2729//   <0, 2, 4, ...>
2730//   <n, n+2, n+4, ...>
2731// where n is the number of elements in the vector.
2732// For example:
2733//   <0, 2, 4, ..., 0, 2, 4, ...>
2734//   <0, 2, 4, ..., n, n+2, n+4, ...>
2735//
2736// When undef's appear in the mask they are treated as if they were whatever
2737// value is necessary in order to fit the above forms.
2738static SDValue lowerVECTOR_SHUFFLE_PCKEV(SDValue Op, EVT ResTy,
2739                                         SmallVector<int, 16> Indices,
2740                                         SelectionDAG &DAG) {
2741  assert((Indices.size() % 2) == 0);
2742
2743  SDValue Wt;
2744  SDValue Ws;
2745  const auto &Begin = Indices.begin();
2746  const auto &Mid = Indices.begin() + Indices.size() / 2;
2747  const auto &End = Indices.end();
2748
2749  if (fitsRegularPattern<int>(Begin, 1, Mid, 0, 2))
2750    Wt = Op->getOperand(0);
2751  else if (fitsRegularPattern<int>(Begin, 1, Mid, Indices.size(), 2))
2752    Wt = Op->getOperand(1);
2753  else
2754    return SDValue();
2755
2756  if (fitsRegularPattern<int>(Mid, 1, End, 0, 2))
2757    Ws = Op->getOperand(0);
2758  else if (fitsRegularPattern<int>(Mid, 1, End, Indices.size(), 2))
2759    Ws = Op->getOperand(1);
2760  else
2761    return SDValue();
2762
2763  return DAG.getNode(MipsISD::PCKEV, SDLoc(Op), ResTy, Ws, Wt);
2764}
2765
2766// Lower VECTOR_SHUFFLE into PCKOD (if possible).
2767//
2768// PCKOD copies the odd elements of each vector into the result vector.
2769//
2770// It is possible to lower into PCKOD when the mask consists of two of the
2771// following forms concatenated:
2772//   <1, 3, 5, ...>
2773//   <n+1, n+3, n+5, ...>
2774// where n is the number of elements in the vector.
2775// For example:
2776//   <1, 3, 5, ..., 1, 3, 5, ...>
2777//   <1, 3, 5, ..., n+1, n+3, n+5, ...>
2778//
2779// When undef's appear in the mask they are treated as if they were whatever
2780// value is necessary in order to fit the above forms.
2781static SDValue lowerVECTOR_SHUFFLE_PCKOD(SDValue Op, EVT ResTy,
2782                                         SmallVector<int, 16> Indices,
2783                                         SelectionDAG &DAG) {
2784  assert((Indices.size() % 2) == 0);
2785
2786  SDValue Wt;
2787  SDValue Ws;
2788  const auto &Begin = Indices.begin();
2789  const auto &Mid = Indices.begin() + Indices.size() / 2;
2790  const auto &End = Indices.end();
2791
2792  if (fitsRegularPattern<int>(Begin, 1, Mid, 1, 2))
2793    Wt = Op->getOperand(0);
2794  else if (fitsRegularPattern<int>(Begin, 1, Mid, Indices.size() + 1, 2))
2795    Wt = Op->getOperand(1);
2796  else
2797    return SDValue();
2798
2799  if (fitsRegularPattern<int>(Mid, 1, End, 1, 2))
2800    Ws = Op->getOperand(0);
2801  else if (fitsRegularPattern<int>(Mid, 1, End, Indices.size() + 1, 2))
2802    Ws = Op->getOperand(1);
2803  else
2804    return SDValue();
2805
2806  return DAG.getNode(MipsISD::PCKOD, SDLoc(Op), ResTy, Ws, Wt);
2807}
2808
2809// Lower VECTOR_SHUFFLE into VSHF.
2810//
2811// This mostly consists of converting the shuffle indices in Indices into a
2812// BUILD_VECTOR and adding it as an operand to the resulting VSHF. There is
2813// also code to eliminate unused operands of the VECTOR_SHUFFLE. For example,
2814// if the type is v8i16 and all the indices are less than 8 then the second
2815// operand is unused and can be replaced with anything. We choose to replace it
2816// with the used operand since this reduces the number of instructions overall.
2817static SDValue lowerVECTOR_SHUFFLE_VSHF(SDValue Op, EVT ResTy,
2818                                        SmallVector<int, 16> Indices,
2819                                        SelectionDAG &DAG) {
2820  SmallVector<SDValue, 16> Ops;
2821  SDValue Op0;
2822  SDValue Op1;
2823  EVT MaskVecTy = ResTy.changeVectorElementTypeToInteger();
2824  EVT MaskEltTy = MaskVecTy.getVectorElementType();
2825  bool Using1stVec = false;
2826  bool Using2ndVec = false;
2827  SDLoc DL(Op);
2828  int ResTyNumElts = ResTy.getVectorNumElements();
2829
2830  for (int i = 0; i < ResTyNumElts; ++i) {
2831    // Idx == -1 means UNDEF
2832    int Idx = Indices[i];
2833
2834    if (0 <= Idx && Idx < ResTyNumElts)
2835      Using1stVec = true;
2836    if (ResTyNumElts <= Idx && Idx < ResTyNumElts * 2)
2837      Using2ndVec = true;
2838  }
2839
2840  for (SmallVector<int, 16>::iterator I = Indices.begin(); I != Indices.end();
2841       ++I)
2842    Ops.push_back(DAG.getTargetConstant(*I, DL, MaskEltTy));
2843
2844  SDValue MaskVec = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskVecTy, Ops);
2845
2846  if (Using1stVec && Using2ndVec) {
2847    Op0 = Op->getOperand(0);
2848    Op1 = Op->getOperand(1);
2849  } else if (Using1stVec)
2850    Op0 = Op1 = Op->getOperand(0);
2851  else if (Using2ndVec)
2852    Op0 = Op1 = Op->getOperand(1);
2853  else
2854    llvm_unreachable("shuffle vector mask references neither vector operand?");
2855
2856  // VECTOR_SHUFFLE concatenates the vectors in an vectorwise fashion.
2857  // <0b00, 0b01> + <0b10, 0b11> -> <0b00, 0b01, 0b10, 0b11>
2858  // VSHF concatenates the vectors in a bitwise fashion:
2859  // <0b00, 0b01> + <0b10, 0b11> ->
2860  // 0b0100       + 0b1110       -> 0b01001110
2861  //                                <0b10, 0b11, 0b00, 0b01>
2862  // We must therefore swap the operands to get the correct result.
2863  return DAG.getNode(MipsISD::VSHF, DL, ResTy, MaskVec, Op1, Op0);
2864}
2865
2866// Lower VECTOR_SHUFFLE into one of a number of instructions depending on the
2867// indices in the shuffle.
2868SDValue MipsSETargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
2869                                                  SelectionDAG &DAG) const {
2870  ShuffleVectorSDNode *Node = cast<ShuffleVectorSDNode>(Op);
2871  EVT ResTy = Op->getValueType(0);
2872
2873  if (!ResTy.is128BitVector())
2874    return SDValue();
2875
2876  int ResTyNumElts = ResTy.getVectorNumElements();
2877  SmallVector<int, 16> Indices;
2878
2879  for (int i = 0; i < ResTyNumElts; ++i)
2880    Indices.push_back(Node->getMaskElt(i));
2881
2882  // splati.[bhwd] is preferable to the others but is matched from
2883  // MipsISD::VSHF.
2884  if (isVECTOR_SHUFFLE_SPLATI(Op, ResTy, Indices, DAG))
2885    return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
2886  SDValue Result = lowerVECTOR_SHUFFLE_ILVEV(Op, ResTy, Indices, DAG);
2887  if (Result.getNode())
2888    return Result;
2889  Result = lowerVECTOR_SHUFFLE_ILVOD(Op, ResTy, Indices, DAG);
2890  if (Result.getNode())
2891    return Result;
2892  Result = lowerVECTOR_SHUFFLE_ILVL(Op, ResTy, Indices, DAG);
2893  if (Result.getNode())
2894    return Result;
2895  Result = lowerVECTOR_SHUFFLE_ILVR(Op, ResTy, Indices, DAG);
2896  if (Result.getNode())
2897    return Result;
2898  Result = lowerVECTOR_SHUFFLE_PCKEV(Op, ResTy, Indices, DAG);
2899  if (Result.getNode())
2900    return Result;
2901  Result = lowerVECTOR_SHUFFLE_PCKOD(Op, ResTy, Indices, DAG);
2902  if (Result.getNode())
2903    return Result;
2904  Result = lowerVECTOR_SHUFFLE_SHF(Op, ResTy, Indices, DAG);
2905  if (Result.getNode())
2906    return Result;
2907  return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
2908}
2909
2910MachineBasicBlock * MipsSETargetLowering::
2911emitBPOSGE32(MachineInstr *MI, MachineBasicBlock *BB) const{
2912  // $bb:
2913  //  bposge32_pseudo $vr0
2914  //  =>
2915  // $bb:
2916  //  bposge32 $tbb
2917  // $fbb:
2918  //  li $vr2, 0
2919  //  b $sink
2920  // $tbb:
2921  //  li $vr1, 1
2922  // $sink:
2923  //  $vr0 = phi($vr2, $fbb, $vr1, $tbb)
2924
2925  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2926  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
2927  const TargetRegisterClass *RC = &Mips::GPR32RegClass;
2928  DebugLoc DL = MI->getDebugLoc();
2929  const BasicBlock *LLVM_BB = BB->getBasicBlock();
2930  MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
2931  MachineFunction *F = BB->getParent();
2932  MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
2933  MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
2934  MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
2935  F->insert(It, FBB);
2936  F->insert(It, TBB);
2937  F->insert(It, Sink);
2938
2939  // Transfer the remainder of BB and its successor edges to Sink.
2940  Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
2941               BB->end());
2942  Sink->transferSuccessorsAndUpdatePHIs(BB);
2943
2944  // Add successors.
2945  BB->addSuccessor(FBB);
2946  BB->addSuccessor(TBB);
2947  FBB->addSuccessor(Sink);
2948  TBB->addSuccessor(Sink);
2949
2950  // Insert the real bposge32 instruction to $BB.
2951  BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB);
2952
2953  // Fill $FBB.
2954  unsigned VR2 = RegInfo.createVirtualRegister(RC);
2955  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2)
2956    .addReg(Mips::ZERO).addImm(0);
2957  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
2958
2959  // Fill $TBB.
2960  unsigned VR1 = RegInfo.createVirtualRegister(RC);
2961  BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1)
2962    .addReg(Mips::ZERO).addImm(1);
2963
2964  // Insert phi function to $Sink.
2965  BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
2966          MI->getOperand(0).getReg())
2967    .addReg(VR2).addMBB(FBB).addReg(VR1).addMBB(TBB);
2968
2969  MI->eraseFromParent();   // The pseudo instruction is gone now.
2970  return Sink;
2971}
2972
2973MachineBasicBlock * MipsSETargetLowering::
2974emitMSACBranchPseudo(MachineInstr *MI, MachineBasicBlock *BB,
2975                     unsigned BranchOp) const{
2976  // $bb:
2977  //  vany_nonzero $rd, $ws
2978  //  =>
2979  // $bb:
2980  //  bnz.b $ws, $tbb
2981  //  b $fbb
2982  // $fbb:
2983  //  li $rd1, 0
2984  //  b $sink
2985  // $tbb:
2986  //  li $rd2, 1
2987  // $sink:
2988  //  $rd = phi($rd1, $fbb, $rd2, $tbb)
2989
2990  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2991  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
2992  const TargetRegisterClass *RC = &Mips::GPR32RegClass;
2993  DebugLoc DL = MI->getDebugLoc();
2994  const BasicBlock *LLVM_BB = BB->getBasicBlock();
2995  MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
2996  MachineFunction *F = BB->getParent();
2997  MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
2998  MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
2999  MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
3000  F->insert(It, FBB);
3001  F->insert(It, TBB);
3002  F->insert(It, Sink);
3003
3004  // Transfer the remainder of BB and its successor edges to Sink.
3005  Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
3006               BB->end());
3007  Sink->transferSuccessorsAndUpdatePHIs(BB);
3008
3009  // Add successors.
3010  BB->addSuccessor(FBB);
3011  BB->addSuccessor(TBB);
3012  FBB->addSuccessor(Sink);
3013  TBB->addSuccessor(Sink);
3014
3015  // Insert the real bnz.b instruction to $BB.
3016  BuildMI(BB, DL, TII->get(BranchOp))
3017    .addReg(MI->getOperand(1).getReg())
3018    .addMBB(TBB);
3019
3020  // Fill $FBB.
3021  unsigned RD1 = RegInfo.createVirtualRegister(RC);
3022  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), RD1)
3023    .addReg(Mips::ZERO).addImm(0);
3024  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
3025
3026  // Fill $TBB.
3027  unsigned RD2 = RegInfo.createVirtualRegister(RC);
3028  BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), RD2)
3029    .addReg(Mips::ZERO).addImm(1);
3030
3031  // Insert phi function to $Sink.
3032  BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
3033          MI->getOperand(0).getReg())
3034    .addReg(RD1).addMBB(FBB).addReg(RD2).addMBB(TBB);
3035
3036  MI->eraseFromParent();   // The pseudo instruction is gone now.
3037  return Sink;
3038}
3039
3040// Emit the COPY_FW pseudo instruction.
3041//
3042// copy_fw_pseudo $fd, $ws, n
3043// =>
3044// copy_u_w $rt, $ws, $n
3045// mtc1     $rt, $fd
3046//
3047// When n is zero, the equivalent operation can be performed with (potentially)
3048// zero instructions due to register overlaps. This optimization is never valid
3049// for lane 1 because it would require FR=0 mode which isn't supported by MSA.
3050MachineBasicBlock * MipsSETargetLowering::
3051emitCOPY_FW(MachineInstr *MI, MachineBasicBlock *BB) const{
3052  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3053  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3054  DebugLoc DL = MI->getDebugLoc();
3055  unsigned Fd = MI->getOperand(0).getReg();
3056  unsigned Ws = MI->getOperand(1).getReg();
3057  unsigned Lane = MI->getOperand(2).getImm();
3058
3059  if (Lane == 0) {
3060    unsigned Wt = Ws;
3061    if (!Subtarget.useOddSPReg()) {
3062      // We must copy to an even-numbered MSA register so that the
3063      // single-precision sub-register is also guaranteed to be even-numbered.
3064      Wt = RegInfo.createVirtualRegister(&Mips::MSA128WEvensRegClass);
3065
3066      BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Wt).addReg(Ws);
3067    }
3068
3069    BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
3070  } else {
3071    unsigned Wt = RegInfo.createVirtualRegister(
3072        Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass :
3073                                  &Mips::MSA128WEvensRegClass);
3074
3075    BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wt).addReg(Ws).addImm(Lane);
3076    BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
3077  }
3078
3079  MI->eraseFromParent();   // The pseudo instruction is gone now.
3080  return BB;
3081}
3082
3083// Emit the COPY_FD pseudo instruction.
3084//
3085// copy_fd_pseudo $fd, $ws, n
3086// =>
3087// splati.d $wt, $ws, $n
3088// copy $fd, $wt:sub_64
3089//
3090// When n is zero, the equivalent operation can be performed with (potentially)
3091// zero instructions due to register overlaps. This optimization is always
3092// valid because FR=1 mode which is the only supported mode in MSA.
3093MachineBasicBlock * MipsSETargetLowering::
3094emitCOPY_FD(MachineInstr *MI, MachineBasicBlock *BB) const{
3095  assert(Subtarget.isFP64bit());
3096
3097  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3098  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3099  unsigned Fd  = MI->getOperand(0).getReg();
3100  unsigned Ws  = MI->getOperand(1).getReg();
3101  unsigned Lane = MI->getOperand(2).getImm() * 2;
3102  DebugLoc DL = MI->getDebugLoc();
3103
3104  if (Lane == 0)
3105    BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Ws, 0, Mips::sub_64);
3106  else {
3107    unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3108
3109    BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wt).addReg(Ws).addImm(1);
3110    BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_64);
3111  }
3112
3113  MI->eraseFromParent();   // The pseudo instruction is gone now.
3114  return BB;
3115}
3116
3117// Emit the INSERT_FW pseudo instruction.
3118//
3119// insert_fw_pseudo $wd, $wd_in, $n, $fs
3120// =>
3121// subreg_to_reg $wt:sub_lo, $fs
3122// insve_w $wd[$n], $wd_in, $wt[0]
3123MachineBasicBlock *
3124MipsSETargetLowering::emitINSERT_FW(MachineInstr *MI,
3125                                    MachineBasicBlock *BB) const {
3126  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3127  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3128  DebugLoc DL = MI->getDebugLoc();
3129  unsigned Wd = MI->getOperand(0).getReg();
3130  unsigned Wd_in = MI->getOperand(1).getReg();
3131  unsigned Lane = MI->getOperand(2).getImm();
3132  unsigned Fs = MI->getOperand(3).getReg();
3133  unsigned Wt = RegInfo.createVirtualRegister(
3134      Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass :
3135                                &Mips::MSA128WEvensRegClass);
3136
3137  BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3138      .addImm(0)
3139      .addReg(Fs)
3140      .addImm(Mips::sub_lo);
3141  BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_W), Wd)
3142      .addReg(Wd_in)
3143      .addImm(Lane)
3144      .addReg(Wt)
3145      .addImm(0);
3146
3147  MI->eraseFromParent(); // The pseudo instruction is gone now.
3148  return BB;
3149}
3150
3151// Emit the INSERT_FD pseudo instruction.
3152//
3153// insert_fd_pseudo $wd, $fs, n
3154// =>
3155// subreg_to_reg $wt:sub_64, $fs
3156// insve_d $wd[$n], $wd_in, $wt[0]
3157MachineBasicBlock *
3158MipsSETargetLowering::emitINSERT_FD(MachineInstr *MI,
3159                                    MachineBasicBlock *BB) const {
3160  assert(Subtarget.isFP64bit());
3161
3162  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3163  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3164  DebugLoc DL = MI->getDebugLoc();
3165  unsigned Wd = MI->getOperand(0).getReg();
3166  unsigned Wd_in = MI->getOperand(1).getReg();
3167  unsigned Lane = MI->getOperand(2).getImm();
3168  unsigned Fs = MI->getOperand(3).getReg();
3169  unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3170
3171  BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3172      .addImm(0)
3173      .addReg(Fs)
3174      .addImm(Mips::sub_64);
3175  BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_D), Wd)
3176      .addReg(Wd_in)
3177      .addImm(Lane)
3178      .addReg(Wt)
3179      .addImm(0);
3180
3181  MI->eraseFromParent(); // The pseudo instruction is gone now.
3182  return BB;
3183}
3184
3185// Emit the INSERT_([BHWD]|F[WD])_VIDX pseudo instruction.
3186//
3187// For integer:
3188// (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $rs)
3189// =>
3190// (SLL $lanetmp1, $lane, <log2size)
3191// (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
3192// (INSERT_[BHWD], $wdtmp2, $wdtmp1, 0, $rs)
3193// (NEG $lanetmp2, $lanetmp1)
3194// (SLD_B $wd, $wdtmp2, $wdtmp2,  $lanetmp2)
3195//
3196// For floating point:
3197// (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $fs)
3198// =>
3199// (SUBREG_TO_REG $wt, $fs, <subreg>)
3200// (SLL $lanetmp1, $lane, <log2size)
3201// (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
3202// (INSVE_[WD], $wdtmp2, 0, $wdtmp1, 0)
3203// (NEG $lanetmp2, $lanetmp1)
3204// (SLD_B $wd, $wdtmp2, $wdtmp2,  $lanetmp2)
3205MachineBasicBlock *
3206MipsSETargetLowering::emitINSERT_DF_VIDX(MachineInstr *MI,
3207                                         MachineBasicBlock *BB,
3208                                         unsigned EltSizeInBytes,
3209                                         bool IsFP) const {
3210  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3211  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3212  DebugLoc DL = MI->getDebugLoc();
3213  unsigned Wd = MI->getOperand(0).getReg();
3214  unsigned SrcVecReg = MI->getOperand(1).getReg();
3215  unsigned LaneReg = MI->getOperand(2).getReg();
3216  unsigned SrcValReg = MI->getOperand(3).getReg();
3217
3218  const TargetRegisterClass *VecRC = nullptr;
3219  const TargetRegisterClass *GPRRC =
3220      Subtarget.isABI_N64() ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
3221  unsigned EltLog2Size;
3222  unsigned InsertOp = 0;
3223  unsigned InsveOp = 0;
3224  switch (EltSizeInBytes) {
3225  default:
3226    llvm_unreachable("Unexpected size");
3227  case 1:
3228    EltLog2Size = 0;
3229    InsertOp = Mips::INSERT_B;
3230    InsveOp = Mips::INSVE_B;
3231    VecRC = &Mips::MSA128BRegClass;
3232    break;
3233  case 2:
3234    EltLog2Size = 1;
3235    InsertOp = Mips::INSERT_H;
3236    InsveOp = Mips::INSVE_H;
3237    VecRC = &Mips::MSA128HRegClass;
3238    break;
3239  case 4:
3240    EltLog2Size = 2;
3241    InsertOp = Mips::INSERT_W;
3242    InsveOp = Mips::INSVE_W;
3243    VecRC = &Mips::MSA128WRegClass;
3244    break;
3245  case 8:
3246    EltLog2Size = 3;
3247    InsertOp = Mips::INSERT_D;
3248    InsveOp = Mips::INSVE_D;
3249    VecRC = &Mips::MSA128DRegClass;
3250    break;
3251  }
3252
3253  if (IsFP) {
3254    unsigned Wt = RegInfo.createVirtualRegister(VecRC);
3255    BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3256        .addImm(0)
3257        .addReg(SrcValReg)
3258        .addImm(EltSizeInBytes == 8 ? Mips::sub_64 : Mips::sub_lo);
3259    SrcValReg = Wt;
3260  }
3261
3262  // Convert the lane index into a byte index
3263  if (EltSizeInBytes != 1) {
3264    unsigned LaneTmp1 = RegInfo.createVirtualRegister(GPRRC);
3265    BuildMI(*BB, MI, DL, TII->get(Mips::SLL), LaneTmp1)
3266        .addReg(LaneReg)
3267        .addImm(EltLog2Size);
3268    LaneReg = LaneTmp1;
3269  }
3270
3271  // Rotate bytes around so that the desired lane is element zero
3272  unsigned WdTmp1 = RegInfo.createVirtualRegister(VecRC);
3273  BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), WdTmp1)
3274      .addReg(SrcVecReg)
3275      .addReg(SrcVecReg)
3276      .addReg(LaneReg);
3277
3278  unsigned WdTmp2 = RegInfo.createVirtualRegister(VecRC);
3279  if (IsFP) {
3280    // Use insve.df to insert to element zero
3281    BuildMI(*BB, MI, DL, TII->get(InsveOp), WdTmp2)
3282        .addReg(WdTmp1)
3283        .addImm(0)
3284        .addReg(SrcValReg)
3285        .addImm(0);
3286  } else {
3287    // Use insert.df to insert to element zero
3288    BuildMI(*BB, MI, DL, TII->get(InsertOp), WdTmp2)
3289        .addReg(WdTmp1)
3290        .addReg(SrcValReg)
3291        .addImm(0);
3292  }
3293
3294  // Rotate elements the rest of the way for a full rotation.
3295  // sld.df inteprets $rt modulo the number of columns so we only need to negate
3296  // the lane index to do this.
3297  unsigned LaneTmp2 = RegInfo.createVirtualRegister(GPRRC);
3298  BuildMI(*BB, MI, DL, TII->get(Subtarget.isABI_N64() ? Mips::DSUB : Mips::SUB),
3299          LaneTmp2)
3300      .addReg(Subtarget.isABI_N64() ? Mips::ZERO_64 : Mips::ZERO)
3301      .addReg(LaneReg);
3302  BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), Wd)
3303      .addReg(WdTmp2)
3304      .addReg(WdTmp2)
3305      .addReg(LaneTmp2);
3306
3307  MI->eraseFromParent(); // The pseudo instruction is gone now.
3308  return BB;
3309}
3310
3311// Emit the FILL_FW pseudo instruction.
3312//
3313// fill_fw_pseudo $wd, $fs
3314// =>
3315// implicit_def $wt1
3316// insert_subreg $wt2:subreg_lo, $wt1, $fs
3317// splati.w $wd, $wt2[0]
3318MachineBasicBlock *
3319MipsSETargetLowering::emitFILL_FW(MachineInstr *MI,
3320                                  MachineBasicBlock *BB) const {
3321  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3322  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3323  DebugLoc DL = MI->getDebugLoc();
3324  unsigned Wd = MI->getOperand(0).getReg();
3325  unsigned Fs = MI->getOperand(1).getReg();
3326  unsigned Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3327  unsigned Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3328
3329  BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
3330  BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
3331      .addReg(Wt1)
3332      .addReg(Fs)
3333      .addImm(Mips::sub_lo);
3334  BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wd).addReg(Wt2).addImm(0);
3335
3336  MI->eraseFromParent(); // The pseudo instruction is gone now.
3337  return BB;
3338}
3339
3340// Emit the FILL_FD pseudo instruction.
3341//
3342// fill_fd_pseudo $wd, $fs
3343// =>
3344// implicit_def $wt1
3345// insert_subreg $wt2:subreg_64, $wt1, $fs
3346// splati.d $wd, $wt2[0]
3347MachineBasicBlock *
3348MipsSETargetLowering::emitFILL_FD(MachineInstr *MI,
3349                                  MachineBasicBlock *BB) const {
3350  assert(Subtarget.isFP64bit());
3351
3352  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3353  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3354  DebugLoc DL = MI->getDebugLoc();
3355  unsigned Wd = MI->getOperand(0).getReg();
3356  unsigned Fs = MI->getOperand(1).getReg();
3357  unsigned Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3358  unsigned Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3359
3360  BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
3361  BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
3362      .addReg(Wt1)
3363      .addReg(Fs)
3364      .addImm(Mips::sub_64);
3365  BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wd).addReg(Wt2).addImm(0);
3366
3367  MI->eraseFromParent();   // The pseudo instruction is gone now.
3368  return BB;
3369}
3370
3371// Emit the FEXP2_W_1 pseudo instructions.
3372//
3373// fexp2_w_1_pseudo $wd, $wt
3374// =>
3375// ldi.w $ws, 1
3376// fexp2.w $wd, $ws, $wt
3377MachineBasicBlock *
3378MipsSETargetLowering::emitFEXP2_W_1(MachineInstr *MI,
3379                                    MachineBasicBlock *BB) const {
3380  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3381  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3382  const TargetRegisterClass *RC = &Mips::MSA128WRegClass;
3383  unsigned Ws1 = RegInfo.createVirtualRegister(RC);
3384  unsigned Ws2 = RegInfo.createVirtualRegister(RC);
3385  DebugLoc DL = MI->getDebugLoc();
3386
3387  // Splat 1.0 into a vector
3388  BuildMI(*BB, MI, DL, TII->get(Mips::LDI_W), Ws1).addImm(1);
3389  BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_W), Ws2).addReg(Ws1);
3390
3391  // Emit 1.0 * fexp2(Wt)
3392  BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_W), MI->getOperand(0).getReg())
3393      .addReg(Ws2)
3394      .addReg(MI->getOperand(1).getReg());
3395
3396  MI->eraseFromParent(); // The pseudo instruction is gone now.
3397  return BB;
3398}
3399
3400// Emit the FEXP2_D_1 pseudo instructions.
3401//
3402// fexp2_d_1_pseudo $wd, $wt
3403// =>
3404// ldi.d $ws, 1
3405// fexp2.d $wd, $ws, $wt
3406MachineBasicBlock *
3407MipsSETargetLowering::emitFEXP2_D_1(MachineInstr *MI,
3408                                    MachineBasicBlock *BB) const {
3409  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3410  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3411  const TargetRegisterClass *RC = &Mips::MSA128DRegClass;
3412  unsigned Ws1 = RegInfo.createVirtualRegister(RC);
3413  unsigned Ws2 = RegInfo.createVirtualRegister(RC);
3414  DebugLoc DL = MI->getDebugLoc();
3415
3416  // Splat 1.0 into a vector
3417  BuildMI(*BB, MI, DL, TII->get(Mips::LDI_D), Ws1).addImm(1);
3418  BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_D), Ws2).addReg(Ws1);
3419
3420  // Emit 1.0 * fexp2(Wt)
3421  BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_D), MI->getOperand(0).getReg())
3422      .addReg(Ws2)
3423      .addReg(MI->getOperand(1).getReg());
3424
3425  MI->eraseFromParent(); // The pseudo instruction is gone now.
3426  return BB;
3427}
3428