MipsCallingConv.td revision 303975
1//===-- MipsCallingConv.td - Calling Conventions for Mips --*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9// This describes the calling conventions for Mips architecture.
10//===----------------------------------------------------------------------===//
11
12/// CCIfSubtarget - Match if the current subtarget has a feature F.
13class CCIfSubtarget<string F, CCAction A, string Invert = "">
14    : CCIf<!strconcat(Invert,
15                      "static_cast<const MipsSubtarget&>"
16			"(State.getMachineFunction().getSubtarget()).",
17                      F),
18           A>;
19
20// The inverse of CCIfSubtarget
21class CCIfSubtargetNot<string F, CCAction A> : CCIfSubtarget<F, A, "!">;
22
23/// Match if the original argument (before lowering) was a float.
24/// For example, this is true for i32's that were lowered from soft-float.
25class CCIfOrigArgWasNotFloat<CCAction A>
26    : CCIf<"!static_cast<MipsCCState *>(&State)->WasOriginalArgFloat(ValNo)",
27           A>;
28
29/// Match if the original argument (before lowering) was a 128-bit float (i.e.
30/// long double).
31class CCIfOrigArgWasF128<CCAction A>
32    : CCIf<"static_cast<MipsCCState *>(&State)->WasOriginalArgF128(ValNo)", A>;
33
34/// Match if this specific argument is a vararg.
35/// This is slightly different fro CCIfIsVarArg which matches if any argument is
36/// a vararg.
37class CCIfArgIsVarArg<CCAction A>
38    : CCIf<"!static_cast<MipsCCState *>(&State)->IsCallOperandFixed(ValNo)", A>;
39
40
41/// Match if the special calling conv is the specified value.
42class CCIfSpecialCallingConv<string CC, CCAction A>
43    : CCIf<"static_cast<MipsCCState *>(&State)->getSpecialCallingConv() == "
44               "MipsCCState::" # CC, A>;
45
46// For soft-float, f128 values are returned in A0_64 rather than V1_64.
47def RetCC_F128SoftFloat : CallingConv<[
48  CCAssignToReg<[V0_64, A0_64]>
49]>;
50
51// For hard-float, f128 values are returned as a pair of f64's rather than a
52// pair of i64's.
53def RetCC_F128HardFloat : CallingConv<[
54  CCBitConvertToType<f64>,
55
56  // Contrary to the ABI documentation, a struct containing a long double is
57  // returned in $f0, and $f1 instead of the usual $f0, and $f2. This is to
58  // match the de facto ABI as implemented by GCC.
59  CCIfInReg<CCAssignToReg<[D0_64, D1_64]>>,
60
61  CCAssignToReg<[D0_64, D2_64]>
62]>;
63
64// Handle F128 specially since we can't identify the original type during the
65// tablegen-erated code.
66def RetCC_F128 : CallingConv<[
67  CCIfSubtarget<"useSoftFloat()",
68      CCIfType<[i64], CCDelegateTo<RetCC_F128SoftFloat>>>,
69  CCIfSubtargetNot<"useSoftFloat()",
70      CCIfType<[i64], CCDelegateTo<RetCC_F128HardFloat>>>
71]>;
72
73//===----------------------------------------------------------------------===//
74// Mips O32 Calling Convention
75//===----------------------------------------------------------------------===//
76
77def CC_MipsO32 : CallingConv<[
78  // Promote i8/i16 arguments to i32.
79  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
80
81  // Integer values get stored in stack slots that are 4 bytes in
82  // size and 4-byte aligned.
83  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
84
85  // Integer values get stored in stack slots that are 8 bytes in
86  // size and 8-byte aligned.
87  CCIfType<[f64], CCAssignToStack<8, 8>>
88]>;
89
90// Only the return rules are defined here for O32. The rules for argument
91// passing are defined in MipsISelLowering.cpp.
92def RetCC_MipsO32 : CallingConv<[
93  // Promote i1/i8/i16 return values to i32.
94  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
95
96  // i32 are returned in registers V0, V1, A0, A1
97  CCIfType<[i32], CCAssignToReg<[V0, V1, A0, A1]>>,
98
99  // f32 are returned in registers F0, F2
100  CCIfType<[f32], CCAssignToReg<[F0, F2]>>,
101
102  // f64 arguments are returned in D0_64 and D2_64 in FP64bit mode or
103  // in D0 and D1 in FP32bit mode.
104  CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCAssignToReg<[D0_64, D2_64]>>>,
105  CCIfType<[f64], CCIfSubtargetNot<"isFP64bit()", CCAssignToReg<[D0, D1]>>>
106]>;
107
108def CC_MipsO32_FP32 : CustomCallingConv;
109def CC_MipsO32_FP64 : CustomCallingConv;
110
111def CC_MipsO32_FP : CallingConv<[
112  CCIfSubtargetNot<"isFP64bit()", CCDelegateTo<CC_MipsO32_FP32>>,
113  CCIfSubtarget<"isFP64bit()", CCDelegateTo<CC_MipsO32_FP64>>
114]>;
115
116//===----------------------------------------------------------------------===//
117// Mips N32/64 Calling Convention
118//===----------------------------------------------------------------------===//
119
120def CC_MipsN_SoftFloat : CallingConv<[
121  CCAssignToRegWithShadow<[A0, A1, A2, A3,
122                           T0, T1, T2, T3],
123                          [D12_64, D13_64, D14_64, D15_64,
124                           D16_64, D17_64, D18_64, D19_64]>,
125  CCAssignToStack<4, 8>
126]>;
127
128def CC_MipsN : CallingConv<[
129  CCIfType<[i8, i16, i32, i64],
130      CCIfSubtargetNot<"isLittle()",
131          CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>,
132
133  // All integers (except soft-float integers) are promoted to 64-bit.
134  CCIfType<[i8, i16, i32], CCIfOrigArgWasNotFloat<CCPromoteToType<i64>>>,
135
136  // The only i32's we have left are soft-float arguments.
137  CCIfSubtarget<"useSoftFloat()", CCIfType<[i32], CCDelegateTo<CC_MipsN_SoftFloat>>>,
138
139  // Integer arguments are passed in integer registers.
140  CCIfType<[i64], CCAssignToRegWithShadow<[A0_64, A1_64, A2_64, A3_64,
141                                           T0_64, T1_64, T2_64, T3_64],
142                                          [D12_64, D13_64, D14_64, D15_64,
143                                           D16_64, D17_64, D18_64, D19_64]>>,
144
145  // f32 arguments are passed in single precision FP registers.
146  CCIfType<[f32], CCAssignToRegWithShadow<[F12, F13, F14, F15,
147                                           F16, F17, F18, F19],
148                                          [A0_64, A1_64, A2_64, A3_64,
149                                           T0_64, T1_64, T2_64, T3_64]>>,
150
151  // f64 arguments are passed in double precision FP registers.
152  CCIfType<[f64], CCAssignToRegWithShadow<[D12_64, D13_64, D14_64, D15_64,
153                                           D16_64, D17_64, D18_64, D19_64],
154                                          [A0_64, A1_64, A2_64, A3_64,
155                                           T0_64, T1_64, T2_64, T3_64]>>,
156
157  // All stack parameter slots become 64-bit doublewords and are 8-byte aligned.
158  CCIfType<[f32], CCAssignToStack<4, 8>>,
159  CCIfType<[i64, f64], CCAssignToStack<8, 8>>
160]>;
161
162// N32/64 variable arguments.
163// All arguments are passed in integer registers.
164def CC_MipsN_VarArg : CallingConv<[
165  CCIfType<[i8, i16, i32, i64],
166      CCIfSubtargetNot<"isLittle()",
167          CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>,
168
169  // All integers are promoted to 64-bit.
170  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
171
172  CCIfType<[f32], CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3]>>,
173
174  CCIfType<[i64, f64], CCAssignToReg<[A0_64, A1_64, A2_64, A3_64,
175                                      T0_64, T1_64, T2_64, T3_64]>>,
176
177  // All stack parameter slots become 64-bit doublewords and are 8-byte aligned.
178  CCIfType<[f32], CCAssignToStack<4, 8>>,
179  CCIfType<[i64, f64], CCAssignToStack<8, 8>>
180]>;
181
182def RetCC_MipsN : CallingConv<[
183  // f128 needs to be handled similarly to f32 and f64. However, f128 is not
184  // legal and is lowered to i128 which is further lowered to a pair of i64's.
185  // This presents us with a problem for the calling convention since hard-float
186  // still needs to pass them in FPU registers, and soft-float needs to use $v0,
187  // and $a0 instead of the usual $v0, and $v1. We therefore resort to a
188  // pre-analyze (see PreAnalyzeReturnForF128()) step to pass information on
189  // whether the result was originally an f128 into the tablegen-erated code.
190  //
191  // f128 should only occur for the N64 ABI where long double is 128-bit. On
192  // N32, long double is equivalent to double.
193  CCIfType<[i64], CCIfOrigArgWasF128<CCDelegateTo<RetCC_F128>>>,
194
195  // Aggregate returns are positioned at the lowest address in the slot for
196  // both little and big-endian targets. When passing in registers, this
197  // requires that big-endian targets shift the value into the upper bits.
198  CCIfSubtarget<"isLittle()",
199      CCIfType<[i8, i16, i32, i64], CCIfInReg<CCPromoteToType<i64>>>>,
200  CCIfSubtargetNot<"isLittle()",
201      CCIfType<[i8, i16, i32, i64],
202          CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>,
203
204  // i64 are returned in registers V0_64, V1_64
205  CCIfType<[i64], CCAssignToReg<[V0_64, V1_64]>>,
206
207  // f32 are returned in registers F0, F2
208  CCIfType<[f32], CCAssignToReg<[F0, F2]>>,
209
210  // f64 are returned in registers D0, D2
211  CCIfType<[f64], CCAssignToReg<[D0_64, D2_64]>>
212]>;
213
214//===----------------------------------------------------------------------===//
215// Mips EABI Calling Convention
216//===----------------------------------------------------------------------===//
217
218def CC_MipsEABI : CallingConv<[
219  // Promote i8/i16 arguments to i32.
220  CCIfType<[i8, i16], CCPromoteToType<i32>>,
221
222  // Integer arguments are passed in integer registers.
223  CCIfType<[i32], CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3]>>,
224
225  // Single fp arguments are passed in pairs within 32-bit mode
226  CCIfType<[f32], CCIfSubtarget<"isSingleFloat()",
227                  CCAssignToReg<[F12, F13, F14, F15, F16, F17, F18, F19]>>>,
228
229  CCIfType<[f32], CCIfSubtargetNot<"isSingleFloat()",
230                  CCAssignToReg<[F12, F14, F16, F18]>>>,
231
232  // The first 4 double fp arguments are passed in single fp registers.
233  CCIfType<[f64], CCIfSubtargetNot<"isSingleFloat()",
234                  CCAssignToReg<[D6, D7, D8, D9]>>>,
235
236  // Integer values get stored in stack slots that are 4 bytes in
237  // size and 4-byte aligned.
238  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
239
240  // Integer values get stored in stack slots that are 8 bytes in
241  // size and 8-byte aligned.
242  CCIfType<[f64], CCIfSubtargetNot<"isSingleFloat()", CCAssignToStack<8, 8>>>
243]>;
244
245def RetCC_MipsEABI : CallingConv<[
246  // i32 are returned in registers V0, V1
247  CCIfType<[i32], CCAssignToReg<[V0, V1]>>,
248
249  // f32 are returned in registers F0, F1
250  CCIfType<[f32], CCAssignToReg<[F0, F1]>>,
251
252  // f64 are returned in register D0
253  CCIfType<[f64], CCIfSubtargetNot<"isSingleFloat()", CCAssignToReg<[D0]>>>
254]>;
255
256//===----------------------------------------------------------------------===//
257// Mips FastCC Calling Convention
258//===----------------------------------------------------------------------===//
259def CC_MipsO32_FastCC : CallingConv<[
260  // f64 arguments are passed in double-precision floating pointer registers.
261  CCIfType<[f64], CCIfSubtargetNot<"isFP64bit()",
262                                   CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6,
263                                                  D7, D8, D9]>>>,
264  CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCIfSubtarget<"useOddSPReg()",
265                                CCAssignToReg<[D0_64, D1_64, D2_64, D3_64,
266                                               D4_64, D5_64, D6_64, D7_64,
267                                               D8_64, D9_64, D10_64, D11_64,
268                                               D12_64, D13_64, D14_64, D15_64,
269                                               D16_64, D17_64, D18_64,
270                                               D19_64]>>>>,
271  CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCIfSubtarget<"noOddSPReg()",
272                                CCAssignToReg<[D0_64, D2_64, D4_64, D6_64,
273                                               D8_64, D10_64, D12_64, D14_64,
274                                               D16_64, D18_64]>>>>,
275
276  // Stack parameter slots for f64 are 64-bit doublewords and 8-byte aligned.
277  CCIfType<[f64], CCAssignToStack<8, 8>>
278]>;
279
280def CC_MipsN_FastCC : CallingConv<[
281  // Integer arguments are passed in integer registers.
282  CCIfType<[i64], CCAssignToReg<[A0_64, A1_64, A2_64, A3_64, T0_64, T1_64,
283                                 T2_64, T3_64, T4_64, T5_64, T6_64, T7_64,
284                                 T8_64, V1_64]>>,
285
286  // f64 arguments are passed in double-precision floating pointer registers.
287  CCIfType<[f64], CCAssignToReg<[D0_64, D1_64, D2_64, D3_64, D4_64, D5_64,
288                                 D6_64, D7_64, D8_64, D9_64, D10_64, D11_64,
289                                 D12_64, D13_64, D14_64, D15_64, D16_64, D17_64,
290                                 D18_64, D19_64]>>,
291
292  // Stack parameter slots for i64 and f64 are 64-bit doublewords and
293  // 8-byte aligned.
294  CCIfType<[i64, f64], CCAssignToStack<8, 8>>
295]>;
296
297def CC_Mips_FastCC : CallingConv<[
298  // Handles byval parameters.
299  CCIfByVal<CCPassByVal<4, 4>>,
300
301  // Promote i8/i16 arguments to i32.
302  CCIfType<[i8, i16], CCPromoteToType<i32>>,
303
304  // Integer arguments are passed in integer registers. All scratch registers,
305  // except for AT, V0 and T9, are available to be used as argument registers.
306  CCIfType<[i32], CCIfSubtargetNot<"isTargetNaCl()",
307      CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, T6, T7, T8, V1]>>>,
308
309  // In NaCl, T6, T7 and T8 are reserved and not available as argument
310  // registers for fastcc.  T6 contains the mask for sandboxing control flow
311  // (indirect jumps and calls).  T7 contains the mask for sandboxing memory
312  // accesses (loads and stores).  T8 contains the thread pointer.
313  CCIfType<[i32], CCIfSubtarget<"isTargetNaCl()",
314      CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, V1]>>>,
315
316  // f32 arguments are passed in single-precision floating pointer registers.
317  CCIfType<[f32], CCIfSubtarget<"useOddSPReg()",
318      CCAssignToReg<[F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13,
319                     F14, F15, F16, F17, F18, F19]>>>,
320
321  // Don't use odd numbered single-precision registers for -mno-odd-spreg.
322  CCIfType<[f32], CCIfSubtarget<"noOddSPReg()",
323      CCAssignToReg<[F0, F2, F4, F6, F8, F10, F12, F14, F16, F18]>>>,
324
325  // Stack parameter slots for i32 and f32 are 32-bit words and 4-byte aligned.
326  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
327
328  CCIfSubtarget<"isABI_EABI()", CCDelegateTo<CC_MipsEABI>>,
329  CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FastCC>>,
330  CCDelegateTo<CC_MipsN_FastCC>
331]>;
332
333//===----------------------------------------------------------------------===//
334// Mips Calling Convention Dispatch
335//===----------------------------------------------------------------------===//
336
337def RetCC_Mips : CallingConv<[
338  CCIfSubtarget<"isABI_EABI()", CCDelegateTo<RetCC_MipsEABI>>,
339  CCIfSubtarget<"isABI_N32()", CCDelegateTo<RetCC_MipsN>>,
340  CCIfSubtarget<"isABI_N64()", CCDelegateTo<RetCC_MipsN>>,
341  CCDelegateTo<RetCC_MipsO32>
342]>;
343
344def CC_Mips_ByVal : CallingConv<[
345  CCIfSubtarget<"isABI_O32()", CCIfByVal<CCPassByVal<4, 4>>>,
346  CCIfByVal<CCPassByVal<8, 8>>
347]>;
348
349def CC_Mips16RetHelper : CallingConv<[
350  CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>,
351
352  // Integer arguments are passed in integer registers.
353  CCIfType<[i32], CCAssignToReg<[V0, V1, A0, A1]>>
354]>;
355
356def CC_Mips_FixedArg : CallingConv<[
357  // Mips16 needs special handling on some functions.
358  CCIf<"State.getCallingConv() != CallingConv::Fast",
359      CCIfSpecialCallingConv<"Mips16RetHelperConv",
360           CCDelegateTo<CC_Mips16RetHelper>>>,
361
362  CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>,
363
364  // f128 needs to be handled similarly to f32 and f64 on hard-float. However,
365  // f128 is not legal and is lowered to i128 which is further lowered to a pair
366  // of i64's.
367  // This presents us with a problem for the calling convention since hard-float
368  // still needs to pass them in FPU registers. We therefore resort to a
369  // pre-analyze (see PreAnalyzeFormalArgsForF128()) step to pass information on
370  // whether the argument was originally an f128 into the tablegen-erated code.
371  //
372  // f128 should only occur for the N64 ABI where long double is 128-bit. On
373  // N32, long double is equivalent to double.
374  CCIfType<[i64],
375      CCIfSubtargetNot<"useSoftFloat()",
376          CCIfOrigArgWasF128<CCBitConvertToType<f64>>>>,
377
378  CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_Mips_FastCC>>,
379
380  // FIXME: There wasn't an EABI case in the original code and it seems unlikely
381  //        that it's the same as CC_MipsN
382  CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FP>>,
383  CCDelegateTo<CC_MipsN>
384]>;
385
386def CC_Mips_VarArg : CallingConv<[
387  CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>,
388
389  // FIXME: There wasn't an EABI case in the original code and it seems unlikely
390  //        that it's the same as CC_MipsN_VarArg
391  CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FP>>,
392  CCDelegateTo<CC_MipsN_VarArg>
393]>;
394
395def CC_Mips : CallingConv<[
396  CCIfVarArg<CCIfArgIsVarArg<CCDelegateTo<CC_Mips_VarArg>>>,
397  CCDelegateTo<CC_Mips_FixedArg>
398]>;
399
400//===----------------------------------------------------------------------===//
401// Callee-saved register lists.
402//===----------------------------------------------------------------------===//
403
404def CSR_SingleFloatOnly : CalleeSavedRegs<(add (sequence "F%u", 31, 20), RA, FP,
405                                               (sequence "S%u", 7, 0))>;
406
407def CSR_O32_FPXX : CalleeSavedRegs<(add (sequence "D%u", 15, 10), RA, FP,
408                                        (sequence "S%u", 7, 0))> {
409  let OtherPreserved = (add (decimate (sequence "F%u", 30, 20), 2));
410}
411
412def CSR_O32 : CalleeSavedRegs<(add (sequence "D%u", 15, 10), RA, FP,
413                                   (sequence "S%u", 7, 0))>;
414
415def CSR_O32_FP64 :
416  CalleeSavedRegs<(add (decimate (sequence "D%u_64", 30, 20), 2), RA, FP,
417                       (sequence "S%u", 7, 0))>;
418
419def CSR_N32 : CalleeSavedRegs<(add D20_64, D22_64, D24_64, D26_64, D28_64,
420                                   D30_64, RA_64, FP_64, GP_64,
421                                   (sequence "S%u_64", 7, 0))>;
422
423def CSR_N64 : CalleeSavedRegs<(add (sequence "D%u_64", 31, 24), RA_64, FP_64,
424                                   GP_64, (sequence "S%u_64", 7, 0))>;
425
426def CSR_Mips16RetHelper :
427  CalleeSavedRegs<(add V0, V1, FP,
428                   (sequence "A%u", 3, 0), (sequence "S%u", 7, 0),
429                   (sequence "D%u", 15, 10))>;
430
431def CSR_Interrupt_32R6 : CalleeSavedRegs<(add (sequence "A%u", 3, 0),
432                                              (sequence "S%u", 7, 0),
433                                              (sequence "V%u", 1, 0),
434                                              (sequence "T%u", 9, 0),
435                                              RA, FP, GP, AT)>;
436
437def CSR_Interrupt_32 : CalleeSavedRegs<(add (sequence "A%u", 3, 0),
438                                            (sequence "S%u", 7, 0),
439                                            (sequence "V%u", 1, 0),
440                                            (sequence "T%u", 9, 0),
441                                            RA, FP, GP, AT, LO0, HI0)>;
442
443def CSR_Interrupt_64R6 : CalleeSavedRegs<(add (sequence "A%u_64", 3, 0),
444                                              (sequence "V%u_64", 1, 0),
445                                              (sequence "S%u_64", 7, 0),
446                                              (sequence "T%u_64", 9, 0),
447                                              RA_64, FP_64, GP_64, AT_64)>;
448
449def CSR_Interrupt_64 : CalleeSavedRegs<(add (sequence "A%u_64", 3, 0),
450                                            (sequence "S%u_64", 7, 0),
451                                            (sequence "T%u_64", 9, 0),
452                                            (sequence "V%u_64", 1, 0),
453                                            RA_64, FP_64, GP_64, AT_64,
454                                            LO0_64, HI0_64)>;
455