MipsCallingConv.td revision 277320
1//===-- MipsCallingConv.td - Calling Conventions for Mips --*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9// This describes the calling conventions for Mips architecture.
10//===----------------------------------------------------------------------===//
11
12/// CCIfSubtarget - Match if the current subtarget has a feature F.
13class CCIfSubtarget<string F, CCAction A, string Invert = "">
14    : CCIf<!strconcat(Invert,
15                      "State.getMachineFunction().getTarget()."
16                          "getSubtarget<const MipsSubtarget>().",
17                      F),
18           A>;
19
20// The inverse of CCIfSubtarget
21class CCIfSubtargetNot<string F, CCAction A> : CCIfSubtarget<F, A, "!">;
22
23// For soft-float, f128 values are returned in A0_64 rather than V1_64.
24def RetCC_F128SoftFloat : CallingConv<[
25  CCAssignToReg<[V0_64, A0_64]>
26]>;
27
28// For hard-float, f128 values are returned as a pair of f64's rather than a
29// pair of i64's.
30def RetCC_F128HardFloat : CallingConv<[
31  CCBitConvertToType<f64>,
32
33  // Contrary to the ABI documentation, a struct containing a long double is
34  // returned in $f0, and $f1 instead of the usual $f0, and $f2. This is to
35  // match the de facto ABI as implemented by GCC.
36  CCIfInReg<CCAssignToReg<[D0_64, D1_64]>>,
37
38  CCAssignToReg<[D0_64, D2_64]>
39]>;
40
41// Handle F128 specially since we can't identify the original type during the
42// tablegen-erated code.
43def RetCC_F128 : CallingConv<[
44  CCIfSubtarget<"abiUsesSoftFloat()",
45      CCIfType<[i64], CCDelegateTo<RetCC_F128SoftFloat>>>,
46  CCIfSubtargetNot<"abiUsesSoftFloat()",
47      CCIfType<[i64], CCDelegateTo<RetCC_F128HardFloat>>>
48]>;
49
50//===----------------------------------------------------------------------===//
51// Mips O32 Calling Convention
52//===----------------------------------------------------------------------===//
53
54// Only the return rules are defined here for O32. The rules for argument
55// passing are defined in MipsISelLowering.cpp.
56def RetCC_MipsO32 : CallingConv<[
57  // i32 are returned in registers V0, V1, A0, A1
58  CCIfType<[i32], CCAssignToReg<[V0, V1, A0, A1]>>,
59
60  // f32 are returned in registers F0, F2
61  CCIfType<[f32], CCAssignToReg<[F0, F2]>>,
62
63  // f64 arguments are returned in D0_64 and D2_64 in FP64bit mode or
64  // in D0 and D1 in FP32bit mode.
65  CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCAssignToReg<[D0_64, D2_64]>>>,
66  CCIfType<[f64], CCIfSubtargetNot<"isFP64bit()", CCAssignToReg<[D0, D1]>>>
67]>;
68
69def CC_MipsO32_FP32 : CustomCallingConv;
70def CC_MipsO32_FP64 : CustomCallingConv;
71
72def CC_MipsO32_FP : CallingConv<[
73  CCIfSubtargetNot<"isFP64bit()", CCDelegateTo<CC_MipsO32_FP32>>,
74  CCIfSubtarget<"isFP64bit()", CCDelegateTo<CC_MipsO32_FP64>>
75]>;
76
77//===----------------------------------------------------------------------===//
78// Mips N32/64 Calling Convention
79//===----------------------------------------------------------------------===//
80
81def CC_MipsN_SoftFloat : CallingConv<[
82  CCAssignToRegWithShadow<[A0, A1, A2, A3,
83                           T0, T1, T2, T3],
84                          [D12_64, D13_64, D14_64, D15_64,
85                           D16_64, D17_64, D18_64, D19_64]>,
86  CCAssignToStack<4, 8>
87]>;
88
89def CC_MipsN : CallingConv<[
90  CCIfType<[i8, i16, i32],
91      CCIfSubtargetNot<"isLittle()",
92          CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>,
93
94  // All integers (except soft-float integers) are promoted to 64-bit.
95  CCIfType<[i8, i16, i32],
96     CCIf<"!static_cast<MipsCCState *>(&State)->WasOriginalArgFloat(ValNo)",
97          CCPromoteToType<i64>>>,
98
99  // The only i32's we have left are soft-float arguments.
100  CCIfSubtarget<"abiUsesSoftFloat()", CCIfType<[i32], CCDelegateTo<CC_MipsN_SoftFloat>>>,
101
102  // Integer arguments are passed in integer registers.
103  CCIfType<[i64], CCAssignToRegWithShadow<[A0_64, A1_64, A2_64, A3_64,
104                                           T0_64, T1_64, T2_64, T3_64],
105                                          [D12_64, D13_64, D14_64, D15_64,
106                                           D16_64, D17_64, D18_64, D19_64]>>,
107
108  // f32 arguments are passed in single precision FP registers.
109  CCIfType<[f32], CCAssignToRegWithShadow<[F12, F13, F14, F15,
110                                           F16, F17, F18, F19],
111                                          [A0_64, A1_64, A2_64, A3_64,
112                                           T0_64, T1_64, T2_64, T3_64]>>,
113
114  // f64 arguments are passed in double precision FP registers.
115  CCIfType<[f64], CCAssignToRegWithShadow<[D12_64, D13_64, D14_64, D15_64,
116                                           D16_64, D17_64, D18_64, D19_64],
117                                          [A0_64, A1_64, A2_64, A3_64,
118                                           T0_64, T1_64, T2_64, T3_64]>>,
119
120  // All stack parameter slots become 64-bit doublewords and are 8-byte aligned.
121  CCIfType<[f32], CCAssignToStack<4, 8>>,
122  CCIfType<[i64, f64], CCAssignToStack<8, 8>>
123]>;
124
125// N32/64 variable arguments.
126// All arguments are passed in integer registers.
127def CC_MipsN_VarArg : CallingConv<[
128  // All integers are promoted to 64-bit.
129  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
130
131  CCIfType<[f32], CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3]>>,
132
133  CCIfType<[i64, f64], CCAssignToReg<[A0_64, A1_64, A2_64, A3_64,
134                                      T0_64, T1_64, T2_64, T3_64]>>,
135
136  // All stack parameter slots become 64-bit doublewords and are 8-byte aligned.
137  CCIfType<[f32], CCAssignToStack<4, 8>>,
138  CCIfType<[i64, f64], CCAssignToStack<8, 8>>
139]>;
140
141def RetCC_MipsN : CallingConv<[
142  // f128 needs to be handled similarly to f32 and f64. However, f128 is not
143  // legal and is lowered to i128 which is further lowered to a pair of i64's.
144  // This presents us with a problem for the calling convention since hard-float
145  // still needs to pass them in FPU registers, and soft-float needs to use $v0,
146  // and $a0 instead of the usual $v0, and $v1. We therefore resort to a
147  // pre-analyze (see PreAnalyzeReturnForF128()) step to pass information on
148  // whether the result was originally an f128 into the tablegen-erated code.
149  //
150  // f128 should only occur for the N64 ABI where long double is 128-bit. On
151  // N32, long double is equivalent to double.
152  CCIfType<[i64],
153      CCIf<"static_cast<MipsCCState *>(&State)->WasOriginalArgF128(ValNo)",
154           CCDelegateTo<RetCC_F128>>>,
155
156  // Aggregate returns are positioned at the lowest address in the slot for
157  // both little and big-endian targets. When passing in registers, this
158  // requires that big-endian targets shift the value into the upper bits.
159  CCIfSubtarget<"isLittle()",
160      CCIfType<[i8, i16, i32, i64], CCIfInReg<CCPromoteToType<i64>>>>,
161  CCIfSubtargetNot<"isLittle()",
162      CCIfType<[i8, i16, i32, i64],
163          CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>,
164
165  // i64 are returned in registers V0_64, V1_64
166  CCIfType<[i64], CCAssignToReg<[V0_64, V1_64]>>,
167
168  // f32 are returned in registers F0, F2
169  CCIfType<[f32], CCAssignToReg<[F0, F2]>>,
170
171  // f64 are returned in registers D0, D2
172  CCIfType<[f64], CCAssignToReg<[D0_64, D2_64]>>
173]>;
174
175//===----------------------------------------------------------------------===//
176// Mips EABI Calling Convention
177//===----------------------------------------------------------------------===//
178
179def CC_MipsEABI : CallingConv<[
180  // Promote i8/i16 arguments to i32.
181  CCIfType<[i8, i16], CCPromoteToType<i32>>,
182
183  // Integer arguments are passed in integer registers.
184  CCIfType<[i32], CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3]>>,
185
186  // Single fp arguments are passed in pairs within 32-bit mode
187  CCIfType<[f32], CCIfSubtarget<"isSingleFloat()",
188                  CCAssignToReg<[F12, F13, F14, F15, F16, F17, F18, F19]>>>,
189
190  CCIfType<[f32], CCIfSubtargetNot<"isSingleFloat()",
191                  CCAssignToReg<[F12, F14, F16, F18]>>>,
192
193  // The first 4 double fp arguments are passed in single fp registers.
194  CCIfType<[f64], CCIfSubtargetNot<"isSingleFloat()",
195                  CCAssignToReg<[D6, D7, D8, D9]>>>,
196
197  // Integer values get stored in stack slots that are 4 bytes in
198  // size and 4-byte aligned.
199  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
200
201  // Integer values get stored in stack slots that are 8 bytes in
202  // size and 8-byte aligned.
203  CCIfType<[f64], CCIfSubtargetNot<"isSingleFloat()", CCAssignToStack<8, 8>>>
204]>;
205
206def RetCC_MipsEABI : CallingConv<[
207  // i32 are returned in registers V0, V1
208  CCIfType<[i32], CCAssignToReg<[V0, V1]>>,
209
210  // f32 are returned in registers F0, F1
211  CCIfType<[f32], CCAssignToReg<[F0, F1]>>,
212
213  // f64 are returned in register D0
214  CCIfType<[f64], CCIfSubtargetNot<"isSingleFloat()", CCAssignToReg<[D0]>>>
215]>;
216
217//===----------------------------------------------------------------------===//
218// Mips FastCC Calling Convention
219//===----------------------------------------------------------------------===//
220def CC_MipsO32_FastCC : CallingConv<[
221  // f64 arguments are passed in double-precision floating pointer registers.
222  CCIfType<[f64], CCIfSubtargetNot<"isFP64bit()",
223                                   CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6,
224                                                  D7, D8, D9]>>>,
225  CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCIfSubtarget<"useOddSPReg()",
226                                CCAssignToReg<[D0_64, D1_64, D2_64, D3_64,
227                                               D4_64, D5_64, D6_64, D7_64,
228                                               D8_64, D9_64, D10_64, D11_64,
229                                               D12_64, D13_64, D14_64, D15_64,
230                                               D16_64, D17_64, D18_64,
231                                               D19_64]>>>>,
232  CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCIfSubtarget<"noOddSPReg()",
233                                CCAssignToReg<[D0_64, D2_64, D4_64, D6_64,
234                                               D8_64, D10_64, D12_64, D14_64,
235                                               D16_64, D18_64]>>>>,
236
237  // Stack parameter slots for f64 are 64-bit doublewords and 8-byte aligned.
238  CCIfType<[f64], CCAssignToStack<8, 8>>
239]>;
240
241def CC_MipsN_FastCC : CallingConv<[
242  // Integer arguments are passed in integer registers.
243  CCIfType<[i64], CCAssignToReg<[A0_64, A1_64, A2_64, A3_64, T0_64, T1_64,
244                                 T2_64, T3_64, T4_64, T5_64, T6_64, T7_64,
245                                 T8_64, V1_64]>>,
246
247  // f64 arguments are passed in double-precision floating pointer registers.
248  CCIfType<[f64], CCAssignToReg<[D0_64, D1_64, D2_64, D3_64, D4_64, D5_64,
249                                 D6_64, D7_64, D8_64, D9_64, D10_64, D11_64,
250                                 D12_64, D13_64, D14_64, D15_64, D16_64, D17_64,
251                                 D18_64, D19_64]>>,
252
253  // Stack parameter slots for i64 and f64 are 64-bit doublewords and
254  // 8-byte aligned.
255  CCIfType<[i64, f64], CCAssignToStack<8, 8>>
256]>;
257
258def CC_Mips_FastCC : CallingConv<[
259  // Handles byval parameters.
260  CCIfByVal<CCPassByVal<4, 4>>,
261
262  // Promote i8/i16 arguments to i32.
263  CCIfType<[i8, i16], CCPromoteToType<i32>>,
264
265  // Integer arguments are passed in integer registers. All scratch registers,
266  // except for AT, V0 and T9, are available to be used as argument registers.
267  CCIfType<[i32], CCIfSubtargetNot<"isTargetNaCl()",
268      CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, T6, T7, T8, V1]>>>,
269
270  // In NaCl, T6, T7 and T8 are reserved and not available as argument
271  // registers for fastcc.  T6 contains the mask for sandboxing control flow
272  // (indirect jumps and calls).  T7 contains the mask for sandboxing memory
273  // accesses (loads and stores).  T8 contains the thread pointer.
274  CCIfType<[i32], CCIfSubtarget<"isTargetNaCl()",
275      CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, V1]>>>,
276
277  // f32 arguments are passed in single-precision floating pointer registers.
278  CCIfType<[f32], CCIfSubtarget<"useOddSPReg()",
279      CCAssignToReg<[F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13,
280                     F14, F15, F16, F17, F18, F19]>>>,
281
282  // Don't use odd numbered single-precision registers for -mno-odd-spreg.
283  CCIfType<[f32], CCIfSubtarget<"noOddSPReg()",
284      CCAssignToReg<[F0, F2, F4, F6, F8, F10, F12, F14, F16, F18]>>>,
285
286  // Stack parameter slots for i32 and f32 are 32-bit words and 4-byte aligned.
287  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
288
289  CCIfSubtarget<"isABI_EABI()", CCDelegateTo<CC_MipsEABI>>,
290  CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FastCC>>,
291  CCDelegateTo<CC_MipsN_FastCC>
292]>;
293
294//===----------------------------------------------------------------------===//
295// Mips Calling Convention Dispatch
296//===----------------------------------------------------------------------===//
297
298def RetCC_Mips : CallingConv<[
299  CCIfSubtarget<"isABI_EABI()", CCDelegateTo<RetCC_MipsEABI>>,
300  CCIfSubtarget<"isABI_N32()", CCDelegateTo<RetCC_MipsN>>,
301  CCIfSubtarget<"isABI_N64()", CCDelegateTo<RetCC_MipsN>>,
302  CCDelegateTo<RetCC_MipsO32>
303]>;
304
305def CC_Mips_ByVal : CallingConv<[
306  CCIfSubtarget<"isABI_O32()", CCIfByVal<CCPassByVal<4, 4>>>,
307  CCIfByVal<CCPassByVal<8, 8>>
308]>;
309
310def CC_Mips16RetHelper : CallingConv<[
311  CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>,
312
313  // Integer arguments are passed in integer registers.
314  CCIfType<[i32], CCAssignToReg<[V0, V1, A0, A1]>>
315]>;
316
317def CC_Mips_FixedArg : CallingConv<[
318  // Mips16 needs special handling on some functions.
319  CCIf<"State.getCallingConv() != CallingConv::Fast",
320      CCIf<"static_cast<MipsCCState *>(&State)->getSpecialCallingConv() == "
321               "MipsCCState::Mips16RetHelperConv",
322           CCDelegateTo<CC_Mips16RetHelper>>>,
323
324  CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>,
325
326  // f128 needs to be handled similarly to f32 and f64 on hard-float. However,
327  // f128 is not legal and is lowered to i128 which is further lowered to a pair
328  // of i64's.
329  // This presents us with a problem for the calling convention since hard-float
330  // still needs to pass them in FPU registers. We therefore resort to a
331  // pre-analyze (see PreAnalyzeFormalArgsForF128()) step to pass information on
332  // whether the argument was originally an f128 into the tablegen-erated code.
333  //
334  // f128 should only occur for the N64 ABI where long double is 128-bit. On
335  // N32, long double is equivalent to double.
336  CCIfType<[i64],
337      CCIfSubtargetNot<"abiUsesSoftFloat()",
338          CCIf<"static_cast<MipsCCState *>(&State)->WasOriginalArgF128(ValNo)",
339              CCBitConvertToType<f64>>>>,
340
341  CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_Mips_FastCC>>,
342
343  // FIXME: There wasn't an EABI case in the original code and it seems unlikely
344  //        that it's the same as CC_MipsN
345  CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FP>>,
346  CCDelegateTo<CC_MipsN>
347]>;
348
349def CC_Mips_VarArg : CallingConv<[
350  CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>,
351
352  // FIXME: There wasn't an EABI case in the original code and it seems unlikely
353  //        that it's the same as CC_MipsN_VarArg
354  CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FP>>,
355  CCDelegateTo<CC_MipsN_VarArg>
356]>;
357
358def CC_Mips : CallingConv<[
359  CCIfVarArg<
360      CCIf<"!static_cast<MipsCCState *>(&State)->IsCallOperandFixed(ValNo)",
361          CCDelegateTo<CC_Mips_VarArg>>>,
362  CCDelegateTo<CC_Mips_FixedArg>
363]>;
364
365//===----------------------------------------------------------------------===//
366// Callee-saved register lists.
367//===----------------------------------------------------------------------===//
368
369def CSR_SingleFloatOnly : CalleeSavedRegs<(add (sequence "F%u", 31, 20), RA, FP,
370                                               (sequence "S%u", 7, 0))>;
371
372def CSR_O32_FPXX : CalleeSavedRegs<(add (sequence "D%u", 15, 10), RA, FP,
373                                        (sequence "S%u", 7, 0))> {
374  let OtherPreserved = (add (decimate (sequence "F%u", 30, 20), 2));
375}
376
377def CSR_O32 : CalleeSavedRegs<(add (sequence "D%u", 15, 10), RA, FP,
378                                   (sequence "S%u", 7, 0))>;
379
380def CSR_O32_FP64 :
381  CalleeSavedRegs<(add (decimate (sequence "D%u_64", 30, 20), 2), RA, FP,
382                       (sequence "S%u", 7, 0))>;
383
384def CSR_N32 : CalleeSavedRegs<(add D20_64, D22_64, D24_64, D26_64, D28_64,
385                                   D30_64, RA_64, FP_64, GP_64,
386                                   (sequence "S%u_64", 7, 0))>;
387
388def CSR_N64 : CalleeSavedRegs<(add (sequence "D%u_64", 31, 24), RA_64, FP_64,
389                                   GP_64, (sequence "S%u_64", 7, 0))>;
390
391def CSR_Mips16RetHelper :
392  CalleeSavedRegs<(add V0, V1, FP,
393                   (sequence "A%u", 3, 0), (sequence "S%u", 7, 0),
394                   (sequence "D%u", 15, 10))>;
395