HexagonInstrInfo.cpp revision 280031
1//===-- HexagonInstrInfo.cpp - Hexagon Instruction Information ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Hexagon implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "HexagonInstrInfo.h"
15#include "Hexagon.h"
16#include "HexagonRegisterInfo.h"
17#include "HexagonSubtarget.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/CodeGen/DFAPacketizer.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineMemOperand.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/CodeGen/PseudoSourceValue.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Support/raw_ostream.h"
29
30using namespace llvm;
31
32#define DEBUG_TYPE "hexagon-instrinfo"
33
34#define GET_INSTRINFO_CTOR_DTOR
35#define GET_INSTRMAP_INFO
36#include "HexagonGenInstrInfo.inc"
37#include "HexagonGenDFAPacketizer.inc"
38
39///
40/// Constants for Hexagon instructions.
41///
42const int Hexagon_MEMW_OFFSET_MAX = 4095;
43const int Hexagon_MEMW_OFFSET_MIN = -4096;
44const int Hexagon_MEMD_OFFSET_MAX = 8191;
45const int Hexagon_MEMD_OFFSET_MIN = -8192;
46const int Hexagon_MEMH_OFFSET_MAX = 2047;
47const int Hexagon_MEMH_OFFSET_MIN = -2048;
48const int Hexagon_MEMB_OFFSET_MAX = 1023;
49const int Hexagon_MEMB_OFFSET_MIN = -1024;
50const int Hexagon_ADDI_OFFSET_MAX = 32767;
51const int Hexagon_ADDI_OFFSET_MIN = -32768;
52const int Hexagon_MEMD_AUTOINC_MAX = 56;
53const int Hexagon_MEMD_AUTOINC_MIN = -64;
54const int Hexagon_MEMW_AUTOINC_MAX = 28;
55const int Hexagon_MEMW_AUTOINC_MIN = -32;
56const int Hexagon_MEMH_AUTOINC_MAX = 14;
57const int Hexagon_MEMH_AUTOINC_MIN = -16;
58const int Hexagon_MEMB_AUTOINC_MAX = 7;
59const int Hexagon_MEMB_AUTOINC_MIN = -8;
60
61// Pin the vtable to this file.
62void HexagonInstrInfo::anchor() {}
63
64HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
65  : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
66    RI(ST), Subtarget(ST) {
67}
68
69
70/// isLoadFromStackSlot - If the specified machine instruction is a direct
71/// load from a stack slot, return the virtual or physical register number of
72/// the destination along with the FrameIndex of the loaded stack slot.  If
73/// not, return 0.  This predicate must return 0 if the instruction has
74/// any side effects other than loading from the stack slot.
75unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
76                                             int &FrameIndex) const {
77
78
79  switch (MI->getOpcode()) {
80  default: break;
81  case Hexagon::L2_loadri_io:
82  case Hexagon::L2_loadrd_io:
83  case Hexagon::L2_loadrh_io:
84  case Hexagon::L2_loadrb_io:
85  case Hexagon::L2_loadrub_io:
86    if (MI->getOperand(2).isFI() &&
87        MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
88      FrameIndex = MI->getOperand(2).getIndex();
89      return MI->getOperand(0).getReg();
90    }
91    break;
92  }
93  return 0;
94}
95
96
97/// isStoreToStackSlot - If the specified machine instruction is a direct
98/// store to a stack slot, return the virtual or physical register number of
99/// the source reg along with the FrameIndex of the loaded stack slot.  If
100/// not, return 0.  This predicate must return 0 if the instruction has
101/// any side effects other than storing to the stack slot.
102unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
103                                            int &FrameIndex) const {
104  switch (MI->getOpcode()) {
105  default: break;
106  case Hexagon::S2_storeri_io:
107  case Hexagon::S2_storerd_io:
108  case Hexagon::S2_storerh_io:
109  case Hexagon::S2_storerb_io:
110    if (MI->getOperand(2).isFI() &&
111        MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
112      FrameIndex = MI->getOperand(0).getIndex();
113      return MI->getOperand(2).getReg();
114    }
115    break;
116  }
117  return 0;
118}
119
120
121unsigned
122HexagonInstrInfo::InsertBranch(MachineBasicBlock &MBB,MachineBasicBlock *TBB,
123                             MachineBasicBlock *FBB,
124                             const SmallVectorImpl<MachineOperand> &Cond,
125                             DebugLoc DL) const{
126
127    int BOpc   = Hexagon::J2_jump;
128    int BccOpc = Hexagon::J2_jumpt;
129
130    assert(TBB && "InsertBranch must not be told to insert a fallthrough");
131
132    int regPos = 0;
133    // Check if ReverseBranchCondition has asked to reverse this branch
134    // If we want to reverse the branch an odd number of times, we want
135    // JMP_f.
136    if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) {
137      BccOpc = Hexagon::J2_jumpf;
138      regPos = 1;
139    }
140
141    if (!FBB) {
142      if (Cond.empty()) {
143        // Due to a bug in TailMerging/CFG Optimization, we need to add a
144        // special case handling of a predicated jump followed by an
145        // unconditional jump. If not, Tail Merging and CFG Optimization go
146        // into an infinite loop.
147        MachineBasicBlock *NewTBB, *NewFBB;
148        SmallVector<MachineOperand, 4> Cond;
149        MachineInstr *Term = MBB.getFirstTerminator();
150        if (isPredicated(Term) && !AnalyzeBranch(MBB, NewTBB, NewFBB, Cond,
151                                                 false)) {
152          MachineBasicBlock *NextBB =
153            std::next(MachineFunction::iterator(&MBB));
154          if (NewTBB == NextBB) {
155            ReverseBranchCondition(Cond);
156            RemoveBranch(MBB);
157            return InsertBranch(MBB, TBB, nullptr, Cond, DL);
158          }
159        }
160        BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
161      } else {
162        BuildMI(&MBB, DL,
163                get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB);
164      }
165      return 1;
166    }
167
168    BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB);
169    BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
170
171    return 2;
172}
173
174
175bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
176                                     MachineBasicBlock *&TBB,
177                                 MachineBasicBlock *&FBB,
178                                 SmallVectorImpl<MachineOperand> &Cond,
179                                 bool AllowModify) const {
180  TBB = nullptr;
181  FBB = nullptr;
182
183  // If the block has no terminators, it just falls into the block after it.
184  MachineBasicBlock::instr_iterator I = MBB.instr_end();
185  if (I == MBB.instr_begin())
186    return false;
187
188  // A basic block may looks like this:
189  //
190  //  [   insn
191  //     EH_LABEL
192  //      insn
193  //      insn
194  //      insn
195  //     EH_LABEL
196  //      insn     ]
197  //
198  // It has two succs but does not have a terminator
199  // Don't know how to handle it.
200  do {
201    --I;
202    if (I->isEHLabel())
203      return true;
204  } while (I != MBB.instr_begin());
205
206  I = MBB.instr_end();
207  --I;
208
209  while (I->isDebugValue()) {
210    if (I == MBB.instr_begin())
211      return false;
212    --I;
213  }
214
215  // Delete the JMP if it's equivalent to a fall-through.
216  if (AllowModify && I->getOpcode() == Hexagon::J2_jump &&
217      MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
218    DEBUG(dbgs()<< "\nErasing the jump to successor block\n";);
219    I->eraseFromParent();
220    I = MBB.instr_end();
221    if (I == MBB.instr_begin())
222      return false;
223    --I;
224  }
225  if (!isUnpredicatedTerminator(I))
226    return false;
227
228  // Get the last instruction in the block.
229  MachineInstr *LastInst = I;
230  MachineInstr *SecondLastInst = nullptr;
231  // Find one more terminator if present.
232  do {
233    if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(I)) {
234      if (!SecondLastInst)
235        SecondLastInst = I;
236      else
237        // This is a third branch.
238        return true;
239    }
240    if (I == MBB.instr_begin())
241      break;
242    --I;
243  } while(I);
244
245  int LastOpcode = LastInst->getOpcode();
246
247  bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
248  bool LastOpcodeHasNot = PredOpcodeHasNot(LastOpcode);
249
250  // If there is only one terminator instruction, process it.
251  if (LastInst && !SecondLastInst) {
252    if (LastOpcode == Hexagon::J2_jump) {
253      TBB = LastInst->getOperand(0).getMBB();
254      return false;
255    }
256    if (LastOpcode == Hexagon::ENDLOOP0) {
257      TBB = LastInst->getOperand(0).getMBB();
258      Cond.push_back(LastInst->getOperand(0));
259      return false;
260    }
261    if (LastOpcodeHasJMP_c) {
262      TBB = LastInst->getOperand(1).getMBB();
263      if (LastOpcodeHasNot) {
264        Cond.push_back(MachineOperand::CreateImm(0));
265      }
266      Cond.push_back(LastInst->getOperand(0));
267      return false;
268    }
269    // Otherwise, don't know what this is.
270    return true;
271  }
272
273  int SecLastOpcode = SecondLastInst->getOpcode();
274
275  bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
276  bool SecLastOpcodeHasNot = PredOpcodeHasNot(SecLastOpcode);
277  if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) {
278    TBB =  SecondLastInst->getOperand(1).getMBB();
279    if (SecLastOpcodeHasNot)
280      Cond.push_back(MachineOperand::CreateImm(0));
281    Cond.push_back(SecondLastInst->getOperand(0));
282    FBB = LastInst->getOperand(0).getMBB();
283    return false;
284  }
285
286  // If the block ends with two Hexagon:JMPs, handle it.  The second one is not
287  // executed, so remove it.
288  if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) {
289    TBB = SecondLastInst->getOperand(0).getMBB();
290    I = LastInst;
291    if (AllowModify)
292      I->eraseFromParent();
293    return false;
294  }
295
296  // If the block ends with an ENDLOOP, and JMP, handle it.
297  if (SecLastOpcode == Hexagon::ENDLOOP0 &&
298      LastOpcode == Hexagon::J2_jump) {
299    TBB = SecondLastInst->getOperand(0).getMBB();
300    Cond.push_back(SecondLastInst->getOperand(0));
301    FBB = LastInst->getOperand(0).getMBB();
302    return false;
303  }
304
305  // Otherwise, can't handle this.
306  return true;
307}
308
309
310unsigned HexagonInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
311  int BOpc   = Hexagon::J2_jump;
312  int BccOpc = Hexagon::J2_jumpt;
313  int BccOpcNot = Hexagon::J2_jumpf;
314
315  MachineBasicBlock::iterator I = MBB.end();
316  if (I == MBB.begin()) return 0;
317  --I;
318  if (I->getOpcode() != BOpc && I->getOpcode() != BccOpc &&
319      I->getOpcode() != BccOpcNot)
320    return 0;
321
322  // Remove the branch.
323  I->eraseFromParent();
324
325  I = MBB.end();
326
327  if (I == MBB.begin()) return 1;
328  --I;
329  if (I->getOpcode() != BccOpc && I->getOpcode() != BccOpcNot)
330    return 1;
331
332  // Remove the branch.
333  I->eraseFromParent();
334  return 2;
335}
336
337
338/// \brief For a comparison instruction, return the source registers in
339/// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
340/// compares against in CmpValue. Return true if the comparison instruction
341/// can be analyzed.
342bool HexagonInstrInfo::analyzeCompare(const MachineInstr *MI,
343                                      unsigned &SrcReg, unsigned &SrcReg2,
344                                      int &Mask, int &Value) const {
345  unsigned Opc = MI->getOpcode();
346
347  // Set mask and the first source register.
348  switch (Opc) {
349    case Hexagon::C2_cmpeqp:
350    case Hexagon::C2_cmpeqi:
351    case Hexagon::C2_cmpeq:
352    case Hexagon::C2_cmpgtp:
353    case Hexagon::C2_cmpgtup:
354    case Hexagon::C2_cmpgtui:
355    case Hexagon::C2_cmpgtu:
356    case Hexagon::C2_cmpgti:
357    case Hexagon::C2_cmpgt:
358      SrcReg = MI->getOperand(1).getReg();
359      Mask = ~0;
360      break;
361    case Hexagon::CMPbEQri_V4:
362    case Hexagon::CMPbEQrr_sbsb_V4:
363    case Hexagon::CMPbEQrr_ubub_V4:
364    case Hexagon::CMPbGTUri_V4:
365    case Hexagon::CMPbGTUrr_V4:
366    case Hexagon::CMPbGTrr_V4:
367      SrcReg = MI->getOperand(1).getReg();
368      Mask = 0xFF;
369      break;
370    case Hexagon::CMPhEQri_V4:
371    case Hexagon::CMPhEQrr_shl_V4:
372    case Hexagon::CMPhEQrr_xor_V4:
373    case Hexagon::CMPhGTUri_V4:
374    case Hexagon::CMPhGTUrr_V4:
375    case Hexagon::CMPhGTrr_shl_V4:
376      SrcReg = MI->getOperand(1).getReg();
377      Mask = 0xFFFF;
378      break;
379  }
380
381  // Set the value/second source register.
382  switch (Opc) {
383    case Hexagon::C2_cmpeqp:
384    case Hexagon::C2_cmpeq:
385    case Hexagon::C2_cmpgtp:
386    case Hexagon::C2_cmpgtup:
387    case Hexagon::C2_cmpgtu:
388    case Hexagon::C2_cmpgt:
389    case Hexagon::CMPbEQrr_sbsb_V4:
390    case Hexagon::CMPbEQrr_ubub_V4:
391    case Hexagon::CMPbGTUrr_V4:
392    case Hexagon::CMPbGTrr_V4:
393    case Hexagon::CMPhEQrr_shl_V4:
394    case Hexagon::CMPhEQrr_xor_V4:
395    case Hexagon::CMPhGTUrr_V4:
396    case Hexagon::CMPhGTrr_shl_V4:
397      SrcReg2 = MI->getOperand(2).getReg();
398      return true;
399
400    case Hexagon::C2_cmpeqi:
401    case Hexagon::C2_cmpgtui:
402    case Hexagon::C2_cmpgti:
403    case Hexagon::CMPbEQri_V4:
404    case Hexagon::CMPbGTUri_V4:
405    case Hexagon::CMPhEQri_V4:
406    case Hexagon::CMPhGTUri_V4:
407      SrcReg2 = 0;
408      Value = MI->getOperand(2).getImm();
409      return true;
410  }
411
412  return false;
413}
414
415
416void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
417                                 MachineBasicBlock::iterator I, DebugLoc DL,
418                                 unsigned DestReg, unsigned SrcReg,
419                                 bool KillSrc) const {
420  if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
421    BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg).addReg(SrcReg);
422    return;
423  }
424  if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
425    BuildMI(MBB, I, DL, get(Hexagon::A2_tfrp), DestReg).addReg(SrcReg);
426    return;
427  }
428  if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
429    // Map Pd = Ps to Pd = or(Ps, Ps).
430    BuildMI(MBB, I, DL, get(Hexagon::C2_or),
431            DestReg).addReg(SrcReg).addReg(SrcReg);
432    return;
433  }
434  if (Hexagon::DoubleRegsRegClass.contains(DestReg) &&
435      Hexagon::IntRegsRegClass.contains(SrcReg)) {
436    // We can have an overlap between single and double reg: r1:0 = r0.
437    if(SrcReg == RI.getSubReg(DestReg, Hexagon::subreg_loreg)) {
438        // r1:0 = r0
439        BuildMI(MBB, I, DL, get(Hexagon::A2_tfrsi), (RI.getSubReg(DestReg,
440                Hexagon::subreg_hireg))).addImm(0);
441    } else {
442        // r1:0 = r1 or no overlap.
443        BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), (RI.getSubReg(DestReg,
444                Hexagon::subreg_loreg))).addReg(SrcReg);
445        BuildMI(MBB, I, DL, get(Hexagon::A2_tfrsi), (RI.getSubReg(DestReg,
446                Hexagon::subreg_hireg))).addImm(0);
447    }
448    return;
449  }
450  if (Hexagon::CtrRegsRegClass.contains(DestReg) &&
451      Hexagon::IntRegsRegClass.contains(SrcReg)) {
452    BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg).addReg(SrcReg);
453    return;
454  }
455  if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
456      Hexagon::IntRegsRegClass.contains(DestReg)) {
457    BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg).
458      addReg(SrcReg, getKillRegState(KillSrc));
459    return;
460  }
461  if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
462      Hexagon::PredRegsRegClass.contains(DestReg)) {
463    BuildMI(MBB, I, DL, get(Hexagon::C2_tfrrp), DestReg).
464      addReg(SrcReg, getKillRegState(KillSrc));
465    return;
466  }
467
468  llvm_unreachable("Unimplemented");
469}
470
471
472void HexagonInstrInfo::
473storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
474                    unsigned SrcReg, bool isKill, int FI,
475                    const TargetRegisterClass *RC,
476                    const TargetRegisterInfo *TRI) const {
477
478  DebugLoc DL = MBB.findDebugLoc(I);
479  MachineFunction &MF = *MBB.getParent();
480  MachineFrameInfo &MFI = *MF.getFrameInfo();
481  unsigned Align = MFI.getObjectAlignment(FI);
482
483  MachineMemOperand *MMO =
484      MF.getMachineMemOperand(
485                      MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
486                      MachineMemOperand::MOStore,
487                      MFI.getObjectSize(FI),
488                      Align);
489
490  if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
491    BuildMI(MBB, I, DL, get(Hexagon::S2_storeri_io))
492          .addFrameIndex(FI).addImm(0)
493          .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
494  } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
495    BuildMI(MBB, I, DL, get(Hexagon::S2_storerd_io))
496          .addFrameIndex(FI).addImm(0)
497          .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
498  } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
499    BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
500          .addFrameIndex(FI).addImm(0)
501          .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
502  } else {
503    llvm_unreachable("Unimplemented");
504  }
505}
506
507
508void HexagonInstrInfo::storeRegToAddr(
509                                 MachineFunction &MF, unsigned SrcReg,
510                                 bool isKill,
511                                 SmallVectorImpl<MachineOperand> &Addr,
512                                 const TargetRegisterClass *RC,
513                                 SmallVectorImpl<MachineInstr*> &NewMIs) const
514{
515  llvm_unreachable("Unimplemented");
516}
517
518
519void HexagonInstrInfo::
520loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
521                     unsigned DestReg, int FI,
522                     const TargetRegisterClass *RC,
523                     const TargetRegisterInfo *TRI) const {
524  DebugLoc DL = MBB.findDebugLoc(I);
525  MachineFunction &MF = *MBB.getParent();
526  MachineFrameInfo &MFI = *MF.getFrameInfo();
527  unsigned Align = MFI.getObjectAlignment(FI);
528
529  MachineMemOperand *MMO =
530      MF.getMachineMemOperand(
531                      MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
532                      MachineMemOperand::MOLoad,
533                      MFI.getObjectSize(FI),
534                      Align);
535  if (RC == &Hexagon::IntRegsRegClass) {
536    BuildMI(MBB, I, DL, get(Hexagon::L2_loadri_io), DestReg)
537          .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
538  } else if (RC == &Hexagon::DoubleRegsRegClass) {
539    BuildMI(MBB, I, DL, get(Hexagon::L2_loadrd_io), DestReg)
540          .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
541  } else if (RC == &Hexagon::PredRegsRegClass) {
542    BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
543          .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
544  } else {
545    llvm_unreachable("Can't store this register to stack slot");
546  }
547}
548
549
550void HexagonInstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
551                                        SmallVectorImpl<MachineOperand> &Addr,
552                                        const TargetRegisterClass *RC,
553                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
554  llvm_unreachable("Unimplemented");
555}
556
557
558MachineInstr *HexagonInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
559                                                    MachineInstr* MI,
560                                          const SmallVectorImpl<unsigned> &Ops,
561                                                    int FI) const {
562  // Hexagon_TODO: Implement.
563  return nullptr;
564}
565
566unsigned HexagonInstrInfo::createVR(MachineFunction* MF, MVT VT) const {
567
568  MachineRegisterInfo &RegInfo = MF->getRegInfo();
569  const TargetRegisterClass *TRC;
570  if (VT == MVT::i1) {
571    TRC = &Hexagon::PredRegsRegClass;
572  } else if (VT == MVT::i32 || VT == MVT::f32) {
573    TRC = &Hexagon::IntRegsRegClass;
574  } else if (VT == MVT::i64 || VT == MVT::f64) {
575    TRC = &Hexagon::DoubleRegsRegClass;
576  } else {
577    llvm_unreachable("Cannot handle this register class");
578  }
579
580  unsigned NewReg = RegInfo.createVirtualRegister(TRC);
581  return NewReg;
582}
583
584bool HexagonInstrInfo::isExtendable(const MachineInstr *MI) const {
585  // Constant extenders are allowed only for V4 and above.
586  if (!Subtarget.hasV4TOps())
587    return false;
588
589  const MCInstrDesc &MID = MI->getDesc();
590  const uint64_t F = MID.TSFlags;
591  if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
592    return true;
593
594  // TODO: This is largely obsolete now. Will need to be removed
595  // in consecutive patches.
596  switch(MI->getOpcode()) {
597    // TFR_FI Remains a special case.
598    case Hexagon::TFR_FI:
599      return true;
600    default:
601      return false;
602  }
603  return  false;
604}
605
606// This returns true in two cases:
607// - The OP code itself indicates that this is an extended instruction.
608// - One of MOs has been marked with HMOTF_ConstExtended flag.
609bool HexagonInstrInfo::isExtended(const MachineInstr *MI) const {
610  // First check if this is permanently extended op code.
611  const uint64_t F = MI->getDesc().TSFlags;
612  if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
613    return true;
614  // Use MO operand flags to determine if one of MI's operands
615  // has HMOTF_ConstExtended flag set.
616  for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
617       E = MI->operands_end(); I != E; ++I) {
618    if (I->getTargetFlags() && HexagonII::HMOTF_ConstExtended)
619      return true;
620  }
621  return  false;
622}
623
624bool HexagonInstrInfo::isBranch (const MachineInstr *MI) const {
625  return MI->getDesc().isBranch();
626}
627
628bool HexagonInstrInfo::isNewValueInst(const MachineInstr *MI) const {
629  if (isNewValueJump(MI))
630    return true;
631
632  if (isNewValueStore(MI))
633    return true;
634
635  return false;
636}
637
638bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr *MI) const {
639  return MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4;
640}
641
642bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const {
643  bool isPred = MI->getDesc().isPredicable();
644
645  if (!isPred)
646    return false;
647
648  const int Opc = MI->getOpcode();
649
650  switch(Opc) {
651  case Hexagon::A2_tfrsi:
652    return isInt<12>(MI->getOperand(1).getImm());
653
654  case Hexagon::S2_storerd_io:
655    return isShiftedUInt<6,3>(MI->getOperand(1).getImm());
656
657  case Hexagon::S2_storeri_io:
658  case Hexagon::S2_storerinew_io:
659    return isShiftedUInt<6,2>(MI->getOperand(1).getImm());
660
661  case Hexagon::S2_storerh_io:
662  case Hexagon::S2_storerhnew_io:
663    return isShiftedUInt<6,1>(MI->getOperand(1).getImm());
664
665  case Hexagon::S2_storerb_io:
666  case Hexagon::S2_storerbnew_io:
667    return isUInt<6>(MI->getOperand(1).getImm());
668
669  case Hexagon::L2_loadrd_io:
670    return isShiftedUInt<6,3>(MI->getOperand(2).getImm());
671
672  case Hexagon::L2_loadri_io:
673    return isShiftedUInt<6,2>(MI->getOperand(2).getImm());
674
675  case Hexagon::L2_loadrh_io:
676  case Hexagon::L2_loadruh_io:
677    return isShiftedUInt<6,1>(MI->getOperand(2).getImm());
678
679  case Hexagon::L2_loadrb_io:
680  case Hexagon::L2_loadrub_io:
681    return isUInt<6>(MI->getOperand(2).getImm());
682
683  case Hexagon::L2_loadrd_pi:
684    return isShiftedInt<4,3>(MI->getOperand(3).getImm());
685
686  case Hexagon::L2_loadri_pi:
687    return isShiftedInt<4,2>(MI->getOperand(3).getImm());
688
689  case Hexagon::L2_loadrh_pi:
690  case Hexagon::L2_loadruh_pi:
691    return isShiftedInt<4,1>(MI->getOperand(3).getImm());
692
693  case Hexagon::L2_loadrb_pi:
694  case Hexagon::L2_loadrub_pi:
695    return isInt<4>(MI->getOperand(3).getImm());
696
697  case Hexagon::S4_storeirb_io:
698  case Hexagon::S4_storeirh_io:
699  case Hexagon::S4_storeiri_io:
700    return (isUInt<6>(MI->getOperand(1).getImm()) &&
701            isInt<6>(MI->getOperand(2).getImm()));
702
703  case Hexagon::ADD_ri:
704    return isInt<8>(MI->getOperand(2).getImm());
705
706  case Hexagon::A2_aslh:
707  case Hexagon::A2_asrh:
708  case Hexagon::A2_sxtb:
709  case Hexagon::A2_sxth:
710  case Hexagon::A2_zxtb:
711  case Hexagon::A2_zxth:
712    return Subtarget.hasV4TOps();
713  }
714
715  return true;
716}
717
718// This function performs the following inversiones:
719//
720//  cPt    ---> cNotPt
721//  cNotPt ---> cPt
722//
723unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
724  int InvPredOpcode;
725  InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
726                                        : Hexagon::getTruePredOpcode(Opc);
727  if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
728    return InvPredOpcode;
729
730  switch(Opc) {
731    default: llvm_unreachable("Unexpected predicated instruction");
732    case Hexagon::C2_ccombinewt:
733      return Hexagon::C2_ccombinewf;
734    case Hexagon::C2_ccombinewf:
735      return Hexagon::C2_ccombinewt;
736
737      // Dealloc_return.
738    case Hexagon::L4_return_t:
739      return Hexagon::L4_return_f;
740    case Hexagon::L4_return_f:
741      return Hexagon::L4_return_t;
742  }
743}
744
745// New Value Store instructions.
746bool HexagonInstrInfo::isNewValueStore(const MachineInstr *MI) const {
747  const uint64_t F = MI->getDesc().TSFlags;
748
749  return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask);
750}
751
752bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
753  const uint64_t F = get(Opcode).TSFlags;
754
755  return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask);
756}
757
758int HexagonInstrInfo::
759getMatchingCondBranchOpcode(int Opc, bool invertPredicate) const {
760  enum Hexagon::PredSense inPredSense;
761  inPredSense = invertPredicate ? Hexagon::PredSense_false :
762                                  Hexagon::PredSense_true;
763  int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
764  if (CondOpcode >= 0) // Valid Conditional opcode/instruction
765    return CondOpcode;
766
767  // This switch case will be removed once all the instructions have been
768  // modified to use relation maps.
769  switch(Opc) {
770  case Hexagon::TFRI_f:
771    return !invertPredicate ? Hexagon::TFRI_cPt_f :
772                              Hexagon::TFRI_cNotPt_f;
773  case Hexagon::A2_combinew:
774    return !invertPredicate ? Hexagon::C2_ccombinewt :
775                              Hexagon::C2_ccombinewf;
776
777  // Word.
778  case Hexagon::STriw_f:
779    return !invertPredicate ? Hexagon::S2_pstorerit_io:
780                              Hexagon::S2_pstorerif_io;
781  case Hexagon::STriw_indexed_f:
782    return !invertPredicate ? Hexagon::S2_pstorerit_io:
783                              Hexagon::S2_pstorerif_io;
784
785  // DEALLOC_RETURN.
786  case Hexagon::L4_return:
787    return !invertPredicate ? Hexagon::L4_return_t:
788                              Hexagon::L4_return_f;
789  }
790  llvm_unreachable("Unexpected predicable instruction");
791}
792
793
794bool HexagonInstrInfo::
795PredicateInstruction(MachineInstr *MI,
796                     const SmallVectorImpl<MachineOperand> &Cond) const {
797  int Opc = MI->getOpcode();
798  assert (isPredicable(MI) && "Expected predicable instruction");
799  bool invertJump = (!Cond.empty() && Cond[0].isImm() &&
800                     (Cond[0].getImm() == 0));
801
802  // This will change MI's opcode to its predicate version.
803  // However, its operand list is still the old one, i.e. the
804  // non-predicate one.
805  MI->setDesc(get(getMatchingCondBranchOpcode(Opc, invertJump)));
806
807  int oper = -1;
808  unsigned int GAIdx = 0;
809
810  // Indicates whether the current MI has a GlobalAddress operand
811  bool hasGAOpnd = false;
812  std::vector<MachineOperand> tmpOpnds;
813
814  // Indicates whether we need to shift operands to right.
815  bool needShift = true;
816
817  // The predicate is ALWAYS the FIRST input operand !!!
818  if (MI->getNumOperands() == 0) {
819    // The non-predicate version of MI does not take any operands,
820    // i.e. no outs and no ins. In this condition, the predicate
821    // operand will be directly placed at Operands[0]. No operand
822    // shift is needed.
823    // Example: BARRIER
824    needShift = false;
825    oper = -1;
826  }
827  else if (   MI->getOperand(MI->getNumOperands()-1).isReg()
828           && MI->getOperand(MI->getNumOperands()-1).isDef()
829           && !MI->getOperand(MI->getNumOperands()-1).isImplicit()) {
830    // The non-predicate version of MI does not have any input operands.
831    // In this condition, we extend the length of Operands[] by one and
832    // copy the original last operand to the newly allocated slot.
833    // At this moment, it is just a place holder. Later, we will put
834    // predicate operand directly into it. No operand shift is needed.
835    // Example: r0=BARRIER (this is a faked insn used here for illustration)
836    MI->addOperand(MI->getOperand(MI->getNumOperands()-1));
837    needShift = false;
838    oper = MI->getNumOperands() - 2;
839  }
840  else {
841    // We need to right shift all input operands by one. Duplicate the
842    // last operand into the newly allocated slot.
843    MI->addOperand(MI->getOperand(MI->getNumOperands()-1));
844  }
845
846  if (needShift)
847  {
848    // Operands[ MI->getNumOperands() - 2 ] has been copied into
849    // Operands[ MI->getNumOperands() - 1 ], so we start from
850    // Operands[ MI->getNumOperands() - 3 ].
851    // oper is a signed int.
852    // It is ok if "MI->getNumOperands()-3" is -3, -2, or -1.
853    for (oper = MI->getNumOperands() - 3; oper >= 0; --oper)
854    {
855      MachineOperand &MO = MI->getOperand(oper);
856
857      // Opnd[0] Opnd[1] Opnd[2] Opnd[3] Opnd[4]   Opnd[5]   Opnd[6]   Opnd[7]
858      // <Def0>  <Def1>  <Use0>  <Use1>  <ImpDef0> <ImpDef1> <ImpUse0> <ImpUse1>
859      //               /\~
860      //              /||\~
861      //               ||
862      //        Predicate Operand here
863      if (MO.isReg() && !MO.isUse() && !MO.isImplicit()) {
864        break;
865      }
866      if (MO.isReg()) {
867        MI->getOperand(oper+1).ChangeToRegister(MO.getReg(), MO.isDef(),
868                                                MO.isImplicit(), MO.isKill(),
869                                                MO.isDead(), MO.isUndef(),
870                                                MO.isDebug());
871      }
872      else if (MO.isImm()) {
873        MI->getOperand(oper+1).ChangeToImmediate(MO.getImm());
874      }
875      else if (MO.isGlobal()) {
876        // MI can not have more than one GlobalAddress operand.
877        assert(hasGAOpnd == false && "MI can only have one GlobalAddress opnd");
878
879        // There is no member function called "ChangeToGlobalAddress" in the
880        // MachineOperand class (not like "ChangeToRegister" and
881        // "ChangeToImmediate"). So we have to remove them from Operands[] list
882        // first, and then add them back after we have inserted the predicate
883        // operand. tmpOpnds[] is to remember these operands before we remove
884        // them.
885        tmpOpnds.push_back(MO);
886
887        // Operands[oper] is a GlobalAddress operand;
888        // Operands[oper+1] has been copied into Operands[oper+2];
889        hasGAOpnd = true;
890        GAIdx = oper;
891        continue;
892      }
893      else {
894        llvm_unreachable("Unexpected operand type");
895      }
896    }
897  }
898
899  int regPos = invertJump ? 1 : 0;
900  MachineOperand PredMO = Cond[regPos];
901
902  // [oper] now points to the last explicit Def. Predicate operand must be
903  // located at [oper+1]. See diagram above.
904  // This assumes that the predicate is always the first operand,
905  // i.e. Operands[0+numResults], in the set of inputs
906  // It is better to have an assert here to check this. But I don't know how
907  // to write this assert because findFirstPredOperandIdx() would return -1
908  if (oper < -1) oper = -1;
909
910  MI->getOperand(oper+1).ChangeToRegister(PredMO.getReg(), PredMO.isDef(),
911                                          PredMO.isImplicit(), false,
912                                          PredMO.isDead(), PredMO.isUndef(),
913                                          PredMO.isDebug());
914
915  MachineRegisterInfo &RegInfo = MI->getParent()->getParent()->getRegInfo();
916  RegInfo.clearKillFlags(PredMO.getReg());
917
918  if (hasGAOpnd)
919  {
920    unsigned int i;
921
922    // Operands[GAIdx] is the original GlobalAddress operand, which is
923    // already copied into tmpOpnds[0].
924    // Operands[GAIdx] now stores a copy of Operands[GAIdx-1]
925    // Operands[GAIdx+1] has already been copied into Operands[GAIdx+2],
926    // so we start from [GAIdx+2]
927    for (i = GAIdx + 2; i < MI->getNumOperands(); ++i)
928      tmpOpnds.push_back(MI->getOperand(i));
929
930    // Remove all operands in range [ (GAIdx+1) ... (MI->getNumOperands()-1) ]
931    // It is very important that we always remove from the end of Operands[]
932    // MI->getNumOperands() is at least 2 if program goes to here.
933    for (i = MI->getNumOperands() - 1; i > GAIdx; --i)
934      MI->RemoveOperand(i);
935
936    for (i = 0; i < tmpOpnds.size(); ++i)
937      MI->addOperand(tmpOpnds[i]);
938  }
939
940  return true;
941}
942
943
944bool
945HexagonInstrInfo::
946isProfitableToIfCvt(MachineBasicBlock &MBB,
947                    unsigned NumCycles,
948                    unsigned ExtraPredCycles,
949                    const BranchProbability &Probability) const {
950  return true;
951}
952
953
954bool
955HexagonInstrInfo::
956isProfitableToIfCvt(MachineBasicBlock &TMBB,
957                    unsigned NumTCycles,
958                    unsigned ExtraTCycles,
959                    MachineBasicBlock &FMBB,
960                    unsigned NumFCycles,
961                    unsigned ExtraFCycles,
962                    const BranchProbability &Probability) const {
963  return true;
964}
965
966// Returns true if an instruction is predicated irrespective of the predicate
967// sense. For example, all of the following will return true.
968// if (p0) R1 = add(R2, R3)
969// if (!p0) R1 = add(R2, R3)
970// if (p0.new) R1 = add(R2, R3)
971// if (!p0.new) R1 = add(R2, R3)
972bool HexagonInstrInfo::isPredicated(const MachineInstr *MI) const {
973  const uint64_t F = MI->getDesc().TSFlags;
974
975  return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
976}
977
978bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
979  const uint64_t F = get(Opcode).TSFlags;
980
981  return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
982}
983
984bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr *MI) const {
985  const uint64_t F = MI->getDesc().TSFlags;
986
987  assert(isPredicated(MI));
988  return (!((F >> HexagonII::PredicatedFalsePos) &
989            HexagonII::PredicatedFalseMask));
990}
991
992bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
993  const uint64_t F = get(Opcode).TSFlags;
994
995  // Make sure that the instruction is predicated.
996  assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
997  return (!((F >> HexagonII::PredicatedFalsePos) &
998            HexagonII::PredicatedFalseMask));
999}
1000
1001bool HexagonInstrInfo::isPredicatedNew(const MachineInstr *MI) const {
1002  const uint64_t F = MI->getDesc().TSFlags;
1003
1004  assert(isPredicated(MI));
1005  return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
1006}
1007
1008bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
1009  const uint64_t F = get(Opcode).TSFlags;
1010
1011  assert(isPredicated(Opcode));
1012  return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
1013}
1014
1015// Returns true, if a ST insn can be promoted to a new-value store.
1016bool HexagonInstrInfo::mayBeNewStore(const MachineInstr *MI) const {
1017  const HexagonRegisterInfo& QRI = getRegisterInfo();
1018  const uint64_t F = MI->getDesc().TSFlags;
1019
1020  return ((F >> HexagonII::mayNVStorePos) &
1021           HexagonII::mayNVStoreMask &
1022           QRI.Subtarget.hasV4TOps());
1023}
1024
1025bool
1026HexagonInstrInfo::DefinesPredicate(MachineInstr *MI,
1027                                   std::vector<MachineOperand> &Pred) const {
1028  for (unsigned oper = 0; oper < MI->getNumOperands(); ++oper) {
1029    MachineOperand MO = MI->getOperand(oper);
1030    if (MO.isReg() && MO.isDef()) {
1031      const TargetRegisterClass* RC = RI.getMinimalPhysRegClass(MO.getReg());
1032      if (RC == &Hexagon::PredRegsRegClass) {
1033        Pred.push_back(MO);
1034        return true;
1035      }
1036    }
1037  }
1038  return false;
1039}
1040
1041
1042bool
1043HexagonInstrInfo::
1044SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
1045                  const SmallVectorImpl<MachineOperand> &Pred2) const {
1046  // TODO: Fix this
1047  return false;
1048}
1049
1050
1051//
1052// We indicate that we want to reverse the branch by
1053// inserting a 0 at the beginning of the Cond vector.
1054//
1055bool HexagonInstrInfo::
1056ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1057  if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) {
1058    Cond.erase(Cond.begin());
1059  } else {
1060    Cond.insert(Cond.begin(), MachineOperand::CreateImm(0));
1061  }
1062  return false;
1063}
1064
1065
1066bool HexagonInstrInfo::
1067isProfitableToDupForIfCvt(MachineBasicBlock &MBB,unsigned NumInstrs,
1068                          const BranchProbability &Probability) const {
1069  return (NumInstrs <= 4);
1070}
1071
1072bool HexagonInstrInfo::isDeallocRet(const MachineInstr *MI) const {
1073  switch (MI->getOpcode()) {
1074  default: return false;
1075  case Hexagon::L4_return:
1076  case Hexagon::L4_return_t:
1077  case Hexagon::L4_return_f:
1078  case Hexagon::L4_return_tnew_pnt:
1079  case Hexagon::L4_return_fnew_pnt:
1080  case Hexagon::L4_return_tnew_pt:
1081  case Hexagon::L4_return_fnew_pt:
1082   return true;
1083  }
1084}
1085
1086
1087bool HexagonInstrInfo::
1088isValidOffset(const int Opcode, const int Offset) const {
1089  // This function is to check whether the "Offset" is in the correct range of
1090  // the given "Opcode". If "Offset" is not in the correct range, "ADD_ri" is
1091  // inserted to calculate the final address. Due to this reason, the function
1092  // assumes that the "Offset" has correct alignment.
1093  // We used to assert if the offset was not properly aligned, however,
1094  // there are cases where a misaligned pointer recast can cause this
1095  // problem, and we need to allow for it. The front end warns of such
1096  // misaligns with respect to load size.
1097
1098  switch(Opcode) {
1099
1100  case Hexagon::L2_loadri_io:
1101  case Hexagon::LDriw_f:
1102  case Hexagon::S2_storeri_io:
1103  case Hexagon::STriw_f:
1104    return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
1105      (Offset <= Hexagon_MEMW_OFFSET_MAX);
1106
1107  case Hexagon::L2_loadrd_io:
1108  case Hexagon::LDrid_f:
1109  case Hexagon::S2_storerd_io:
1110  case Hexagon::STrid_f:
1111    return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
1112      (Offset <= Hexagon_MEMD_OFFSET_MAX);
1113
1114  case Hexagon::L2_loadrh_io:
1115  case Hexagon::L2_loadruh_io:
1116  case Hexagon::S2_storerh_io:
1117    return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
1118      (Offset <= Hexagon_MEMH_OFFSET_MAX);
1119
1120  case Hexagon::L2_loadrb_io:
1121  case Hexagon::S2_storerb_io:
1122  case Hexagon::L2_loadrub_io:
1123    return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
1124      (Offset <= Hexagon_MEMB_OFFSET_MAX);
1125
1126  case Hexagon::ADD_ri:
1127  case Hexagon::TFR_FI:
1128    return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
1129      (Offset <= Hexagon_ADDI_OFFSET_MAX);
1130
1131  case Hexagon::L4_iadd_memopw_io:
1132  case Hexagon::L4_isub_memopw_io:
1133  case Hexagon::L4_add_memopw_io:
1134  case Hexagon::L4_sub_memopw_io:
1135  case Hexagon::L4_and_memopw_io:
1136  case Hexagon::L4_or_memopw_io:
1137    return (0 <= Offset && Offset <= 255);
1138
1139  case Hexagon::L4_iadd_memoph_io:
1140  case Hexagon::L4_isub_memoph_io:
1141  case Hexagon::L4_add_memoph_io:
1142  case Hexagon::L4_sub_memoph_io:
1143  case Hexagon::L4_and_memoph_io:
1144  case Hexagon::L4_or_memoph_io:
1145    return (0 <= Offset && Offset <= 127);
1146
1147  case Hexagon::L4_iadd_memopb_io:
1148  case Hexagon::L4_isub_memopb_io:
1149  case Hexagon::L4_add_memopb_io:
1150  case Hexagon::L4_sub_memopb_io:
1151  case Hexagon::L4_and_memopb_io:
1152  case Hexagon::L4_or_memopb_io:
1153    return (0 <= Offset && Offset <= 63);
1154
1155  // LDri_pred and STriw_pred are pseudo operations, so it has to take offset of
1156  // any size. Later pass knows how to handle it.
1157  case Hexagon::STriw_pred:
1158  case Hexagon::LDriw_pred:
1159    return true;
1160
1161  case Hexagon::J2_loop0i:
1162    return isUInt<10>(Offset);
1163
1164  // INLINEASM is very special.
1165  case Hexagon::INLINEASM:
1166    return true;
1167  }
1168
1169  llvm_unreachable("No offset range is defined for this opcode. "
1170                   "Please define it in the above switch statement!");
1171}
1172
1173
1174//
1175// Check if the Offset is a valid auto-inc imm by Load/Store Type.
1176//
1177bool HexagonInstrInfo::
1178isValidAutoIncImm(const EVT VT, const int Offset) const {
1179
1180  if (VT == MVT::i64) {
1181      return (Offset >= Hexagon_MEMD_AUTOINC_MIN &&
1182              Offset <= Hexagon_MEMD_AUTOINC_MAX &&
1183              (Offset & 0x7) == 0);
1184  }
1185  if (VT == MVT::i32) {
1186      return (Offset >= Hexagon_MEMW_AUTOINC_MIN &&
1187              Offset <= Hexagon_MEMW_AUTOINC_MAX &&
1188              (Offset & 0x3) == 0);
1189  }
1190  if (VT == MVT::i16) {
1191      return (Offset >= Hexagon_MEMH_AUTOINC_MIN &&
1192              Offset <= Hexagon_MEMH_AUTOINC_MAX &&
1193              (Offset & 0x1) == 0);
1194  }
1195  if (VT == MVT::i8) {
1196      return (Offset >= Hexagon_MEMB_AUTOINC_MIN &&
1197              Offset <= Hexagon_MEMB_AUTOINC_MAX);
1198  }
1199  llvm_unreachable("Not an auto-inc opc!");
1200}
1201
1202
1203bool HexagonInstrInfo::
1204isMemOp(const MachineInstr *MI) const {
1205//  return MI->getDesc().mayLoad() && MI->getDesc().mayStore();
1206
1207  switch (MI->getOpcode())
1208  {
1209  default: return false;
1210  case Hexagon::L4_iadd_memopw_io:
1211  case Hexagon::L4_isub_memopw_io:
1212  case Hexagon::L4_add_memopw_io:
1213  case Hexagon::L4_sub_memopw_io:
1214  case Hexagon::L4_and_memopw_io:
1215  case Hexagon::L4_or_memopw_io:
1216  case Hexagon::L4_iadd_memoph_io:
1217  case Hexagon::L4_isub_memoph_io:
1218  case Hexagon::L4_add_memoph_io:
1219  case Hexagon::L4_sub_memoph_io:
1220  case Hexagon::L4_and_memoph_io:
1221  case Hexagon::L4_or_memoph_io:
1222  case Hexagon::L4_iadd_memopb_io:
1223  case Hexagon::L4_isub_memopb_io:
1224  case Hexagon::L4_add_memopb_io:
1225  case Hexagon::L4_sub_memopb_io:
1226  case Hexagon::L4_and_memopb_io:
1227  case Hexagon::L4_or_memopb_io:
1228  case Hexagon::L4_ior_memopb_io:
1229  case Hexagon::L4_ior_memoph_io:
1230  case Hexagon::L4_ior_memopw_io:
1231  case Hexagon::L4_iand_memopb_io:
1232  case Hexagon::L4_iand_memoph_io:
1233  case Hexagon::L4_iand_memopw_io:
1234    return true;
1235  }
1236  return false;
1237}
1238
1239
1240bool HexagonInstrInfo::
1241isSpillPredRegOp(const MachineInstr *MI) const {
1242  switch (MI->getOpcode()) {
1243    default: return false;
1244    case Hexagon::STriw_pred :
1245    case Hexagon::LDriw_pred :
1246      return true;
1247  }
1248}
1249
1250bool HexagonInstrInfo::isNewValueJumpCandidate(const MachineInstr *MI) const {
1251  switch (MI->getOpcode()) {
1252    default: return false;
1253    case Hexagon::C2_cmpeq:
1254    case Hexagon::C2_cmpeqi:
1255    case Hexagon::C2_cmpgt:
1256    case Hexagon::C2_cmpgti:
1257    case Hexagon::C2_cmpgtu:
1258    case Hexagon::C2_cmpgtui:
1259      return true;
1260  }
1261}
1262
1263bool HexagonInstrInfo::
1264isConditionalTransfer (const MachineInstr *MI) const {
1265  switch (MI->getOpcode()) {
1266    default: return false;
1267    case Hexagon::A2_tfrt:
1268    case Hexagon::A2_tfrf:
1269    case Hexagon::C2_cmoveit:
1270    case Hexagon::C2_cmoveif:
1271    case Hexagon::A2_tfrtnew:
1272    case Hexagon::A2_tfrfnew:
1273    case Hexagon::C2_cmovenewit:
1274    case Hexagon::C2_cmovenewif:
1275      return true;
1276  }
1277}
1278
1279bool HexagonInstrInfo::isConditionalALU32 (const MachineInstr* MI) const {
1280  switch (MI->getOpcode())
1281  {
1282    default: return false;
1283    case Hexagon::A2_paddf:
1284    case Hexagon::A2_paddfnew:
1285    case Hexagon::A2_paddt:
1286    case Hexagon::A2_paddtnew:
1287    case Hexagon::A2_pandf:
1288    case Hexagon::A2_pandfnew:
1289    case Hexagon::A2_pandt:
1290    case Hexagon::A2_pandtnew:
1291    case Hexagon::A4_paslhf:
1292    case Hexagon::A4_paslhfnew:
1293    case Hexagon::A4_paslht:
1294    case Hexagon::A4_paslhtnew:
1295    case Hexagon::A4_pasrhf:
1296    case Hexagon::A4_pasrhfnew:
1297    case Hexagon::A4_pasrht:
1298    case Hexagon::A4_pasrhtnew:
1299    case Hexagon::A2_porf:
1300    case Hexagon::A2_porfnew:
1301    case Hexagon::A2_port:
1302    case Hexagon::A2_portnew:
1303    case Hexagon::A2_psubf:
1304    case Hexagon::A2_psubfnew:
1305    case Hexagon::A2_psubt:
1306    case Hexagon::A2_psubtnew:
1307    case Hexagon::A2_pxorf:
1308    case Hexagon::A2_pxorfnew:
1309    case Hexagon::A2_pxort:
1310    case Hexagon::A2_pxortnew:
1311    case Hexagon::A4_psxthf:
1312    case Hexagon::A4_psxthfnew:
1313    case Hexagon::A4_psxtht:
1314    case Hexagon::A4_psxthtnew:
1315    case Hexagon::A4_psxtbf:
1316    case Hexagon::A4_psxtbfnew:
1317    case Hexagon::A4_psxtbt:
1318    case Hexagon::A4_psxtbtnew:
1319    case Hexagon::A4_pzxtbf:
1320    case Hexagon::A4_pzxtbfnew:
1321    case Hexagon::A4_pzxtbt:
1322    case Hexagon::A4_pzxtbtnew:
1323    case Hexagon::A4_pzxthf:
1324    case Hexagon::A4_pzxthfnew:
1325    case Hexagon::A4_pzxtht:
1326    case Hexagon::A4_pzxthtnew:
1327    case Hexagon::ADD_ri_cPt:
1328    case Hexagon::ADD_ri_cNotPt:
1329    case Hexagon::C2_ccombinewt:
1330    case Hexagon::C2_ccombinewf:
1331      return true;
1332  }
1333}
1334
1335bool HexagonInstrInfo::
1336isConditionalLoad (const MachineInstr* MI) const {
1337  const HexagonRegisterInfo& QRI = getRegisterInfo();
1338  switch (MI->getOpcode())
1339  {
1340    default: return false;
1341    case Hexagon::L2_ploadrdt_io :
1342    case Hexagon::L2_ploadrdf_io:
1343    case Hexagon::L2_ploadrit_io:
1344    case Hexagon::L2_ploadrif_io:
1345    case Hexagon::L2_ploadrht_io:
1346    case Hexagon::L2_ploadrhf_io:
1347    case Hexagon::L2_ploadrbt_io:
1348    case Hexagon::L2_ploadrbf_io:
1349    case Hexagon::L2_ploadruht_io:
1350    case Hexagon::L2_ploadruhf_io:
1351    case Hexagon::L2_ploadrubt_io:
1352    case Hexagon::L2_ploadrubf_io:
1353      return true;
1354    case Hexagon::L2_ploadrdt_pi:
1355    case Hexagon::L2_ploadrdf_pi:
1356    case Hexagon::L2_ploadrit_pi:
1357    case Hexagon::L2_ploadrif_pi:
1358    case Hexagon::L2_ploadrht_pi:
1359    case Hexagon::L2_ploadrhf_pi:
1360    case Hexagon::L2_ploadrbt_pi:
1361    case Hexagon::L2_ploadrbf_pi:
1362    case Hexagon::L2_ploadruht_pi:
1363    case Hexagon::L2_ploadruhf_pi:
1364    case Hexagon::L2_ploadrubt_pi:
1365    case Hexagon::L2_ploadrubf_pi:
1366      return QRI.Subtarget.hasV4TOps();
1367    case Hexagon::L4_ploadrdt_rr:
1368    case Hexagon::L4_ploadrdf_rr:
1369    case Hexagon::L4_ploadrbt_rr:
1370    case Hexagon::L4_ploadrbf_rr:
1371    case Hexagon::L4_ploadrubt_rr:
1372    case Hexagon::L4_ploadrubf_rr:
1373    case Hexagon::L4_ploadrht_rr:
1374    case Hexagon::L4_ploadrhf_rr:
1375    case Hexagon::L4_ploadruht_rr:
1376    case Hexagon::L4_ploadruhf_rr:
1377    case Hexagon::L4_ploadrit_rr:
1378    case Hexagon::L4_ploadrif_rr:
1379      return QRI.Subtarget.hasV4TOps();
1380  }
1381}
1382
1383// Returns true if an instruction is a conditional store.
1384//
1385// Note: It doesn't include conditional new-value stores as they can't be
1386// converted to .new predicate.
1387//
1388//               p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
1389//                ^           ^
1390//               /             \ (not OK. it will cause new-value store to be
1391//              /               X conditional on p0.new while R2 producer is
1392//             /                 \ on p0)
1393//            /                   \.
1394//     p.new store                 p.old NV store
1395// [if(p0.new)memw(R0+#0)=R2]    [if(p0)memw(R0+#0)=R2.new]
1396//            ^                  ^
1397//             \                /
1398//              \              /
1399//               \            /
1400//                 p.old store
1401//             [if (p0)memw(R0+#0)=R2]
1402//
1403// The above diagram shows the steps involoved in the conversion of a predicated
1404// store instruction to its .new predicated new-value form.
1405//
1406// The following set of instructions further explains the scenario where
1407// conditional new-value store becomes invalid when promoted to .new predicate
1408// form.
1409//
1410// { 1) if (p0) r0 = add(r1, r2)
1411//   2) p0 = cmp.eq(r3, #0) }
1412//
1413//   3) if (p0) memb(r1+#0) = r0  --> this instruction can't be grouped with
1414// the first two instructions because in instr 1, r0 is conditional on old value
1415// of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
1416// is not valid for new-value stores.
1417bool HexagonInstrInfo::
1418isConditionalStore (const MachineInstr* MI) const {
1419  const HexagonRegisterInfo& QRI = getRegisterInfo();
1420  switch (MI->getOpcode())
1421  {
1422    default: return false;
1423    case Hexagon::S4_storeirbt_io:
1424    case Hexagon::S4_storeirbf_io:
1425    case Hexagon::S4_pstorerbt_rr:
1426    case Hexagon::S4_pstorerbf_rr:
1427    case Hexagon::S2_pstorerbt_io:
1428    case Hexagon::S2_pstorerbf_io:
1429    case Hexagon::S2_pstorerbt_pi:
1430    case Hexagon::S2_pstorerbf_pi:
1431    case Hexagon::S2_pstorerdt_io:
1432    case Hexagon::S2_pstorerdf_io:
1433    case Hexagon::S4_pstorerdt_rr:
1434    case Hexagon::S4_pstorerdf_rr:
1435    case Hexagon::S2_pstorerdt_pi:
1436    case Hexagon::S2_pstorerdf_pi:
1437    case Hexagon::S2_pstorerht_io:
1438    case Hexagon::S2_pstorerhf_io:
1439    case Hexagon::S4_storeirht_io:
1440    case Hexagon::S4_storeirhf_io:
1441    case Hexagon::S4_pstorerht_rr:
1442    case Hexagon::S4_pstorerhf_rr:
1443    case Hexagon::S2_pstorerht_pi:
1444    case Hexagon::S2_pstorerhf_pi:
1445    case Hexagon::S2_pstorerit_io:
1446    case Hexagon::S2_pstorerif_io:
1447    case Hexagon::S4_storeirit_io:
1448    case Hexagon::S4_storeirif_io:
1449    case Hexagon::S4_pstorerit_rr:
1450    case Hexagon::S4_pstorerif_rr:
1451    case Hexagon::S2_pstorerit_pi:
1452    case Hexagon::S2_pstorerif_pi:
1453      return QRI.Subtarget.hasV4TOps();
1454
1455    // V4 global address store before promoting to dot new.
1456    case Hexagon::S4_pstorerdt_abs:
1457    case Hexagon::S4_pstorerdf_abs:
1458    case Hexagon::S4_pstorerbt_abs:
1459    case Hexagon::S4_pstorerbf_abs:
1460    case Hexagon::S4_pstorerht_abs:
1461    case Hexagon::S4_pstorerhf_abs:
1462    case Hexagon::S4_pstorerit_abs:
1463    case Hexagon::S4_pstorerif_abs:
1464      return QRI.Subtarget.hasV4TOps();
1465
1466    // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
1467    // from the "Conditional Store" list. Because a predicated new value store
1468    // would NOT be promoted to a double dot new store. See diagram below:
1469    // This function returns yes for those stores that are predicated but not
1470    // yet promoted to predicate dot new instructions.
1471    //
1472    //                          +---------------------+
1473    //                    /-----| if (p0) memw(..)=r0 |---------\~
1474    //                   ||     +---------------------+         ||
1475    //          promote  ||       /\       /\                   ||  promote
1476    //                   ||      /||\     /||\                  ||
1477    //                  \||/    demote     ||                  \||/
1478    //                   \/       ||       ||                   \/
1479    //       +-------------------------+   ||   +-------------------------+
1480    //       | if (p0.new) memw(..)=r0 |   ||   | if (p0) memw(..)=r0.new |
1481    //       +-------------------------+   ||   +-------------------------+
1482    //                        ||           ||         ||
1483    //                        ||         demote      \||/
1484    //                      promote        ||         \/ NOT possible
1485    //                        ||           ||         /\~
1486    //                       \||/          ||        /||\~
1487    //                        \/           ||         ||
1488    //                      +-----------------------------+
1489    //                      | if (p0.new) memw(..)=r0.new |
1490    //                      +-----------------------------+
1491    //                           Double Dot New Store
1492    //
1493  }
1494}
1495
1496
1497bool HexagonInstrInfo::isNewValueJump(const MachineInstr *MI) const {
1498  if (isNewValue(MI) && isBranch(MI))
1499    return true;
1500  return false;
1501}
1502
1503bool HexagonInstrInfo::isPostIncrement (const MachineInstr* MI) const {
1504  return (getAddrMode(MI) == HexagonII::PostInc);
1505}
1506
1507bool HexagonInstrInfo::isNewValue(const MachineInstr* MI) const {
1508  const uint64_t F = MI->getDesc().TSFlags;
1509  return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
1510}
1511
1512// Returns true, if any one of the operands is a dot new
1513// insn, whether it is predicated dot new or register dot new.
1514bool HexagonInstrInfo::isDotNewInst (const MachineInstr* MI) const {
1515  return (isNewValueInst(MI) ||
1516     (isPredicated(MI) && isPredicatedNew(MI)));
1517}
1518
1519// Returns the most basic instruction for the .new predicated instructions and
1520// new-value stores.
1521// For example, all of the following instructions will be converted back to the
1522// same instruction:
1523// 1) if (p0.new) memw(R0+#0) = R1.new  --->
1524// 2) if (p0) memw(R0+#0)= R1.new      -------> if (p0) memw(R0+#0) = R1
1525// 3) if (p0.new) memw(R0+#0) = R1      --->
1526//
1527
1528int HexagonInstrInfo::GetDotOldOp(const int opc) const {
1529  int NewOp = opc;
1530  if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
1531    NewOp = Hexagon::getPredOldOpcode(NewOp);
1532    assert(NewOp >= 0 &&
1533           "Couldn't change predicate new instruction to its old form.");
1534  }
1535
1536  if (isNewValueStore(NewOp)) { // Convert into non-new-value format
1537    NewOp = Hexagon::getNonNVStore(NewOp);
1538    assert(NewOp >= 0 && "Couldn't change new-value store to its old form.");
1539  }
1540  return NewOp;
1541}
1542
1543// Return the new value instruction for a given store.
1544int HexagonInstrInfo::GetDotNewOp(const MachineInstr* MI) const {
1545  int NVOpcode = Hexagon::getNewValueOpcode(MI->getOpcode());
1546  if (NVOpcode >= 0) // Valid new-value store instruction.
1547    return NVOpcode;
1548
1549  switch (MI->getOpcode()) {
1550  default: llvm_unreachable("Unknown .new type");
1551  // store new value byte
1552  case Hexagon::STrib_shl_V4:
1553    return Hexagon::STrib_shl_nv_V4;
1554
1555  case Hexagon::STrih_shl_V4:
1556    return Hexagon::STrih_shl_nv_V4;
1557
1558  case Hexagon::STriw_f:
1559    return Hexagon::S2_storerinew_io;
1560
1561  case Hexagon::STriw_indexed_f:
1562    return Hexagon::S4_storerinew_rr;
1563
1564  case Hexagon::STriw_shl_V4:
1565    return Hexagon::STriw_shl_nv_V4;
1566
1567  }
1568  return 0;
1569}
1570
1571// Return .new predicate version for an instruction.
1572int HexagonInstrInfo::GetDotNewPredOp(MachineInstr *MI,
1573                                      const MachineBranchProbabilityInfo
1574                                      *MBPI) const {
1575
1576  int NewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode());
1577  if (NewOpcode >= 0) // Valid predicate new instruction
1578    return NewOpcode;
1579
1580  switch (MI->getOpcode()) {
1581  default: llvm_unreachable("Unknown .new type");
1582  // Condtional Jumps
1583  case Hexagon::J2_jumpt:
1584  case Hexagon::J2_jumpf:
1585    return getDotNewPredJumpOp(MI, MBPI);
1586
1587  case Hexagon::J2_jumprt:
1588    return Hexagon::J2_jumptnewpt;
1589
1590  case Hexagon::J2_jumprf:
1591    return Hexagon::J2_jumprfnewpt;
1592
1593  case Hexagon::JMPrett:
1594    return Hexagon::J2_jumprtnewpt;
1595
1596  case Hexagon::JMPretf:
1597    return Hexagon::J2_jumprfnewpt;
1598
1599
1600  // Conditional combine
1601  case Hexagon::C2_ccombinewt:
1602    return Hexagon::C2_ccombinewnewt;
1603  case Hexagon::C2_ccombinewf:
1604    return Hexagon::C2_ccombinewnewf;
1605  }
1606}
1607
1608
1609unsigned HexagonInstrInfo::getAddrMode(const MachineInstr* MI) const {
1610  const uint64_t F = MI->getDesc().TSFlags;
1611
1612  return((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask);
1613}
1614
1615/// immediateExtend - Changes the instruction in place to one using an immediate
1616/// extender.
1617void HexagonInstrInfo::immediateExtend(MachineInstr *MI) const {
1618  assert((isExtendable(MI)||isConstExtended(MI)) &&
1619                               "Instruction must be extendable");
1620  // Find which operand is extendable.
1621  short ExtOpNum = getCExtOpNum(MI);
1622  MachineOperand &MO = MI->getOperand(ExtOpNum);
1623  // This needs to be something we understand.
1624  assert((MO.isMBB() || MO.isImm()) &&
1625         "Branch with unknown extendable field type");
1626  // Mark given operand as extended.
1627  MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
1628}
1629
1630DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState(
1631    const TargetSubtargetInfo &STI) const {
1632  const InstrItineraryData *II = STI.getInstrItineraryData();
1633  return static_cast<const HexagonSubtarget &>(STI).createDFAPacketizer(II);
1634}
1635
1636bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
1637                                            const MachineBasicBlock *MBB,
1638                                            const MachineFunction &MF) const {
1639  // Debug info is never a scheduling boundary. It's necessary to be explicit
1640  // due to the special treatment of IT instructions below, otherwise a
1641  // dbg_value followed by an IT will result in the IT instruction being
1642  // considered a scheduling hazard, which is wrong. It should be the actual
1643  // instruction preceding the dbg_value instruction(s), just like it is
1644  // when debug info is not present.
1645  if (MI->isDebugValue())
1646    return false;
1647
1648  // Terminators and labels can't be scheduled around.
1649  if (MI->getDesc().isTerminator() || MI->isPosition() || MI->isInlineAsm())
1650    return true;
1651
1652  return false;
1653}
1654
1655bool HexagonInstrInfo::isConstExtended(MachineInstr *MI) const {
1656
1657  // Constant extenders are allowed only for V4 and above.
1658  if (!Subtarget.hasV4TOps())
1659    return false;
1660
1661  const uint64_t F = MI->getDesc().TSFlags;
1662  unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
1663  if (isExtended) // Instruction must be extended.
1664    return true;
1665
1666  unsigned isExtendable = (F >> HexagonII::ExtendablePos)
1667                          & HexagonII::ExtendableMask;
1668  if (!isExtendable)
1669    return false;
1670
1671  short ExtOpNum = getCExtOpNum(MI);
1672  const MachineOperand &MO = MI->getOperand(ExtOpNum);
1673  // Use MO operand flags to determine if MO
1674  // has the HMOTF_ConstExtended flag set.
1675  if (MO.getTargetFlags() && HexagonII::HMOTF_ConstExtended)
1676    return true;
1677  // If this is a Machine BB address we are talking about, and it is
1678  // not marked as extended, say so.
1679  if (MO.isMBB())
1680    return false;
1681
1682  // We could be using an instruction with an extendable immediate and shoehorn
1683  // a global address into it. If it is a global address it will be constant
1684  // extended. We do this for COMBINE.
1685  // We currently only handle isGlobal() because it is the only kind of
1686  // object we are going to end up with here for now.
1687  // In the future we probably should add isSymbol(), etc.
1688  if (MO.isGlobal() || MO.isSymbol())
1689    return true;
1690
1691  // If the extendable operand is not 'Immediate' type, the instruction should
1692  // have 'isExtended' flag set.
1693  assert(MO.isImm() && "Extendable operand must be Immediate type");
1694
1695  int MinValue = getMinValue(MI);
1696  int MaxValue = getMaxValue(MI);
1697  int ImmValue = MO.getImm();
1698
1699  return (ImmValue < MinValue || ImmValue > MaxValue);
1700}
1701
1702// Returns the opcode to use when converting MI, which is a conditional jump,
1703// into a conditional instruction which uses the .new value of the predicate.
1704// We also use branch probabilities to add a hint to the jump.
1705int
1706HexagonInstrInfo::getDotNewPredJumpOp(MachineInstr *MI,
1707                                  const
1708                                  MachineBranchProbabilityInfo *MBPI) const {
1709
1710  // We assume that block can have at most two successors.
1711  bool taken = false;
1712  MachineBasicBlock *Src = MI->getParent();
1713  MachineOperand *BrTarget = &MI->getOperand(1);
1714  MachineBasicBlock *Dst = BrTarget->getMBB();
1715
1716  const BranchProbability Prediction = MBPI->getEdgeProbability(Src, Dst);
1717  if (Prediction >= BranchProbability(1,2))
1718    taken = true;
1719
1720  switch (MI->getOpcode()) {
1721  case Hexagon::J2_jumpt:
1722    return taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew;
1723  case Hexagon::J2_jumpf:
1724    return taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew;
1725
1726  default:
1727    llvm_unreachable("Unexpected jump instruction.");
1728  }
1729}
1730// Returns true if a particular operand is extendable for an instruction.
1731bool HexagonInstrInfo::isOperandExtended(const MachineInstr *MI,
1732                                         unsigned short OperandNum) const {
1733  // Constant extenders are allowed only for V4 and above.
1734  if (!Subtarget.hasV4TOps())
1735    return false;
1736
1737  const uint64_t F = MI->getDesc().TSFlags;
1738
1739  return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
1740          == OperandNum;
1741}
1742
1743// Returns Operand Index for the constant extended instruction.
1744unsigned short HexagonInstrInfo::getCExtOpNum(const MachineInstr *MI) const {
1745  const uint64_t F = MI->getDesc().TSFlags;
1746  return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
1747}
1748
1749// Returns the min value that doesn't need to be extended.
1750int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const {
1751  const uint64_t F = MI->getDesc().TSFlags;
1752  unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
1753                    & HexagonII::ExtentSignedMask;
1754  unsigned bits =  (F >> HexagonII::ExtentBitsPos)
1755                    & HexagonII::ExtentBitsMask;
1756
1757  if (isSigned) // if value is signed
1758    return -1U << (bits - 1);
1759  else
1760    return 0;
1761}
1762
1763// Returns the max value that doesn't need to be extended.
1764int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const {
1765  const uint64_t F = MI->getDesc().TSFlags;
1766  unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
1767                    & HexagonII::ExtentSignedMask;
1768  unsigned bits =  (F >> HexagonII::ExtentBitsPos)
1769                    & HexagonII::ExtentBitsMask;
1770
1771  if (isSigned) // if value is signed
1772    return ~(-1U << (bits - 1));
1773  else
1774    return ~(-1U << bits);
1775}
1776
1777// Returns true if an instruction can be converted into a non-extended
1778// equivalent instruction.
1779bool HexagonInstrInfo::NonExtEquivalentExists (const MachineInstr *MI) const {
1780
1781  short NonExtOpcode;
1782  // Check if the instruction has a register form that uses register in place
1783  // of the extended operand, if so return that as the non-extended form.
1784  if (Hexagon::getRegForm(MI->getOpcode()) >= 0)
1785    return true;
1786
1787  if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
1788    // Check addressing mode and retrieve non-ext equivalent instruction.
1789
1790    switch (getAddrMode(MI)) {
1791    case HexagonII::Absolute :
1792      // Load/store with absolute addressing mode can be converted into
1793      // base+offset mode.
1794      NonExtOpcode = Hexagon::getBasedWithImmOffset(MI->getOpcode());
1795      break;
1796    case HexagonII::BaseImmOffset :
1797      // Load/store with base+offset addressing mode can be converted into
1798      // base+register offset addressing mode. However left shift operand should
1799      // be set to 0.
1800      NonExtOpcode = Hexagon::getBaseWithRegOffset(MI->getOpcode());
1801      break;
1802    default:
1803      return false;
1804    }
1805    if (NonExtOpcode < 0)
1806      return false;
1807    return true;
1808  }
1809  return false;
1810}
1811
1812// Returns opcode of the non-extended equivalent instruction.
1813short HexagonInstrInfo::getNonExtOpcode (const MachineInstr *MI) const {
1814
1815  // Check if the instruction has a register form that uses register in place
1816  // of the extended operand, if so return that as the non-extended form.
1817  short NonExtOpcode = Hexagon::getRegForm(MI->getOpcode());
1818    if (NonExtOpcode >= 0)
1819      return NonExtOpcode;
1820
1821  if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
1822    // Check addressing mode and retrieve non-ext equivalent instruction.
1823    switch (getAddrMode(MI)) {
1824    case HexagonII::Absolute :
1825      return Hexagon::getBasedWithImmOffset(MI->getOpcode());
1826    case HexagonII::BaseImmOffset :
1827      return Hexagon::getBaseWithRegOffset(MI->getOpcode());
1828    default:
1829      return -1;
1830    }
1831  }
1832  return -1;
1833}
1834
1835bool HexagonInstrInfo::PredOpcodeHasJMP_c(Opcode_t Opcode) const {
1836  return (Opcode == Hexagon::J2_jumpt) ||
1837         (Opcode == Hexagon::J2_jumpf) ||
1838         (Opcode == Hexagon::J2_jumptnewpt) ||
1839         (Opcode == Hexagon::J2_jumpfnewpt) ||
1840         (Opcode == Hexagon::J2_jumpt) ||
1841         (Opcode == Hexagon::J2_jumpf);
1842}
1843
1844bool HexagonInstrInfo::PredOpcodeHasNot(Opcode_t Opcode) const {
1845  return (Opcode == Hexagon::J2_jumpf) ||
1846         (Opcode == Hexagon::J2_jumpfnewpt) ||
1847         (Opcode == Hexagon::J2_jumpfnew);
1848}
1849