HexagonFrameLowering.cpp revision 288943
1//===-- HexagonFrameLowering.cpp - Define frame lowering ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//
9//===----------------------------------------------------------------------===//
10
11#define DEBUG_TYPE "hexagon-pei"
12
13#include "HexagonFrameLowering.h"
14#include "Hexagon.h"
15#include "HexagonInstrInfo.h"
16#include "HexagonMachineFunctionInfo.h"
17#include "HexagonRegisterInfo.h"
18#include "HexagonSubtarget.h"
19#include "HexagonTargetMachine.h"
20#include "llvm/ADT/BitVector.h"
21#include "llvm/ADT/PostOrderIterator.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/CodeGen/MachineDominators.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineFunctionPass.h"
27#include "llvm/CodeGen/MachineInstrBuilder.h"
28#include "llvm/CodeGen/MachineModuleInfo.h"
29#include "llvm/CodeGen/MachinePostDominators.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/CodeGen/RegisterScavenging.h"
32#include "llvm/IR/Function.h"
33#include "llvm/IR/Type.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/Target/TargetInstrInfo.h"
38#include "llvm/Target/TargetMachine.h"
39#include "llvm/Target/TargetOptions.h"
40
41// Hexagon stack frame layout as defined by the ABI:
42//
43//                                                       Incoming arguments
44//                                                       passed via stack
45//                                                                      |
46//                                                                      |
47//        SP during function's                 FP during function's     |
48//    +-- runtime (top of stack)               runtime (bottom) --+     |
49//    |                                                           |     |
50// --++---------------------+------------------+-----------------++-+-------
51//   |  parameter area for  |  variable-size   |   fixed-size    |LR|  arg
52//   |   called functions   |  local objects   |  local objects  |FP|
53// --+----------------------+------------------+-----------------+--+-------
54//    <-    size known    -> <- size unknown -> <- size known  ->
55//
56// Low address                                                 High address
57//
58// <--- stack growth
59//
60//
61// - In any circumstances, the outgoing function arguments are always accessi-
62//   ble using the SP, and the incoming arguments are accessible using the FP.
63// - If the local objects are not aligned, they can always be accessed using
64//   the FP.
65// - If there are no variable-sized objects, the local objects can always be
66//   accessed using the SP, regardless whether they are aligned or not. (The
67//   alignment padding will be at the bottom of the stack (highest address),
68//   and so the offset with respect to the SP will be known at the compile-
69//   -time.)
70//
71// The only complication occurs if there are both, local aligned objects, and
72// dynamically allocated (variable-sized) objects. The alignment pad will be
73// placed between the FP and the local objects, thus preventing the use of the
74// FP to access the local objects. At the same time, the variable-sized objects
75// will be between the SP and the local objects, thus introducing an unknown
76// distance from the SP to the locals.
77//
78// To avoid this problem, a new register is created that holds the aligned
79// address of the bottom of the stack, referred in the sources as AP (aligned
80// pointer). The AP will be equal to "FP-p", where "p" is the smallest pad
81// that aligns AP to the required boundary (a maximum of the alignments of
82// all stack objects, fixed- and variable-sized). All local objects[1] will
83// then use AP as the base pointer.
84// [1] The exception is with "fixed" stack objects. "Fixed" stack objects get
85// their name from being allocated at fixed locations on the stack, relative
86// to the FP. In the presence of dynamic allocation and local alignment, such
87// objects can only be accessed through the FP.
88//
89// Illustration of the AP:
90//                                                                FP --+
91//                                                                     |
92// ---------------+---------------------+-----+-----------------------++-+--
93//   Rest of the  | Local stack objects | Pad |  Fixed stack objects  |LR|
94//   stack frame  | (aligned)           |     |  (CSR, spills, etc.)  |FP|
95// ---------------+---------------------+-----+-----------------+-----+--+--
96//                                      |<-- Multiple of the -->|
97//                                           stack alignment    +-- AP
98//
99// The AP is set up at the beginning of the function. Since it is not a dedi-
100// cated (reserved) register, it needs to be kept live throughout the function
101// to be available as the base register for local object accesses.
102// Normally, an address of a stack objects is obtained by a pseudo-instruction
103// TFR_FI. To access local objects with the AP register present, a different
104// pseudo-instruction needs to be used: TFR_FIA. The TFR_FIA takes one extra
105// argument compared to TFR_FI: the first input register is the AP register.
106// This keeps the register live between its definition and its uses.
107
108// The AP register is originally set up using pseudo-instruction ALIGNA:
109//   AP = ALIGNA A
110// where
111//   A  - required stack alignment
112// The alignment value must be the maximum of all alignments required by
113// any stack object.
114
115// The dynamic allocation uses a pseudo-instruction ALLOCA:
116//   Rd = ALLOCA Rs, A
117// where
118//   Rd - address of the allocated space
119//   Rs - minimum size (the actual allocated can be larger to accommodate
120//        alignment)
121//   A  - required alignment
122
123
124using namespace llvm;
125
126static cl::opt<bool> DisableDeallocRet("disable-hexagon-dealloc-ret",
127    cl::Hidden, cl::desc("Disable Dealloc Return for Hexagon target"));
128
129
130static cl::opt<int> NumberScavengerSlots("number-scavenger-slots",
131    cl::Hidden, cl::desc("Set the number of scavenger slots"), cl::init(2),
132    cl::ZeroOrMore);
133
134static cl::opt<int> SpillFuncThreshold("spill-func-threshold",
135    cl::Hidden, cl::desc("Specify O2(not Os) spill func threshold"),
136    cl::init(6), cl::ZeroOrMore);
137
138static cl::opt<int> SpillFuncThresholdOs("spill-func-threshold-Os",
139    cl::Hidden, cl::desc("Specify Os spill func threshold"),
140    cl::init(1), cl::ZeroOrMore);
141
142static cl::opt<bool> EnableShrinkWrapping("hexagon-shrink-frame",
143    cl::init(true), cl::Hidden, cl::ZeroOrMore,
144    cl::desc("Enable stack frame shrink wrapping"));
145
146static cl::opt<unsigned> ShrinkLimit("shrink-frame-limit", cl::init(UINT_MAX),
147    cl::Hidden, cl::ZeroOrMore, cl::desc("Max count of stack frame "
148    "shrink-wraps"));
149
150namespace {
151  /// Map a register pair Reg to the subregister that has the greater "number",
152  /// i.e. D3 (aka R7:6) will be mapped to R7, etc.
153  unsigned getMax32BitSubRegister(unsigned Reg, const TargetRegisterInfo &TRI,
154                                  bool hireg = true) {
155    if (Reg < Hexagon::D0 || Reg > Hexagon::D15)
156      return Reg;
157
158    unsigned RegNo = 0;
159    for (MCSubRegIterator SubRegs(Reg, &TRI); SubRegs.isValid(); ++SubRegs) {
160      if (hireg) {
161        if (*SubRegs > RegNo)
162          RegNo = *SubRegs;
163      } else {
164        if (!RegNo || *SubRegs < RegNo)
165          RegNo = *SubRegs;
166      }
167    }
168    return RegNo;
169  }
170
171  /// Returns the callee saved register with the largest id in the vector.
172  unsigned getMaxCalleeSavedReg(const std::vector<CalleeSavedInfo> &CSI,
173                                const TargetRegisterInfo &TRI) {
174    assert(Hexagon::R1 > 0 &&
175           "Assume physical registers are encoded as positive integers");
176    if (CSI.empty())
177      return 0;
178
179    unsigned Max = getMax32BitSubRegister(CSI[0].getReg(), TRI);
180    for (unsigned I = 1, E = CSI.size(); I < E; ++I) {
181      unsigned Reg = getMax32BitSubRegister(CSI[I].getReg(), TRI);
182      if (Reg > Max)
183        Max = Reg;
184    }
185    return Max;
186  }
187
188  /// Checks if the basic block contains any instruction that needs a stack
189  /// frame to be already in place.
190  bool needsStackFrame(const MachineBasicBlock &MBB, const BitVector &CSR) {
191    for (auto &I : MBB) {
192      const MachineInstr *MI = &I;
193      if (MI->isCall())
194        return true;
195      unsigned Opc = MI->getOpcode();
196      switch (Opc) {
197        case Hexagon::ALLOCA:
198        case Hexagon::ALIGNA:
199          return true;
200        default:
201          break;
202      }
203      // Check individual operands.
204      for (const MachineOperand &MO : MI->operands()) {
205        // While the presence of a frame index does not prove that a stack
206        // frame will be required, all frame indexes should be within alloc-
207        // frame/deallocframe. Otherwise, the code that translates a frame
208        // index into an offset would have to be aware of the placement of
209        // the frame creation/destruction instructions.
210        if (MO.isFI())
211          return true;
212        if (!MO.isReg())
213          continue;
214        unsigned R = MO.getReg();
215        // Virtual registers will need scavenging, which then may require
216        // a stack slot.
217        if (TargetRegisterInfo::isVirtualRegister(R))
218          return true;
219        if (CSR[R])
220          return true;
221      }
222    }
223    return false;
224  }
225
226  /// Returns true if MBB has a machine instructions that indicates a tail call
227  /// in the block.
228  bool hasTailCall(const MachineBasicBlock &MBB) {
229    MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
230    unsigned RetOpc = I->getOpcode();
231    return RetOpc == Hexagon::TCRETURNi || RetOpc == Hexagon::TCRETURNr;
232  }
233
234  /// Returns true if MBB contains an instruction that returns.
235  bool hasReturn(const MachineBasicBlock &MBB) {
236    for (auto I = MBB.getFirstTerminator(), E = MBB.end(); I != E; ++I)
237      if (I->isReturn())
238        return true;
239    return false;
240  }
241}
242
243
244/// Implements shrink-wrapping of the stack frame. By default, stack frame
245/// is created in the function entry block, and is cleaned up in every block
246/// that returns. This function finds alternate blocks: one for the frame
247/// setup (prolog) and one for the cleanup (epilog).
248void HexagonFrameLowering::findShrunkPrologEpilog(MachineFunction &MF,
249      MachineBasicBlock *&PrologB, MachineBasicBlock *&EpilogB) const {
250  static unsigned ShrinkCounter = 0;
251
252  if (ShrinkLimit.getPosition()) {
253    if (ShrinkCounter >= ShrinkLimit)
254      return;
255    ShrinkCounter++;
256  }
257
258  auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
259  auto &HRI = *HST.getRegisterInfo();
260
261  MachineDominatorTree MDT;
262  MDT.runOnMachineFunction(MF);
263  MachinePostDominatorTree MPT;
264  MPT.runOnMachineFunction(MF);
265
266  typedef DenseMap<unsigned,unsigned> UnsignedMap;
267  UnsignedMap RPO;
268  typedef ReversePostOrderTraversal<const MachineFunction*> RPOTType;
269  RPOTType RPOT(&MF);
270  unsigned RPON = 0;
271  for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I)
272    RPO[(*I)->getNumber()] = RPON++;
273
274  // Don't process functions that have loops, at least for now. Placement
275  // of prolog and epilog must take loop structure into account. For simpli-
276  // city don't do it right now.
277  for (auto &I : MF) {
278    unsigned BN = RPO[I.getNumber()];
279    for (auto SI = I.succ_begin(), SE = I.succ_end(); SI != SE; ++SI) {
280      // If found a back-edge, return.
281      if (RPO[(*SI)->getNumber()] <= BN)
282        return;
283    }
284  }
285
286  // Collect the set of blocks that need a stack frame to execute. Scan
287  // each block for uses/defs of callee-saved registers, calls, etc.
288  SmallVector<MachineBasicBlock*,16> SFBlocks;
289  BitVector CSR(Hexagon::NUM_TARGET_REGS);
290  for (const MCPhysReg *P = HRI.getCalleeSavedRegs(&MF); *P; ++P)
291    CSR[*P] = true;
292
293  for (auto &I : MF)
294    if (needsStackFrame(I, CSR))
295      SFBlocks.push_back(&I);
296
297  DEBUG({
298    dbgs() << "Blocks needing SF: {";
299    for (auto &B : SFBlocks)
300      dbgs() << " BB#" << B->getNumber();
301    dbgs() << " }\n";
302  });
303  // No frame needed?
304  if (SFBlocks.empty())
305    return;
306
307  // Pick a common dominator and a common post-dominator.
308  MachineBasicBlock *DomB = SFBlocks[0];
309  for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
310    DomB = MDT.findNearestCommonDominator(DomB, SFBlocks[i]);
311    if (!DomB)
312      break;
313  }
314  MachineBasicBlock *PDomB = SFBlocks[0];
315  for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
316    PDomB = MPT.findNearestCommonDominator(PDomB, SFBlocks[i]);
317    if (!PDomB)
318      break;
319  }
320  DEBUG({
321    dbgs() << "Computed dom block: BB#";
322    if (DomB) dbgs() << DomB->getNumber();
323    else      dbgs() << "<null>";
324    dbgs() << ", computed pdom block: BB#";
325    if (PDomB) dbgs() << PDomB->getNumber();
326    else       dbgs() << "<null>";
327    dbgs() << "\n";
328  });
329  if (!DomB || !PDomB)
330    return;
331
332  // Make sure that DomB dominates PDomB and PDomB post-dominates DomB.
333  if (!MDT.dominates(DomB, PDomB)) {
334    DEBUG(dbgs() << "Dom block does not dominate pdom block\n");
335    return;
336  }
337  if (!MPT.dominates(PDomB, DomB)) {
338    DEBUG(dbgs() << "PDom block does not post-dominate dom block\n");
339    return;
340  }
341
342  // Finally, everything seems right.
343  PrologB = DomB;
344  EpilogB = PDomB;
345}
346
347/// Perform most of the PEI work here:
348/// - saving/restoring of the callee-saved registers,
349/// - stack frame creation and destruction.
350/// Normally, this work is distributed among various functions, but doing it
351/// in one place allows shrink-wrapping of the stack frame.
352void HexagonFrameLowering::emitPrologue(MachineFunction &MF,
353                                        MachineBasicBlock &MBB) const {
354  auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
355  auto &HRI = *HST.getRegisterInfo();
356
357  assert(&MF.front() == &MBB && "Shrink-wrapping not yet supported");
358  MachineFrameInfo *MFI = MF.getFrameInfo();
359  const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
360
361  MachineBasicBlock *PrologB = &MF.front(), *EpilogB = nullptr;
362  if (EnableShrinkWrapping)
363    findShrunkPrologEpilog(MF, PrologB, EpilogB);
364
365  insertCSRSpillsInBlock(*PrologB, CSI, HRI);
366  insertPrologueInBlock(*PrologB);
367
368  if (EpilogB) {
369    insertCSRRestoresInBlock(*EpilogB, CSI, HRI);
370    insertEpilogueInBlock(*EpilogB);
371  } else {
372    for (auto &B : MF)
373      if (!B.empty() && B.back().isReturn())
374        insertCSRRestoresInBlock(B, CSI, HRI);
375
376    for (auto &B : MF)
377      if (!B.empty() && B.back().isReturn())
378        insertEpilogueInBlock(B);
379  }
380}
381
382
383void HexagonFrameLowering::insertPrologueInBlock(MachineBasicBlock &MBB) const {
384  MachineFunction &MF = *MBB.getParent();
385  MachineFrameInfo *MFI = MF.getFrameInfo();
386  MachineModuleInfo &MMI = MF.getMMI();
387  MachineBasicBlock::iterator MBBI = MBB.begin();
388  auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget());
389  auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
390  auto &HII = *HST.getInstrInfo();
391  auto &HRI = *HST.getRegisterInfo();
392  DebugLoc dl;
393
394  unsigned MaxAlign = std::max(MFI->getMaxAlignment(), getStackAlignment());
395
396  // Calculate the total stack frame size.
397  // Get the number of bytes to allocate from the FrameInfo.
398  unsigned FrameSize = MFI->getStackSize();
399  // Round up the max call frame size to the max alignment on the stack.
400  unsigned MaxCFA = RoundUpToAlignment(MFI->getMaxCallFrameSize(), MaxAlign);
401  MFI->setMaxCallFrameSize(MaxCFA);
402
403  FrameSize = MaxCFA + RoundUpToAlignment(FrameSize, MaxAlign);
404  MFI->setStackSize(FrameSize);
405
406  bool AlignStack = (MaxAlign > getStackAlignment());
407
408  // Check if frame moves are needed for EH.
409  bool needsFrameMoves = MMI.hasDebugInfo() ||
410    MF.getFunction()->needsUnwindTableEntry();
411
412  // Get the number of bytes to allocate from the FrameInfo.
413  unsigned NumBytes = MFI->getStackSize();
414  unsigned SP = HRI.getStackRegister();
415  unsigned MaxCF = MFI->getMaxCallFrameSize();
416  MachineBasicBlock::iterator InsertPt = MBB.begin();
417
418  auto *FuncInfo = MF.getInfo<HexagonMachineFunctionInfo>();
419  auto &AdjustRegs = FuncInfo->getAllocaAdjustInsts();
420
421  for (auto MI : AdjustRegs) {
422    assert((MI->getOpcode() == Hexagon::ALLOCA) && "Expected alloca");
423    expandAlloca(MI, HII, SP, MaxCF);
424    MI->eraseFromParent();
425  }
426
427  //
428  // Only insert ALLOCFRAME if we need to or at -O0 for the debugger.  Think
429  // that this shouldn't be required, but doing so now because gcc does and
430  // gdb can't break at the start of the function without it.  Will remove if
431  // this turns out to be a gdb bug.
432  //
433  bool NoOpt = (HTM.getOptLevel() == CodeGenOpt::None);
434  if (!NoOpt && !FuncInfo->hasClobberLR() && !hasFP(MF))
435    return;
436
437  // Check for overflow.
438  // Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used?
439  const unsigned int ALLOCFRAME_MAX = 16384;
440
441  // Create a dummy memory operand to avoid allocframe from being treated as
442  // a volatile memory reference.
443  MachineMemOperand *MMO =
444    MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOStore,
445                            4, 4);
446
447  if (NumBytes >= ALLOCFRAME_MAX) {
448    // Emit allocframe(#0).
449    BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
450      .addImm(0)
451      .addMemOperand(MMO);
452
453    // Subtract offset from frame pointer.
454    // We use a caller-saved non-parameter register for that.
455    unsigned CallerSavedReg = HRI.getFirstCallerSavedNonParamReg();
456    BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::CONST32_Int_Real),
457            CallerSavedReg).addImm(NumBytes);
458    BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_sub), SP)
459      .addReg(SP)
460      .addReg(CallerSavedReg);
461  } else {
462    BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
463      .addImm(NumBytes)
464      .addMemOperand(MMO);
465  }
466
467  if (AlignStack) {
468    BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_andir), SP)
469        .addReg(SP)
470        .addImm(-int64_t(MaxAlign));
471  }
472
473  if (needsFrameMoves) {
474    std::vector<MCCFIInstruction> Instructions = MMI.getFrameInstructions();
475    MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
476
477    // Advance CFA. DW_CFA_def_cfa
478    unsigned DwFPReg = HRI.getDwarfRegNum(HRI.getFrameRegister(), true);
479    unsigned DwRAReg = HRI.getDwarfRegNum(HRI.getRARegister(), true);
480
481    // CFA = FP + 8
482    unsigned CFIIndex = MMI.addFrameInst(MCCFIInstruction::createDefCfa(
483                                               FrameLabel, DwFPReg, -8));
484    BuildMI(MBB, MBBI, dl, HII.get(TargetOpcode::CFI_INSTRUCTION))
485           .addCFIIndex(CFIIndex);
486
487    // R31 (return addr) = CFA - #4
488    CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset(
489                                               FrameLabel, DwRAReg, -4));
490    BuildMI(MBB, MBBI, dl, HII.get(TargetOpcode::CFI_INSTRUCTION))
491           .addCFIIndex(CFIIndex);
492
493    // R30 (frame ptr) = CFA - #8)
494    CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset(
495                                               FrameLabel, DwFPReg, -8));
496    BuildMI(MBB, MBBI, dl, HII.get(TargetOpcode::CFI_INSTRUCTION))
497           .addCFIIndex(CFIIndex);
498
499    unsigned int regsToMove[] = {
500      Hexagon::R1,  Hexagon::R0,  Hexagon::R3,  Hexagon::R2,
501      Hexagon::R17, Hexagon::R16, Hexagon::R19, Hexagon::R18,
502      Hexagon::R21, Hexagon::R20, Hexagon::R23, Hexagon::R22,
503      Hexagon::R25, Hexagon::R24, Hexagon::R27, Hexagon::R26,
504      Hexagon::D0,  Hexagon::D1,  Hexagon::D8,  Hexagon::D9,  Hexagon::D10,
505      Hexagon::D11, Hexagon::D12, Hexagon::D13, Hexagon::NoRegister
506    };
507
508    const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
509
510    for (unsigned i = 0; regsToMove[i] != Hexagon::NoRegister; ++i) {
511      for (unsigned I = 0, E = CSI.size(); I < E; ++I) {
512        if (CSI[I].getReg() == regsToMove[i]) {
513          // Subtract 8 to make room for R30 and R31, which are added above.
514          int64_t Offset = getFrameIndexOffset(MF, CSI[I].getFrameIdx()) - 8;
515
516          if (regsToMove[i] < Hexagon::D0 || regsToMove[i] > Hexagon::D15) {
517            unsigned DwarfReg = HRI.getDwarfRegNum(regsToMove[i], true);
518            unsigned CFIIndex = MMI.addFrameInst(
519                                    MCCFIInstruction::createOffset(FrameLabel,
520                                                        DwarfReg, Offset));
521            BuildMI(MBB, MBBI, dl, HII.get(TargetOpcode::CFI_INSTRUCTION))
522                   .addCFIIndex(CFIIndex);
523          } else {
524            // Split the double regs into subregs, and generate appropriate
525            // cfi_offsets.
526            // The only reason, we are split double regs is, llvm-mc does not
527            // understand paired registers for cfi_offset.
528            // Eg .cfi_offset r1:0, -64
529            unsigned HiReg = getMax32BitSubRegister(regsToMove[i], HRI);
530            unsigned LoReg = getMax32BitSubRegister(regsToMove[i], HRI, false);
531            unsigned HiDwarfReg = HRI.getDwarfRegNum(HiReg, true);
532            unsigned LoDwarfReg = HRI.getDwarfRegNum(LoReg, true);
533            unsigned HiCFIIndex = MMI.addFrameInst(
534                                    MCCFIInstruction::createOffset(FrameLabel,
535                                                        HiDwarfReg, Offset+4));
536            BuildMI(MBB, MBBI, dl, HII.get(TargetOpcode::CFI_INSTRUCTION))
537                   .addCFIIndex(HiCFIIndex);
538            unsigned LoCFIIndex = MMI.addFrameInst(
539                                    MCCFIInstruction::createOffset(FrameLabel,
540                                                        LoDwarfReg, Offset));
541            BuildMI(MBB, MBBI, dl, HII.get(TargetOpcode::CFI_INSTRUCTION))
542                   .addCFIIndex(LoCFIIndex);
543          }
544          break;
545        }
546      } // for CSI.size()
547    } // for regsToMove
548  } // needsFrameMoves
549}
550
551void HexagonFrameLowering::insertEpilogueInBlock(MachineBasicBlock &MBB) const {
552  MachineFunction &MF = *MBB.getParent();
553  //
554  // Only insert deallocframe if we need to.  Also at -O0.  See comment
555  // in insertPrologueInBlock above.
556  //
557  if (!hasFP(MF) && MF.getTarget().getOptLevel() != CodeGenOpt::None)
558    return;
559
560  auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
561  auto &HII = *HST.getInstrInfo();
562  auto &HRI = *HST.getRegisterInfo();
563  unsigned SP = HRI.getStackRegister();
564
565  MachineInstr *RetI = nullptr;
566  for (auto &I : MBB) {
567    if (!I.isReturn())
568      continue;
569    RetI = &I;
570    break;
571  }
572  unsigned RetOpc = RetI ? RetI->getOpcode() : 0;
573
574  MachineBasicBlock::iterator InsertPt = MBB.getFirstTerminator();
575  DebugLoc DL;
576  if (InsertPt != MBB.end())
577    DL = InsertPt->getDebugLoc();
578  else if (!MBB.empty())
579    DL = std::prev(MBB.end())->getDebugLoc();
580
581  // Handle EH_RETURN.
582  if (RetOpc == Hexagon::EH_RETURN_JMPR) {
583    BuildMI(MBB, InsertPt, DL, HII.get(Hexagon::L2_deallocframe));
584    BuildMI(MBB, InsertPt, DL, HII.get(Hexagon::A2_add), SP)
585        .addReg(SP)
586        .addReg(Hexagon::R28);
587    return;
588  }
589
590  // Check for RESTORE_DEALLOC_RET* tail call. Don't emit an extra dealloc-
591  // frame instruction if we encounter it.
592  if (RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4) {
593    MachineBasicBlock::iterator It = RetI;
594    ++It;
595    // Delete all instructions after the RESTORE (except labels).
596    while (It != MBB.end()) {
597      if (!It->isLabel())
598        It = MBB.erase(It);
599      else
600        ++It;
601    }
602    return;
603  }
604
605  // It is possible that the restoring code is a call to a library function.
606  // All of the restore* functions include "deallocframe", so we need to make
607  // sure that we don't add an extra one.
608  bool NeedsDeallocframe = true;
609  if (!MBB.empty() && InsertPt != MBB.begin()) {
610    MachineBasicBlock::iterator PrevIt = std::prev(InsertPt);
611    unsigned COpc = PrevIt->getOpcode();
612    if (COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4)
613      NeedsDeallocframe = false;
614  }
615
616  if (!NeedsDeallocframe)
617    return;
618  // If the returning instruction is JMPret, replace it with dealloc_return,
619  // otherwise just add deallocframe. The function could be returning via a
620  // tail call.
621  if (RetOpc != Hexagon::JMPret || DisableDeallocRet) {
622    BuildMI(MBB, InsertPt, DL, HII.get(Hexagon::L2_deallocframe));
623    return;
624  }
625  unsigned NewOpc = Hexagon::L4_return;
626  MachineInstr *NewI = BuildMI(MBB, RetI, DL, HII.get(NewOpc));
627  // Transfer the function live-out registers.
628  NewI->copyImplicitOps(MF, RetI);
629  MBB.erase(RetI);
630}
631
632
633bool HexagonFrameLowering::hasFP(const MachineFunction &MF) const {
634  const MachineFrameInfo *MFI = MF.getFrameInfo();
635  const HexagonMachineFunctionInfo *FuncInfo =
636    MF.getInfo<HexagonMachineFunctionInfo>();
637  return MFI->hasCalls() || MFI->getStackSize() > 0 ||
638         FuncInfo->hasClobberLR();
639}
640
641
642enum SpillKind {
643  SK_ToMem,
644  SK_FromMem,
645  SK_FromMemTailcall
646};
647
648static const char *
649getSpillFunctionFor(unsigned MaxReg, SpillKind SpillType) {
650  const char * V4SpillToMemoryFunctions[] = {
651    "__save_r16_through_r17",
652    "__save_r16_through_r19",
653    "__save_r16_through_r21",
654    "__save_r16_through_r23",
655    "__save_r16_through_r25",
656    "__save_r16_through_r27" };
657
658  const char * V4SpillFromMemoryFunctions[] = {
659    "__restore_r16_through_r17_and_deallocframe",
660    "__restore_r16_through_r19_and_deallocframe",
661    "__restore_r16_through_r21_and_deallocframe",
662    "__restore_r16_through_r23_and_deallocframe",
663    "__restore_r16_through_r25_and_deallocframe",
664    "__restore_r16_through_r27_and_deallocframe" };
665
666  const char * V4SpillFromMemoryTailcallFunctions[] = {
667    "__restore_r16_through_r17_and_deallocframe_before_tailcall",
668    "__restore_r16_through_r19_and_deallocframe_before_tailcall",
669    "__restore_r16_through_r21_and_deallocframe_before_tailcall",
670    "__restore_r16_through_r23_and_deallocframe_before_tailcall",
671    "__restore_r16_through_r25_and_deallocframe_before_tailcall",
672    "__restore_r16_through_r27_and_deallocframe_before_tailcall"
673  };
674
675  const char **SpillFunc = nullptr;
676
677  switch(SpillType) {
678  case SK_ToMem:
679    SpillFunc = V4SpillToMemoryFunctions;
680    break;
681  case SK_FromMem:
682    SpillFunc = V4SpillFromMemoryFunctions;
683    break;
684  case SK_FromMemTailcall:
685    SpillFunc = V4SpillFromMemoryTailcallFunctions;
686    break;
687  }
688  assert(SpillFunc && "Unknown spill kind");
689
690  // Spill all callee-saved registers up to the highest register used.
691  switch (MaxReg) {
692  case Hexagon::R17:
693    return SpillFunc[0];
694  case Hexagon::R19:
695    return SpillFunc[1];
696  case Hexagon::R21:
697    return SpillFunc[2];
698  case Hexagon::R23:
699    return SpillFunc[3];
700  case Hexagon::R25:
701    return SpillFunc[4];
702  case Hexagon::R27:
703    return SpillFunc[5];
704  default:
705    llvm_unreachable("Unhandled maximum callee save register");
706  }
707  return 0;
708}
709
710/// Adds all callee-saved registers up to MaxReg to the instruction.
711static void addCalleeSaveRegistersAsImpOperand(MachineInstr *Inst,
712                                           unsigned MaxReg, bool IsDef) {
713  // Add the callee-saved registers as implicit uses.
714  for (unsigned R = Hexagon::R16; R <= MaxReg; ++R) {
715    MachineOperand ImpUse = MachineOperand::CreateReg(R, IsDef, true);
716    Inst->addOperand(ImpUse);
717  }
718}
719
720
721int HexagonFrameLowering::getFrameIndexOffset(const MachineFunction &MF,
722      int FI) const {
723  return MF.getFrameInfo()->getObjectOffset(FI);
724}
725
726
727bool HexagonFrameLowering::insertCSRSpillsInBlock(MachineBasicBlock &MBB,
728      const CSIVect &CSI, const HexagonRegisterInfo &HRI) const {
729  if (CSI.empty())
730    return true;
731
732  MachineBasicBlock::iterator MI = MBB.begin();
733  MachineFunction &MF = *MBB.getParent();
734  const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
735
736  if (useSpillFunction(MF, CSI)) {
737    unsigned MaxReg = getMaxCalleeSavedReg(CSI, HRI);
738    const char *SpillFun = getSpillFunctionFor(MaxReg, SK_ToMem);
739    // Call spill function.
740    DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
741    MachineInstr *SaveRegsCall =
742        BuildMI(MBB, MI, DL, TII.get(Hexagon::SAVE_REGISTERS_CALL_V4))
743          .addExternalSymbol(SpillFun);
744    // Add callee-saved registers as use.
745    addCalleeSaveRegistersAsImpOperand(SaveRegsCall, MaxReg, false);
746    // Add live in registers.
747    for (unsigned I = 0; I < CSI.size(); ++I)
748      MBB.addLiveIn(CSI[I].getReg());
749    return true;
750  }
751
752  for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
753    unsigned Reg = CSI[i].getReg();
754    // Add live in registers. We treat eh_return callee saved register r0 - r3
755    // specially. They are not really callee saved registers as they are not
756    // supposed to be killed.
757    bool IsKill = !HRI.isEHReturnCalleeSaveReg(Reg);
758    int FI = CSI[i].getFrameIdx();
759    const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
760    TII.storeRegToStackSlot(MBB, MI, Reg, IsKill, FI, RC, &HRI);
761    if (IsKill)
762      MBB.addLiveIn(Reg);
763  }
764  return true;
765}
766
767
768bool HexagonFrameLowering::insertCSRRestoresInBlock(MachineBasicBlock &MBB,
769      const CSIVect &CSI, const HexagonRegisterInfo &HRI) const {
770  if (CSI.empty())
771    return false;
772
773  MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
774  MachineFunction &MF = *MBB.getParent();
775  const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
776
777  if (useRestoreFunction(MF, CSI)) {
778    bool HasTC = hasTailCall(MBB) || !hasReturn(MBB);
779    unsigned MaxR = getMaxCalleeSavedReg(CSI, HRI);
780    SpillKind Kind = HasTC ? SK_FromMemTailcall : SK_FromMem;
781    const char *RestoreFn = getSpillFunctionFor(MaxR, Kind);
782
783    // Call spill function.
784    DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc()
785                                  : MBB.getLastNonDebugInstr()->getDebugLoc();
786    MachineInstr *DeallocCall = nullptr;
787
788    if (HasTC) {
789      unsigned ROpc = Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4;
790      DeallocCall = BuildMI(MBB, MI, DL, TII.get(ROpc))
791          .addExternalSymbol(RestoreFn);
792    } else {
793      // The block has a return.
794      MachineBasicBlock::iterator It = MBB.getFirstTerminator();
795      assert(It->isReturn() && std::next(It) == MBB.end());
796      unsigned ROpc = Hexagon::RESTORE_DEALLOC_RET_JMP_V4;
797      DeallocCall = BuildMI(MBB, It, DL, TII.get(ROpc))
798          .addExternalSymbol(RestoreFn);
799      // Transfer the function live-out registers.
800      DeallocCall->copyImplicitOps(MF, It);
801    }
802    addCalleeSaveRegistersAsImpOperand(DeallocCall, MaxR, true);
803    return true;
804  }
805
806  for (unsigned i = 0; i < CSI.size(); ++i) {
807    unsigned Reg = CSI[i].getReg();
808    const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
809    int FI = CSI[i].getFrameIdx();
810    TII.loadRegFromStackSlot(MBB, MI, Reg, FI, RC, &HRI);
811  }
812  return true;
813}
814
815
816void HexagonFrameLowering::eliminateCallFramePseudoInstr(MachineFunction &MF,
817      MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const {
818  MachineInstr &MI = *I;
819  unsigned Opc = MI.getOpcode();
820  (void)Opc; // Silence compiler warning.
821  assert((Opc == Hexagon::ADJCALLSTACKDOWN || Opc == Hexagon::ADJCALLSTACKUP) &&
822         "Cannot handle this call frame pseudo instruction");
823  MBB.erase(I);
824}
825
826
827void HexagonFrameLowering::processFunctionBeforeFrameFinalized(
828    MachineFunction &MF, RegScavenger *RS) const {
829  // If this function has uses aligned stack and also has variable sized stack
830  // objects, then we need to map all spill slots to fixed positions, so that
831  // they can be accessed through FP. Otherwise they would have to be accessed
832  // via AP, which may not be available at the particular place in the program.
833  MachineFrameInfo *MFI = MF.getFrameInfo();
834  bool HasAlloca = MFI->hasVarSizedObjects();
835  bool HasAligna = (MFI->getMaxAlignment() > getStackAlignment());
836
837  if (!HasAlloca || !HasAligna)
838    return;
839
840  unsigned LFS = MFI->getLocalFrameSize();
841  int Offset = -LFS;
842  for (int i = 0, e = MFI->getObjectIndexEnd(); i != e; ++i) {
843    if (!MFI->isSpillSlotObjectIndex(i) || MFI->isDeadObjectIndex(i))
844      continue;
845    int S = MFI->getObjectSize(i);
846    LFS += S;
847    Offset -= S;
848    MFI->mapLocalFrameObject(i, Offset);
849  }
850
851  MFI->setLocalFrameSize(LFS);
852  unsigned A = MFI->getLocalFrameMaxAlign();
853  assert(A <= 8 && "Unexpected local frame alignment");
854  if (A == 0)
855    MFI->setLocalFrameMaxAlign(8);
856  MFI->setUseLocalStackAllocationBlock(true);
857}
858
859/// Returns true if there is no caller saved registers available.
860static bool needToReserveScavengingSpillSlots(MachineFunction &MF,
861                                              const HexagonRegisterInfo &HRI) {
862  MachineRegisterInfo &MRI = MF.getRegInfo();
863  const MCPhysReg *CallerSavedRegs = HRI.getCallerSavedRegs(&MF);
864  // Check for an unused caller-saved register.
865  for ( ; *CallerSavedRegs; ++CallerSavedRegs) {
866    MCPhysReg FreeReg = *CallerSavedRegs;
867    if (MRI.isPhysRegUsed(FreeReg))
868      continue;
869
870    // Check aliased register usage.
871    bool IsCurrentRegUsed = false;
872    for (MCRegAliasIterator AI(FreeReg, &HRI, false); AI.isValid(); ++AI)
873      if (MRI.isPhysRegUsed(*AI)) {
874        IsCurrentRegUsed = true;
875        break;
876      }
877    if (IsCurrentRegUsed)
878      continue;
879
880    // Neither directly used nor used through an aliased register.
881    return false;
882  }
883  // All caller-saved registers are used.
884  return true;
885}
886
887
888/// Replaces the predicate spill code pseudo instructions by valid instructions.
889bool HexagonFrameLowering::replacePredRegPseudoSpillCode(MachineFunction &MF)
890      const {
891  auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
892  auto &HII = *HST.getInstrInfo();
893  MachineRegisterInfo &MRI = MF.getRegInfo();
894  bool HasReplacedPseudoInst = false;
895  // Replace predicate spill pseudo instructions by real code.
896  // Loop over all of the basic blocks.
897  for (MachineFunction::iterator MBBb = MF.begin(), MBBe = MF.end();
898       MBBb != MBBe; ++MBBb) {
899    MachineBasicBlock* MBB = MBBb;
900    // Traverse the basic block.
901    MachineBasicBlock::iterator NextII;
902    for (MachineBasicBlock::iterator MII = MBB->begin(); MII != MBB->end();
903         MII = NextII) {
904      MachineInstr *MI = MII;
905      NextII = std::next(MII);
906      int Opc = MI->getOpcode();
907      if (Opc == Hexagon::STriw_pred) {
908        HasReplacedPseudoInst = true;
909        // STriw_pred FI, 0, SrcReg;
910        unsigned VirtReg = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
911        unsigned SrcReg = MI->getOperand(2).getReg();
912        bool IsOrigSrcRegKilled = MI->getOperand(2).isKill();
913
914        assert(MI->getOperand(0).isFI() && "Expect a frame index");
915        assert(Hexagon::PredRegsRegClass.contains(SrcReg) &&
916               "Not a predicate register");
917
918        // Insert transfer to general purpose register.
919        //   VirtReg = C2_tfrpr SrcPredReg
920        BuildMI(*MBB, MII, MI->getDebugLoc(), HII.get(Hexagon::C2_tfrpr),
921                VirtReg).addReg(SrcReg, getKillRegState(IsOrigSrcRegKilled));
922
923        // Change instruction to S2_storeri_io.
924        //   S2_storeri_io FI, 0, VirtReg
925        MI->setDesc(HII.get(Hexagon::S2_storeri_io));
926        MI->getOperand(2).setReg(VirtReg);
927        MI->getOperand(2).setIsKill();
928
929      } else if (Opc == Hexagon::LDriw_pred) {
930        // DstReg = LDriw_pred FI, 0
931        MachineOperand &M0 = MI->getOperand(0);
932        if (M0.isDead()) {
933          MBB->erase(MII);
934          continue;
935        }
936
937        unsigned VirtReg = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
938        unsigned DestReg = MI->getOperand(0).getReg();
939
940        assert(MI->getOperand(1).isFI() && "Expect a frame index");
941        assert(Hexagon::PredRegsRegClass.contains(DestReg) &&
942               "Not a predicate register");
943
944        // Change instruction to L2_loadri_io.
945        //   VirtReg = L2_loadri_io FI, 0
946        MI->setDesc(HII.get(Hexagon::L2_loadri_io));
947        MI->getOperand(0).setReg(VirtReg);
948
949        // Insert transfer to general purpose register.
950        //   DestReg = C2_tfrrp VirtReg
951        const MCInstrDesc &D = HII.get(Hexagon::C2_tfrrp);
952        BuildMI(*MBB, std::next(MII), MI->getDebugLoc(), D, DestReg)
953          .addReg(VirtReg, getKillRegState(true));
954        HasReplacedPseudoInst = true;
955      }
956    }
957  }
958  return HasReplacedPseudoInst;
959}
960
961
962void HexagonFrameLowering::determineCalleeSaves(MachineFunction &MF,
963                                                BitVector &SavedRegs,
964                                                RegScavenger *RS) const {
965  TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
966
967  auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
968  auto &HRI = *HST.getRegisterInfo();
969
970  bool HasEHReturn = MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn();
971
972  // If we have a function containing __builtin_eh_return we want to spill and
973  // restore all callee saved registers. Pretend that they are used.
974  if (HasEHReturn) {
975    for (const MCPhysReg *CSRegs = HRI.getCalleeSavedRegs(&MF); *CSRegs;
976         ++CSRegs)
977      SavedRegs.set(*CSRegs);
978  }
979
980  const TargetRegisterClass &RC = Hexagon::IntRegsRegClass;
981
982  // Replace predicate register pseudo spill code.
983  bool HasReplacedPseudoInst = replacePredRegPseudoSpillCode(MF);
984
985  // We need to reserve a a spill slot if scavenging could potentially require
986  // spilling a scavenged register.
987  if (HasReplacedPseudoInst && needToReserveScavengingSpillSlots(MF, HRI)) {
988    MachineFrameInfo *MFI = MF.getFrameInfo();
989    for (int i=0; i < NumberScavengerSlots; i++)
990      RS->addScavengingFrameIndex(
991        MFI->CreateSpillStackObject(RC.getSize(), RC.getAlignment()));
992  }
993}
994
995
996#ifndef NDEBUG
997static void dump_registers(BitVector &Regs, const TargetRegisterInfo &TRI) {
998  dbgs() << '{';
999  for (int x = Regs.find_first(); x >= 0; x = Regs.find_next(x)) {
1000    unsigned R = x;
1001    dbgs() << ' ' << PrintReg(R, &TRI);
1002  }
1003  dbgs() << " }";
1004}
1005#endif
1006
1007
1008bool HexagonFrameLowering::assignCalleeSavedSpillSlots(MachineFunction &MF,
1009      const TargetRegisterInfo *TRI, std::vector<CalleeSavedInfo> &CSI) const {
1010  DEBUG(dbgs() << LLVM_FUNCTION_NAME << " on "
1011               << MF.getFunction()->getName() << '\n');
1012  MachineFrameInfo *MFI = MF.getFrameInfo();
1013  BitVector SRegs(Hexagon::NUM_TARGET_REGS);
1014
1015  // Generate a set of unique, callee-saved registers (SRegs), where each
1016  // register in the set is maximal in terms of sub-/super-register relation,
1017  // i.e. for each R in SRegs, no proper super-register of R is also in SRegs.
1018
1019  // (1) For each callee-saved register, add that register and all of its
1020  // sub-registers to SRegs.
1021  DEBUG(dbgs() << "Initial CS registers: {");
1022  for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
1023    unsigned R = CSI[i].getReg();
1024    DEBUG(dbgs() << ' ' << PrintReg(R, TRI));
1025    for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR)
1026      SRegs[*SR] = true;
1027  }
1028  DEBUG(dbgs() << " }\n");
1029  DEBUG(dbgs() << "SRegs.1: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
1030
1031  // (2) For each reserved register, remove that register and all of its
1032  // sub- and super-registers from SRegs.
1033  BitVector Reserved = TRI->getReservedRegs(MF);
1034  for (int x = Reserved.find_first(); x >= 0; x = Reserved.find_next(x)) {
1035    unsigned R = x;
1036    for (MCSuperRegIterator SR(R, TRI, true); SR.isValid(); ++SR)
1037      SRegs[*SR] = false;
1038  }
1039  DEBUG(dbgs() << "Res:     "; dump_registers(Reserved, *TRI); dbgs() << "\n");
1040  DEBUG(dbgs() << "SRegs.2: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
1041
1042  // (3) Collect all registers that have at least one sub-register in SRegs,
1043  // and also have no sub-registers that are reserved. These will be the can-
1044  // didates for saving as a whole instead of their individual sub-registers.
1045  // (Saving R17:16 instead of R16 is fine, but only if R17 was not reserved.)
1046  BitVector TmpSup(Hexagon::NUM_TARGET_REGS);
1047  for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1048    unsigned R = x;
1049    for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR)
1050      TmpSup[*SR] = true;
1051  }
1052  for (int x = TmpSup.find_first(); x >= 0; x = TmpSup.find_next(x)) {
1053    unsigned R = x;
1054    for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR) {
1055      if (!Reserved[*SR])
1056        continue;
1057      TmpSup[R] = false;
1058      break;
1059    }
1060  }
1061  DEBUG(dbgs() << "TmpSup:  "; dump_registers(TmpSup, *TRI); dbgs() << "\n");
1062
1063  // (4) Include all super-registers found in (3) into SRegs.
1064  SRegs |= TmpSup;
1065  DEBUG(dbgs() << "SRegs.4: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
1066
1067  // (5) For each register R in SRegs, if any super-register of R is in SRegs,
1068  // remove R from SRegs.
1069  for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1070    unsigned R = x;
1071    for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) {
1072      if (!SRegs[*SR])
1073        continue;
1074      SRegs[R] = false;
1075      break;
1076    }
1077  }
1078  DEBUG(dbgs() << "SRegs.5: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
1079
1080  // Now, for each register that has a fixed stack slot, create the stack
1081  // object for it.
1082  CSI.clear();
1083
1084  typedef TargetFrameLowering::SpillSlot SpillSlot;
1085  unsigned NumFixed;
1086  int MinOffset = 0;  // CS offsets are negative.
1087  const SpillSlot *FixedSlots = getCalleeSavedSpillSlots(NumFixed);
1088  for (const SpillSlot *S = FixedSlots; S != FixedSlots+NumFixed; ++S) {
1089    if (!SRegs[S->Reg])
1090      continue;
1091    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(S->Reg);
1092    int FI = MFI->CreateFixedSpillStackObject(RC->getSize(), S->Offset);
1093    MinOffset = std::min(MinOffset, S->Offset);
1094    CSI.push_back(CalleeSavedInfo(S->Reg, FI));
1095    SRegs[S->Reg] = false;
1096  }
1097
1098  // There can be some registers that don't have fixed slots. For example,
1099  // we need to store R0-R3 in functions with exception handling. For each
1100  // such register, create a non-fixed stack object.
1101  for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1102    unsigned R = x;
1103    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(R);
1104    int Off = MinOffset - RC->getSize();
1105    unsigned Align = std::min(RC->getAlignment(), getStackAlignment());
1106    assert(isPowerOf2_32(Align));
1107    Off &= -Align;
1108    int FI = MFI->CreateFixedSpillStackObject(RC->getSize(), Off);
1109    MinOffset = std::min(MinOffset, Off);
1110    CSI.push_back(CalleeSavedInfo(R, FI));
1111    SRegs[R] = false;
1112  }
1113
1114  DEBUG({
1115    dbgs() << "CS information: {";
1116    for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
1117      int FI = CSI[i].getFrameIdx();
1118      int Off = MFI->getObjectOffset(FI);
1119      dbgs() << ' ' << PrintReg(CSI[i].getReg(), TRI) << ":fi#" << FI << ":sp";
1120      if (Off >= 0)
1121        dbgs() << '+';
1122      dbgs() << Off;
1123    }
1124    dbgs() << " }\n";
1125  });
1126
1127#ifndef NDEBUG
1128  // Verify that all registers were handled.
1129  bool MissedReg = false;
1130  for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1131    unsigned R = x;
1132    dbgs() << PrintReg(R, TRI) << ' ';
1133    MissedReg = true;
1134  }
1135  if (MissedReg)
1136    llvm_unreachable("...there are unhandled callee-saved registers!");
1137#endif
1138
1139  return true;
1140}
1141
1142
1143void HexagonFrameLowering::expandAlloca(MachineInstr *AI,
1144      const HexagonInstrInfo &HII, unsigned SP, unsigned CF) const {
1145  MachineBasicBlock &MB = *AI->getParent();
1146  DebugLoc DL = AI->getDebugLoc();
1147  unsigned A = AI->getOperand(2).getImm();
1148
1149  // Have
1150  //    Rd  = alloca Rs, #A
1151  //
1152  // If Rs and Rd are different registers, use this sequence:
1153  //    Rd  = sub(r29, Rs)
1154  //    r29 = sub(r29, Rs)
1155  //    Rd  = and(Rd, #-A)    ; if necessary
1156  //    r29 = and(r29, #-A)   ; if necessary
1157  //    Rd  = add(Rd, #CF)    ; CF size aligned to at most A
1158  // otherwise, do
1159  //    Rd  = sub(r29, Rs)
1160  //    Rd  = and(Rd, #-A)    ; if necessary
1161  //    r29 = Rd
1162  //    Rd  = add(Rd, #CF)    ; CF size aligned to at most A
1163
1164  MachineOperand &RdOp = AI->getOperand(0);
1165  MachineOperand &RsOp = AI->getOperand(1);
1166  unsigned Rd = RdOp.getReg(), Rs = RsOp.getReg();
1167
1168  // Rd = sub(r29, Rs)
1169  BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), Rd)
1170      .addReg(SP)
1171      .addReg(Rs);
1172  if (Rs != Rd) {
1173    // r29 = sub(r29, Rs)
1174    BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), SP)
1175        .addReg(SP)
1176        .addReg(Rs);
1177  }
1178  if (A > 8) {
1179    // Rd  = and(Rd, #-A)
1180    BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), Rd)
1181        .addReg(Rd)
1182        .addImm(-int64_t(A));
1183    if (Rs != Rd)
1184      BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), SP)
1185          .addReg(SP)
1186          .addImm(-int64_t(A));
1187  }
1188  if (Rs == Rd) {
1189    // r29 = Rd
1190    BuildMI(MB, AI, DL, HII.get(TargetOpcode::COPY), SP)
1191        .addReg(Rd);
1192  }
1193  if (CF > 0) {
1194    // Rd = add(Rd, #CF)
1195    BuildMI(MB, AI, DL, HII.get(Hexagon::A2_addi), Rd)
1196        .addReg(Rd)
1197        .addImm(CF);
1198  }
1199}
1200
1201
1202bool HexagonFrameLowering::needsAligna(const MachineFunction &MF) const {
1203  const MachineFrameInfo *MFI = MF.getFrameInfo();
1204  if (!MFI->hasVarSizedObjects())
1205    return false;
1206  unsigned MaxA = MFI->getMaxAlignment();
1207  if (MaxA <= getStackAlignment())
1208    return false;
1209  return true;
1210}
1211
1212
1213MachineInstr *HexagonFrameLowering::getAlignaInstr(MachineFunction &MF) const {
1214  for (auto &B : MF)
1215    for (auto &I : B)
1216      if (I.getOpcode() == Hexagon::ALIGNA)
1217        return &I;
1218  return nullptr;
1219}
1220
1221
1222inline static bool isOptSize(const MachineFunction &MF) {
1223  AttributeSet AF = MF.getFunction()->getAttributes();
1224  return AF.hasAttribute(AttributeSet::FunctionIndex,
1225                         Attribute::OptimizeForSize);
1226}
1227
1228inline static bool isMinSize(const MachineFunction &MF) {
1229  AttributeSet AF = MF.getFunction()->getAttributes();
1230  return AF.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize);
1231}
1232
1233
1234/// Determine whether the callee-saved register saves and restores should
1235/// be generated via inline code. If this function returns "true", inline
1236/// code will be generated. If this function returns "false", additional
1237/// checks are performed, which may still lead to the inline code.
1238bool HexagonFrameLowering::shouldInlineCSR(MachineFunction &MF,
1239      const CSIVect &CSI) const {
1240  if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn())
1241    return true;
1242  if (!isOptSize(MF) && !isMinSize(MF))
1243    if (MF.getTarget().getOptLevel() > CodeGenOpt::Default)
1244      return true;
1245
1246  // Check if CSI only has double registers, and if the registers form
1247  // a contiguous block starting from D8.
1248  BitVector Regs(Hexagon::NUM_TARGET_REGS);
1249  for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
1250    unsigned R = CSI[i].getReg();
1251    if (!Hexagon::DoubleRegsRegClass.contains(R))
1252      return true;
1253    Regs[R] = true;
1254  }
1255  int F = Regs.find_first();
1256  if (F != Hexagon::D8)
1257    return true;
1258  while (F >= 0) {
1259    int N = Regs.find_next(F);
1260    if (N >= 0 && N != F+1)
1261      return true;
1262    F = N;
1263  }
1264
1265  return false;
1266}
1267
1268
1269bool HexagonFrameLowering::useSpillFunction(MachineFunction &MF,
1270      const CSIVect &CSI) const {
1271  if (shouldInlineCSR(MF, CSI))
1272    return false;
1273  unsigned NumCSI = CSI.size();
1274  if (NumCSI <= 1)
1275    return false;
1276
1277  unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs
1278                                     : SpillFuncThreshold;
1279  return Threshold < NumCSI;
1280}
1281
1282
1283bool HexagonFrameLowering::useRestoreFunction(MachineFunction &MF,
1284      const CSIVect &CSI) const {
1285  if (shouldInlineCSR(MF, CSI))
1286    return false;
1287  unsigned NumCSI = CSI.size();
1288  unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs-1
1289                                     : SpillFuncThreshold;
1290  return Threshold < NumCSI;
1291}
1292
1293