HexagonExpandCondsets.cpp revision 286684
1//===--- HexagonExpandCondsets.cpp ----------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10// Replace mux instructions with the corresponding legal instructions.
11// It is meant to work post-SSA, but still on virtual registers. It was
12// originally placed between register coalescing and machine instruction
13// scheduler.
14// In this place in the optimization sequence, live interval analysis had
15// been performed, and the live intervals should be preserved. A large part
16// of the code deals with preserving the liveness information.
17//
18// Liveness tracking aside, the main functionality of this pass is divided
19// into two steps. The first step is to replace an instruction
20//   vreg0 = C2_mux vreg0, vreg1, vreg2
21// with a pair of conditional transfers
22//   vreg0 = A2_tfrt vreg0, vreg1
23//   vreg0 = A2_tfrf vreg0, vreg2
24// It is the intention that the execution of this pass could be terminated
25// after this step, and the code generated would be functionally correct.
26//
27// If the uses of the source values vreg1 and vreg2 are kills, and their
28// definitions are predicable, then in the second step, the conditional
29// transfers will then be rewritten as predicated instructions. E.g.
30//   vreg0 = A2_or vreg1, vreg2
31//   vreg3 = A2_tfrt vreg99, vreg0<kill>
32// will be rewritten as
33//   vreg3 = A2_port vreg99, vreg1, vreg2
34//
35// This replacement has two variants: "up" and "down". Consider this case:
36//   vreg0 = A2_or vreg1, vreg2
37//   ... [intervening instructions] ...
38//   vreg3 = A2_tfrt vreg99, vreg0<kill>
39// variant "up":
40//   vreg3 = A2_port vreg99, vreg1, vreg2
41//   ... [intervening instructions, vreg0->vreg3] ...
42//   [deleted]
43// variant "down":
44//   [deleted]
45//   ... [intervening instructions] ...
46//   vreg3 = A2_port vreg99, vreg1, vreg2
47//
48// Both, one or none of these variants may be valid, and checks are made
49// to rule out inapplicable variants.
50//
51// As an additional optimization, before either of the two steps above is
52// executed, the pass attempts to coalesce the target register with one of
53// the source registers, e.g. given an instruction
54//   vreg3 = C2_mux vreg0, vreg1, vreg2
55// vreg3 will be coalesced with either vreg1 or vreg2. If this succeeds,
56// the instruction would then be (for example)
57//   vreg3 = C2_mux vreg0, vreg3, vreg2
58// and, under certain circumstances, this could result in only one predicated
59// instruction:
60//   vreg3 = A2_tfrf vreg0, vreg2
61//
62
63#define DEBUG_TYPE "expand-condsets"
64#include "HexagonTargetMachine.h"
65
66#include "llvm/CodeGen/Passes.h"
67#include "llvm/CodeGen/LiveInterval.h"
68#include "llvm/CodeGen/LiveIntervalAnalysis.h"
69#include "llvm/CodeGen/MachineFunction.h"
70#include "llvm/CodeGen/MachineInstrBuilder.h"
71#include "llvm/CodeGen/MachineRegisterInfo.h"
72#include "llvm/Target/TargetInstrInfo.h"
73#include "llvm/Target/TargetMachine.h"
74#include "llvm/Target/TargetRegisterInfo.h"
75#include "llvm/Support/CommandLine.h"
76#include "llvm/Support/Debug.h"
77#include "llvm/Support/raw_ostream.h"
78
79using namespace llvm;
80
81static cl::opt<unsigned> OptTfrLimit("expand-condsets-tfr-limit",
82  cl::init(~0U), cl::Hidden, cl::desc("Max number of mux expansions"));
83static cl::opt<unsigned> OptCoaLimit("expand-condsets-coa-limit",
84  cl::init(~0U), cl::Hidden, cl::desc("Max number of segment coalescings"));
85
86namespace llvm {
87  void initializeHexagonExpandCondsetsPass(PassRegistry&);
88  FunctionPass *createHexagonExpandCondsets();
89}
90
91namespace {
92  class HexagonExpandCondsets : public MachineFunctionPass {
93  public:
94    static char ID;
95    HexagonExpandCondsets() :
96        MachineFunctionPass(ID), HII(0), TRI(0), MRI(0),
97        LIS(0), CoaLimitActive(false),
98        TfrLimitActive(false), CoaCounter(0), TfrCounter(0) {
99      if (OptCoaLimit.getPosition())
100        CoaLimitActive = true, CoaLimit = OptCoaLimit;
101      if (OptTfrLimit.getPosition())
102        TfrLimitActive = true, TfrLimit = OptTfrLimit;
103      initializeHexagonExpandCondsetsPass(*PassRegistry::getPassRegistry());
104    }
105
106    virtual const char *getPassName() const {
107      return "Hexagon Expand Condsets";
108    }
109    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
110      AU.addRequired<LiveIntervals>();
111      AU.addPreserved<LiveIntervals>();
112      AU.addPreserved<SlotIndexes>();
113      MachineFunctionPass::getAnalysisUsage(AU);
114    }
115    virtual bool runOnMachineFunction(MachineFunction &MF);
116
117  private:
118    const HexagonInstrInfo *HII;
119    const TargetRegisterInfo *TRI;
120    MachineRegisterInfo *MRI;
121    LiveIntervals *LIS;
122
123    bool CoaLimitActive, TfrLimitActive;
124    unsigned CoaLimit, TfrLimit, CoaCounter, TfrCounter;
125
126    struct RegisterRef {
127      RegisterRef(const MachineOperand &Op) : Reg(Op.getReg()),
128          Sub(Op.getSubReg()) {}
129      RegisterRef(unsigned R = 0, unsigned S = 0) : Reg(R), Sub(S) {}
130      bool operator== (RegisterRef RR) const {
131        return Reg == RR.Reg && Sub == RR.Sub;
132      }
133      bool operator!= (RegisterRef RR) const { return !operator==(RR); }
134      unsigned Reg, Sub;
135    };
136
137    typedef DenseMap<unsigned,unsigned> ReferenceMap;
138    enum { Sub_Low = 0x1, Sub_High = 0x2, Sub_None = (Sub_Low | Sub_High) };
139    enum { Exec_Then = 0x10, Exec_Else = 0x20 };
140    unsigned getMaskForSub(unsigned Sub);
141    bool isCondset(const MachineInstr *MI);
142
143    void addRefToMap(RegisterRef RR, ReferenceMap &Map, unsigned Exec);
144    bool isRefInMap(RegisterRef, ReferenceMap &Map, unsigned Exec);
145
146    LiveInterval::iterator nextSegment(LiveInterval &LI, SlotIndex S);
147    LiveInterval::iterator prevSegment(LiveInterval &LI, SlotIndex S);
148    void makeDefined(unsigned Reg, SlotIndex S, bool SetDef);
149    void makeUndead(unsigned Reg, SlotIndex S);
150    void shrinkToUses(unsigned Reg, LiveInterval &LI);
151    void updateKillFlags(unsigned Reg, LiveInterval &LI);
152    void terminateSegment(LiveInterval::iterator LT, SlotIndex S,
153        LiveInterval &LI);
154    void addInstrToLiveness(MachineInstr *MI);
155    void removeInstrFromLiveness(MachineInstr *MI);
156
157    unsigned getCondTfrOpcode(const MachineOperand &SO, bool Cond);
158    MachineInstr *genTfrFor(MachineOperand &SrcOp, unsigned DstR,
159        unsigned DstSR, const MachineOperand &PredOp, bool Cond);
160    bool split(MachineInstr *MI);
161    bool splitInBlock(MachineBasicBlock &B);
162
163    bool isPredicable(MachineInstr *MI);
164    MachineInstr *getReachingDefForPred(RegisterRef RD,
165        MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond);
166    bool canMoveOver(MachineInstr *MI, ReferenceMap &Defs, ReferenceMap &Uses);
167    bool canMoveMemTo(MachineInstr *MI, MachineInstr *ToI, bool IsDown);
168    void predicateAt(RegisterRef RD, MachineInstr *MI,
169        MachineBasicBlock::iterator Where, unsigned PredR, bool Cond);
170    void renameInRange(RegisterRef RO, RegisterRef RN, unsigned PredR,
171        bool Cond, MachineBasicBlock::iterator First,
172        MachineBasicBlock::iterator Last);
173    bool predicate(MachineInstr *TfrI, bool Cond);
174    bool predicateInBlock(MachineBasicBlock &B);
175
176    void postprocessUndefImplicitUses(MachineBasicBlock &B);
177    void removeImplicitUses(MachineInstr *MI);
178    void removeImplicitUses(MachineBasicBlock &B);
179
180    bool isIntReg(RegisterRef RR, unsigned &BW);
181    bool isIntraBlocks(LiveInterval &LI);
182    bool coalesceRegisters(RegisterRef R1, RegisterRef R2);
183    bool coalesceSegments(MachineFunction &MF);
184  };
185}
186
187char HexagonExpandCondsets::ID = 0;
188
189
190unsigned HexagonExpandCondsets::getMaskForSub(unsigned Sub) {
191  switch (Sub) {
192    case Hexagon::subreg_loreg:
193      return Sub_Low;
194    case Hexagon::subreg_hireg:
195      return Sub_High;
196    case Hexagon::NoSubRegister:
197      return Sub_None;
198  }
199  llvm_unreachable("Invalid subregister");
200}
201
202
203bool HexagonExpandCondsets::isCondset(const MachineInstr *MI) {
204  unsigned Opc = MI->getOpcode();
205  switch (Opc) {
206    case Hexagon::C2_mux:
207    case Hexagon::C2_muxii:
208    case Hexagon::C2_muxir:
209    case Hexagon::C2_muxri:
210    case Hexagon::MUX64_rr:
211        return true;
212      break;
213  }
214  return false;
215}
216
217
218void HexagonExpandCondsets::addRefToMap(RegisterRef RR, ReferenceMap &Map,
219      unsigned Exec) {
220  unsigned Mask = getMaskForSub(RR.Sub) | Exec;
221  ReferenceMap::iterator F = Map.find(RR.Reg);
222  if (F == Map.end())
223    Map.insert(std::make_pair(RR.Reg, Mask));
224  else
225    F->second |= Mask;
226}
227
228
229bool HexagonExpandCondsets::isRefInMap(RegisterRef RR, ReferenceMap &Map,
230      unsigned Exec) {
231  ReferenceMap::iterator F = Map.find(RR.Reg);
232  if (F == Map.end())
233    return false;
234  unsigned Mask = getMaskForSub(RR.Sub) | Exec;
235  if (Mask & F->second)
236    return true;
237  return false;
238}
239
240
241LiveInterval::iterator HexagonExpandCondsets::nextSegment(LiveInterval &LI,
242      SlotIndex S) {
243  for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
244    if (I->start >= S)
245      return I;
246  }
247  return LI.end();
248}
249
250
251LiveInterval::iterator HexagonExpandCondsets::prevSegment(LiveInterval &LI,
252      SlotIndex S) {
253  LiveInterval::iterator P = LI.end();
254  for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
255    if (I->end > S)
256      return P;
257    P = I;
258  }
259  return P;
260}
261
262
263/// Find the implicit use of register Reg in slot index S, and make sure
264/// that the "defined" flag is set to SetDef. While the mux expansion is
265/// going on, predicated instructions will have implicit uses of the
266/// registers that are being defined. This is to keep any preceding
267/// definitions live. If there is no preceding definition, the implicit
268/// use will be marked as "undef", otherwise it will be "defined". This
269/// function is used to update the flag.
270void HexagonExpandCondsets::makeDefined(unsigned Reg, SlotIndex S,
271      bool SetDef) {
272  if (!S.isRegister())
273    return;
274  MachineInstr *MI = LIS->getInstructionFromIndex(S);
275  assert(MI && "Expecting instruction");
276  for (auto &Op : MI->operands()) {
277    if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg)
278      continue;
279    bool IsDef = !Op.isUndef();
280    if (Op.isImplicit() && IsDef != SetDef)
281      Op.setIsUndef(!SetDef);
282  }
283}
284
285
286void HexagonExpandCondsets::makeUndead(unsigned Reg, SlotIndex S) {
287  // If S is a block boundary, then there can still be a dead def reaching
288  // this point. Instead of traversing the CFG, queue start points of all
289  // live segments that begin with a register, and end at a block boundary.
290  // This may "resurrect" some truly dead definitions, but doing so is
291  // harmless.
292  SmallVector<MachineInstr*,8> Defs;
293  if (S.isBlock()) {
294    LiveInterval &LI = LIS->getInterval(Reg);
295    for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
296      if (!I->start.isRegister() || !I->end.isBlock())
297        continue;
298      MachineInstr *MI = LIS->getInstructionFromIndex(I->start);
299      Defs.push_back(MI);
300    }
301  } else if (S.isRegister()) {
302    MachineInstr *MI = LIS->getInstructionFromIndex(S);
303    Defs.push_back(MI);
304  }
305
306  for (unsigned i = 0, n = Defs.size(); i < n; ++i) {
307    MachineInstr *MI = Defs[i];
308    for (auto &Op : MI->operands()) {
309      if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
310        continue;
311      Op.setIsDead(false);
312    }
313  }
314}
315
316
317/// Shrink the segments in the live interval for a given register to the last
318/// use before each subsequent def. Unlike LiveIntervals::shrinkToUses, this
319/// function will not mark any definitions of Reg as dead. The reason for this
320/// is that this function is used while a MUX instruction is being expanded,
321/// or while a conditional copy is undergoing predication. During these
322/// processes, there may be defs present in the instruction sequence that have
323/// not yet been removed, or there may be missing uses that have not yet been
324/// added. We want to utilize LiveIntervals::shrinkToUses as much as possible,
325/// but since it does not extend any intervals that are too short, we need to
326/// pre-emptively extend them here in anticipation of further changes.
327void HexagonExpandCondsets::shrinkToUses(unsigned Reg, LiveInterval &LI) {
328  SmallVector<MachineInstr*,4> Deads;
329  LIS->shrinkToUses(&LI, &Deads);
330  // Need to undo the deadification made by "shrinkToUses". It's easier to
331  // do it here, since we have a list of all instructions that were just
332  // marked as dead.
333  for (unsigned i = 0, n = Deads.size(); i < n; ++i) {
334    MachineInstr *MI = Deads[i];
335    // Clear the "dead" flag.
336    for (auto &Op : MI->operands()) {
337      if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
338        continue;
339      Op.setIsDead(false);
340    }
341    // Extend the live segment to the beginning of the next one.
342    LiveInterval::iterator End = LI.end();
343    SlotIndex S = LIS->getInstructionIndex(MI).getRegSlot();
344    LiveInterval::iterator T = LI.FindSegmentContaining(S);
345    assert(T != End);
346    LiveInterval::iterator N = std::next(T);
347    if (N != End)
348      T->end = N->start;
349    else
350      T->end = LIS->getMBBEndIdx(MI->getParent());
351  }
352  updateKillFlags(Reg, LI);
353}
354
355
356/// Given an updated live interval LI for register Reg, update the kill flags
357/// in instructions using Reg to reflect the liveness changes.
358void HexagonExpandCondsets::updateKillFlags(unsigned Reg, LiveInterval &LI) {
359  MRI->clearKillFlags(Reg);
360  for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
361    SlotIndex EX = I->end;
362    if (!EX.isRegister())
363      continue;
364    MachineInstr *MI = LIS->getInstructionFromIndex(EX);
365    for (auto &Op : MI->operands()) {
366      if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg)
367        continue;
368      // Only set the kill flag on the first encountered use of Reg in this
369      // instruction.
370      Op.setIsKill(true);
371      break;
372    }
373  }
374}
375
376
377/// When adding a new instruction to liveness, the newly added definition
378/// will start a new live segment. This may happen at a position that falls
379/// within an existing live segment. In such case that live segment needs to
380/// be truncated to make room for the new segment. Ultimately, the truncation
381/// will occur at the last use, but for now the segment can be terminated
382/// right at the place where the new segment will start. The segments will be
383/// shrunk-to-uses later.
384void HexagonExpandCondsets::terminateSegment(LiveInterval::iterator LT,
385      SlotIndex S, LiveInterval &LI) {
386  // Terminate the live segment pointed to by LT within a live interval LI.
387  if (LT == LI.end())
388    return;
389
390  VNInfo *OldVN = LT->valno;
391  SlotIndex EX = LT->end;
392  LT->end = S;
393  // If LT does not end at a block boundary, the termination is done.
394  if (!EX.isBlock())
395    return;
396
397  // If LT ended at a block boundary, it's possible that its value number
398  // is picked up at the beginning other blocks. Create a new value number
399  // and change such blocks to use it instead.
400  VNInfo *NewVN = 0;
401  for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
402    if (!I->start.isBlock() || I->valno != OldVN)
403      continue;
404    // Generate on-demand a new value number that is defined by the
405    // block beginning (i.e. -phi).
406    if (!NewVN)
407      NewVN = LI.getNextValue(I->start, LIS->getVNInfoAllocator());
408    I->valno = NewVN;
409  }
410}
411
412
413/// Add the specified instruction to live intervals. This function is used
414/// to update the live intervals while the program code is being changed.
415/// Neither the expansion of a MUX, nor the predication are atomic, and this
416/// function is used to update the live intervals while these transformations
417/// are being done.
418void HexagonExpandCondsets::addInstrToLiveness(MachineInstr *MI) {
419  SlotIndex MX = LIS->isNotInMIMap(MI) ? LIS->InsertMachineInstrInMaps(MI)
420                                       : LIS->getInstructionIndex(MI);
421  DEBUG(dbgs() << "adding liveness info for instr\n  " << MX << "  " << *MI);
422
423  MX = MX.getRegSlot();
424  bool Predicated = HII->isPredicated(MI);
425  MachineBasicBlock *MB = MI->getParent();
426
427  // Strip all implicit uses from predicated instructions. They will be
428  // added again, according to the updated information.
429  if (Predicated)
430    removeImplicitUses(MI);
431
432  // For each def in MI we need to insert a new live segment starting at MX
433  // into the interval. If there already exists a live segment in the interval
434  // that contains MX, we need to terminate it at MX.
435  SmallVector<RegisterRef,2> Defs;
436  for (auto &Op : MI->operands())
437    if (Op.isReg() && Op.isDef())
438      Defs.push_back(RegisterRef(Op));
439
440  for (unsigned i = 0, n = Defs.size(); i < n; ++i) {
441    unsigned DefR = Defs[i].Reg;
442    LiveInterval &LID = LIS->getInterval(DefR);
443    DEBUG(dbgs() << "adding def " << PrintReg(DefR, TRI)
444                 << " with interval\n  " << LID << "\n");
445    // If MX falls inside of an existing live segment, terminate it.
446    LiveInterval::iterator LT = LID.FindSegmentContaining(MX);
447    if (LT != LID.end())
448      terminateSegment(LT, MX, LID);
449    DEBUG(dbgs() << "after terminating segment\n  " << LID << "\n");
450
451    // Create a new segment starting from MX.
452    LiveInterval::iterator P = prevSegment(LID, MX), N = nextSegment(LID, MX);
453    SlotIndex EX;
454    VNInfo *VN = LID.getNextValue(MX, LIS->getVNInfoAllocator());
455    if (N == LID.end()) {
456      // There is no live segment after MX. End this segment at the end of
457      // the block.
458      EX = LIS->getMBBEndIdx(MB);
459    } else {
460      // If the next segment starts at the block boundary, end the new segment
461      // at the boundary of the preceding block (i.e. the previous index).
462      // Otherwise, end the segment at the beginning of the next segment. In
463      // either case it will be "shrunk-to-uses" later.
464      EX = N->start.isBlock() ? N->start.getPrevIndex() : N->start;
465    }
466    if (Predicated) {
467      // Predicated instruction will have an implicit use of the defined
468      // register. This is necessary so that this definition will not make
469      // any previous definitions dead. If there are no previous live
470      // segments, still add the implicit use, but make it "undef".
471      // Because of the implicit use, the preceding definition is not
472      // dead. Mark is as such (if necessary).
473      MachineOperand ImpUse = MachineOperand::CreateReg(DefR, false, true);
474      ImpUse.setSubReg(Defs[i].Sub);
475      bool Undef = false;
476      if (P == LID.end())
477        Undef = true;
478      else {
479        // If the previous segment extends to the end of the previous block,
480        // the end index may actually be the beginning of this block. If
481        // the previous segment ends at a block boundary, move it back by one,
482        // to get the proper block for it.
483        SlotIndex PE = P->end.isBlock() ? P->end.getPrevIndex() : P->end;
484        MachineBasicBlock *PB = LIS->getMBBFromIndex(PE);
485        if (PB != MB && !LIS->isLiveInToMBB(LID, MB))
486          Undef = true;
487      }
488      if (!Undef) {
489        makeUndead(DefR, P->valno->def);
490        // We are adding a live use, so extend the previous segment to
491        // include it.
492        P->end = MX;
493      } else {
494        ImpUse.setIsUndef(true);
495      }
496
497      if (!MI->readsRegister(DefR))
498        MI->addOperand(ImpUse);
499      if (N != LID.end())
500        makeDefined(DefR, N->start, true);
501    }
502    LiveRange::Segment NR = LiveRange::Segment(MX, EX, VN);
503    LID.addSegment(NR);
504    DEBUG(dbgs() << "added a new segment " << NR << "\n  " << LID << "\n");
505    shrinkToUses(DefR, LID);
506    DEBUG(dbgs() << "updated imp-uses: " << *MI);
507    LID.verify();
508  }
509
510  // For each use in MI:
511  // - If there is no live segment that contains MX for the used register,
512  //   extend the previous one. Ignore implicit uses.
513  for (auto &Op : MI->operands()) {
514    if (!Op.isReg() || !Op.isUse() || Op.isImplicit() || Op.isUndef())
515      continue;
516    unsigned UseR = Op.getReg();
517    LiveInterval &LIU = LIS->getInterval(UseR);
518    // Find the last segment P that starts before MX.
519    LiveInterval::iterator P = LIU.FindSegmentContaining(MX);
520    if (P == LIU.end())
521      P = prevSegment(LIU, MX);
522
523    assert(P != LIU.end() && "MI uses undefined register?");
524    SlotIndex EX = P->end;
525    // If P contains MX, there is not much to do.
526    if (EX > MX) {
527      Op.setIsKill(false);
528      continue;
529    }
530    // Otherwise, extend P to "next(MX)".
531    P->end = MX.getNextIndex();
532    Op.setIsKill(true);
533    // Get the old "kill" instruction, and remove the kill flag.
534    if (MachineInstr *KI = LIS->getInstructionFromIndex(MX))
535      KI->clearRegisterKills(UseR, nullptr);
536    shrinkToUses(UseR, LIU);
537    LIU.verify();
538  }
539}
540
541
542/// Update the live interval information to reflect the removal of the given
543/// instruction from the program. As with "addInstrToLiveness", this function
544/// is called while the program code is being changed.
545void HexagonExpandCondsets::removeInstrFromLiveness(MachineInstr *MI) {
546  SlotIndex MX = LIS->getInstructionIndex(MI).getRegSlot();
547  DEBUG(dbgs() << "removing instr\n  " << MX << "  " << *MI);
548
549  // For each def in MI:
550  // If MI starts a live segment, merge this segment with the previous segment.
551  //
552  for (auto &Op : MI->operands()) {
553    if (!Op.isReg() || !Op.isDef())
554      continue;
555    unsigned DefR = Op.getReg();
556    LiveInterval &LID = LIS->getInterval(DefR);
557    LiveInterval::iterator LT = LID.FindSegmentContaining(MX);
558    assert(LT != LID.end() && "Expecting live segments");
559    DEBUG(dbgs() << "removing def at " << MX << " of " << PrintReg(DefR, TRI)
560                 << " with interval\n  " << LID << "\n");
561    if (LT->start != MX)
562      continue;
563
564    VNInfo *MVN = LT->valno;
565    if (LT != LID.begin()) {
566      // If the current live segment is not the first, the task is easy. If
567      // the previous segment continues into the current block, extend it to
568      // the end of the current one, and merge the value numbers.
569      // Otherwise, remove the current segment, and make the end of it "undef".
570      LiveInterval::iterator P = std::prev(LT);
571      SlotIndex PE = P->end.isBlock() ? P->end.getPrevIndex() : P->end;
572      MachineBasicBlock *MB = MI->getParent();
573      MachineBasicBlock *PB = LIS->getMBBFromIndex(PE);
574      if (PB != MB && !LIS->isLiveInToMBB(LID, MB)) {
575        makeDefined(DefR, LT->end, false);
576        LID.removeSegment(*LT);
577      } else {
578        // Make the segments adjacent, so that merge-vn can also merge the
579        // segments.
580        P->end = LT->start;
581        makeUndead(DefR, P->valno->def);
582        LID.MergeValueNumberInto(MVN, P->valno);
583      }
584    } else {
585      LiveInterval::iterator N = std::next(LT);
586      LiveInterval::iterator RmB = LT, RmE = N;
587      while (N != LID.end()) {
588        // Iterate until the first register-based definition is found
589        // (i.e. skip all block-boundary entries).
590        LiveInterval::iterator Next = std::next(N);
591        if (N->start.isRegister()) {
592          makeDefined(DefR, N->start, false);
593          break;
594        }
595        if (N->end.isRegister()) {
596          makeDefined(DefR, N->end, false);
597          RmE = Next;
598          break;
599        }
600        RmE = Next;
601        N = Next;
602      }
603      // Erase the segments in one shot to avoid invalidating iterators.
604      LID.segments.erase(RmB, RmE);
605    }
606
607    bool VNUsed = false;
608    for (LiveInterval::iterator I = LID.begin(), E = LID.end(); I != E; ++I) {
609      if (I->valno != MVN)
610        continue;
611      VNUsed = true;
612      break;
613    }
614    if (!VNUsed)
615      MVN->markUnused();
616
617    DEBUG(dbgs() << "new interval: ");
618    if (!LID.empty()) {
619      DEBUG(dbgs() << LID << "\n");
620      LID.verify();
621    } else {
622      DEBUG(dbgs() << "<empty>\n");
623      LIS->removeInterval(DefR);
624    }
625  }
626
627  // For uses there is nothing to do. The intervals will be updated via
628  // shrinkToUses.
629  SmallVector<unsigned,4> Uses;
630  for (auto &Op : MI->operands()) {
631    if (!Op.isReg() || !Op.isUse())
632      continue;
633    unsigned R = Op.getReg();
634    if (!TargetRegisterInfo::isVirtualRegister(R))
635      continue;
636    Uses.push_back(R);
637  }
638  LIS->RemoveMachineInstrFromMaps(MI);
639  MI->eraseFromParent();
640  for (unsigned i = 0, n = Uses.size(); i < n; ++i) {
641    LiveInterval &LI = LIS->getInterval(Uses[i]);
642    shrinkToUses(Uses[i], LI);
643  }
644}
645
646
647/// Get the opcode for a conditional transfer of the value in SO (source
648/// operand). The condition (true/false) is given in Cond.
649unsigned HexagonExpandCondsets::getCondTfrOpcode(const MachineOperand &SO,
650      bool Cond) {
651  using namespace Hexagon;
652  if (SO.isReg()) {
653    unsigned PhysR;
654    RegisterRef RS = SO;
655    if (TargetRegisterInfo::isVirtualRegister(RS.Reg)) {
656      const TargetRegisterClass *VC = MRI->getRegClass(RS.Reg);
657      assert(VC->begin() != VC->end() && "Empty register class");
658      PhysR = *VC->begin();
659    } else {
660      assert(TargetRegisterInfo::isPhysicalRegister(RS.Reg));
661      PhysR = RS.Reg;
662    }
663    unsigned PhysS = (RS.Sub == 0) ? PhysR : TRI->getSubReg(PhysR, RS.Sub);
664    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysS);
665    switch (RC->getSize()) {
666      case 4:
667        return Cond ? A2_tfrt : A2_tfrf;
668      case 8:
669        return Cond ? A2_tfrpt : A2_tfrpf;
670    }
671    llvm_unreachable("Invalid register operand");
672  }
673  if (SO.isImm() || SO.isFPImm())
674    return Cond ? C2_cmoveit : C2_cmoveif;
675  llvm_unreachable("Unexpected source operand");
676}
677
678
679/// Generate a conditional transfer, copying the value SrcOp to the
680/// destination register DstR:DstSR, and using the predicate register from
681/// PredOp. The Cond argument specifies whether the predicate is to be
682/// if(PredOp), or if(!PredOp).
683MachineInstr *HexagonExpandCondsets::genTfrFor(MachineOperand &SrcOp,
684      unsigned DstR, unsigned DstSR, const MachineOperand &PredOp, bool Cond) {
685  MachineInstr *MI = SrcOp.getParent();
686  MachineBasicBlock &B = *MI->getParent();
687  MachineBasicBlock::iterator At = MI;
688  DebugLoc DL = MI->getDebugLoc();
689
690  // Don't avoid identity copies here (i.e. if the source and the destination
691  // are the same registers). It is actually better to generate them here,
692  // since this would cause the copy to potentially be predicated in the next
693  // step. The predication will remove such a copy if it is unable to
694  /// predicate.
695
696  unsigned Opc = getCondTfrOpcode(SrcOp, Cond);
697  MachineInstr *TfrI = BuildMI(B, At, DL, HII->get(Opc))
698        .addReg(DstR, RegState::Define, DstSR)
699        .addOperand(PredOp)
700        .addOperand(SrcOp);
701  // We don't want any kills yet.
702  TfrI->clearKillInfo();
703  DEBUG(dbgs() << "created an initial copy: " << *TfrI);
704  return TfrI;
705}
706
707
708/// Replace a MUX instruction MI with a pair A2_tfrt/A2_tfrf. This function
709/// performs all necessary changes to complete the replacement.
710bool HexagonExpandCondsets::split(MachineInstr *MI) {
711  if (TfrLimitActive) {
712    if (TfrCounter >= TfrLimit)
713      return false;
714    TfrCounter++;
715  }
716  DEBUG(dbgs() << "\nsplitting BB#" << MI->getParent()->getNumber()
717               << ": " << *MI);
718  MachineOperand &MD = MI->getOperand(0); // Definition
719  MachineOperand &MP = MI->getOperand(1); // Predicate register
720  assert(MD.isDef());
721  unsigned DR = MD.getReg(), DSR = MD.getSubReg();
722
723  // First, create the two invididual conditional transfers, and add each
724  // of them to the live intervals information. Do that first and then remove
725  // the old instruction from live intervals.
726  if (MachineInstr *TfrT = genTfrFor(MI->getOperand(2), DR, DSR, MP, true))
727    addInstrToLiveness(TfrT);
728  if (MachineInstr *TfrF = genTfrFor(MI->getOperand(3), DR, DSR, MP, false))
729    addInstrToLiveness(TfrF);
730  removeInstrFromLiveness(MI);
731
732  return true;
733}
734
735
736/// Split all MUX instructions in the given block into pairs of contitional
737/// transfers.
738bool HexagonExpandCondsets::splitInBlock(MachineBasicBlock &B) {
739  bool Changed = false;
740  MachineBasicBlock::iterator I, E, NextI;
741  for (I = B.begin(), E = B.end(); I != E; I = NextI) {
742    NextI = std::next(I);
743    if (isCondset(I))
744      Changed |= split(I);
745  }
746  return Changed;
747}
748
749
750bool HexagonExpandCondsets::isPredicable(MachineInstr *MI) {
751  if (HII->isPredicated(MI) || !HII->isPredicable(MI))
752    return false;
753  if (MI->hasUnmodeledSideEffects() || MI->mayStore())
754    return false;
755  // Reject instructions with multiple defs (e.g. post-increment loads).
756  bool HasDef = false;
757  for (auto &Op : MI->operands()) {
758    if (!Op.isReg() || !Op.isDef())
759      continue;
760    if (HasDef)
761      return false;
762    HasDef = true;
763  }
764  for (auto &Mo : MI->memoperands())
765    if (Mo->isVolatile())
766      return false;
767  return true;
768}
769
770
771/// Find the reaching definition for a predicated use of RD. The RD is used
772/// under the conditions given by PredR and Cond, and this function will ignore
773/// definitions that set RD under the opposite conditions.
774MachineInstr *HexagonExpandCondsets::getReachingDefForPred(RegisterRef RD,
775      MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond) {
776  MachineBasicBlock &B = *UseIt->getParent();
777  MachineBasicBlock::iterator I = UseIt, S = B.begin();
778  if (I == S)
779    return 0;
780
781  bool PredValid = true;
782  do {
783    --I;
784    MachineInstr *MI = &*I;
785    // Check if this instruction can be ignored, i.e. if it is predicated
786    // on the complementary condition.
787    if (PredValid && HII->isPredicated(MI)) {
788      if (MI->readsRegister(PredR) && (Cond != HII->isPredicatedTrue(MI)))
789        continue;
790    }
791
792    // Check the defs. If the PredR is defined, invalidate it. If RD is
793    // defined, return the instruction or 0, depending on the circumstances.
794    for (auto &Op : MI->operands()) {
795      if (!Op.isReg() || !Op.isDef())
796        continue;
797      RegisterRef RR = Op;
798      if (RR.Reg == PredR) {
799        PredValid = false;
800        continue;
801      }
802      if (RR.Reg != RD.Reg)
803        continue;
804      // If the "Reg" part agrees, there is still the subregister to check.
805      // If we are looking for vreg1:loreg, we can skip vreg1:hireg, but
806      // not vreg1 (w/o subregisters).
807      if (RR.Sub == RD.Sub)
808        return MI;
809      if (RR.Sub == 0 || RD.Sub == 0)
810        return 0;
811      // We have different subregisters, so we can continue looking.
812    }
813  } while (I != S);
814
815  return 0;
816}
817
818
819/// Check if the instruction MI can be safely moved over a set of instructions
820/// whose side-effects (in terms of register defs and uses) are expressed in
821/// the maps Defs and Uses. These maps reflect the conditional defs and uses
822/// that depend on the same predicate register to allow moving instructions
823/// over instructions predicated on the opposite condition.
824bool HexagonExpandCondsets::canMoveOver(MachineInstr *MI, ReferenceMap &Defs,
825      ReferenceMap &Uses) {
826  // In order to be able to safely move MI over instructions that define
827  // "Defs" and use "Uses", no def operand from MI can be defined or used
828  // and no use operand can be defined.
829  for (auto &Op : MI->operands()) {
830    if (!Op.isReg())
831      continue;
832    RegisterRef RR = Op;
833    // For physical register we would need to check register aliases, etc.
834    // and we don't want to bother with that. It would be of little value
835    // before the actual register rewriting (from virtual to physical).
836    if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
837      return false;
838    // No redefs for any operand.
839    if (isRefInMap(RR, Defs, Exec_Then))
840      return false;
841    // For defs, there cannot be uses.
842    if (Op.isDef() && isRefInMap(RR, Uses, Exec_Then))
843      return false;
844  }
845  return true;
846}
847
848
849/// Check if the instruction accessing memory (TheI) can be moved to the
850/// location ToI.
851bool HexagonExpandCondsets::canMoveMemTo(MachineInstr *TheI, MachineInstr *ToI,
852      bool IsDown) {
853  bool IsLoad = TheI->mayLoad(), IsStore = TheI->mayStore();
854  if (!IsLoad && !IsStore)
855    return true;
856  if (HII->areMemAccessesTriviallyDisjoint(TheI, ToI))
857    return true;
858  if (TheI->hasUnmodeledSideEffects())
859    return false;
860
861  MachineBasicBlock::iterator StartI = IsDown ? TheI : ToI;
862  MachineBasicBlock::iterator EndI = IsDown ? ToI : TheI;
863  bool Ordered = TheI->hasOrderedMemoryRef();
864
865  // Search for aliased memory reference in (StartI, EndI).
866  for (MachineBasicBlock::iterator I = std::next(StartI); I != EndI; ++I) {
867    MachineInstr *MI = &*I;
868    if (MI->hasUnmodeledSideEffects())
869      return false;
870    bool L = MI->mayLoad(), S = MI->mayStore();
871    if (!L && !S)
872      continue;
873    if (Ordered && MI->hasOrderedMemoryRef())
874      return false;
875
876    bool Conflict = (L && IsStore) || S;
877    if (Conflict)
878      return false;
879  }
880  return true;
881}
882
883
884/// Generate a predicated version of MI (where the condition is given via
885/// PredR and Cond) at the point indicated by Where.
886void HexagonExpandCondsets::predicateAt(RegisterRef RD, MachineInstr *MI,
887      MachineBasicBlock::iterator Where, unsigned PredR, bool Cond) {
888  // The problem with updating live intervals is that we can move one def
889  // past another def. In particular, this can happen when moving an A2_tfrt
890  // over an A2_tfrf defining the same register. From the point of view of
891  // live intervals, these two instructions are two separate definitions,
892  // and each one starts another live segment. LiveIntervals's "handleMove"
893  // does not allow such moves, so we need to handle it ourselves. To avoid
894  // invalidating liveness data while we are using it, the move will be
895  // implemented in 4 steps: (1) add a clone of the instruction MI at the
896  // target location, (2) update liveness, (3) delete the old instruction,
897  // and (4) update liveness again.
898
899  MachineBasicBlock &B = *MI->getParent();
900  DebugLoc DL = Where->getDebugLoc();  // "Where" points to an instruction.
901  unsigned Opc = MI->getOpcode();
902  unsigned PredOpc = HII->getCondOpcode(Opc, !Cond);
903  MachineInstrBuilder MB = BuildMI(B, Where, DL, HII->get(PredOpc));
904  unsigned Ox = 0, NP = MI->getNumOperands();
905  // Skip all defs from MI first.
906  while (Ox < NP) {
907    MachineOperand &MO = MI->getOperand(Ox);
908    if (!MO.isReg() || !MO.isDef())
909      break;
910    Ox++;
911  }
912  // Add the new def, then the predicate register, then the rest of the
913  // operands.
914  MB.addReg(RD.Reg, RegState::Define, RD.Sub);
915  MB.addReg(PredR);
916  while (Ox < NP) {
917    MachineOperand &MO = MI->getOperand(Ox);
918    if (!MO.isReg() || !MO.isImplicit())
919      MB.addOperand(MO);
920    Ox++;
921  }
922
923  MachineFunction &MF = *B.getParent();
924  MachineInstr::mmo_iterator I = MI->memoperands_begin();
925  unsigned NR = std::distance(I, MI->memoperands_end());
926  MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(NR);
927  for (unsigned i = 0; i < NR; ++i)
928    MemRefs[i] = *I++;
929  MB.setMemRefs(MemRefs, MemRefs+NR);
930
931  MachineInstr *NewI = MB;
932  NewI->clearKillInfo();
933  addInstrToLiveness(NewI);
934}
935
936
937/// In the range [First, Last], rename all references to the "old" register RO
938/// to the "new" register RN, but only in instructions predicated on the given
939/// condition.
940void HexagonExpandCondsets::renameInRange(RegisterRef RO, RegisterRef RN,
941      unsigned PredR, bool Cond, MachineBasicBlock::iterator First,
942      MachineBasicBlock::iterator Last) {
943  MachineBasicBlock::iterator End = std::next(Last);
944  for (MachineBasicBlock::iterator I = First; I != End; ++I) {
945    MachineInstr *MI = &*I;
946    // Do not touch instructions that are not predicated, or are predicated
947    // on the opposite condition.
948    if (!HII->isPredicated(MI))
949      continue;
950    if (!MI->readsRegister(PredR) || (Cond != HII->isPredicatedTrue(MI)))
951      continue;
952
953    for (auto &Op : MI->operands()) {
954      if (!Op.isReg() || RO != RegisterRef(Op))
955        continue;
956      Op.setReg(RN.Reg);
957      Op.setSubReg(RN.Sub);
958      // In practice, this isn't supposed to see any defs.
959      assert(!Op.isDef() && "Not expecting a def");
960    }
961  }
962}
963
964
965/// For a given conditional copy, predicate the definition of the source of
966/// the copy under the given condition (using the same predicate register as
967/// the copy).
968bool HexagonExpandCondsets::predicate(MachineInstr *TfrI, bool Cond) {
969  // TfrI - A2_tfr[tf] Instruction (not A2_tfrsi).
970  unsigned Opc = TfrI->getOpcode();
971  (void)Opc;
972  assert(Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf);
973  DEBUG(dbgs() << "\nattempt to predicate if-" << (Cond ? "true" : "false")
974               << ": " << *TfrI);
975
976  MachineOperand &MD = TfrI->getOperand(0);
977  MachineOperand &MP = TfrI->getOperand(1);
978  MachineOperand &MS = TfrI->getOperand(2);
979  // The source operand should be a <kill>. This is not strictly necessary,
980  // but it makes things a lot simpler. Otherwise, we would need to rename
981  // some registers, which would complicate the transformation considerably.
982  if (!MS.isKill())
983    return false;
984
985  RegisterRef RT(MS);
986  unsigned PredR = MP.getReg();
987  MachineInstr *DefI = getReachingDefForPred(RT, TfrI, PredR, Cond);
988  if (!DefI || !isPredicable(DefI))
989    return false;
990
991  DEBUG(dbgs() << "Source def: " << *DefI);
992
993  // Collect the information about registers defined and used between the
994  // DefI and the TfrI.
995  // Map: reg -> bitmask of subregs
996  ReferenceMap Uses, Defs;
997  MachineBasicBlock::iterator DefIt = DefI, TfrIt = TfrI;
998
999  // Check if the predicate register is valid between DefI and TfrI.
1000  // If it is, we can then ignore instructions predicated on the negated
1001  // conditions when collecting def and use information.
1002  bool PredValid = true;
1003  for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
1004    if (!I->modifiesRegister(PredR, 0))
1005      continue;
1006    PredValid = false;
1007    break;
1008  }
1009
1010  for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
1011    MachineInstr *MI = &*I;
1012    // If this instruction is predicated on the same register, it could
1013    // potentially be ignored.
1014    // By default assume that the instruction executes on the same condition
1015    // as TfrI (Exec_Then), and also on the opposite one (Exec_Else).
1016    unsigned Exec = Exec_Then | Exec_Else;
1017    if (PredValid && HII->isPredicated(MI) && MI->readsRegister(PredR))
1018      Exec = (Cond == HII->isPredicatedTrue(MI)) ? Exec_Then : Exec_Else;
1019
1020    for (auto &Op : MI->operands()) {
1021      if (!Op.isReg())
1022        continue;
1023      // We don't want to deal with physical registers. The reason is that
1024      // they can be aliased with other physical registers. Aliased virtual
1025      // registers must share the same register number, and can only differ
1026      // in the subregisters, which we are keeping track of. Physical
1027      // registers ters no longer have subregisters---their super- and
1028      // subregisters are other physical registers, and we are not checking
1029      // that.
1030      RegisterRef RR = Op;
1031      if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
1032        return false;
1033
1034      ReferenceMap &Map = Op.isDef() ? Defs : Uses;
1035      addRefToMap(RR, Map, Exec);
1036    }
1037  }
1038
1039  // The situation:
1040  //   RT = DefI
1041  //   ...
1042  //   RD = TfrI ..., RT
1043
1044  // If the register-in-the-middle (RT) is used or redefined between
1045  // DefI and TfrI, we may not be able proceed with this transformation.
1046  // We can ignore a def that will not execute together with TfrI, and a
1047  // use that will. If there is such a use (that does execute together with
1048  // TfrI), we will not be able to move DefI down. If there is a use that
1049  // executed if TfrI's condition is false, then RT must be available
1050  // unconditionally (cannot be predicated).
1051  // Essentially, we need to be able to rename RT to RD in this segment.
1052  if (isRefInMap(RT, Defs, Exec_Then) || isRefInMap(RT, Uses, Exec_Else))
1053    return false;
1054  RegisterRef RD = MD;
1055  // If the predicate register is defined between DefI and TfrI, the only
1056  // potential thing to do would be to move the DefI down to TfrI, and then
1057  // predicate. The reaching def (DefI) must be movable down to the location
1058  // of the TfrI.
1059  // If the target register of the TfrI (RD) is not used or defined between
1060  // DefI and TfrI, consider moving TfrI up to DefI.
1061  bool CanUp =   canMoveOver(TfrI, Defs, Uses);
1062  bool CanDown = canMoveOver(DefI, Defs, Uses);
1063  // The TfrI does not access memory, but DefI could. Check if it's safe
1064  // to move DefI down to TfrI.
1065  if (DefI->mayLoad() || DefI->mayStore())
1066    if (!canMoveMemTo(DefI, TfrI, true))
1067      CanDown = false;
1068
1069  DEBUG(dbgs() << "Can move up: " << (CanUp ? "yes" : "no")
1070               << ", can move down: " << (CanDown ? "yes\n" : "no\n"));
1071  MachineBasicBlock::iterator PastDefIt = std::next(DefIt);
1072  if (CanUp)
1073    predicateAt(RD, DefI, PastDefIt, PredR, Cond);
1074  else if (CanDown)
1075    predicateAt(RD, DefI, TfrIt, PredR, Cond);
1076  else
1077    return false;
1078
1079  if (RT != RD)
1080    renameInRange(RT, RD, PredR, Cond, PastDefIt, TfrIt);
1081
1082  // Delete the user of RT first (it should work either way, but this order
1083  // of deleting is more natural).
1084  removeInstrFromLiveness(TfrI);
1085  removeInstrFromLiveness(DefI);
1086  return true;
1087}
1088
1089
1090/// Predicate all cases of conditional copies in the specified block.
1091bool HexagonExpandCondsets::predicateInBlock(MachineBasicBlock &B) {
1092  bool Changed = false;
1093  MachineBasicBlock::iterator I, E, NextI;
1094  for (I = B.begin(), E = B.end(); I != E; I = NextI) {
1095    NextI = std::next(I);
1096    unsigned Opc = I->getOpcode();
1097    if (Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf) {
1098      bool Done = predicate(I, (Opc == Hexagon::A2_tfrt));
1099      if (!Done) {
1100        // If we didn't predicate I, we may need to remove it in case it is
1101        // an "identity" copy, e.g.  vreg1 = A2_tfrt vreg2, vreg1.
1102        if (RegisterRef(I->getOperand(0)) == RegisterRef(I->getOperand(2)))
1103          removeInstrFromLiveness(I);
1104      }
1105      Changed |= Done;
1106    }
1107  }
1108  return Changed;
1109}
1110
1111
1112void HexagonExpandCondsets::removeImplicitUses(MachineInstr *MI) {
1113  for (unsigned i = MI->getNumOperands(); i > 0; --i) {
1114    MachineOperand &MO = MI->getOperand(i-1);
1115    if (MO.isReg() && MO.isUse() && MO.isImplicit())
1116      MI->RemoveOperand(i-1);
1117  }
1118}
1119
1120
1121void HexagonExpandCondsets::removeImplicitUses(MachineBasicBlock &B) {
1122  for (MachineBasicBlock::iterator I = B.begin(), E = B.end(); I != E; ++I) {
1123    MachineInstr *MI = &*I;
1124    if (HII->isPredicated(MI))
1125      removeImplicitUses(MI);
1126  }
1127}
1128
1129
1130void HexagonExpandCondsets::postprocessUndefImplicitUses(MachineBasicBlock &B) {
1131  // Implicit uses that are "undef" are only meaningful (outside of the
1132  // internals of this pass) when the instruction defines a subregister,
1133  // and the implicit-undef use applies to the defined register. In such
1134  // cases, the proper way to record the information in the IR is to mark
1135  // the definition as "undef", which will be interpreted as "read-undef".
1136  typedef SmallSet<unsigned,2> RegisterSet;
1137  for (MachineBasicBlock::iterator I = B.begin(), E = B.end(); I != E; ++I) {
1138    MachineInstr *MI = &*I;
1139    RegisterSet Undefs;
1140    for (unsigned i = MI->getNumOperands(); i > 0; --i) {
1141      MachineOperand &MO = MI->getOperand(i-1);
1142      if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.isUndef()) {
1143        MI->RemoveOperand(i-1);
1144        Undefs.insert(MO.getReg());
1145      }
1146    }
1147    for (auto &Op : MI->operands()) {
1148      if (!Op.isReg() || !Op.isDef() || !Op.getSubReg())
1149        continue;
1150      if (Undefs.count(Op.getReg()))
1151        Op.setIsUndef(true);
1152    }
1153  }
1154}
1155
1156
1157bool HexagonExpandCondsets::isIntReg(RegisterRef RR, unsigned &BW) {
1158  if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
1159    return false;
1160  const TargetRegisterClass *RC = MRI->getRegClass(RR.Reg);
1161  if (RC == &Hexagon::IntRegsRegClass) {
1162    BW = 32;
1163    return true;
1164  }
1165  if (RC == &Hexagon::DoubleRegsRegClass) {
1166    BW = (RR.Sub != 0) ? 32 : 64;
1167    return true;
1168  }
1169  return false;
1170}
1171
1172
1173bool HexagonExpandCondsets::isIntraBlocks(LiveInterval &LI) {
1174  for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
1175    LiveRange::Segment &LR = *I;
1176    // Range must start at a register...
1177    if (!LR.start.isRegister())
1178      return false;
1179    // ...and end in a register or in a dead slot.
1180    if (!LR.end.isRegister() && !LR.end.isDead())
1181      return false;
1182  }
1183  return true;
1184}
1185
1186
1187bool HexagonExpandCondsets::coalesceRegisters(RegisterRef R1, RegisterRef R2) {
1188  if (CoaLimitActive) {
1189    if (CoaCounter >= CoaLimit)
1190      return false;
1191    CoaCounter++;
1192  }
1193  unsigned BW1, BW2;
1194  if (!isIntReg(R1, BW1) || !isIntReg(R2, BW2) || BW1 != BW2)
1195    return false;
1196  if (MRI->isLiveIn(R1.Reg))
1197    return false;
1198  if (MRI->isLiveIn(R2.Reg))
1199    return false;
1200
1201  LiveInterval &L1 = LIS->getInterval(R1.Reg);
1202  LiveInterval &L2 = LIS->getInterval(R2.Reg);
1203  bool Overlap = L1.overlaps(L2);
1204
1205  DEBUG(dbgs() << "compatible registers: ("
1206               << (Overlap ? "overlap" : "disjoint") << ")\n  "
1207               << PrintReg(R1.Reg, TRI, R1.Sub) << "  " << L1 << "\n  "
1208               << PrintReg(R2.Reg, TRI, R2.Sub) << "  " << L2 << "\n");
1209  if (R1.Sub || R2.Sub)
1210    return false;
1211  if (Overlap)
1212    return false;
1213
1214  // Coalescing could have a negative impact on scheduling, so try to limit
1215  // to some reasonable extent. Only consider coalescing segments, when one
1216  // of them does not cross basic block boundaries.
1217  if (!isIntraBlocks(L1) && !isIntraBlocks(L2))
1218    return false;
1219
1220  MRI->replaceRegWith(R2.Reg, R1.Reg);
1221
1222  // Move all live segments from L2 to L1.
1223  typedef DenseMap<VNInfo*,VNInfo*> ValueInfoMap;
1224  ValueInfoMap VM;
1225  for (LiveInterval::iterator I = L2.begin(), E = L2.end(); I != E; ++I) {
1226    VNInfo *NewVN, *OldVN = I->valno;
1227    ValueInfoMap::iterator F = VM.find(OldVN);
1228    if (F == VM.end()) {
1229      NewVN = L1.getNextValue(I->valno->def, LIS->getVNInfoAllocator());
1230      VM.insert(std::make_pair(OldVN, NewVN));
1231    } else {
1232      NewVN = F->second;
1233    }
1234    L1.addSegment(LiveRange::Segment(I->start, I->end, NewVN));
1235  }
1236  while (L2.begin() != L2.end())
1237    L2.removeSegment(*L2.begin());
1238
1239  updateKillFlags(R1.Reg, L1);
1240  DEBUG(dbgs() << "coalesced: " << L1 << "\n");
1241  L1.verify();
1242
1243  return true;
1244}
1245
1246
1247/// Attempt to coalesce one of the source registers to a MUX intruction with
1248/// the destination register. This could lead to having only one predicated
1249/// instruction in the end instead of two.
1250bool HexagonExpandCondsets::coalesceSegments(MachineFunction &MF) {
1251  SmallVector<MachineInstr*,16> Condsets;
1252  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
1253    MachineBasicBlock &B = *I;
1254    for (MachineBasicBlock::iterator J = B.begin(), F = B.end(); J != F; ++J) {
1255      MachineInstr *MI = &*J;
1256      if (!isCondset(MI))
1257        continue;
1258      MachineOperand &S1 = MI->getOperand(2), &S2 = MI->getOperand(3);
1259      if (!S1.isReg() && !S2.isReg())
1260        continue;
1261      Condsets.push_back(MI);
1262    }
1263  }
1264
1265  bool Changed = false;
1266  for (unsigned i = 0, n = Condsets.size(); i < n; ++i) {
1267    MachineInstr *CI = Condsets[i];
1268    RegisterRef RD = CI->getOperand(0);
1269    RegisterRef RP = CI->getOperand(1);
1270    MachineOperand &S1 = CI->getOperand(2), &S2 = CI->getOperand(3);
1271    bool Done = false;
1272    // Consider this case:
1273    //   vreg1 = instr1 ...
1274    //   vreg2 = instr2 ...
1275    //   vreg0 = C2_mux ..., vreg1, vreg2
1276    // If vreg0 was coalesced with vreg1, we could end up with the following
1277    // code:
1278    //   vreg0 = instr1 ...
1279    //   vreg2 = instr2 ...
1280    //   vreg0 = A2_tfrf ..., vreg2
1281    // which will later become:
1282    //   vreg0 = instr1 ...
1283    //   vreg0 = instr2_cNotPt ...
1284    // i.e. there will be an unconditional definition (instr1) of vreg0
1285    // followed by a conditional one. The output dependency was there before
1286    // and it unavoidable, but if instr1 is predicable, we will no longer be
1287    // able to predicate it here.
1288    // To avoid this scenario, don't coalesce the destination register with
1289    // a source register that is defined by a predicable instruction.
1290    if (S1.isReg()) {
1291      RegisterRef RS = S1;
1292      MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, true);
1293      if (!RDef || !HII->isPredicable(RDef))
1294        Done = coalesceRegisters(RD, RegisterRef(S1));
1295    }
1296    if (!Done && S2.isReg()) {
1297      RegisterRef RS = S2;
1298      MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, false);
1299      if (!RDef || !HII->isPredicable(RDef))
1300        Done = coalesceRegisters(RD, RegisterRef(S2));
1301    }
1302    Changed |= Done;
1303  }
1304  return Changed;
1305}
1306
1307
1308bool HexagonExpandCondsets::runOnMachineFunction(MachineFunction &MF) {
1309  HII = static_cast<const HexagonInstrInfo*>(MF.getSubtarget().getInstrInfo());
1310  TRI = MF.getSubtarget().getRegisterInfo();
1311  LIS = &getAnalysis<LiveIntervals>();
1312  MRI = &MF.getRegInfo();
1313
1314  bool Changed = false;
1315
1316  // Try to coalesce the target of a mux with one of its sources.
1317  // This could eliminate a register copy in some circumstances.
1318  Changed |= coalesceSegments(MF);
1319
1320  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
1321    // First, simply split all muxes into a pair of conditional transfers
1322    // and update the live intervals to reflect the new arrangement.
1323    // This is done mainly to make the live interval update simpler, than it
1324    // would be while trying to predicate instructions at the same time.
1325    Changed |= splitInBlock(*I);
1326    // Traverse all blocks and collapse predicable instructions feeding
1327    // conditional transfers into predicated instructions.
1328    // Walk over all the instructions again, so we may catch pre-existing
1329    // cases that were not created in the previous step.
1330    Changed |= predicateInBlock(*I);
1331  }
1332
1333  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
1334    postprocessUndefImplicitUses(*I);
1335  return Changed;
1336}
1337
1338
1339//===----------------------------------------------------------------------===//
1340//                         Public Constructor Functions
1341//===----------------------------------------------------------------------===//
1342
1343static void initializePassOnce(PassRegistry &Registry) {
1344  const char *Name = "Hexagon Expand Condsets";
1345  PassInfo *PI = new PassInfo(Name, "expand-condsets",
1346        &HexagonExpandCondsets::ID, 0, false, false);
1347  Registry.registerPass(*PI, true);
1348}
1349
1350void llvm::initializeHexagonExpandCondsetsPass(PassRegistry &Registry) {
1351  CALL_ONCE_INITIALIZATION(initializePassOnce)
1352}
1353
1354
1355FunctionPass *llvm::createHexagonExpandCondsets() {
1356  return new HexagonExpandCondsets();
1357}
1358