HexagonCFGOptimizer.cpp revision 251662
1//===-- HexagonCFGOptimizer.cpp - CFG optimizations -----------------------===//
2//                     The LLVM Compiler Infrastructure
3//
4// This file is distributed under the University of Illinois Open Source
5// License. See LICENSE.TXT for details.
6//
7//===----------------------------------------------------------------------===//
8
9#define DEBUG_TYPE "hexagon_cfg"
10#include "Hexagon.h"
11#include "HexagonMachineFunctionInfo.h"
12#include "HexagonSubtarget.h"
13#include "HexagonTargetMachine.h"
14#include "llvm/CodeGen/MachineDominators.h"
15#include "llvm/CodeGen/MachineFunctionPass.h"
16#include "llvm/CodeGen/MachineInstrBuilder.h"
17#include "llvm/CodeGen/MachineLoopInfo.h"
18#include "llvm/CodeGen/MachineRegisterInfo.h"
19#include "llvm/CodeGen/Passes.h"
20#include "llvm/Support/Compiler.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Support/MathExtras.h"
23#include "llvm/Target/TargetInstrInfo.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/Target/TargetRegisterInfo.h"
26
27using namespace llvm;
28
29namespace llvm {
30  void initializeHexagonCFGOptimizerPass(PassRegistry&);
31}
32
33
34namespace {
35
36class HexagonCFGOptimizer : public MachineFunctionPass {
37
38private:
39  const HexagonTargetMachine& QTM;
40  const HexagonSubtarget &QST;
41
42  void InvertAndChangeJumpTarget(MachineInstr*, MachineBasicBlock*);
43
44 public:
45  static char ID;
46  HexagonCFGOptimizer(const HexagonTargetMachine& TM)
47    : MachineFunctionPass(ID), QTM(TM), QST(*TM.getSubtargetImpl()) {
48    initializeHexagonCFGOptimizerPass(*PassRegistry::getPassRegistry());
49  }
50
51  const char *getPassName() const {
52    return "Hexagon CFG Optimizer";
53  }
54  bool runOnMachineFunction(MachineFunction &Fn);
55};
56
57
58char HexagonCFGOptimizer::ID = 0;
59
60static bool IsConditionalBranch(int Opc) {
61  return (Opc == Hexagon::JMP_t) || (Opc == Hexagon::JMP_f)
62    || (Opc == Hexagon::JMP_tnew_t) || (Opc == Hexagon::JMP_fnew_t);
63}
64
65
66static bool IsUnconditionalJump(int Opc) {
67  return (Opc == Hexagon::JMP);
68}
69
70
71void
72HexagonCFGOptimizer::InvertAndChangeJumpTarget(MachineInstr* MI,
73                                               MachineBasicBlock* NewTarget) {
74  const HexagonInstrInfo *QII = QTM.getInstrInfo();
75  int NewOpcode = 0;
76  switch(MI->getOpcode()) {
77  case Hexagon::JMP_t:
78    NewOpcode = Hexagon::JMP_f;
79    break;
80
81  case Hexagon::JMP_f:
82    NewOpcode = Hexagon::JMP_t;
83    break;
84
85  case Hexagon::JMP_tnew_t:
86    NewOpcode = Hexagon::JMP_fnew_t;
87    break;
88
89  case Hexagon::JMP_fnew_t:
90    NewOpcode = Hexagon::JMP_tnew_t;
91    break;
92
93  default:
94    llvm_unreachable("Cannot handle this case");
95  }
96
97  MI->setDesc(QII->get(NewOpcode));
98  MI->getOperand(1).setMBB(NewTarget);
99}
100
101
102bool HexagonCFGOptimizer::runOnMachineFunction(MachineFunction &Fn) {
103
104  // Loop over all of the basic blocks.
105  for (MachineFunction::iterator MBBb = Fn.begin(), MBBe = Fn.end();
106       MBBb != MBBe; ++MBBb) {
107    MachineBasicBlock* MBB = MBBb;
108
109    // Traverse the basic block.
110    MachineBasicBlock::iterator MII = MBB->getFirstTerminator();
111    if (MII != MBB->end()) {
112      MachineInstr *MI = MII;
113      int Opc = MI->getOpcode();
114      if (IsConditionalBranch(Opc)) {
115
116        //
117        // (Case 1) Transform the code if the following condition occurs:
118        //   BB1: if (p0) jump BB3
119        //   ...falls-through to BB2 ...
120        //   BB2: jump BB4
121        //   ...next block in layout is BB3...
122        //   BB3: ...
123        //
124        //  Transform this to:
125        //  BB1: if (!p0) jump BB4
126        //  Remove BB2
127        //  BB3: ...
128        //
129        // (Case 2) A variation occurs when BB3 contains a JMP to BB4:
130        //   BB1: if (p0) jump BB3
131        //   ...falls-through to BB2 ...
132        //   BB2: jump BB4
133        //   ...other basic blocks ...
134        //   BB4:
135        //   ...not a fall-thru
136        //   BB3: ...
137        //     jump BB4
138        //
139        // Transform this to:
140        //   BB1: if (!p0) jump BB4
141        //   Remove BB2
142        //   BB3: ...
143        //   BB4: ...
144        //
145        unsigned NumSuccs = MBB->succ_size();
146        MachineBasicBlock::succ_iterator SI = MBB->succ_begin();
147        MachineBasicBlock* FirstSucc = *SI;
148        MachineBasicBlock* SecondSucc = *(++SI);
149        MachineBasicBlock* LayoutSucc = NULL;
150        MachineBasicBlock* JumpAroundTarget = NULL;
151
152        if (MBB->isLayoutSuccessor(FirstSucc)) {
153          LayoutSucc = FirstSucc;
154          JumpAroundTarget = SecondSucc;
155        } else if (MBB->isLayoutSuccessor(SecondSucc)) {
156          LayoutSucc = SecondSucc;
157          JumpAroundTarget = FirstSucc;
158        } else {
159          // Odd case...cannot handle.
160        }
161
162        // The target of the unconditional branch must be JumpAroundTarget.
163        // TODO: If not, we should not invert the unconditional branch.
164        MachineBasicBlock* CondBranchTarget = NULL;
165        if ((MI->getOpcode() == Hexagon::JMP_t) ||
166            (MI->getOpcode() == Hexagon::JMP_f)) {
167          CondBranchTarget = MI->getOperand(1).getMBB();
168        }
169
170        if (!LayoutSucc || (CondBranchTarget != JumpAroundTarget)) {
171          continue;
172        }
173
174        if ((NumSuccs == 2) && LayoutSucc && (LayoutSucc->pred_size() == 1)) {
175
176          // Ensure that BB2 has one instruction -- an unconditional jump.
177          if ((LayoutSucc->size() == 1) &&
178              IsUnconditionalJump(LayoutSucc->front().getOpcode())) {
179            MachineBasicBlock* UncondTarget =
180              LayoutSucc->front().getOperand(0).getMBB();
181            // Check if the layout successor of BB2 is BB3.
182            bool case1 = LayoutSucc->isLayoutSuccessor(JumpAroundTarget);
183            bool case2 = JumpAroundTarget->isSuccessor(UncondTarget) &&
184              JumpAroundTarget->size() >= 1 &&
185              IsUnconditionalJump(JumpAroundTarget->back().getOpcode()) &&
186              JumpAroundTarget->pred_size() == 1 &&
187              JumpAroundTarget->succ_size() == 1;
188
189            if (case1 || case2) {
190              InvertAndChangeJumpTarget(MI, UncondTarget);
191              MBB->removeSuccessor(JumpAroundTarget);
192              MBB->addSuccessor(UncondTarget);
193
194              // Remove the unconditional branch in LayoutSucc.
195              LayoutSucc->erase(LayoutSucc->begin());
196              LayoutSucc->removeSuccessor(UncondTarget);
197              LayoutSucc->addSuccessor(JumpAroundTarget);
198
199              // This code performs the conversion for case 2, which moves
200              // the block to the fall-thru case (BB3 in the code above).
201              if (case2 && !case1) {
202                JumpAroundTarget->moveAfter(LayoutSucc);
203                // only move a block if it doesn't have a fall-thru. otherwise
204                // the CFG will be incorrect.
205                if (!UncondTarget->canFallThrough()) {
206                  UncondTarget->moveAfter(JumpAroundTarget);
207                }
208              }
209
210              //
211              // Correct live-in information. Is used by post-RA scheduler
212              // The live-in to LayoutSucc is now all values live-in to
213              // JumpAroundTarget.
214              //
215              std::vector<unsigned> OrigLiveIn(LayoutSucc->livein_begin(),
216                                               LayoutSucc->livein_end());
217              std::vector<unsigned> NewLiveIn(JumpAroundTarget->livein_begin(),
218                                              JumpAroundTarget->livein_end());
219              for (unsigned i = 0; i < OrigLiveIn.size(); ++i) {
220                LayoutSucc->removeLiveIn(OrigLiveIn[i]);
221              }
222              for (unsigned i = 0; i < NewLiveIn.size(); ++i) {
223                LayoutSucc->addLiveIn(NewLiveIn[i]);
224              }
225            }
226          }
227        }
228      }
229    }
230  }
231  return true;
232}
233}
234
235
236//===----------------------------------------------------------------------===//
237//                         Public Constructor Functions
238//===----------------------------------------------------------------------===//
239
240static void initializePassOnce(PassRegistry &Registry) {
241  PassInfo *PI = new PassInfo("Hexagon CFG Optimizer", "hexagon-cfg",
242                              &HexagonCFGOptimizer::ID, 0, false, false);
243  Registry.registerPass(*PI, true);
244}
245
246void llvm::initializeHexagonCFGOptimizerPass(PassRegistry &Registry) {
247  CALL_ONCE_INITIALIZATION(initializePassOnce)
248}
249
250FunctionPass *llvm::createHexagonCFGOptimizer(const HexagonTargetMachine &TM) {
251  return new HexagonCFGOptimizer(TM);
252}
253