HexagonCFGOptimizer.cpp revision 249423
1//===-- HexagonCFGOptimizer.cpp - CFG optimizations -----------------------===//
2//                     The LLVM Compiler Infrastructure
3//
4// This file is distributed under the University of Illinois Open Source
5// License. See LICENSE.TXT for details.
6//
7//===----------------------------------------------------------------------===//
8
9#define DEBUG_TYPE "hexagon_cfg"
10#include "Hexagon.h"
11#include "HexagonMachineFunctionInfo.h"
12#include "HexagonSubtarget.h"
13#include "HexagonTargetMachine.h"
14#include "llvm/CodeGen/MachineDominators.h"
15#include "llvm/CodeGen/MachineFunctionPass.h"
16#include "llvm/CodeGen/MachineInstrBuilder.h"
17#include "llvm/CodeGen/MachineLoopInfo.h"
18#include "llvm/CodeGen/MachineRegisterInfo.h"
19#include "llvm/CodeGen/Passes.h"
20#include "llvm/Support/Compiler.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Support/MathExtras.h"
23#include "llvm/Target/TargetInstrInfo.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/Target/TargetRegisterInfo.h"
26
27using namespace llvm;
28
29namespace {
30
31class HexagonCFGOptimizer : public MachineFunctionPass {
32
33private:
34  HexagonTargetMachine& QTM;
35  const HexagonSubtarget &QST;
36
37  void InvertAndChangeJumpTarget(MachineInstr*, MachineBasicBlock*);
38
39 public:
40  static char ID;
41  HexagonCFGOptimizer(HexagonTargetMachine& TM) : MachineFunctionPass(ID),
42                                                  QTM(TM),
43                                                  QST(*TM.getSubtargetImpl()) {}
44
45  const char *getPassName() const {
46    return "Hexagon CFG Optimizer";
47  }
48  bool runOnMachineFunction(MachineFunction &Fn);
49};
50
51
52char HexagonCFGOptimizer::ID = 0;
53
54static bool IsConditionalBranch(int Opc) {
55  return (Opc == Hexagon::JMP_c) || (Opc == Hexagon::JMP_cNot)
56    || (Opc == Hexagon::JMP_cdnPt) || (Opc == Hexagon::JMP_cdnNotPt);
57}
58
59
60static bool IsUnconditionalJump(int Opc) {
61  return (Opc == Hexagon::JMP);
62}
63
64
65void
66HexagonCFGOptimizer::InvertAndChangeJumpTarget(MachineInstr* MI,
67                                               MachineBasicBlock* NewTarget) {
68  const HexagonInstrInfo *QII = QTM.getInstrInfo();
69  int NewOpcode = 0;
70  switch(MI->getOpcode()) {
71  case Hexagon::JMP_c:
72    NewOpcode = Hexagon::JMP_cNot;
73    break;
74
75  case Hexagon::JMP_cNot:
76    NewOpcode = Hexagon::JMP_c;
77    break;
78
79  case Hexagon::JMP_cdnPt:
80    NewOpcode = Hexagon::JMP_cdnNotPt;
81    break;
82
83  case Hexagon::JMP_cdnNotPt:
84    NewOpcode = Hexagon::JMP_cdnPt;
85    break;
86
87  default:
88    llvm_unreachable("Cannot handle this case");
89  }
90
91  MI->setDesc(QII->get(NewOpcode));
92  MI->getOperand(1).setMBB(NewTarget);
93}
94
95
96bool HexagonCFGOptimizer::runOnMachineFunction(MachineFunction &Fn) {
97
98  // Loop over all of the basic blocks.
99  for (MachineFunction::iterator MBBb = Fn.begin(), MBBe = Fn.end();
100       MBBb != MBBe; ++MBBb) {
101    MachineBasicBlock* MBB = MBBb;
102
103    // Traverse the basic block.
104    MachineBasicBlock::iterator MII = MBB->getFirstTerminator();
105    if (MII != MBB->end()) {
106      MachineInstr *MI = MII;
107      int Opc = MI->getOpcode();
108      if (IsConditionalBranch(Opc)) {
109
110        //
111        // (Case 1) Transform the code if the following condition occurs:
112        //   BB1: if (p0) jump BB3
113        //   ...falls-through to BB2 ...
114        //   BB2: jump BB4
115        //   ...next block in layout is BB3...
116        //   BB3: ...
117        //
118        //  Transform this to:
119        //  BB1: if (!p0) jump BB4
120        //  Remove BB2
121        //  BB3: ...
122        //
123        // (Case 2) A variation occurs when BB3 contains a JMP to BB4:
124        //   BB1: if (p0) jump BB3
125        //   ...falls-through to BB2 ...
126        //   BB2: jump BB4
127        //   ...other basic blocks ...
128        //   BB4:
129        //   ...not a fall-thru
130        //   BB3: ...
131        //     jump BB4
132        //
133        // Transform this to:
134        //   BB1: if (!p0) jump BB4
135        //   Remove BB2
136        //   BB3: ...
137        //   BB4: ...
138        //
139        unsigned NumSuccs = MBB->succ_size();
140        MachineBasicBlock::succ_iterator SI = MBB->succ_begin();
141        MachineBasicBlock* FirstSucc = *SI;
142        MachineBasicBlock* SecondSucc = *(++SI);
143        MachineBasicBlock* LayoutSucc = NULL;
144        MachineBasicBlock* JumpAroundTarget = NULL;
145
146        if (MBB->isLayoutSuccessor(FirstSucc)) {
147          LayoutSucc = FirstSucc;
148          JumpAroundTarget = SecondSucc;
149        } else if (MBB->isLayoutSuccessor(SecondSucc)) {
150          LayoutSucc = SecondSucc;
151          JumpAroundTarget = FirstSucc;
152        } else {
153          // Odd case...cannot handle.
154        }
155
156        // The target of the unconditional branch must be JumpAroundTarget.
157        // TODO: If not, we should not invert the unconditional branch.
158        MachineBasicBlock* CondBranchTarget = NULL;
159        if ((MI->getOpcode() == Hexagon::JMP_c) ||
160            (MI->getOpcode() == Hexagon::JMP_cNot)) {
161          CondBranchTarget = MI->getOperand(1).getMBB();
162        }
163
164        if (!LayoutSucc || (CondBranchTarget != JumpAroundTarget)) {
165          continue;
166        }
167
168        if ((NumSuccs == 2) && LayoutSucc && (LayoutSucc->pred_size() == 1)) {
169
170          // Ensure that BB2 has one instruction -- an unconditional jump.
171          if ((LayoutSucc->size() == 1) &&
172              IsUnconditionalJump(LayoutSucc->front().getOpcode())) {
173            MachineBasicBlock* UncondTarget =
174              LayoutSucc->front().getOperand(0).getMBB();
175            // Check if the layout successor of BB2 is BB3.
176            bool case1 = LayoutSucc->isLayoutSuccessor(JumpAroundTarget);
177            bool case2 = JumpAroundTarget->isSuccessor(UncondTarget) &&
178              JumpAroundTarget->size() >= 1 &&
179              IsUnconditionalJump(JumpAroundTarget->back().getOpcode()) &&
180              JumpAroundTarget->pred_size() == 1 &&
181              JumpAroundTarget->succ_size() == 1;
182
183            if (case1 || case2) {
184              InvertAndChangeJumpTarget(MI, UncondTarget);
185              MBB->removeSuccessor(JumpAroundTarget);
186              MBB->addSuccessor(UncondTarget);
187
188              // Remove the unconditional branch in LayoutSucc.
189              LayoutSucc->erase(LayoutSucc->begin());
190              LayoutSucc->removeSuccessor(UncondTarget);
191              LayoutSucc->addSuccessor(JumpAroundTarget);
192
193              // This code performs the conversion for case 2, which moves
194              // the block to the fall-thru case (BB3 in the code above).
195              if (case2 && !case1) {
196                JumpAroundTarget->moveAfter(LayoutSucc);
197                // only move a block if it doesn't have a fall-thru. otherwise
198                // the CFG will be incorrect.
199                if (!UncondTarget->canFallThrough()) {
200                  UncondTarget->moveAfter(JumpAroundTarget);
201                }
202              }
203
204              //
205              // Correct live-in information. Is used by post-RA scheduler
206              // The live-in to LayoutSucc is now all values live-in to
207              // JumpAroundTarget.
208              //
209              std::vector<unsigned> OrigLiveIn(LayoutSucc->livein_begin(),
210                                               LayoutSucc->livein_end());
211              std::vector<unsigned> NewLiveIn(JumpAroundTarget->livein_begin(),
212                                              JumpAroundTarget->livein_end());
213              for (unsigned i = 0; i < OrigLiveIn.size(); ++i) {
214                LayoutSucc->removeLiveIn(OrigLiveIn[i]);
215              }
216              for (unsigned i = 0; i < NewLiveIn.size(); ++i) {
217                LayoutSucc->addLiveIn(NewLiveIn[i]);
218              }
219            }
220          }
221        }
222      }
223    }
224  }
225  return true;
226}
227}
228
229
230//===----------------------------------------------------------------------===//
231//                         Public Constructor Functions
232//===----------------------------------------------------------------------===//
233
234FunctionPass *llvm::createHexagonCFGOptimizer(HexagonTargetMachine &TM) {
235  return new HexagonCFGOptimizer(TM);
236}
237