HexagonBitSimplify.cpp revision 302408
1//===--- HexagonBitSimplify.cpp -------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#define DEBUG_TYPE "hexbit"
11
12#include "llvm/CodeGen/Passes.h"
13#include "llvm/CodeGen/MachineDominators.h"
14#include "llvm/CodeGen/MachineFunctionPass.h"
15#include "llvm/CodeGen/MachineInstrBuilder.h"
16#include "llvm/CodeGen/MachineRegisterInfo.h"
17#include "llvm/Support/CommandLine.h"
18#include "llvm/Support/Debug.h"
19#include "llvm/Support/raw_ostream.h"
20#include "llvm/Target/TargetMachine.h"
21#include "llvm/Target/TargetInstrInfo.h"
22#include "HexagonTargetMachine.h"
23#include "HexagonBitTracker.h"
24
25using namespace llvm;
26
27namespace llvm {
28  void initializeHexagonBitSimplifyPass(PassRegistry& Registry);
29  FunctionPass *createHexagonBitSimplify();
30}
31
32namespace {
33  // Set of virtual registers, based on BitVector.
34  struct RegisterSet : private BitVector {
35    RegisterSet() : BitVector() {}
36    explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
37    RegisterSet(const RegisterSet &RS) : BitVector(RS) {}
38
39    using BitVector::clear;
40    using BitVector::count;
41
42    unsigned find_first() const {
43      int First = BitVector::find_first();
44      if (First < 0)
45        return 0;
46      return x2v(First);
47    }
48
49    unsigned find_next(unsigned Prev) const {
50      int Next = BitVector::find_next(v2x(Prev));
51      if (Next < 0)
52        return 0;
53      return x2v(Next);
54    }
55
56    RegisterSet &insert(unsigned R) {
57      unsigned Idx = v2x(R);
58      ensure(Idx);
59      return static_cast<RegisterSet&>(BitVector::set(Idx));
60    }
61    RegisterSet &remove(unsigned R) {
62      unsigned Idx = v2x(R);
63      if (Idx >= size())
64        return *this;
65      return static_cast<RegisterSet&>(BitVector::reset(Idx));
66    }
67
68    RegisterSet &insert(const RegisterSet &Rs) {
69      return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
70    }
71    RegisterSet &remove(const RegisterSet &Rs) {
72      return static_cast<RegisterSet&>(BitVector::reset(Rs));
73    }
74
75    reference operator[](unsigned R) {
76      unsigned Idx = v2x(R);
77      ensure(Idx);
78      return BitVector::operator[](Idx);
79    }
80    bool operator[](unsigned R) const {
81      unsigned Idx = v2x(R);
82      assert(Idx < size());
83      return BitVector::operator[](Idx);
84    }
85    bool has(unsigned R) const {
86      unsigned Idx = v2x(R);
87      if (Idx >= size())
88        return false;
89      return BitVector::test(Idx);
90    }
91
92    bool empty() const {
93      return !BitVector::any();
94    }
95    bool includes(const RegisterSet &Rs) const {
96      // A.BitVector::test(B)  <=>  A-B != {}
97      return !Rs.BitVector::test(*this);
98    }
99    bool intersects(const RegisterSet &Rs) const {
100      return BitVector::anyCommon(Rs);
101    }
102
103  private:
104    void ensure(unsigned Idx) {
105      if (size() <= Idx)
106        resize(std::max(Idx+1, 32U));
107    }
108    static inline unsigned v2x(unsigned v) {
109      return TargetRegisterInfo::virtReg2Index(v);
110    }
111    static inline unsigned x2v(unsigned x) {
112      return TargetRegisterInfo::index2VirtReg(x);
113    }
114  };
115
116
117  struct PrintRegSet {
118    PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
119      : RS(S), TRI(RI) {}
120    friend raw_ostream &operator<< (raw_ostream &OS,
121          const PrintRegSet &P);
122  private:
123    const RegisterSet &RS;
124    const TargetRegisterInfo *TRI;
125  };
126
127  raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P)
128    LLVM_ATTRIBUTE_UNUSED;
129  raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
130    OS << '{';
131    for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
132      OS << ' ' << PrintReg(R, P.TRI);
133    OS << " }";
134    return OS;
135  }
136}
137
138
139namespace {
140  class Transformation;
141
142  class HexagonBitSimplify : public MachineFunctionPass {
143  public:
144    static char ID;
145    HexagonBitSimplify() : MachineFunctionPass(ID), MDT(0) {
146      initializeHexagonBitSimplifyPass(*PassRegistry::getPassRegistry());
147    }
148    virtual const char *getPassName() const {
149      return "Hexagon bit simplification";
150    }
151    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
152      AU.addRequired<MachineDominatorTree>();
153      AU.addPreserved<MachineDominatorTree>();
154      MachineFunctionPass::getAnalysisUsage(AU);
155    }
156    virtual bool runOnMachineFunction(MachineFunction &MF);
157
158    static void getInstrDefs(const MachineInstr &MI, RegisterSet &Defs);
159    static void getInstrUses(const MachineInstr &MI, RegisterSet &Uses);
160    static bool isEqual(const BitTracker::RegisterCell &RC1, uint16_t B1,
161        const BitTracker::RegisterCell &RC2, uint16_t B2, uint16_t W);
162    static bool isConst(const BitTracker::RegisterCell &RC, uint16_t B,
163        uint16_t W);
164    static bool isZero(const BitTracker::RegisterCell &RC, uint16_t B,
165        uint16_t W);
166    static bool getConst(const BitTracker::RegisterCell &RC, uint16_t B,
167        uint16_t W, uint64_t &U);
168    static bool replaceReg(unsigned OldR, unsigned NewR,
169        MachineRegisterInfo &MRI);
170    static bool getSubregMask(const BitTracker::RegisterRef &RR,
171        unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI);
172    static bool replaceRegWithSub(unsigned OldR, unsigned NewR,
173        unsigned NewSR, MachineRegisterInfo &MRI);
174    static bool replaceSubWithSub(unsigned OldR, unsigned OldSR,
175        unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI);
176    static bool parseRegSequence(const MachineInstr &I,
177        BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH);
178
179    static bool getUsedBitsInStore(unsigned Opc, BitVector &Bits,
180        uint16_t Begin);
181    static bool getUsedBits(unsigned Opc, unsigned OpN, BitVector &Bits,
182        uint16_t Begin, const HexagonInstrInfo &HII);
183
184    static const TargetRegisterClass *getFinalVRegClass(
185        const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI);
186    static bool isTransparentCopy(const BitTracker::RegisterRef &RD,
187        const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI);
188
189  private:
190    MachineDominatorTree *MDT;
191
192    bool visitBlock(MachineBasicBlock &B, Transformation &T, RegisterSet &AVs);
193  };
194
195  char HexagonBitSimplify::ID = 0;
196  typedef HexagonBitSimplify HBS;
197
198
199  // The purpose of this class is to provide a common facility to traverse
200  // the function top-down or bottom-up via the dominator tree, and keep
201  // track of the available registers.
202  class Transformation {
203  public:
204    bool TopDown;
205    Transformation(bool TD) : TopDown(TD) {}
206    virtual bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) = 0;
207    virtual ~Transformation() {}
208  };
209}
210
211INITIALIZE_PASS_BEGIN(HexagonBitSimplify, "hexbit",
212      "Hexagon bit simplification", false, false)
213INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
214INITIALIZE_PASS_END(HexagonBitSimplify, "hexbit",
215      "Hexagon bit simplification", false, false)
216
217
218bool HexagonBitSimplify::visitBlock(MachineBasicBlock &B, Transformation &T,
219      RegisterSet &AVs) {
220  MachineDomTreeNode *N = MDT->getNode(&B);
221  typedef GraphTraits<MachineDomTreeNode*> GTN;
222  bool Changed = false;
223
224  if (T.TopDown)
225    Changed = T.processBlock(B, AVs);
226
227  RegisterSet Defs;
228  for (auto &I : B)
229    getInstrDefs(I, Defs);
230  RegisterSet NewAVs = AVs;
231  NewAVs.insert(Defs);
232
233  for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I) {
234    MachineBasicBlock *SB = (*I)->getBlock();
235    Changed |= visitBlock(*SB, T, NewAVs);
236  }
237  if (!T.TopDown)
238    Changed |= T.processBlock(B, AVs);
239
240  return Changed;
241}
242
243//
244// Utility functions:
245//
246void HexagonBitSimplify::getInstrDefs(const MachineInstr &MI,
247      RegisterSet &Defs) {
248  for (auto &Op : MI.operands()) {
249    if (!Op.isReg() || !Op.isDef())
250      continue;
251    unsigned R = Op.getReg();
252    if (!TargetRegisterInfo::isVirtualRegister(R))
253      continue;
254    Defs.insert(R);
255  }
256}
257
258void HexagonBitSimplify::getInstrUses(const MachineInstr &MI,
259      RegisterSet &Uses) {
260  for (auto &Op : MI.operands()) {
261    if (!Op.isReg() || !Op.isUse())
262      continue;
263    unsigned R = Op.getReg();
264    if (!TargetRegisterInfo::isVirtualRegister(R))
265      continue;
266    Uses.insert(R);
267  }
268}
269
270// Check if all the bits in range [B, E) in both cells are equal.
271bool HexagonBitSimplify::isEqual(const BitTracker::RegisterCell &RC1,
272      uint16_t B1, const BitTracker::RegisterCell &RC2, uint16_t B2,
273      uint16_t W) {
274  for (uint16_t i = 0; i < W; ++i) {
275    // If RC1[i] is "bottom", it cannot be proven equal to RC2[i].
276    if (RC1[B1+i].Type == BitTracker::BitValue::Ref && RC1[B1+i].RefI.Reg == 0)
277      return false;
278    // Same for RC2[i].
279    if (RC2[B2+i].Type == BitTracker::BitValue::Ref && RC2[B2+i].RefI.Reg == 0)
280      return false;
281    if (RC1[B1+i] != RC2[B2+i])
282      return false;
283  }
284  return true;
285}
286
287
288bool HexagonBitSimplify::isConst(const BitTracker::RegisterCell &RC,
289      uint16_t B, uint16_t W) {
290  assert(B < RC.width() && B+W <= RC.width());
291  for (uint16_t i = B; i < B+W; ++i)
292    if (!RC[i].num())
293      return false;
294  return true;
295}
296
297
298bool HexagonBitSimplify::isZero(const BitTracker::RegisterCell &RC,
299      uint16_t B, uint16_t W) {
300  assert(B < RC.width() && B+W <= RC.width());
301  for (uint16_t i = B; i < B+W; ++i)
302    if (!RC[i].is(0))
303      return false;
304  return true;
305}
306
307
308bool HexagonBitSimplify::getConst(const BitTracker::RegisterCell &RC,
309        uint16_t B, uint16_t W, uint64_t &U) {
310  assert(B < RC.width() && B+W <= RC.width());
311  int64_t T = 0;
312  for (uint16_t i = B+W; i > B; --i) {
313    const BitTracker::BitValue &BV = RC[i-1];
314    T <<= 1;
315    if (BV.is(1))
316      T |= 1;
317    else if (!BV.is(0))
318      return false;
319  }
320  U = T;
321  return true;
322}
323
324
325bool HexagonBitSimplify::replaceReg(unsigned OldR, unsigned NewR,
326      MachineRegisterInfo &MRI) {
327  if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
328      !TargetRegisterInfo::isVirtualRegister(NewR))
329    return false;
330  auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
331  decltype(End) NextI;
332  for (auto I = Begin; I != End; I = NextI) {
333    NextI = std::next(I);
334    I->setReg(NewR);
335  }
336  return Begin != End;
337}
338
339
340bool HexagonBitSimplify::replaceRegWithSub(unsigned OldR, unsigned NewR,
341      unsigned NewSR, MachineRegisterInfo &MRI) {
342  if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
343      !TargetRegisterInfo::isVirtualRegister(NewR))
344    return false;
345  auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
346  decltype(End) NextI;
347  for (auto I = Begin; I != End; I = NextI) {
348    NextI = std::next(I);
349    I->setReg(NewR);
350    I->setSubReg(NewSR);
351  }
352  return Begin != End;
353}
354
355
356bool HexagonBitSimplify::replaceSubWithSub(unsigned OldR, unsigned OldSR,
357      unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI) {
358  if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
359      !TargetRegisterInfo::isVirtualRegister(NewR))
360    return false;
361  auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
362  decltype(End) NextI;
363  for (auto I = Begin; I != End; I = NextI) {
364    NextI = std::next(I);
365    if (I->getSubReg() != OldSR)
366      continue;
367    I->setReg(NewR);
368    I->setSubReg(NewSR);
369  }
370  return Begin != End;
371}
372
373
374// For a register ref (pair Reg:Sub), set Begin to the position of the LSB
375// of Sub in Reg, and set Width to the size of Sub in bits. Return true,
376// if this succeeded, otherwise return false.
377bool HexagonBitSimplify::getSubregMask(const BitTracker::RegisterRef &RR,
378      unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI) {
379  const TargetRegisterClass *RC = MRI.getRegClass(RR.Reg);
380  if (RC == &Hexagon::IntRegsRegClass) {
381    assert(RR.Sub == 0);
382    Begin = 0;
383    Width = 32;
384    return true;
385  }
386  if (RC == &Hexagon::DoubleRegsRegClass) {
387    if (RR.Sub == 0) {
388      Begin = 0;
389      Width = 64;
390      return true;
391    }
392    assert(RR.Sub == Hexagon::subreg_loreg || RR.Sub == Hexagon::subreg_hireg);
393    Width = 32;
394    Begin = (RR.Sub == Hexagon::subreg_loreg ? 0 : 32);
395    return true;
396  }
397  return false;
398}
399
400
401// For a REG_SEQUENCE, set SL to the low subregister and SH to the high
402// subregister.
403bool HexagonBitSimplify::parseRegSequence(const MachineInstr &I,
404      BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH) {
405  assert(I.getOpcode() == TargetOpcode::REG_SEQUENCE);
406  unsigned Sub1 = I.getOperand(2).getImm(), Sub2 = I.getOperand(4).getImm();
407  assert(Sub1 != Sub2);
408  if (Sub1 == Hexagon::subreg_loreg && Sub2 == Hexagon::subreg_hireg) {
409    SL = I.getOperand(1);
410    SH = I.getOperand(3);
411    return true;
412  }
413  if (Sub1 == Hexagon::subreg_hireg && Sub2 == Hexagon::subreg_loreg) {
414    SH = I.getOperand(1);
415    SL = I.getOperand(3);
416    return true;
417  }
418  return false;
419}
420
421
422// All stores (except 64-bit stores) take a 32-bit register as the source
423// of the value to be stored. If the instruction stores into a location
424// that is shorter than 32 bits, some bits of the source register are not
425// used. For each store instruction, calculate the set of used bits in
426// the source register, and set appropriate bits in Bits. Return true if
427// the bits are calculated, false otherwise.
428bool HexagonBitSimplify::getUsedBitsInStore(unsigned Opc, BitVector &Bits,
429      uint16_t Begin) {
430  using namespace Hexagon;
431
432  switch (Opc) {
433    // Store byte
434    case S2_storerb_io:           // memb(Rs32+#s11:0)=Rt32
435    case S2_storerbnew_io:        // memb(Rs32+#s11:0)=Nt8.new
436    case S2_pstorerbt_io:         // if (Pv4) memb(Rs32+#u6:0)=Rt32
437    case S2_pstorerbf_io:         // if (!Pv4) memb(Rs32+#u6:0)=Rt32
438    case S4_pstorerbtnew_io:      // if (Pv4.new) memb(Rs32+#u6:0)=Rt32
439    case S4_pstorerbfnew_io:      // if (!Pv4.new) memb(Rs32+#u6:0)=Rt32
440    case S2_pstorerbnewt_io:      // if (Pv4) memb(Rs32+#u6:0)=Nt8.new
441    case S2_pstorerbnewf_io:      // if (!Pv4) memb(Rs32+#u6:0)=Nt8.new
442    case S4_pstorerbnewtnew_io:   // if (Pv4.new) memb(Rs32+#u6:0)=Nt8.new
443    case S4_pstorerbnewfnew_io:   // if (!Pv4.new) memb(Rs32+#u6:0)=Nt8.new
444    case S2_storerb_pi:           // memb(Rx32++#s4:0)=Rt32
445    case S2_storerbnew_pi:        // memb(Rx32++#s4:0)=Nt8.new
446    case S2_pstorerbt_pi:         // if (Pv4) memb(Rx32++#s4:0)=Rt32
447    case S2_pstorerbf_pi:         // if (!Pv4) memb(Rx32++#s4:0)=Rt32
448    case S2_pstorerbtnew_pi:      // if (Pv4.new) memb(Rx32++#s4:0)=Rt32
449    case S2_pstorerbfnew_pi:      // if (!Pv4.new) memb(Rx32++#s4:0)=Rt32
450    case S2_pstorerbnewt_pi:      // if (Pv4) memb(Rx32++#s4:0)=Nt8.new
451    case S2_pstorerbnewf_pi:      // if (!Pv4) memb(Rx32++#s4:0)=Nt8.new
452    case S2_pstorerbnewtnew_pi:   // if (Pv4.new) memb(Rx32++#s4:0)=Nt8.new
453    case S2_pstorerbnewfnew_pi:   // if (!Pv4.new) memb(Rx32++#s4:0)=Nt8.new
454    case S4_storerb_ap:           // memb(Re32=#U6)=Rt32
455    case S4_storerbnew_ap:        // memb(Re32=#U6)=Nt8.new
456    case S2_storerb_pr:           // memb(Rx32++Mu2)=Rt32
457    case S2_storerbnew_pr:        // memb(Rx32++Mu2)=Nt8.new
458    case S4_storerb_ur:           // memb(Ru32<<#u2+#U6)=Rt32
459    case S4_storerbnew_ur:        // memb(Ru32<<#u2+#U6)=Nt8.new
460    case S2_storerb_pbr:          // memb(Rx32++Mu2:brev)=Rt32
461    case S2_storerbnew_pbr:       // memb(Rx32++Mu2:brev)=Nt8.new
462    case S2_storerb_pci:          // memb(Rx32++#s4:0:circ(Mu2))=Rt32
463    case S2_storerbnew_pci:       // memb(Rx32++#s4:0:circ(Mu2))=Nt8.new
464    case S2_storerb_pcr:          // memb(Rx32++I:circ(Mu2))=Rt32
465    case S2_storerbnew_pcr:       // memb(Rx32++I:circ(Mu2))=Nt8.new
466    case S4_storerb_rr:           // memb(Rs32+Ru32<<#u2)=Rt32
467    case S4_storerbnew_rr:        // memb(Rs32+Ru32<<#u2)=Nt8.new
468    case S4_pstorerbt_rr:         // if (Pv4) memb(Rs32+Ru32<<#u2)=Rt32
469    case S4_pstorerbf_rr:         // if (!Pv4) memb(Rs32+Ru32<<#u2)=Rt32
470    case S4_pstorerbtnew_rr:      // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
471    case S4_pstorerbfnew_rr:      // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
472    case S4_pstorerbnewt_rr:      // if (Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
473    case S4_pstorerbnewf_rr:      // if (!Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
474    case S4_pstorerbnewtnew_rr:   // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
475    case S4_pstorerbnewfnew_rr:   // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
476    case S2_storerbgp:            // memb(gp+#u16:0)=Rt32
477    case S2_storerbnewgp:         // memb(gp+#u16:0)=Nt8.new
478    case S4_pstorerbt_abs:        // if (Pv4) memb(#u6)=Rt32
479    case S4_pstorerbf_abs:        // if (!Pv4) memb(#u6)=Rt32
480    case S4_pstorerbtnew_abs:     // if (Pv4.new) memb(#u6)=Rt32
481    case S4_pstorerbfnew_abs:     // if (!Pv4.new) memb(#u6)=Rt32
482    case S4_pstorerbnewt_abs:     // if (Pv4) memb(#u6)=Nt8.new
483    case S4_pstorerbnewf_abs:     // if (!Pv4) memb(#u6)=Nt8.new
484    case S4_pstorerbnewtnew_abs:  // if (Pv4.new) memb(#u6)=Nt8.new
485    case S4_pstorerbnewfnew_abs:  // if (!Pv4.new) memb(#u6)=Nt8.new
486      Bits.set(Begin, Begin+8);
487      return true;
488
489    // Store low half
490    case S2_storerh_io:           // memh(Rs32+#s11:1)=Rt32
491    case S2_storerhnew_io:        // memh(Rs32+#s11:1)=Nt8.new
492    case S2_pstorerht_io:         // if (Pv4) memh(Rs32+#u6:1)=Rt32
493    case S2_pstorerhf_io:         // if (!Pv4) memh(Rs32+#u6:1)=Rt32
494    case S4_pstorerhtnew_io:      // if (Pv4.new) memh(Rs32+#u6:1)=Rt32
495    case S4_pstorerhfnew_io:      // if (!Pv4.new) memh(Rs32+#u6:1)=Rt32
496    case S2_pstorerhnewt_io:      // if (Pv4) memh(Rs32+#u6:1)=Nt8.new
497    case S2_pstorerhnewf_io:      // if (!Pv4) memh(Rs32+#u6:1)=Nt8.new
498    case S4_pstorerhnewtnew_io:   // if (Pv4.new) memh(Rs32+#u6:1)=Nt8.new
499    case S4_pstorerhnewfnew_io:   // if (!Pv4.new) memh(Rs32+#u6:1)=Nt8.new
500    case S2_storerh_pi:           // memh(Rx32++#s4:1)=Rt32
501    case S2_storerhnew_pi:        // memh(Rx32++#s4:1)=Nt8.new
502    case S2_pstorerht_pi:         // if (Pv4) memh(Rx32++#s4:1)=Rt32
503    case S2_pstorerhf_pi:         // if (!Pv4) memh(Rx32++#s4:1)=Rt32
504    case S2_pstorerhtnew_pi:      // if (Pv4.new) memh(Rx32++#s4:1)=Rt32
505    case S2_pstorerhfnew_pi:      // if (!Pv4.new) memh(Rx32++#s4:1)=Rt32
506    case S2_pstorerhnewt_pi:      // if (Pv4) memh(Rx32++#s4:1)=Nt8.new
507    case S2_pstorerhnewf_pi:      // if (!Pv4) memh(Rx32++#s4:1)=Nt8.new
508    case S2_pstorerhnewtnew_pi:   // if (Pv4.new) memh(Rx32++#s4:1)=Nt8.new
509    case S2_pstorerhnewfnew_pi:   // if (!Pv4.new) memh(Rx32++#s4:1)=Nt8.new
510    case S4_storerh_ap:           // memh(Re32=#U6)=Rt32
511    case S4_storerhnew_ap:        // memh(Re32=#U6)=Nt8.new
512    case S2_storerh_pr:           // memh(Rx32++Mu2)=Rt32
513    case S2_storerhnew_pr:        // memh(Rx32++Mu2)=Nt8.new
514    case S4_storerh_ur:           // memh(Ru32<<#u2+#U6)=Rt32
515    case S4_storerhnew_ur:        // memh(Ru32<<#u2+#U6)=Nt8.new
516    case S2_storerh_pbr:          // memh(Rx32++Mu2:brev)=Rt32
517    case S2_storerhnew_pbr:       // memh(Rx32++Mu2:brev)=Nt8.new
518    case S2_storerh_pci:          // memh(Rx32++#s4:1:circ(Mu2))=Rt32
519    case S2_storerhnew_pci:       // memh(Rx32++#s4:1:circ(Mu2))=Nt8.new
520    case S2_storerh_pcr:          // memh(Rx32++I:circ(Mu2))=Rt32
521    case S2_storerhnew_pcr:       // memh(Rx32++I:circ(Mu2))=Nt8.new
522    case S4_storerh_rr:           // memh(Rs32+Ru32<<#u2)=Rt32
523    case S4_pstorerht_rr:         // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt32
524    case S4_pstorerhf_rr:         // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt32
525    case S4_pstorerhtnew_rr:      // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
526    case S4_pstorerhfnew_rr:      // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
527    case S4_storerhnew_rr:        // memh(Rs32+Ru32<<#u2)=Nt8.new
528    case S4_pstorerhnewt_rr:      // if (Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
529    case S4_pstorerhnewf_rr:      // if (!Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
530    case S4_pstorerhnewtnew_rr:   // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
531    case S4_pstorerhnewfnew_rr:   // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
532    case S2_storerhgp:            // memh(gp+#u16:1)=Rt32
533    case S2_storerhnewgp:         // memh(gp+#u16:1)=Nt8.new
534    case S4_pstorerht_abs:        // if (Pv4) memh(#u6)=Rt32
535    case S4_pstorerhf_abs:        // if (!Pv4) memh(#u6)=Rt32
536    case S4_pstorerhtnew_abs:     // if (Pv4.new) memh(#u6)=Rt32
537    case S4_pstorerhfnew_abs:     // if (!Pv4.new) memh(#u6)=Rt32
538    case S4_pstorerhnewt_abs:     // if (Pv4) memh(#u6)=Nt8.new
539    case S4_pstorerhnewf_abs:     // if (!Pv4) memh(#u6)=Nt8.new
540    case S4_pstorerhnewtnew_abs:  // if (Pv4.new) memh(#u6)=Nt8.new
541    case S4_pstorerhnewfnew_abs:  // if (!Pv4.new) memh(#u6)=Nt8.new
542      Bits.set(Begin, Begin+16);
543      return true;
544
545    // Store high half
546    case S2_storerf_io:           // memh(Rs32+#s11:1)=Rt.H32
547    case S2_pstorerft_io:         // if (Pv4) memh(Rs32+#u6:1)=Rt.H32
548    case S2_pstorerff_io:         // if (!Pv4) memh(Rs32+#u6:1)=Rt.H32
549    case S4_pstorerftnew_io:      // if (Pv4.new) memh(Rs32+#u6:1)=Rt.H32
550    case S4_pstorerffnew_io:      // if (!Pv4.new) memh(Rs32+#u6:1)=Rt.H32
551    case S2_storerf_pi:           // memh(Rx32++#s4:1)=Rt.H32
552    case S2_pstorerft_pi:         // if (Pv4) memh(Rx32++#s4:1)=Rt.H32
553    case S2_pstorerff_pi:         // if (!Pv4) memh(Rx32++#s4:1)=Rt.H32
554    case S2_pstorerftnew_pi:      // if (Pv4.new) memh(Rx32++#s4:1)=Rt.H32
555    case S2_pstorerffnew_pi:      // if (!Pv4.new) memh(Rx32++#s4:1)=Rt.H32
556    case S4_storerf_ap:           // memh(Re32=#U6)=Rt.H32
557    case S2_storerf_pr:           // memh(Rx32++Mu2)=Rt.H32
558    case S4_storerf_ur:           // memh(Ru32<<#u2+#U6)=Rt.H32
559    case S2_storerf_pbr:          // memh(Rx32++Mu2:brev)=Rt.H32
560    case S2_storerf_pci:          // memh(Rx32++#s4:1:circ(Mu2))=Rt.H32
561    case S2_storerf_pcr:          // memh(Rx32++I:circ(Mu2))=Rt.H32
562    case S4_storerf_rr:           // memh(Rs32+Ru32<<#u2)=Rt.H32
563    case S4_pstorerft_rr:         // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
564    case S4_pstorerff_rr:         // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
565    case S4_pstorerftnew_rr:      // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
566    case S4_pstorerffnew_rr:      // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
567    case S2_storerfgp:            // memh(gp+#u16:1)=Rt.H32
568    case S4_pstorerft_abs:        // if (Pv4) memh(#u6)=Rt.H32
569    case S4_pstorerff_abs:        // if (!Pv4) memh(#u6)=Rt.H32
570    case S4_pstorerftnew_abs:     // if (Pv4.new) memh(#u6)=Rt.H32
571    case S4_pstorerffnew_abs:     // if (!Pv4.new) memh(#u6)=Rt.H32
572      Bits.set(Begin+16, Begin+32);
573      return true;
574  }
575
576  return false;
577}
578
579
580// For an instruction with opcode Opc, calculate the set of bits that it
581// uses in a register in operand OpN. This only calculates the set of used
582// bits for cases where it does not depend on any operands (as is the case
583// in shifts, for example). For concrete instructions from a program, the
584// operand may be a subregister of a larger register, while Bits would
585// correspond to the larger register in its entirety. Because of that,
586// the parameter Begin can be used to indicate which bit of Bits should be
587// considered the LSB of of the operand.
588bool HexagonBitSimplify::getUsedBits(unsigned Opc, unsigned OpN,
589      BitVector &Bits, uint16_t Begin, const HexagonInstrInfo &HII) {
590  using namespace Hexagon;
591
592  const MCInstrDesc &D = HII.get(Opc);
593  if (D.mayStore()) {
594    if (OpN == D.getNumOperands()-1)
595      return getUsedBitsInStore(Opc, Bits, Begin);
596    return false;
597  }
598
599  switch (Opc) {
600    // One register source. Used bits: R1[0-7].
601    case A2_sxtb:
602    case A2_zxtb:
603    case A4_cmpbeqi:
604    case A4_cmpbgti:
605    case A4_cmpbgtui:
606      if (OpN == 1) {
607        Bits.set(Begin, Begin+8);
608        return true;
609      }
610      break;
611
612    // One register source. Used bits: R1[0-15].
613    case A2_aslh:
614    case A2_sxth:
615    case A2_zxth:
616    case A4_cmpheqi:
617    case A4_cmphgti:
618    case A4_cmphgtui:
619      if (OpN == 1) {
620        Bits.set(Begin, Begin+16);
621        return true;
622      }
623      break;
624
625    // One register source. Used bits: R1[16-31].
626    case A2_asrh:
627      if (OpN == 1) {
628        Bits.set(Begin+16, Begin+32);
629        return true;
630      }
631      break;
632
633    // Two register sources. Used bits: R1[0-7], R2[0-7].
634    case A4_cmpbeq:
635    case A4_cmpbgt:
636    case A4_cmpbgtu:
637      if (OpN == 1) {
638        Bits.set(Begin, Begin+8);
639        return true;
640      }
641      break;
642
643    // Two register sources. Used bits: R1[0-15], R2[0-15].
644    case A4_cmpheq:
645    case A4_cmphgt:
646    case A4_cmphgtu:
647    case A2_addh_h16_ll:
648    case A2_addh_h16_sat_ll:
649    case A2_addh_l16_ll:
650    case A2_addh_l16_sat_ll:
651    case A2_combine_ll:
652    case A2_subh_h16_ll:
653    case A2_subh_h16_sat_ll:
654    case A2_subh_l16_ll:
655    case A2_subh_l16_sat_ll:
656    case M2_mpy_acc_ll_s0:
657    case M2_mpy_acc_ll_s1:
658    case M2_mpy_acc_sat_ll_s0:
659    case M2_mpy_acc_sat_ll_s1:
660    case M2_mpy_ll_s0:
661    case M2_mpy_ll_s1:
662    case M2_mpy_nac_ll_s0:
663    case M2_mpy_nac_ll_s1:
664    case M2_mpy_nac_sat_ll_s0:
665    case M2_mpy_nac_sat_ll_s1:
666    case M2_mpy_rnd_ll_s0:
667    case M2_mpy_rnd_ll_s1:
668    case M2_mpy_sat_ll_s0:
669    case M2_mpy_sat_ll_s1:
670    case M2_mpy_sat_rnd_ll_s0:
671    case M2_mpy_sat_rnd_ll_s1:
672    case M2_mpyd_acc_ll_s0:
673    case M2_mpyd_acc_ll_s1:
674    case M2_mpyd_ll_s0:
675    case M2_mpyd_ll_s1:
676    case M2_mpyd_nac_ll_s0:
677    case M2_mpyd_nac_ll_s1:
678    case M2_mpyd_rnd_ll_s0:
679    case M2_mpyd_rnd_ll_s1:
680    case M2_mpyu_acc_ll_s0:
681    case M2_mpyu_acc_ll_s1:
682    case M2_mpyu_ll_s0:
683    case M2_mpyu_ll_s1:
684    case M2_mpyu_nac_ll_s0:
685    case M2_mpyu_nac_ll_s1:
686    case M2_mpyud_acc_ll_s0:
687    case M2_mpyud_acc_ll_s1:
688    case M2_mpyud_ll_s0:
689    case M2_mpyud_ll_s1:
690    case M2_mpyud_nac_ll_s0:
691    case M2_mpyud_nac_ll_s1:
692      if (OpN == 1 || OpN == 2) {
693        Bits.set(Begin, Begin+16);
694        return true;
695      }
696      break;
697
698    // Two register sources. Used bits: R1[0-15], R2[16-31].
699    case A2_addh_h16_lh:
700    case A2_addh_h16_sat_lh:
701    case A2_combine_lh:
702    case A2_subh_h16_lh:
703    case A2_subh_h16_sat_lh:
704    case M2_mpy_acc_lh_s0:
705    case M2_mpy_acc_lh_s1:
706    case M2_mpy_acc_sat_lh_s0:
707    case M2_mpy_acc_sat_lh_s1:
708    case M2_mpy_lh_s0:
709    case M2_mpy_lh_s1:
710    case M2_mpy_nac_lh_s0:
711    case M2_mpy_nac_lh_s1:
712    case M2_mpy_nac_sat_lh_s0:
713    case M2_mpy_nac_sat_lh_s1:
714    case M2_mpy_rnd_lh_s0:
715    case M2_mpy_rnd_lh_s1:
716    case M2_mpy_sat_lh_s0:
717    case M2_mpy_sat_lh_s1:
718    case M2_mpy_sat_rnd_lh_s0:
719    case M2_mpy_sat_rnd_lh_s1:
720    case M2_mpyd_acc_lh_s0:
721    case M2_mpyd_acc_lh_s1:
722    case M2_mpyd_lh_s0:
723    case M2_mpyd_lh_s1:
724    case M2_mpyd_nac_lh_s0:
725    case M2_mpyd_nac_lh_s1:
726    case M2_mpyd_rnd_lh_s0:
727    case M2_mpyd_rnd_lh_s1:
728    case M2_mpyu_acc_lh_s0:
729    case M2_mpyu_acc_lh_s1:
730    case M2_mpyu_lh_s0:
731    case M2_mpyu_lh_s1:
732    case M2_mpyu_nac_lh_s0:
733    case M2_mpyu_nac_lh_s1:
734    case M2_mpyud_acc_lh_s0:
735    case M2_mpyud_acc_lh_s1:
736    case M2_mpyud_lh_s0:
737    case M2_mpyud_lh_s1:
738    case M2_mpyud_nac_lh_s0:
739    case M2_mpyud_nac_lh_s1:
740    // These four are actually LH.
741    case A2_addh_l16_hl:
742    case A2_addh_l16_sat_hl:
743    case A2_subh_l16_hl:
744    case A2_subh_l16_sat_hl:
745      if (OpN == 1) {
746        Bits.set(Begin, Begin+16);
747        return true;
748      }
749      if (OpN == 2) {
750        Bits.set(Begin+16, Begin+32);
751        return true;
752      }
753      break;
754
755    // Two register sources, used bits: R1[16-31], R2[0-15].
756    case A2_addh_h16_hl:
757    case A2_addh_h16_sat_hl:
758    case A2_combine_hl:
759    case A2_subh_h16_hl:
760    case A2_subh_h16_sat_hl:
761    case M2_mpy_acc_hl_s0:
762    case M2_mpy_acc_hl_s1:
763    case M2_mpy_acc_sat_hl_s0:
764    case M2_mpy_acc_sat_hl_s1:
765    case M2_mpy_hl_s0:
766    case M2_mpy_hl_s1:
767    case M2_mpy_nac_hl_s0:
768    case M2_mpy_nac_hl_s1:
769    case M2_mpy_nac_sat_hl_s0:
770    case M2_mpy_nac_sat_hl_s1:
771    case M2_mpy_rnd_hl_s0:
772    case M2_mpy_rnd_hl_s1:
773    case M2_mpy_sat_hl_s0:
774    case M2_mpy_sat_hl_s1:
775    case M2_mpy_sat_rnd_hl_s0:
776    case M2_mpy_sat_rnd_hl_s1:
777    case M2_mpyd_acc_hl_s0:
778    case M2_mpyd_acc_hl_s1:
779    case M2_mpyd_hl_s0:
780    case M2_mpyd_hl_s1:
781    case M2_mpyd_nac_hl_s0:
782    case M2_mpyd_nac_hl_s1:
783    case M2_mpyd_rnd_hl_s0:
784    case M2_mpyd_rnd_hl_s1:
785    case M2_mpyu_acc_hl_s0:
786    case M2_mpyu_acc_hl_s1:
787    case M2_mpyu_hl_s0:
788    case M2_mpyu_hl_s1:
789    case M2_mpyu_nac_hl_s0:
790    case M2_mpyu_nac_hl_s1:
791    case M2_mpyud_acc_hl_s0:
792    case M2_mpyud_acc_hl_s1:
793    case M2_mpyud_hl_s0:
794    case M2_mpyud_hl_s1:
795    case M2_mpyud_nac_hl_s0:
796    case M2_mpyud_nac_hl_s1:
797      if (OpN == 1) {
798        Bits.set(Begin+16, Begin+32);
799        return true;
800      }
801      if (OpN == 2) {
802        Bits.set(Begin, Begin+16);
803        return true;
804      }
805      break;
806
807    // Two register sources, used bits: R1[16-31], R2[16-31].
808    case A2_addh_h16_hh:
809    case A2_addh_h16_sat_hh:
810    case A2_combine_hh:
811    case A2_subh_h16_hh:
812    case A2_subh_h16_sat_hh:
813    case M2_mpy_acc_hh_s0:
814    case M2_mpy_acc_hh_s1:
815    case M2_mpy_acc_sat_hh_s0:
816    case M2_mpy_acc_sat_hh_s1:
817    case M2_mpy_hh_s0:
818    case M2_mpy_hh_s1:
819    case M2_mpy_nac_hh_s0:
820    case M2_mpy_nac_hh_s1:
821    case M2_mpy_nac_sat_hh_s0:
822    case M2_mpy_nac_sat_hh_s1:
823    case M2_mpy_rnd_hh_s0:
824    case M2_mpy_rnd_hh_s1:
825    case M2_mpy_sat_hh_s0:
826    case M2_mpy_sat_hh_s1:
827    case M2_mpy_sat_rnd_hh_s0:
828    case M2_mpy_sat_rnd_hh_s1:
829    case M2_mpyd_acc_hh_s0:
830    case M2_mpyd_acc_hh_s1:
831    case M2_mpyd_hh_s0:
832    case M2_mpyd_hh_s1:
833    case M2_mpyd_nac_hh_s0:
834    case M2_mpyd_nac_hh_s1:
835    case M2_mpyd_rnd_hh_s0:
836    case M2_mpyd_rnd_hh_s1:
837    case M2_mpyu_acc_hh_s0:
838    case M2_mpyu_acc_hh_s1:
839    case M2_mpyu_hh_s0:
840    case M2_mpyu_hh_s1:
841    case M2_mpyu_nac_hh_s0:
842    case M2_mpyu_nac_hh_s1:
843    case M2_mpyud_acc_hh_s0:
844    case M2_mpyud_acc_hh_s1:
845    case M2_mpyud_hh_s0:
846    case M2_mpyud_hh_s1:
847    case M2_mpyud_nac_hh_s0:
848    case M2_mpyud_nac_hh_s1:
849      if (OpN == 1 || OpN == 2) {
850        Bits.set(Begin+16, Begin+32);
851        return true;
852      }
853      break;
854  }
855
856  return false;
857}
858
859
860// Calculate the register class that matches Reg:Sub. For example, if
861// vreg1 is a double register, then vreg1:subreg_hireg would match "int"
862// register class.
863const TargetRegisterClass *HexagonBitSimplify::getFinalVRegClass(
864      const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI) {
865  if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
866    return nullptr;
867  auto *RC = MRI.getRegClass(RR.Reg);
868  if (RR.Sub == 0)
869    return RC;
870
871  auto VerifySR = [] (unsigned Sub) -> void {
872    assert(Sub == Hexagon::subreg_hireg || Sub == Hexagon::subreg_loreg);
873  };
874
875  switch (RC->getID()) {
876    case Hexagon::DoubleRegsRegClassID:
877      VerifySR(RR.Sub);
878      return &Hexagon::IntRegsRegClass;
879  }
880  return nullptr;
881}
882
883
884// Check if RD could be replaced with RS at any possible use of RD.
885// For example a predicate register cannot be replaced with a integer
886// register, but a 64-bit register with a subregister can be replaced
887// with a 32-bit register.
888bool HexagonBitSimplify::isTransparentCopy(const BitTracker::RegisterRef &RD,
889      const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI) {
890  if (!TargetRegisterInfo::isVirtualRegister(RD.Reg) ||
891      !TargetRegisterInfo::isVirtualRegister(RS.Reg))
892    return false;
893  // Return false if one (or both) classes are nullptr.
894  auto *DRC = getFinalVRegClass(RD, MRI);
895  if (!DRC)
896    return false;
897
898  return DRC == getFinalVRegClass(RS, MRI);
899}
900
901
902//
903// Dead code elimination
904//
905namespace {
906  class DeadCodeElimination {
907  public:
908    DeadCodeElimination(MachineFunction &mf, MachineDominatorTree &mdt)
909      : MF(mf), HII(*MF.getSubtarget<HexagonSubtarget>().getInstrInfo()),
910        MDT(mdt), MRI(mf.getRegInfo()) {}
911
912    bool run() {
913      return runOnNode(MDT.getRootNode());
914    }
915
916  private:
917    bool isDead(unsigned R) const;
918    bool runOnNode(MachineDomTreeNode *N);
919
920    MachineFunction &MF;
921    const HexagonInstrInfo &HII;
922    MachineDominatorTree &MDT;
923    MachineRegisterInfo &MRI;
924  };
925}
926
927
928bool DeadCodeElimination::isDead(unsigned R) const {
929  for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
930    MachineInstr *UseI = I->getParent();
931    if (UseI->isDebugValue())
932      continue;
933    if (UseI->isPHI()) {
934      assert(!UseI->getOperand(0).getSubReg());
935      unsigned DR = UseI->getOperand(0).getReg();
936      if (DR == R)
937        continue;
938    }
939    return false;
940  }
941  return true;
942}
943
944
945bool DeadCodeElimination::runOnNode(MachineDomTreeNode *N) {
946  bool Changed = false;
947  typedef GraphTraits<MachineDomTreeNode*> GTN;
948  for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I)
949    Changed |= runOnNode(*I);
950
951  MachineBasicBlock *B = N->getBlock();
952  std::vector<MachineInstr*> Instrs;
953  for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
954    Instrs.push_back(&*I);
955
956  for (auto MI : Instrs) {
957    unsigned Opc = MI->getOpcode();
958    // Do not touch lifetime markers. This is why the target-independent DCE
959    // cannot be used.
960    if (Opc == TargetOpcode::LIFETIME_START ||
961        Opc == TargetOpcode::LIFETIME_END)
962      continue;
963    bool Store = false;
964    if (MI->isInlineAsm())
965      continue;
966    // Delete PHIs if possible.
967    if (!MI->isPHI() && !MI->isSafeToMove(nullptr, Store))
968      continue;
969
970    bool AllDead = true;
971    SmallVector<unsigned,2> Regs;
972    for (auto &Op : MI->operands()) {
973      if (!Op.isReg() || !Op.isDef())
974        continue;
975      unsigned R = Op.getReg();
976      if (!TargetRegisterInfo::isVirtualRegister(R) || !isDead(R)) {
977        AllDead = false;
978        break;
979      }
980      Regs.push_back(R);
981    }
982    if (!AllDead)
983      continue;
984
985    B->erase(MI);
986    for (unsigned i = 0, n = Regs.size(); i != n; ++i)
987      MRI.markUsesInDebugValueAsUndef(Regs[i]);
988    Changed = true;
989  }
990
991  return Changed;
992}
993
994
995//
996// Eliminate redundant instructions
997//
998// This transformation will identify instructions where the output register
999// is the same as one of its input registers. This only works on instructions
1000// that define a single register (unlike post-increment loads, for example).
1001// The equality check is actually more detailed: the code calculates which
1002// bits of the output are used, and only compares these bits with the input
1003// registers.
1004// If the output matches an input, the instruction is replaced with COPY.
1005// The copies will be removed by another transformation.
1006namespace {
1007  class RedundantInstrElimination : public Transformation {
1008  public:
1009    RedundantInstrElimination(BitTracker &bt, const HexagonInstrInfo &hii,
1010          MachineRegisterInfo &mri)
1011        : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1012    bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1013  private:
1014    bool isLossyShiftLeft(const MachineInstr &MI, unsigned OpN,
1015          unsigned &LostB, unsigned &LostE);
1016    bool isLossyShiftRight(const MachineInstr &MI, unsigned OpN,
1017          unsigned &LostB, unsigned &LostE);
1018    bool computeUsedBits(unsigned Reg, BitVector &Bits);
1019    bool computeUsedBits(const MachineInstr &MI, unsigned OpN, BitVector &Bits,
1020          uint16_t Begin);
1021    bool usedBitsEqual(BitTracker::RegisterRef RD, BitTracker::RegisterRef RS);
1022
1023    const HexagonInstrInfo &HII;
1024    MachineRegisterInfo &MRI;
1025    BitTracker &BT;
1026  };
1027}
1028
1029
1030// Check if the instruction is a lossy shift left, where the input being
1031// shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1032// of bit indices that are lost.
1033bool RedundantInstrElimination::isLossyShiftLeft(const MachineInstr &MI,
1034      unsigned OpN, unsigned &LostB, unsigned &LostE) {
1035  using namespace Hexagon;
1036  unsigned Opc = MI.getOpcode();
1037  unsigned ImN, RegN, Width;
1038  switch (Opc) {
1039    case S2_asl_i_p:
1040      ImN = 2;
1041      RegN = 1;
1042      Width = 64;
1043      break;
1044    case S2_asl_i_p_acc:
1045    case S2_asl_i_p_and:
1046    case S2_asl_i_p_nac:
1047    case S2_asl_i_p_or:
1048    case S2_asl_i_p_xacc:
1049      ImN = 3;
1050      RegN = 2;
1051      Width = 64;
1052      break;
1053    case S2_asl_i_r:
1054      ImN = 2;
1055      RegN = 1;
1056      Width = 32;
1057      break;
1058    case S2_addasl_rrri:
1059    case S4_andi_asl_ri:
1060    case S4_ori_asl_ri:
1061    case S4_addi_asl_ri:
1062    case S4_subi_asl_ri:
1063    case S2_asl_i_r_acc:
1064    case S2_asl_i_r_and:
1065    case S2_asl_i_r_nac:
1066    case S2_asl_i_r_or:
1067    case S2_asl_i_r_sat:
1068    case S2_asl_i_r_xacc:
1069      ImN = 3;
1070      RegN = 2;
1071      Width = 32;
1072      break;
1073    default:
1074      return false;
1075  }
1076
1077  if (RegN != OpN)
1078    return false;
1079
1080  assert(MI.getOperand(ImN).isImm());
1081  unsigned S = MI.getOperand(ImN).getImm();
1082  if (S == 0)
1083    return false;
1084  LostB = Width-S;
1085  LostE = Width;
1086  return true;
1087}
1088
1089
1090// Check if the instruction is a lossy shift right, where the input being
1091// shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1092// of bit indices that are lost.
1093bool RedundantInstrElimination::isLossyShiftRight(const MachineInstr &MI,
1094      unsigned OpN, unsigned &LostB, unsigned &LostE) {
1095  using namespace Hexagon;
1096  unsigned Opc = MI.getOpcode();
1097  unsigned ImN, RegN;
1098  switch (Opc) {
1099    case S2_asr_i_p:
1100    case S2_lsr_i_p:
1101      ImN = 2;
1102      RegN = 1;
1103      break;
1104    case S2_asr_i_p_acc:
1105    case S2_asr_i_p_and:
1106    case S2_asr_i_p_nac:
1107    case S2_asr_i_p_or:
1108    case S2_lsr_i_p_acc:
1109    case S2_lsr_i_p_and:
1110    case S2_lsr_i_p_nac:
1111    case S2_lsr_i_p_or:
1112    case S2_lsr_i_p_xacc:
1113      ImN = 3;
1114      RegN = 2;
1115      break;
1116    case S2_asr_i_r:
1117    case S2_lsr_i_r:
1118      ImN = 2;
1119      RegN = 1;
1120      break;
1121    case S4_andi_lsr_ri:
1122    case S4_ori_lsr_ri:
1123    case S4_addi_lsr_ri:
1124    case S4_subi_lsr_ri:
1125    case S2_asr_i_r_acc:
1126    case S2_asr_i_r_and:
1127    case S2_asr_i_r_nac:
1128    case S2_asr_i_r_or:
1129    case S2_lsr_i_r_acc:
1130    case S2_lsr_i_r_and:
1131    case S2_lsr_i_r_nac:
1132    case S2_lsr_i_r_or:
1133    case S2_lsr_i_r_xacc:
1134      ImN = 3;
1135      RegN = 2;
1136      break;
1137
1138    default:
1139      return false;
1140  }
1141
1142  if (RegN != OpN)
1143    return false;
1144
1145  assert(MI.getOperand(ImN).isImm());
1146  unsigned S = MI.getOperand(ImN).getImm();
1147  LostB = 0;
1148  LostE = S;
1149  return true;
1150}
1151
1152
1153// Calculate the bit vector that corresponds to the used bits of register Reg.
1154// The vector Bits has the same size, as the size of Reg in bits. If the cal-
1155// culation fails (i.e. the used bits are unknown), it returns false. Other-
1156// wise, it returns true and sets the corresponding bits in Bits.
1157bool RedundantInstrElimination::computeUsedBits(unsigned Reg, BitVector &Bits) {
1158  BitVector Used(Bits.size());
1159  RegisterSet Visited;
1160  std::vector<unsigned> Pending;
1161  Pending.push_back(Reg);
1162
1163  for (unsigned i = 0; i < Pending.size(); ++i) {
1164    unsigned R = Pending[i];
1165    if (Visited.has(R))
1166      continue;
1167    Visited.insert(R);
1168    for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
1169      BitTracker::RegisterRef UR = *I;
1170      unsigned B, W;
1171      if (!HBS::getSubregMask(UR, B, W, MRI))
1172        return false;
1173      MachineInstr &UseI = *I->getParent();
1174      if (UseI.isPHI() || UseI.isCopy()) {
1175        unsigned DefR = UseI.getOperand(0).getReg();
1176        if (!TargetRegisterInfo::isVirtualRegister(DefR))
1177          return false;
1178        Pending.push_back(DefR);
1179      } else {
1180        if (!computeUsedBits(UseI, I.getOperandNo(), Used, B))
1181          return false;
1182      }
1183    }
1184  }
1185  Bits |= Used;
1186  return true;
1187}
1188
1189
1190// Calculate the bits used by instruction MI in a register in operand OpN.
1191// Return true/false if the calculation succeeds/fails. If is succeeds, set
1192// used bits in Bits. This function does not reset any bits in Bits, so
1193// subsequent calls over different instructions will result in the union
1194// of the used bits in all these instructions.
1195// The register in question may be used with a sub-register, whereas Bits
1196// holds the bits for the entire register. To keep track of that, the
1197// argument Begin indicates where in Bits is the lowest-significant bit
1198// of the register used in operand OpN. For example, in instruction:
1199//   vreg1 = S2_lsr_i_r vreg2:subreg_hireg, 10
1200// the operand 1 is a 32-bit register, which happens to be a subregister
1201// of the 64-bit register vreg2, and that subregister starts at position 32.
1202// In this case Begin=32, since Bits[32] would be the lowest-significant bit
1203// of vreg2:subreg_hireg.
1204bool RedundantInstrElimination::computeUsedBits(const MachineInstr &MI,
1205      unsigned OpN, BitVector &Bits, uint16_t Begin) {
1206  unsigned Opc = MI.getOpcode();
1207  BitVector T(Bits.size());
1208  bool GotBits = HBS::getUsedBits(Opc, OpN, T, Begin, HII);
1209  // Even if we don't have bits yet, we could still provide some information
1210  // if the instruction is a lossy shift: the lost bits will be marked as
1211  // not used.
1212  unsigned LB, LE;
1213  if (isLossyShiftLeft(MI, OpN, LB, LE) || isLossyShiftRight(MI, OpN, LB, LE)) {
1214    assert(MI.getOperand(OpN).isReg());
1215    BitTracker::RegisterRef RR = MI.getOperand(OpN);
1216    const TargetRegisterClass *RC = HBS::getFinalVRegClass(RR, MRI);
1217    uint16_t Width = RC->getSize()*8;
1218
1219    if (!GotBits)
1220      T.set(Begin, Begin+Width);
1221    assert(LB <= LE && LB < Width && LE <= Width);
1222    T.reset(Begin+LB, Begin+LE);
1223    GotBits = true;
1224  }
1225  if (GotBits)
1226    Bits |= T;
1227  return GotBits;
1228}
1229
1230
1231// Calculates the used bits in RD ("defined register"), and checks if these
1232// bits in RS ("used register") and RD are identical.
1233bool RedundantInstrElimination::usedBitsEqual(BitTracker::RegisterRef RD,
1234      BitTracker::RegisterRef RS) {
1235  const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
1236  const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
1237
1238  unsigned DB, DW;
1239  if (!HBS::getSubregMask(RD, DB, DW, MRI))
1240    return false;
1241  unsigned SB, SW;
1242  if (!HBS::getSubregMask(RS, SB, SW, MRI))
1243    return false;
1244  if (SW != DW)
1245    return false;
1246
1247  BitVector Used(DC.width());
1248  if (!computeUsedBits(RD.Reg, Used))
1249    return false;
1250
1251  for (unsigned i = 0; i != DW; ++i)
1252    if (Used[i+DB] && DC[DB+i] != SC[SB+i])
1253      return false;
1254  return true;
1255}
1256
1257
1258bool RedundantInstrElimination::processBlock(MachineBasicBlock &B,
1259      const RegisterSet&) {
1260  bool Changed = false;
1261
1262  for (auto I = B.begin(), E = B.end(), NextI = I; I != E; ++I) {
1263    NextI = std::next(I);
1264    MachineInstr *MI = &*I;
1265
1266    if (MI->getOpcode() == TargetOpcode::COPY)
1267      continue;
1268    if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
1269      continue;
1270    unsigned NumD = MI->getDesc().getNumDefs();
1271    if (NumD != 1)
1272      continue;
1273
1274    BitTracker::RegisterRef RD = MI->getOperand(0);
1275    if (!BT.has(RD.Reg))
1276      continue;
1277    const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
1278    auto At = MI->isPHI() ? B.getFirstNonPHI()
1279                          : MachineBasicBlock::iterator(MI);
1280
1281    // Find a source operand that is equal to the result.
1282    for (auto &Op : MI->uses()) {
1283      if (!Op.isReg())
1284        continue;
1285      BitTracker::RegisterRef RS = Op;
1286      if (!BT.has(RS.Reg))
1287        continue;
1288      if (!HBS::isTransparentCopy(RD, RS, MRI))
1289        continue;
1290
1291      unsigned BN, BW;
1292      if (!HBS::getSubregMask(RS, BN, BW, MRI))
1293        continue;
1294
1295      const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
1296      if (!usedBitsEqual(RD, RS) && !HBS::isEqual(DC, 0, SC, BN, BW))
1297        continue;
1298
1299      // If found, replace the instruction with a COPY.
1300      DebugLoc DL = MI->getDebugLoc();
1301      const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
1302      unsigned NewR = MRI.createVirtualRegister(FRC);
1303      BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
1304          .addReg(RS.Reg, 0, RS.Sub);
1305      HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1306      BT.put(BitTracker::RegisterRef(NewR), SC);
1307      Changed = true;
1308      break;
1309    }
1310  }
1311
1312  return Changed;
1313}
1314
1315
1316//
1317// Const generation
1318//
1319// Recognize instructions that produce constant values known at compile-time.
1320// Replace them with register definitions that load these constants directly.
1321namespace {
1322  class ConstGeneration : public Transformation {
1323  public:
1324    ConstGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1325        MachineRegisterInfo &mri)
1326      : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1327    bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1328  private:
1329    bool isTfrConst(const MachineInstr *MI) const;
1330    bool isConst(unsigned R, int64_t &V) const;
1331    unsigned genTfrConst(const TargetRegisterClass *RC, int64_t C,
1332        MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL);
1333
1334    const HexagonInstrInfo &HII;
1335    MachineRegisterInfo &MRI;
1336    BitTracker &BT;
1337  };
1338}
1339
1340bool ConstGeneration::isConst(unsigned R, int64_t &C) const {
1341  if (!BT.has(R))
1342    return false;
1343  const BitTracker::RegisterCell &RC = BT.lookup(R);
1344  int64_t T = 0;
1345  for (unsigned i = RC.width(); i > 0; --i) {
1346    const BitTracker::BitValue &V = RC[i-1];
1347    T <<= 1;
1348    if (V.is(1))
1349      T |= 1;
1350    else if (!V.is(0))
1351      return false;
1352  }
1353  C = T;
1354  return true;
1355}
1356
1357
1358bool ConstGeneration::isTfrConst(const MachineInstr *MI) const {
1359  unsigned Opc = MI->getOpcode();
1360  switch (Opc) {
1361    case Hexagon::A2_combineii:
1362    case Hexagon::A4_combineii:
1363    case Hexagon::A2_tfrsi:
1364    case Hexagon::A2_tfrpi:
1365    case Hexagon::TFR_PdTrue:
1366    case Hexagon::TFR_PdFalse:
1367    case Hexagon::CONST32_Int_Real:
1368    case Hexagon::CONST64_Int_Real:
1369      return true;
1370  }
1371  return false;
1372}
1373
1374
1375// Generate a transfer-immediate instruction that is appropriate for the
1376// register class and the actual value being transferred.
1377unsigned ConstGeneration::genTfrConst(const TargetRegisterClass *RC, int64_t C,
1378      MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL) {
1379  unsigned Reg = MRI.createVirtualRegister(RC);
1380  if (RC == &Hexagon::IntRegsRegClass) {
1381    BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), Reg)
1382        .addImm(int32_t(C));
1383    return Reg;
1384  }
1385
1386  if (RC == &Hexagon::DoubleRegsRegClass) {
1387    if (isInt<8>(C)) {
1388      BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrpi), Reg)
1389          .addImm(C);
1390      return Reg;
1391    }
1392
1393    unsigned Lo = Lo_32(C), Hi = Hi_32(C);
1394    if (isInt<8>(Lo) || isInt<8>(Hi)) {
1395      unsigned Opc = isInt<8>(Lo) ? Hexagon::A2_combineii
1396                                  : Hexagon::A4_combineii;
1397      BuildMI(B, At, DL, HII.get(Opc), Reg)
1398          .addImm(int32_t(Hi))
1399          .addImm(int32_t(Lo));
1400      return Reg;
1401    }
1402
1403    BuildMI(B, At, DL, HII.get(Hexagon::CONST64_Int_Real), Reg)
1404        .addImm(C);
1405    return Reg;
1406  }
1407
1408  if (RC == &Hexagon::PredRegsRegClass) {
1409    unsigned Opc;
1410    if (C == 0)
1411      Opc = Hexagon::TFR_PdFalse;
1412    else if ((C & 0xFF) == 0xFF)
1413      Opc = Hexagon::TFR_PdTrue;
1414    else
1415      return 0;
1416    BuildMI(B, At, DL, HII.get(Opc), Reg);
1417    return Reg;
1418  }
1419
1420  return 0;
1421}
1422
1423
1424bool ConstGeneration::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1425  bool Changed = false;
1426  RegisterSet Defs;
1427
1428  for (auto I = B.begin(), E = B.end(); I != E; ++I) {
1429    if (isTfrConst(I))
1430      continue;
1431    Defs.clear();
1432    HBS::getInstrDefs(*I, Defs);
1433    if (Defs.count() != 1)
1434      continue;
1435    unsigned DR = Defs.find_first();
1436    if (!TargetRegisterInfo::isVirtualRegister(DR))
1437      continue;
1438    int64_t C;
1439    if (isConst(DR, C)) {
1440      DebugLoc DL = I->getDebugLoc();
1441      auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1442      unsigned ImmReg = genTfrConst(MRI.getRegClass(DR), C, B, At, DL);
1443      if (ImmReg) {
1444        HBS::replaceReg(DR, ImmReg, MRI);
1445        BT.put(ImmReg, BT.lookup(DR));
1446        Changed = true;
1447      }
1448    }
1449  }
1450  return Changed;
1451}
1452
1453
1454//
1455// Copy generation
1456//
1457// Identify pairs of available registers which hold identical values.
1458// In such cases, only one of them needs to be calculated, the other one
1459// will be defined as a copy of the first.
1460//
1461// Copy propagation
1462//
1463// Eliminate register copies RD = RS, by replacing the uses of RD with
1464// with uses of RS.
1465namespace {
1466  class CopyGeneration : public Transformation {
1467  public:
1468    CopyGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1469        MachineRegisterInfo &mri)
1470      : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1471    bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1472  private:
1473    bool findMatch(const BitTracker::RegisterRef &Inp,
1474        BitTracker::RegisterRef &Out, const RegisterSet &AVs);
1475
1476    const HexagonInstrInfo &HII;
1477    MachineRegisterInfo &MRI;
1478    BitTracker &BT;
1479  };
1480
1481  class CopyPropagation : public Transformation {
1482  public:
1483    CopyPropagation(const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
1484        : Transformation(false), MRI(mri) {}
1485    bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1486    static bool isCopyReg(unsigned Opc);
1487  private:
1488    bool propagateRegCopy(MachineInstr &MI);
1489
1490    MachineRegisterInfo &MRI;
1491  };
1492
1493}
1494
1495
1496/// Check if there is a register in AVs that is identical to Inp. If so,
1497/// set Out to the found register. The output may be a pair Reg:Sub.
1498bool CopyGeneration::findMatch(const BitTracker::RegisterRef &Inp,
1499      BitTracker::RegisterRef &Out, const RegisterSet &AVs) {
1500  if (!BT.has(Inp.Reg))
1501    return false;
1502  const BitTracker::RegisterCell &InpRC = BT.lookup(Inp.Reg);
1503  unsigned B, W;
1504  if (!HBS::getSubregMask(Inp, B, W, MRI))
1505    return false;
1506
1507  for (unsigned R = AVs.find_first(); R; R = AVs.find_next(R)) {
1508    if (!BT.has(R) || !HBS::isTransparentCopy(R, Inp, MRI))
1509      continue;
1510    const BitTracker::RegisterCell &RC = BT.lookup(R);
1511    unsigned RW = RC.width();
1512    if (W == RW) {
1513      if (MRI.getRegClass(Inp.Reg) != MRI.getRegClass(R))
1514        continue;
1515      if (!HBS::isEqual(InpRC, B, RC, 0, W))
1516        continue;
1517      Out.Reg = R;
1518      Out.Sub = 0;
1519      return true;
1520    }
1521    // Check if there is a super-register, whose part (with a subregister)
1522    // is equal to the input.
1523    // Only do double registers for now.
1524    if (W*2 != RW)
1525      continue;
1526    if (MRI.getRegClass(R) != &Hexagon::DoubleRegsRegClass)
1527      continue;
1528
1529    if (HBS::isEqual(InpRC, B, RC, 0, W))
1530      Out.Sub = Hexagon::subreg_loreg;
1531    else if (HBS::isEqual(InpRC, B, RC, W, W))
1532      Out.Sub = Hexagon::subreg_hireg;
1533    else
1534      continue;
1535    Out.Reg = R;
1536    return true;
1537  }
1538  return false;
1539}
1540
1541
1542bool CopyGeneration::processBlock(MachineBasicBlock &B,
1543      const RegisterSet &AVs) {
1544  RegisterSet AVB(AVs);
1545  bool Changed = false;
1546  RegisterSet Defs;
1547
1548  for (auto I = B.begin(), E = B.end(), NextI = I; I != E;
1549       ++I, AVB.insert(Defs)) {
1550    NextI = std::next(I);
1551    Defs.clear();
1552    HBS::getInstrDefs(*I, Defs);
1553
1554    unsigned Opc = I->getOpcode();
1555    if (CopyPropagation::isCopyReg(Opc))
1556      continue;
1557
1558    for (unsigned R = Defs.find_first(); R; R = Defs.find_next(R)) {
1559      BitTracker::RegisterRef MR;
1560      if (!findMatch(R, MR, AVB))
1561        continue;
1562      DebugLoc DL = I->getDebugLoc();
1563      auto *FRC = HBS::getFinalVRegClass(MR, MRI);
1564      unsigned NewR = MRI.createVirtualRegister(FRC);
1565      auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1566      BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
1567        .addReg(MR.Reg, 0, MR.Sub);
1568      BT.put(BitTracker::RegisterRef(NewR), BT.get(MR));
1569    }
1570  }
1571
1572  return Changed;
1573}
1574
1575
1576bool CopyPropagation::isCopyReg(unsigned Opc) {
1577  switch (Opc) {
1578    case TargetOpcode::COPY:
1579    case TargetOpcode::REG_SEQUENCE:
1580    case Hexagon::A2_tfr:
1581    case Hexagon::A2_tfrp:
1582    case Hexagon::A2_combinew:
1583    case Hexagon::A4_combineir:
1584    case Hexagon::A4_combineri:
1585      return true;
1586    default:
1587      break;
1588  }
1589  return false;
1590}
1591
1592
1593bool CopyPropagation::propagateRegCopy(MachineInstr &MI) {
1594  bool Changed = false;
1595  unsigned Opc = MI.getOpcode();
1596  BitTracker::RegisterRef RD = MI.getOperand(0);
1597  assert(MI.getOperand(0).getSubReg() == 0);
1598
1599  switch (Opc) {
1600    case TargetOpcode::COPY:
1601    case Hexagon::A2_tfr:
1602    case Hexagon::A2_tfrp: {
1603      BitTracker::RegisterRef RS = MI.getOperand(1);
1604      if (!HBS::isTransparentCopy(RD, RS, MRI))
1605        break;
1606      if (RS.Sub != 0)
1607        Changed = HBS::replaceRegWithSub(RD.Reg, RS.Reg, RS.Sub, MRI);
1608      else
1609        Changed = HBS::replaceReg(RD.Reg, RS.Reg, MRI);
1610      break;
1611    }
1612    case TargetOpcode::REG_SEQUENCE: {
1613      BitTracker::RegisterRef SL, SH;
1614      if (HBS::parseRegSequence(MI, SL, SH)) {
1615        Changed = HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_loreg,
1616                                         SL.Reg, SL.Sub, MRI);
1617        Changed |= HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_hireg,
1618                                          SH.Reg, SH.Sub, MRI);
1619      }
1620      break;
1621    }
1622    case Hexagon::A2_combinew: {
1623      BitTracker::RegisterRef RH = MI.getOperand(1), RL = MI.getOperand(2);
1624      Changed = HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_loreg,
1625                                       RL.Reg, RL.Sub, MRI);
1626      Changed |= HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_hireg,
1627                                        RH.Reg, RH.Sub, MRI);
1628      break;
1629    }
1630    case Hexagon::A4_combineir:
1631    case Hexagon::A4_combineri: {
1632      unsigned SrcX = (Opc == Hexagon::A4_combineir) ? 2 : 1;
1633      unsigned Sub = (Opc == Hexagon::A4_combineir) ? Hexagon::subreg_loreg
1634                                                    : Hexagon::subreg_hireg;
1635      BitTracker::RegisterRef RS = MI.getOperand(SrcX);
1636      Changed = HBS::replaceSubWithSub(RD.Reg, Sub, RS.Reg, RS.Sub, MRI);
1637      break;
1638    }
1639  }
1640  return Changed;
1641}
1642
1643
1644bool CopyPropagation::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1645  std::vector<MachineInstr*> Instrs;
1646  for (auto I = B.rbegin(), E = B.rend(); I != E; ++I)
1647    Instrs.push_back(&*I);
1648
1649  bool Changed = false;
1650  for (auto I : Instrs) {
1651    unsigned Opc = I->getOpcode();
1652    if (!CopyPropagation::isCopyReg(Opc))
1653      continue;
1654    Changed |= propagateRegCopy(*I);
1655  }
1656
1657  return Changed;
1658}
1659
1660
1661//
1662// Bit simplification
1663//
1664// Recognize patterns that can be simplified and replace them with the
1665// simpler forms.
1666// This is by no means complete
1667namespace {
1668  class BitSimplification : public Transformation {
1669  public:
1670    BitSimplification(BitTracker &bt, const HexagonInstrInfo &hii,
1671        MachineRegisterInfo &mri)
1672      : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1673    bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1674  private:
1675    struct RegHalf : public BitTracker::RegisterRef {
1676      bool Low;  // Low/High halfword.
1677    };
1678
1679    bool matchHalf(unsigned SelfR, const BitTracker::RegisterCell &RC,
1680          unsigned B, RegHalf &RH);
1681
1682    bool matchPackhl(unsigned SelfR, const BitTracker::RegisterCell &RC,
1683          BitTracker::RegisterRef &Rs, BitTracker::RegisterRef &Rt);
1684    unsigned getCombineOpcode(bool HLow, bool LLow);
1685
1686    bool genStoreUpperHalf(MachineInstr *MI);
1687    bool genStoreImmediate(MachineInstr *MI);
1688    bool genPackhl(MachineInstr *MI, BitTracker::RegisterRef RD,
1689          const BitTracker::RegisterCell &RC);
1690    bool genExtractHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1691          const BitTracker::RegisterCell &RC);
1692    bool genCombineHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1693          const BitTracker::RegisterCell &RC);
1694    bool genExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
1695          const BitTracker::RegisterCell &RC);
1696    bool simplifyTstbit(MachineInstr *MI, BitTracker::RegisterRef RD,
1697          const BitTracker::RegisterCell &RC);
1698
1699    const HexagonInstrInfo &HII;
1700    MachineRegisterInfo &MRI;
1701    BitTracker &BT;
1702  };
1703}
1704
1705
1706// Check if the bits [B..B+16) in register cell RC form a valid halfword,
1707// i.e. [0..16), [16..32), etc. of some register. If so, return true and
1708// set the information about the found register in RH.
1709bool BitSimplification::matchHalf(unsigned SelfR,
1710      const BitTracker::RegisterCell &RC, unsigned B, RegHalf &RH) {
1711  // XXX This could be searching in the set of available registers, in case
1712  // the match is not exact.
1713
1714  // Match 16-bit chunks, where the RC[B..B+15] references exactly one
1715  // register and all the bits B..B+15 match between RC and the register.
1716  // This is meant to match "v1[0-15]", where v1 = { [0]:0 [1-15]:v1... },
1717  // and RC = { [0]:0 [1-15]:v1[1-15]... }.
1718  bool Low = false;
1719  unsigned I = B;
1720  while (I < B+16 && RC[I].num())
1721    I++;
1722  if (I == B+16)
1723    return false;
1724
1725  unsigned Reg = RC[I].RefI.Reg;
1726  unsigned P = RC[I].RefI.Pos;    // The RefI.Pos will be advanced by I-B.
1727  if (P < I-B)
1728    return false;
1729  unsigned Pos = P - (I-B);
1730
1731  if (Reg == 0 || Reg == SelfR)    // Don't match "self".
1732    return false;
1733  if (!TargetRegisterInfo::isVirtualRegister(Reg))
1734    return false;
1735  if (!BT.has(Reg))
1736    return false;
1737
1738  const BitTracker::RegisterCell &SC = BT.lookup(Reg);
1739  if (Pos+16 > SC.width())
1740    return false;
1741
1742  for (unsigned i = 0; i < 16; ++i) {
1743    const BitTracker::BitValue &RV = RC[i+B];
1744    if (RV.Type == BitTracker::BitValue::Ref) {
1745      if (RV.RefI.Reg != Reg)
1746        return false;
1747      if (RV.RefI.Pos != i+Pos)
1748        return false;
1749      continue;
1750    }
1751    if (RC[i+B] != SC[i+Pos])
1752      return false;
1753  }
1754
1755  unsigned Sub = 0;
1756  switch (Pos) {
1757    case 0:
1758      Sub = Hexagon::subreg_loreg;
1759      Low = true;
1760      break;
1761    case 16:
1762      Sub = Hexagon::subreg_loreg;
1763      Low = false;
1764      break;
1765    case 32:
1766      Sub = Hexagon::subreg_hireg;
1767      Low = true;
1768      break;
1769    case 48:
1770      Sub = Hexagon::subreg_hireg;
1771      Low = false;
1772      break;
1773    default:
1774      return false;
1775  }
1776
1777  RH.Reg = Reg;
1778  RH.Sub = Sub;
1779  RH.Low = Low;
1780  // If the subregister is not valid with the register, set it to 0.
1781  if (!HBS::getFinalVRegClass(RH, MRI))
1782    RH.Sub = 0;
1783
1784  return true;
1785}
1786
1787
1788// Check if RC matches the pattern of a S2_packhl. If so, return true and
1789// set the inputs Rs and Rt.
1790bool BitSimplification::matchPackhl(unsigned SelfR,
1791      const BitTracker::RegisterCell &RC, BitTracker::RegisterRef &Rs,
1792      BitTracker::RegisterRef &Rt) {
1793  RegHalf L1, H1, L2, H2;
1794
1795  if (!matchHalf(SelfR, RC, 0, L2)  || !matchHalf(SelfR, RC, 16, L1))
1796    return false;
1797  if (!matchHalf(SelfR, RC, 32, H2) || !matchHalf(SelfR, RC, 48, H1))
1798    return false;
1799
1800  // Rs = H1.L1, Rt = H2.L2
1801  if (H1.Reg != L1.Reg || H1.Sub != L1.Sub || H1.Low || !L1.Low)
1802    return false;
1803  if (H2.Reg != L2.Reg || H2.Sub != L2.Sub || H2.Low || !L2.Low)
1804    return false;
1805
1806  Rs = H1;
1807  Rt = H2;
1808  return true;
1809}
1810
1811
1812unsigned BitSimplification::getCombineOpcode(bool HLow, bool LLow) {
1813  return HLow ? LLow ? Hexagon::A2_combine_ll
1814                     : Hexagon::A2_combine_lh
1815              : LLow ? Hexagon::A2_combine_hl
1816                     : Hexagon::A2_combine_hh;
1817}
1818
1819
1820// If MI stores the upper halfword of a register (potentially obtained via
1821// shifts or extracts), replace it with a storerf instruction. This could
1822// cause the "extraction" code to become dead.
1823bool BitSimplification::genStoreUpperHalf(MachineInstr *MI) {
1824  unsigned Opc = MI->getOpcode();
1825  if (Opc != Hexagon::S2_storerh_io)
1826    return false;
1827
1828  MachineOperand &ValOp = MI->getOperand(2);
1829  BitTracker::RegisterRef RS = ValOp;
1830  if (!BT.has(RS.Reg))
1831    return false;
1832  const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
1833  RegHalf H;
1834  if (!matchHalf(0, RC, 0, H))
1835    return false;
1836  if (H.Low)
1837    return false;
1838  MI->setDesc(HII.get(Hexagon::S2_storerf_io));
1839  ValOp.setReg(H.Reg);
1840  ValOp.setSubReg(H.Sub);
1841  return true;
1842}
1843
1844
1845// If MI stores a value known at compile-time, and the value is within a range
1846// that avoids using constant-extenders, replace it with a store-immediate.
1847bool BitSimplification::genStoreImmediate(MachineInstr *MI) {
1848  unsigned Opc = MI->getOpcode();
1849  unsigned Align = 0;
1850  switch (Opc) {
1851    case Hexagon::S2_storeri_io:
1852      Align++;
1853    case Hexagon::S2_storerh_io:
1854      Align++;
1855    case Hexagon::S2_storerb_io:
1856      break;
1857    default:
1858      return false;
1859  }
1860
1861  // Avoid stores to frame-indices (due to an unknown offset).
1862  if (!MI->getOperand(0).isReg())
1863    return false;
1864  MachineOperand &OffOp = MI->getOperand(1);
1865  if (!OffOp.isImm())
1866    return false;
1867
1868  int64_t Off = OffOp.getImm();
1869  // Offset is u6:a. Sadly, there is no isShiftedUInt(n,x).
1870  if (!isUIntN(6+Align, Off) || (Off & ((1<<Align)-1)))
1871    return false;
1872  // Source register:
1873  BitTracker::RegisterRef RS = MI->getOperand(2);
1874  if (!BT.has(RS.Reg))
1875    return false;
1876  const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
1877  uint64_t U;
1878  if (!HBS::getConst(RC, 0, RC.width(), U))
1879    return false;
1880
1881  // Only consider 8-bit values to avoid constant-extenders.
1882  int V;
1883  switch (Opc) {
1884    case Hexagon::S2_storerb_io:
1885      V = int8_t(U);
1886      break;
1887    case Hexagon::S2_storerh_io:
1888      V = int16_t(U);
1889      break;
1890    case Hexagon::S2_storeri_io:
1891      V = int32_t(U);
1892      break;
1893  }
1894  if (!isInt<8>(V))
1895    return false;
1896
1897  MI->RemoveOperand(2);
1898  switch (Opc) {
1899    case Hexagon::S2_storerb_io:
1900      MI->setDesc(HII.get(Hexagon::S4_storeirb_io));
1901      break;
1902    case Hexagon::S2_storerh_io:
1903      MI->setDesc(HII.get(Hexagon::S4_storeirh_io));
1904      break;
1905    case Hexagon::S2_storeri_io:
1906      MI->setDesc(HII.get(Hexagon::S4_storeiri_io));
1907      break;
1908  }
1909  MI->addOperand(MachineOperand::CreateImm(V));
1910  return true;
1911}
1912
1913
1914// If MI is equivalent o S2_packhl, generate the S2_packhl. MI could be the
1915// last instruction in a sequence that results in something equivalent to
1916// the pack-halfwords. The intent is to cause the entire sequence to become
1917// dead.
1918bool BitSimplification::genPackhl(MachineInstr *MI,
1919      BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
1920  unsigned Opc = MI->getOpcode();
1921  if (Opc == Hexagon::S2_packhl)
1922    return false;
1923  BitTracker::RegisterRef Rs, Rt;
1924  if (!matchPackhl(RD.Reg, RC, Rs, Rt))
1925    return false;
1926
1927  MachineBasicBlock &B = *MI->getParent();
1928  unsigned NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
1929  DebugLoc DL = MI->getDebugLoc();
1930  auto At = MI->isPHI() ? B.getFirstNonPHI()
1931                        : MachineBasicBlock::iterator(MI);
1932  BuildMI(B, At, DL, HII.get(Hexagon::S2_packhl), NewR)
1933      .addReg(Rs.Reg, 0, Rs.Sub)
1934      .addReg(Rt.Reg, 0, Rt.Sub);
1935  HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1936  BT.put(BitTracker::RegisterRef(NewR), RC);
1937  return true;
1938}
1939
1940
1941// If MI produces halfword of the input in the low half of the output,
1942// replace it with zero-extend or extractu.
1943bool BitSimplification::genExtractHalf(MachineInstr *MI,
1944      BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
1945  RegHalf L;
1946  // Check for halfword in low 16 bits, zeros elsewhere.
1947  if (!matchHalf(RD.Reg, RC, 0, L) || !HBS::isZero(RC, 16, 16))
1948    return false;
1949
1950  unsigned Opc = MI->getOpcode();
1951  MachineBasicBlock &B = *MI->getParent();
1952  DebugLoc DL = MI->getDebugLoc();
1953
1954  // Prefer zxth, since zxth can go in any slot, while extractu only in
1955  // slots 2 and 3.
1956  unsigned NewR = 0;
1957  auto At = MI->isPHI() ? B.getFirstNonPHI()
1958                        : MachineBasicBlock::iterator(MI);
1959  if (L.Low && Opc != Hexagon::A2_zxth) {
1960    NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1961    BuildMI(B, At, DL, HII.get(Hexagon::A2_zxth), NewR)
1962        .addReg(L.Reg, 0, L.Sub);
1963  } else if (!L.Low && Opc != Hexagon::S2_extractu) {
1964    NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1965    BuildMI(B, MI, DL, HII.get(Hexagon::S2_extractu), NewR)
1966        .addReg(L.Reg, 0, L.Sub)
1967        .addImm(16)
1968        .addImm(16);
1969  }
1970  if (NewR == 0)
1971    return false;
1972  HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1973  BT.put(BitTracker::RegisterRef(NewR), RC);
1974  return true;
1975}
1976
1977
1978// If MI is equivalent to a combine(.L/.H, .L/.H) replace with with the
1979// combine.
1980bool BitSimplification::genCombineHalf(MachineInstr *MI,
1981      BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
1982  RegHalf L, H;
1983  // Check for combine h/l
1984  if (!matchHalf(RD.Reg, RC, 0, L) || !matchHalf(RD.Reg, RC, 16, H))
1985    return false;
1986  // Do nothing if this is just a reg copy.
1987  if (L.Reg == H.Reg && L.Sub == H.Sub && !H.Low && L.Low)
1988    return false;
1989
1990  unsigned Opc = MI->getOpcode();
1991  unsigned COpc = getCombineOpcode(H.Low, L.Low);
1992  if (COpc == Opc)
1993    return false;
1994
1995  MachineBasicBlock &B = *MI->getParent();
1996  DebugLoc DL = MI->getDebugLoc();
1997  unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1998  auto At = MI->isPHI() ? B.getFirstNonPHI()
1999                        : MachineBasicBlock::iterator(MI);
2000  BuildMI(B, At, DL, HII.get(COpc), NewR)
2001      .addReg(H.Reg, 0, H.Sub)
2002      .addReg(L.Reg, 0, L.Sub);
2003  HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2004  BT.put(BitTracker::RegisterRef(NewR), RC);
2005  return true;
2006}
2007
2008
2009// If MI resets high bits of a register and keeps the lower ones, replace it
2010// with zero-extend byte/half, and-immediate, or extractu, as appropriate.
2011bool BitSimplification::genExtractLow(MachineInstr *MI,
2012      BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2013  unsigned Opc = MI->getOpcode();
2014  switch (Opc) {
2015    case Hexagon::A2_zxtb:
2016    case Hexagon::A2_zxth:
2017    case Hexagon::S2_extractu:
2018      return false;
2019  }
2020  if (Opc == Hexagon::A2_andir && MI->getOperand(2).isImm()) {
2021    int32_t Imm = MI->getOperand(2).getImm();
2022    if (isInt<10>(Imm))
2023      return false;
2024  }
2025
2026  if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
2027    return false;
2028  unsigned W = RC.width();
2029  while (W > 0 && RC[W-1].is(0))
2030    W--;
2031  if (W == 0 || W == RC.width())
2032    return false;
2033  unsigned NewOpc = (W == 8)  ? Hexagon::A2_zxtb
2034                  : (W == 16) ? Hexagon::A2_zxth
2035                  : (W < 10)  ? Hexagon::A2_andir
2036                  : Hexagon::S2_extractu;
2037  MachineBasicBlock &B = *MI->getParent();
2038  DebugLoc DL = MI->getDebugLoc();
2039
2040  for (auto &Op : MI->uses()) {
2041    if (!Op.isReg())
2042      continue;
2043    BitTracker::RegisterRef RS = Op;
2044    if (!BT.has(RS.Reg))
2045      continue;
2046    const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
2047    unsigned BN, BW;
2048    if (!HBS::getSubregMask(RS, BN, BW, MRI))
2049      continue;
2050    if (BW < W || !HBS::isEqual(RC, 0, SC, BN, W))
2051      continue;
2052
2053    unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2054    auto At = MI->isPHI() ? B.getFirstNonPHI()
2055                          : MachineBasicBlock::iterator(MI);
2056    auto MIB = BuildMI(B, At, DL, HII.get(NewOpc), NewR)
2057                  .addReg(RS.Reg, 0, RS.Sub);
2058    if (NewOpc == Hexagon::A2_andir)
2059      MIB.addImm((1 << W) - 1);
2060    else if (NewOpc == Hexagon::S2_extractu)
2061      MIB.addImm(W).addImm(0);
2062    HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2063    BT.put(BitTracker::RegisterRef(NewR), RC);
2064    return true;
2065  }
2066  return false;
2067}
2068
2069
2070// Check for tstbit simplification opportunity, where the bit being checked
2071// can be tracked back to another register. For example:
2072//   vreg2 = S2_lsr_i_r  vreg1, 5
2073//   vreg3 = S2_tstbit_i vreg2, 0
2074// =>
2075//   vreg3 = S2_tstbit_i vreg1, 5
2076bool BitSimplification::simplifyTstbit(MachineInstr *MI,
2077      BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2078  unsigned Opc = MI->getOpcode();
2079  if (Opc != Hexagon::S2_tstbit_i)
2080    return false;
2081
2082  unsigned BN = MI->getOperand(2).getImm();
2083  BitTracker::RegisterRef RS = MI->getOperand(1);
2084  unsigned F, W;
2085  DebugLoc DL = MI->getDebugLoc();
2086  if (!BT.has(RS.Reg) || !HBS::getSubregMask(RS, F, W, MRI))
2087    return false;
2088  MachineBasicBlock &B = *MI->getParent();
2089  auto At = MI->isPHI() ? B.getFirstNonPHI()
2090                        : MachineBasicBlock::iterator(MI);
2091
2092  const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
2093  const BitTracker::BitValue &V = SC[F+BN];
2094  if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != RS.Reg) {
2095    const TargetRegisterClass *TC = MRI.getRegClass(V.RefI.Reg);
2096    // Need to map V.RefI.Reg to a 32-bit register, i.e. if it is
2097    // a double register, need to use a subregister and adjust bit
2098    // number.
2099    unsigned P = UINT_MAX;
2100    BitTracker::RegisterRef RR(V.RefI.Reg, 0);
2101    if (TC == &Hexagon::DoubleRegsRegClass) {
2102      P = V.RefI.Pos;
2103      RR.Sub = Hexagon::subreg_loreg;
2104      if (P >= 32) {
2105        P -= 32;
2106        RR.Sub = Hexagon::subreg_hireg;
2107      }
2108    } else if (TC == &Hexagon::IntRegsRegClass) {
2109      P = V.RefI.Pos;
2110    }
2111    if (P != UINT_MAX) {
2112      unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
2113      BuildMI(B, At, DL, HII.get(Hexagon::S2_tstbit_i), NewR)
2114          .addReg(RR.Reg, 0, RR.Sub)
2115          .addImm(P);
2116      HBS::replaceReg(RD.Reg, NewR, MRI);
2117      BT.put(NewR, RC);
2118      return true;
2119    }
2120  } else if (V.is(0) || V.is(1)) {
2121    unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
2122    unsigned NewOpc = V.is(0) ? Hexagon::TFR_PdFalse : Hexagon::TFR_PdTrue;
2123    BuildMI(B, At, DL, HII.get(NewOpc), NewR);
2124    HBS::replaceReg(RD.Reg, NewR, MRI);
2125    return true;
2126  }
2127
2128  return false;
2129}
2130
2131
2132bool BitSimplification::processBlock(MachineBasicBlock &B,
2133      const RegisterSet &AVs) {
2134  bool Changed = false;
2135  RegisterSet AVB = AVs;
2136  RegisterSet Defs;
2137
2138  for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Defs)) {
2139    MachineInstr *MI = &*I;
2140    Defs.clear();
2141    HBS::getInstrDefs(*MI, Defs);
2142
2143    unsigned Opc = MI->getOpcode();
2144    if (Opc == TargetOpcode::COPY || Opc == TargetOpcode::REG_SEQUENCE)
2145      continue;
2146
2147    if (MI->mayStore()) {
2148      bool T = genStoreUpperHalf(MI);
2149      T = T || genStoreImmediate(MI);
2150      Changed |= T;
2151      continue;
2152    }
2153
2154    if (Defs.count() != 1)
2155      continue;
2156    const MachineOperand &Op0 = MI->getOperand(0);
2157    if (!Op0.isReg() || !Op0.isDef())
2158      continue;
2159    BitTracker::RegisterRef RD = Op0;
2160    if (!BT.has(RD.Reg))
2161      continue;
2162    const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2163    const BitTracker::RegisterCell &RC = BT.lookup(RD.Reg);
2164
2165    if (FRC->getID() == Hexagon::DoubleRegsRegClassID) {
2166      bool T = genPackhl(MI, RD, RC);
2167      Changed |= T;
2168      continue;
2169    }
2170
2171    if (FRC->getID() == Hexagon::IntRegsRegClassID) {
2172      bool T = genExtractHalf(MI, RD, RC);
2173      T = T || genCombineHalf(MI, RD, RC);
2174      T = T || genExtractLow(MI, RD, RC);
2175      Changed |= T;
2176      continue;
2177    }
2178
2179    if (FRC->getID() == Hexagon::PredRegsRegClassID) {
2180      bool T = simplifyTstbit(MI, RD, RC);
2181      Changed |= T;
2182      continue;
2183    }
2184  }
2185  return Changed;
2186}
2187
2188
2189bool HexagonBitSimplify::runOnMachineFunction(MachineFunction &MF) {
2190  auto &HST = MF.getSubtarget<HexagonSubtarget>();
2191  auto &HRI = *HST.getRegisterInfo();
2192  auto &HII = *HST.getInstrInfo();
2193
2194  MDT = &getAnalysis<MachineDominatorTree>();
2195  MachineRegisterInfo &MRI = MF.getRegInfo();
2196  bool Changed;
2197
2198  Changed = DeadCodeElimination(MF, *MDT).run();
2199
2200  const HexagonEvaluator HE(HRI, MRI, HII, MF);
2201  BitTracker BT(HE, MF);
2202  DEBUG(BT.trace(true));
2203  BT.run();
2204
2205  MachineBasicBlock &Entry = MF.front();
2206
2207  RegisterSet AIG;  // Available registers for IG.
2208  ConstGeneration ImmG(BT, HII, MRI);
2209  Changed |= visitBlock(Entry, ImmG, AIG);
2210
2211  RegisterSet ARE;  // Available registers for RIE.
2212  RedundantInstrElimination RIE(BT, HII, MRI);
2213  Changed |= visitBlock(Entry, RIE, ARE);
2214
2215  RegisterSet ACG;  // Available registers for CG.
2216  CopyGeneration CopyG(BT, HII, MRI);
2217  Changed |= visitBlock(Entry, CopyG, ACG);
2218
2219  RegisterSet ACP;  // Available registers for CP.
2220  CopyPropagation CopyP(HRI, MRI);
2221  Changed |= visitBlock(Entry, CopyP, ACP);
2222
2223  Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2224
2225  BT.run();
2226  RegisterSet ABS;  // Available registers for BS.
2227  BitSimplification BitS(BT, HII, MRI);
2228  Changed |= visitBlock(Entry, BitS, ABS);
2229
2230  Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2231
2232  if (Changed) {
2233    for (auto &B : MF)
2234      for (auto &I : B)
2235        I.clearKillInfo();
2236    DeadCodeElimination(MF, *MDT).run();
2237  }
2238  return Changed;
2239}
2240
2241
2242// Recognize loops where the code at the end of the loop matches the code
2243// before the entry of the loop, and the matching code is such that is can
2244// be simplified. This pass relies on the bit simplification above and only
2245// prepares code in a way that can be handled by the bit simplifcation.
2246//
2247// This is the motivating testcase (and explanation):
2248//
2249// {
2250//   loop0(.LBB0_2, r1)      // %for.body.preheader
2251//   r5:4 = memd(r0++#8)
2252// }
2253// {
2254//   r3 = lsr(r4, #16)
2255//   r7:6 = combine(r5, r5)
2256// }
2257// {
2258//   r3 = insert(r5, #16, #16)
2259//   r7:6 = vlsrw(r7:6, #16)
2260// }
2261// .LBB0_2:
2262// {
2263//   memh(r2+#4) = r5
2264//   memh(r2+#6) = r6            # R6 is really R5.H
2265// }
2266// {
2267//   r2 = add(r2, #8)
2268//   memh(r2+#0) = r4
2269//   memh(r2+#2) = r3            # R3 is really R4.H
2270// }
2271// {
2272//   r5:4 = memd(r0++#8)
2273// }
2274// {                             # "Shuffling" code that sets up R3 and R6
2275//   r3 = lsr(r4, #16)           # so that their halves can be stored in the
2276//   r7:6 = combine(r5, r5)      # next iteration. This could be folded into
2277// }                             # the stores if the code was at the beginning
2278// {                             # of the loop iteration. Since the same code
2279//   r3 = insert(r5, #16, #16)   # precedes the loop, it can actually be moved
2280//   r7:6 = vlsrw(r7:6, #16)     # there.
2281// }:endloop0
2282//
2283//
2284// The outcome:
2285//
2286// {
2287//   loop0(.LBB0_2, r1)
2288//   r5:4 = memd(r0++#8)
2289// }
2290// .LBB0_2:
2291// {
2292//   memh(r2+#4) = r5
2293//   memh(r2+#6) = r5.h
2294// }
2295// {
2296//   r2 = add(r2, #8)
2297//   memh(r2+#0) = r4
2298//   memh(r2+#2) = r4.h
2299// }
2300// {
2301//   r5:4 = memd(r0++#8)
2302// }:endloop0
2303
2304namespace llvm {
2305  FunctionPass *createHexagonLoopRescheduling();
2306  void initializeHexagonLoopReschedulingPass(PassRegistry&);
2307}
2308
2309namespace {
2310  class HexagonLoopRescheduling : public MachineFunctionPass {
2311  public:
2312    static char ID;
2313    HexagonLoopRescheduling() : MachineFunctionPass(ID),
2314        HII(0), HRI(0), MRI(0), BTP(0) {
2315      initializeHexagonLoopReschedulingPass(*PassRegistry::getPassRegistry());
2316    }
2317
2318    bool runOnMachineFunction(MachineFunction &MF) override;
2319
2320  private:
2321    const HexagonInstrInfo *HII;
2322    const HexagonRegisterInfo *HRI;
2323    MachineRegisterInfo *MRI;
2324    BitTracker *BTP;
2325
2326    struct LoopCand {
2327      LoopCand(MachineBasicBlock *lb, MachineBasicBlock *pb,
2328            MachineBasicBlock *eb) : LB(lb), PB(pb), EB(eb) {}
2329      MachineBasicBlock *LB, *PB, *EB;
2330    };
2331    typedef std::vector<MachineInstr*> InstrList;
2332    struct InstrGroup {
2333      BitTracker::RegisterRef Inp, Out;
2334      InstrList Ins;
2335    };
2336    struct PhiInfo {
2337      PhiInfo(MachineInstr &P, MachineBasicBlock &B);
2338      unsigned DefR;
2339      BitTracker::RegisterRef LR, PR;
2340      MachineBasicBlock *LB, *PB;
2341    };
2342
2343    static unsigned getDefReg(const MachineInstr *MI);
2344    bool isConst(unsigned Reg) const;
2345    bool isBitShuffle(const MachineInstr *MI, unsigned DefR) const;
2346    bool isStoreInput(const MachineInstr *MI, unsigned DefR) const;
2347    bool isShuffleOf(unsigned OutR, unsigned InpR) const;
2348    bool isSameShuffle(unsigned OutR1, unsigned InpR1, unsigned OutR2,
2349        unsigned &InpR2) const;
2350    void moveGroup(InstrGroup &G, MachineBasicBlock &LB, MachineBasicBlock &PB,
2351        MachineBasicBlock::iterator At, unsigned OldPhiR, unsigned NewPredR);
2352    bool processLoop(LoopCand &C);
2353  };
2354}
2355
2356char HexagonLoopRescheduling::ID = 0;
2357
2358INITIALIZE_PASS(HexagonLoopRescheduling, "hexagon-loop-resched",
2359  "Hexagon Loop Rescheduling", false, false)
2360
2361
2362HexagonLoopRescheduling::PhiInfo::PhiInfo(MachineInstr &P,
2363      MachineBasicBlock &B) {
2364  DefR = HexagonLoopRescheduling::getDefReg(&P);
2365  LB = &B;
2366  PB = nullptr;
2367  for (unsigned i = 1, n = P.getNumOperands(); i < n; i += 2) {
2368    const MachineOperand &OpB = P.getOperand(i+1);
2369    if (OpB.getMBB() == &B) {
2370      LR = P.getOperand(i);
2371      continue;
2372    }
2373    PB = OpB.getMBB();
2374    PR = P.getOperand(i);
2375  }
2376}
2377
2378
2379unsigned HexagonLoopRescheduling::getDefReg(const MachineInstr *MI) {
2380  RegisterSet Defs;
2381  HBS::getInstrDefs(*MI, Defs);
2382  if (Defs.count() != 1)
2383    return 0;
2384  return Defs.find_first();
2385}
2386
2387
2388bool HexagonLoopRescheduling::isConst(unsigned Reg) const {
2389  if (!BTP->has(Reg))
2390    return false;
2391  const BitTracker::RegisterCell &RC = BTP->lookup(Reg);
2392  for (unsigned i = 0, w = RC.width(); i < w; ++i) {
2393    const BitTracker::BitValue &V = RC[i];
2394    if (!V.is(0) && !V.is(1))
2395      return false;
2396  }
2397  return true;
2398}
2399
2400
2401bool HexagonLoopRescheduling::isBitShuffle(const MachineInstr *MI,
2402      unsigned DefR) const {
2403  unsigned Opc = MI->getOpcode();
2404  switch (Opc) {
2405    case TargetOpcode::COPY:
2406    case Hexagon::S2_lsr_i_r:
2407    case Hexagon::S2_asr_i_r:
2408    case Hexagon::S2_asl_i_r:
2409    case Hexagon::S2_lsr_i_p:
2410    case Hexagon::S2_asr_i_p:
2411    case Hexagon::S2_asl_i_p:
2412    case Hexagon::S2_insert:
2413    case Hexagon::A2_or:
2414    case Hexagon::A2_orp:
2415    case Hexagon::A2_and:
2416    case Hexagon::A2_andp:
2417    case Hexagon::A2_combinew:
2418    case Hexagon::A4_combineri:
2419    case Hexagon::A4_combineir:
2420    case Hexagon::A2_combineii:
2421    case Hexagon::A4_combineii:
2422    case Hexagon::A2_combine_ll:
2423    case Hexagon::A2_combine_lh:
2424    case Hexagon::A2_combine_hl:
2425    case Hexagon::A2_combine_hh:
2426      return true;
2427  }
2428  return false;
2429}
2430
2431
2432bool HexagonLoopRescheduling::isStoreInput(const MachineInstr *MI,
2433      unsigned InpR) const {
2434  for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
2435    const MachineOperand &Op = MI->getOperand(i);
2436    if (!Op.isReg())
2437      continue;
2438    if (Op.getReg() == InpR)
2439      return i == n-1;
2440  }
2441  return false;
2442}
2443
2444
2445bool HexagonLoopRescheduling::isShuffleOf(unsigned OutR, unsigned InpR) const {
2446  if (!BTP->has(OutR) || !BTP->has(InpR))
2447    return false;
2448  const BitTracker::RegisterCell &OutC = BTP->lookup(OutR);
2449  for (unsigned i = 0, w = OutC.width(); i < w; ++i) {
2450    const BitTracker::BitValue &V = OutC[i];
2451    if (V.Type != BitTracker::BitValue::Ref)
2452      continue;
2453    if (V.RefI.Reg != InpR)
2454      return false;
2455  }
2456  return true;
2457}
2458
2459
2460bool HexagonLoopRescheduling::isSameShuffle(unsigned OutR1, unsigned InpR1,
2461      unsigned OutR2, unsigned &InpR2) const {
2462  if (!BTP->has(OutR1) || !BTP->has(InpR1) || !BTP->has(OutR2))
2463    return false;
2464  const BitTracker::RegisterCell &OutC1 = BTP->lookup(OutR1);
2465  const BitTracker::RegisterCell &OutC2 = BTP->lookup(OutR2);
2466  unsigned W = OutC1.width();
2467  unsigned MatchR = 0;
2468  if (W != OutC2.width())
2469    return false;
2470  for (unsigned i = 0; i < W; ++i) {
2471    const BitTracker::BitValue &V1 = OutC1[i], &V2 = OutC2[i];
2472    if (V1.Type != V2.Type || V1.Type == BitTracker::BitValue::One)
2473      return false;
2474    if (V1.Type != BitTracker::BitValue::Ref)
2475      continue;
2476    if (V1.RefI.Pos != V2.RefI.Pos)
2477      return false;
2478    if (V1.RefI.Reg != InpR1)
2479      return false;
2480    if (V2.RefI.Reg == 0 || V2.RefI.Reg == OutR2)
2481      return false;
2482    if (!MatchR)
2483      MatchR = V2.RefI.Reg;
2484    else if (V2.RefI.Reg != MatchR)
2485      return false;
2486  }
2487  InpR2 = MatchR;
2488  return true;
2489}
2490
2491
2492void HexagonLoopRescheduling::moveGroup(InstrGroup &G, MachineBasicBlock &LB,
2493      MachineBasicBlock &PB, MachineBasicBlock::iterator At, unsigned OldPhiR,
2494      unsigned NewPredR) {
2495  DenseMap<unsigned,unsigned> RegMap;
2496
2497  const TargetRegisterClass *PhiRC = MRI->getRegClass(NewPredR);
2498  unsigned PhiR = MRI->createVirtualRegister(PhiRC);
2499  BuildMI(LB, At, At->getDebugLoc(), HII->get(TargetOpcode::PHI), PhiR)
2500    .addReg(NewPredR)
2501    .addMBB(&PB)
2502    .addReg(G.Inp.Reg)
2503    .addMBB(&LB);
2504  RegMap.insert(std::make_pair(G.Inp.Reg, PhiR));
2505
2506  for (unsigned i = G.Ins.size(); i > 0; --i) {
2507    const MachineInstr *SI = G.Ins[i-1];
2508    unsigned DR = getDefReg(SI);
2509    const TargetRegisterClass *RC = MRI->getRegClass(DR);
2510    unsigned NewDR = MRI->createVirtualRegister(RC);
2511    DebugLoc DL = SI->getDebugLoc();
2512
2513    auto MIB = BuildMI(LB, At, DL, HII->get(SI->getOpcode()), NewDR);
2514    for (unsigned j = 0, m = SI->getNumOperands(); j < m; ++j) {
2515      const MachineOperand &Op = SI->getOperand(j);
2516      if (!Op.isReg()) {
2517        MIB.addOperand(Op);
2518        continue;
2519      }
2520      if (!Op.isUse())
2521        continue;
2522      unsigned UseR = RegMap[Op.getReg()];
2523      MIB.addReg(UseR, 0, Op.getSubReg());
2524    }
2525    RegMap.insert(std::make_pair(DR, NewDR));
2526  }
2527
2528  HBS::replaceReg(OldPhiR, RegMap[G.Out.Reg], *MRI);
2529}
2530
2531
2532bool HexagonLoopRescheduling::processLoop(LoopCand &C) {
2533  DEBUG(dbgs() << "Processing loop in BB#" << C.LB->getNumber() << "\n");
2534  std::vector<PhiInfo> Phis;
2535  for (auto &I : *C.LB) {
2536    if (!I.isPHI())
2537      break;
2538    unsigned PR = getDefReg(&I);
2539    if (isConst(PR))
2540      continue;
2541    bool BadUse = false, GoodUse = false;
2542    for (auto UI = MRI->use_begin(PR), UE = MRI->use_end(); UI != UE; ++UI) {
2543      MachineInstr *UseI = UI->getParent();
2544      if (UseI->getParent() != C.LB) {
2545        BadUse = true;
2546        break;
2547      }
2548      if (isBitShuffle(UseI, PR) || isStoreInput(UseI, PR))
2549        GoodUse = true;
2550    }
2551    if (BadUse || !GoodUse)
2552      continue;
2553
2554    Phis.push_back(PhiInfo(I, *C.LB));
2555  }
2556
2557  DEBUG({
2558    dbgs() << "Phis: {";
2559    for (auto &I : Phis) {
2560      dbgs() << ' ' << PrintReg(I.DefR, HRI) << "=phi("
2561             << PrintReg(I.PR.Reg, HRI, I.PR.Sub) << ":b" << I.PB->getNumber()
2562             << ',' << PrintReg(I.LR.Reg, HRI, I.LR.Sub) << ":b"
2563             << I.LB->getNumber() << ')';
2564    }
2565    dbgs() << " }\n";
2566  });
2567
2568  if (Phis.empty())
2569    return false;
2570
2571  bool Changed = false;
2572  InstrList ShufIns;
2573
2574  // Go backwards in the block: for each bit shuffling instruction, check
2575  // if that instruction could potentially be moved to the front of the loop:
2576  // the output of the loop cannot be used in a non-shuffling instruction
2577  // in this loop.
2578  for (auto I = C.LB->rbegin(), E = C.LB->rend(); I != E; ++I) {
2579    if (I->isTerminator())
2580      continue;
2581    if (I->isPHI())
2582      break;
2583
2584    RegisterSet Defs;
2585    HBS::getInstrDefs(*I, Defs);
2586    if (Defs.count() != 1)
2587      continue;
2588    unsigned DefR = Defs.find_first();
2589    if (!TargetRegisterInfo::isVirtualRegister(DefR))
2590      continue;
2591    if (!isBitShuffle(&*I, DefR))
2592      continue;
2593
2594    bool BadUse = false;
2595    for (auto UI = MRI->use_begin(DefR), UE = MRI->use_end(); UI != UE; ++UI) {
2596      MachineInstr *UseI = UI->getParent();
2597      if (UseI->getParent() == C.LB) {
2598        if (UseI->isPHI()) {
2599          // If the use is in a phi node in this loop, then it should be
2600          // the value corresponding to the back edge.
2601          unsigned Idx = UI.getOperandNo();
2602          if (UseI->getOperand(Idx+1).getMBB() != C.LB)
2603            BadUse = true;
2604        } else {
2605          auto F = std::find(ShufIns.begin(), ShufIns.end(), UseI);
2606          if (F == ShufIns.end())
2607            BadUse = true;
2608        }
2609      } else {
2610        // There is a use outside of the loop, but there is no epilog block
2611        // suitable for a copy-out.
2612        if (C.EB == nullptr)
2613          BadUse = true;
2614      }
2615      if (BadUse)
2616        break;
2617    }
2618
2619    if (BadUse)
2620      continue;
2621    ShufIns.push_back(&*I);
2622  }
2623
2624  // Partition the list of shuffling instructions into instruction groups,
2625  // where each group has to be moved as a whole (i.e. a group is a chain of
2626  // dependent instructions). A group produces a single live output register,
2627  // which is meant to be the input of the loop phi node (although this is
2628  // not checked here yet). It also uses a single register as its input,
2629  // which is some value produced in the loop body. After moving the group
2630  // to the beginning of the loop, that input register would need to be
2631  // the loop-carried register (through a phi node) instead of the (currently
2632  // loop-carried) output register.
2633  typedef std::vector<InstrGroup> InstrGroupList;
2634  InstrGroupList Groups;
2635
2636  for (unsigned i = 0, n = ShufIns.size(); i < n; ++i) {
2637    MachineInstr *SI = ShufIns[i];
2638    if (SI == nullptr)
2639      continue;
2640
2641    InstrGroup G;
2642    G.Ins.push_back(SI);
2643    G.Out.Reg = getDefReg(SI);
2644    RegisterSet Inputs;
2645    HBS::getInstrUses(*SI, Inputs);
2646
2647    for (unsigned j = i+1; j < n; ++j) {
2648      MachineInstr *MI = ShufIns[j];
2649      if (MI == nullptr)
2650        continue;
2651      RegisterSet Defs;
2652      HBS::getInstrDefs(*MI, Defs);
2653      // If this instruction does not define any pending inputs, skip it.
2654      if (!Defs.intersects(Inputs))
2655        continue;
2656      // Otherwise, add it to the current group and remove the inputs that
2657      // are defined by MI.
2658      G.Ins.push_back(MI);
2659      Inputs.remove(Defs);
2660      // Then add all registers used by MI.
2661      HBS::getInstrUses(*MI, Inputs);
2662      ShufIns[j] = nullptr;
2663    }
2664
2665    // Only add a group if it requires at most one register.
2666    if (Inputs.count() > 1)
2667      continue;
2668    auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
2669      return G.Out.Reg == P.LR.Reg;
2670    };
2671    if (std::find_if(Phis.begin(), Phis.end(), LoopInpEq) == Phis.end())
2672      continue;
2673
2674    G.Inp.Reg = Inputs.find_first();
2675    Groups.push_back(G);
2676  }
2677
2678  DEBUG({
2679    for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
2680      InstrGroup &G = Groups[i];
2681      dbgs() << "Group[" << i << "] inp: "
2682             << PrintReg(G.Inp.Reg, HRI, G.Inp.Sub)
2683             << "  out: " << PrintReg(G.Out.Reg, HRI, G.Out.Sub) << "\n";
2684      for (unsigned j = 0, m = G.Ins.size(); j < m; ++j)
2685        dbgs() << "  " << *G.Ins[j];
2686    }
2687  });
2688
2689  for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
2690    InstrGroup &G = Groups[i];
2691    if (!isShuffleOf(G.Out.Reg, G.Inp.Reg))
2692      continue;
2693    auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
2694      return G.Out.Reg == P.LR.Reg;
2695    };
2696    auto F = std::find_if(Phis.begin(), Phis.end(), LoopInpEq);
2697    if (F == Phis.end())
2698      continue;
2699    unsigned PredR = 0;
2700    if (!isSameShuffle(G.Out.Reg, G.Inp.Reg, F->PR.Reg, PredR)) {
2701      const MachineInstr *DefPredR = MRI->getVRegDef(F->PR.Reg);
2702      unsigned Opc = DefPredR->getOpcode();
2703      if (Opc != Hexagon::A2_tfrsi && Opc != Hexagon::A2_tfrpi)
2704        continue;
2705      if (!DefPredR->getOperand(1).isImm())
2706        continue;
2707      if (DefPredR->getOperand(1).getImm() != 0)
2708        continue;
2709      const TargetRegisterClass *RC = MRI->getRegClass(G.Inp.Reg);
2710      if (RC != MRI->getRegClass(F->PR.Reg)) {
2711        PredR = MRI->createVirtualRegister(RC);
2712        unsigned TfrI = (RC == &Hexagon::IntRegsRegClass) ? Hexagon::A2_tfrsi
2713                                                          : Hexagon::A2_tfrpi;
2714        auto T = C.PB->getFirstTerminator();
2715        DebugLoc DL = (T != C.PB->end()) ? T->getDebugLoc() : DebugLoc();
2716        BuildMI(*C.PB, T, DL, HII->get(TfrI), PredR)
2717          .addImm(0);
2718      } else {
2719        PredR = F->PR.Reg;
2720      }
2721    }
2722    assert(MRI->getRegClass(PredR) == MRI->getRegClass(G.Inp.Reg));
2723    moveGroup(G, *F->LB, *F->PB, F->LB->getFirstNonPHI(), F->DefR, PredR);
2724    Changed = true;
2725  }
2726
2727  return Changed;
2728}
2729
2730
2731bool HexagonLoopRescheduling::runOnMachineFunction(MachineFunction &MF) {
2732  auto &HST = MF.getSubtarget<HexagonSubtarget>();
2733  HII = HST.getInstrInfo();
2734  HRI = HST.getRegisterInfo();
2735  MRI = &MF.getRegInfo();
2736  const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
2737  BitTracker BT(HE, MF);
2738  DEBUG(BT.trace(true));
2739  BT.run();
2740  BTP = &BT;
2741
2742  std::vector<LoopCand> Cand;
2743
2744  for (auto &B : MF) {
2745    if (B.pred_size() != 2 || B.succ_size() != 2)
2746      continue;
2747    MachineBasicBlock *PB = nullptr;
2748    bool IsLoop = false;
2749    for (auto PI = B.pred_begin(), PE = B.pred_end(); PI != PE; ++PI) {
2750      if (*PI != &B)
2751        PB = *PI;
2752      else
2753        IsLoop = true;
2754    }
2755    if (!IsLoop)
2756      continue;
2757
2758    MachineBasicBlock *EB = nullptr;
2759    for (auto SI = B.succ_begin(), SE = B.succ_end(); SI != SE; ++SI) {
2760      if (*SI == &B)
2761        continue;
2762      // Set EP to the epilog block, if it has only 1 predecessor (i.e. the
2763      // edge from B to EP is non-critical.
2764      if ((*SI)->pred_size() == 1)
2765        EB = *SI;
2766      break;
2767    }
2768
2769    Cand.push_back(LoopCand(&B, PB, EB));
2770  }
2771
2772  bool Changed = false;
2773  for (auto &C : Cand)
2774    Changed |= processLoop(C);
2775
2776  return Changed;
2777}
2778
2779//===----------------------------------------------------------------------===//
2780//                         Public Constructor Functions
2781//===----------------------------------------------------------------------===//
2782
2783FunctionPass *llvm::createHexagonLoopRescheduling() {
2784  return new HexagonLoopRescheduling();
2785}
2786
2787FunctionPass *llvm::createHexagonBitSimplify() {
2788  return new HexagonBitSimplify();
2789}
2790
2791