1286425Sdim//===--- BitTracker.h -----------------------------------------------------===//
2286425Sdim//
3286425Sdim//                     The LLVM Compiler Infrastructure
4286425Sdim//
5286425Sdim// This file is distributed under the University of Illinois Open Source
6286425Sdim// License. See LICENSE.TXT for details.
7286425Sdim//
8286425Sdim//===----------------------------------------------------------------------===//
9286425Sdim
10286425Sdim#ifndef BITTRACKER_H
11286425Sdim#define BITTRACKER_H
12286425Sdim
13286425Sdim#include "llvm/ADT/SetVector.h"
14286425Sdim#include "llvm/ADT/SmallVector.h"
15286425Sdim#include "llvm/CodeGen/MachineFunction.h"
16286425Sdim
17286425Sdim#include <map>
18286425Sdim#include <queue>
19286425Sdim#include <set>
20286425Sdim
21286425Sdimnamespace llvm {
22286425Sdim  class ConstantInt;
23286425Sdim  class MachineRegisterInfo;
24286425Sdim  class MachineBasicBlock;
25286425Sdim  class MachineInstr;
26286425Sdim  class MachineOperand;
27286425Sdim  class raw_ostream;
28286425Sdim
29286425Sdimstruct BitTracker {
30286425Sdim  struct BitRef;
31286425Sdim  struct RegisterRef;
32286425Sdim  struct BitValue;
33286425Sdim  struct BitMask;
34286425Sdim  struct RegisterCell;
35286425Sdim  struct MachineEvaluator;
36286425Sdim
37286425Sdim  typedef SetVector<const MachineBasicBlock *> BranchTargetList;
38286425Sdim
39296417Sdim  typedef std::map<unsigned, RegisterCell> CellMapType;
40286425Sdim
41286425Sdim  BitTracker(const MachineEvaluator &E, MachineFunction &F);
42286425Sdim  ~BitTracker();
43286425Sdim
44286425Sdim  void run();
45286425Sdim  void trace(bool On = false) { Trace = On; }
46286425Sdim  bool has(unsigned Reg) const;
47286425Sdim  const RegisterCell &lookup(unsigned Reg) const;
48286425Sdim  RegisterCell get(RegisterRef RR) const;
49286425Sdim  void put(RegisterRef RR, const RegisterCell &RC);
50286425Sdim  void subst(RegisterRef OldRR, RegisterRef NewRR);
51286425Sdim  bool reached(const MachineBasicBlock *B) const;
52286425Sdim
53286425Sdimprivate:
54286425Sdim  void visitPHI(const MachineInstr *PI);
55286425Sdim  void visitNonBranch(const MachineInstr *MI);
56286425Sdim  void visitBranchesFrom(const MachineInstr *BI);
57286425Sdim  void visitUsesOf(unsigned Reg);
58286425Sdim  void reset();
59286425Sdim
60286425Sdim  typedef std::pair<int,int> CFGEdge;
61286425Sdim  typedef std::set<CFGEdge> EdgeSetType;
62286425Sdim  typedef std::set<const MachineInstr *> InstrSetType;
63286425Sdim  typedef std::queue<CFGEdge> EdgeQueueType;
64286425Sdim
65286425Sdim  EdgeSetType EdgeExec;       // Executable flow graph edges.
66286425Sdim  InstrSetType InstrExec;     // Executable instructions.
67286425Sdim  EdgeQueueType FlowQ;        // Work queue of CFG edges.
68286425Sdim  bool Trace;                 // Enable tracing for debugging.
69286425Sdim
70286425Sdim  const MachineEvaluator &ME;
71286425Sdim  MachineFunction &MF;
72286425Sdim  MachineRegisterInfo &MRI;
73286425Sdim  CellMapType &Map;
74286425Sdim};
75286425Sdim
76286425Sdim
77286425Sdim// Abstraction of a reference to bit at position Pos from a register Reg.
78286425Sdimstruct BitTracker::BitRef {
79286425Sdim  BitRef(unsigned R = 0, uint16_t P = 0) : Reg(R), Pos(P) {}
80286425Sdim  bool operator== (const BitRef &BR) const {
81286425Sdim    // If Reg is 0, disregard Pos.
82286425Sdim    return Reg == BR.Reg && (Reg == 0 || Pos == BR.Pos);
83286425Sdim  }
84286425Sdim  unsigned Reg;
85286425Sdim  uint16_t Pos;
86286425Sdim};
87286425Sdim
88286425Sdim
89286425Sdim// Abstraction of a register reference in MachineOperand.  It contains the
90286425Sdim// register number and the subregister index.
91286425Sdimstruct BitTracker::RegisterRef {
92286425Sdim  RegisterRef(unsigned R = 0, unsigned S = 0)
93286425Sdim    : Reg(R), Sub(S) {}
94286425Sdim  RegisterRef(const MachineOperand &MO)
95286425Sdim      : Reg(MO.getReg()), Sub(MO.getSubReg()) {}
96286425Sdim  unsigned Reg, Sub;
97286425Sdim};
98286425Sdim
99286425Sdim
100286425Sdim// Value that a single bit can take.  This is outside of the context of
101286425Sdim// any register, it is more of an abstraction of the two-element set of
102286425Sdim// possible bit values.  One extension here is the "Ref" type, which
103286425Sdim// indicates that this bit takes the same value as the bit described by
104286425Sdim// RefInfo.
105286425Sdimstruct BitTracker::BitValue {
106286425Sdim  enum ValueType {
107286425Sdim    Top,    // Bit not yet defined.
108286425Sdim    Zero,   // Bit = 0.
109286425Sdim    One,    // Bit = 1.
110286425Sdim    Ref     // Bit value same as the one described in RefI.
111286425Sdim    // Conceptually, there is no explicit "bottom" value: the lattice's
112286425Sdim    // bottom will be expressed as a "ref to itself", which, in the context
113286425Sdim    // of registers, could be read as "this value of this bit is defined by
114286425Sdim    // this bit".
115286425Sdim    // The ordering is:
116286425Sdim    //   x <= Top,
117286425Sdim    //   Self <= x, where "Self" is "ref to itself".
118286425Sdim    // This makes the value lattice different for each virtual register
119286425Sdim    // (even for each bit in the same virtual register), since the "bottom"
120286425Sdim    // for one register will be a simple "ref" for another register.
121286425Sdim    // Since we do not store the "Self" bit and register number, the meet
122286425Sdim    // operation will need to take it as a parameter.
123286425Sdim    //
124286425Sdim    // In practice there is a special case for values that are not associa-
125286425Sdim    // ted with any specific virtual register. An example would be a value
126286425Sdim    // corresponding to a bit of a physical register, or an intermediate
127286425Sdim    // value obtained in some computation (such as instruction evaluation).
128286425Sdim    // Such cases are identical to the usual Ref type, but the register
129286425Sdim    // number is 0. In such case the Pos field of the reference is ignored.
130286425Sdim    //
131286425Sdim    // What is worthy of notice is that in value V (that is a "ref"), as long
132286425Sdim    // as the RefI.Reg is not 0, it may actually be the same register as the
133286425Sdim    // one in which V will be contained.  If the RefI.Pos refers to the posi-
134286425Sdim    // tion of V, then V is assumed to be "bottom" (as a "ref to itself"),
135286425Sdim    // otherwise V is taken to be identical to the referenced bit of the
136286425Sdim    // same register.
137286425Sdim    // If RefI.Reg is 0, however, such a reference to the same register is
138286425Sdim    // not possible.  Any value V that is a "ref", and whose RefI.Reg is 0
139286425Sdim    // is treated as "bottom".
140286425Sdim  };
141286425Sdim  ValueType Type;
142286425Sdim  BitRef RefI;
143286425Sdim
144286425Sdim  BitValue(ValueType T = Top) : Type(T) {}
145286425Sdim  BitValue(bool B) : Type(B ? One : Zero) {}
146286425Sdim  BitValue(unsigned Reg, uint16_t Pos) : Type(Ref), RefI(Reg, Pos) {}
147286425Sdim
148286425Sdim  bool operator== (const BitValue &V) const {
149286425Sdim    if (Type != V.Type)
150286425Sdim      return false;
151286425Sdim    if (Type == Ref && !(RefI == V.RefI))
152286425Sdim      return false;
153286425Sdim    return true;
154286425Sdim  }
155286425Sdim  bool operator!= (const BitValue &V) const {
156286425Sdim    return !operator==(V);
157286425Sdim  }
158286425Sdim  bool is(unsigned T) const {
159286425Sdim    assert(T == 0 || T == 1);
160286425Sdim    return T == 0 ? Type == Zero
161286425Sdim                  : (T == 1 ? Type == One : false);
162286425Sdim  }
163286425Sdim
164286425Sdim  // The "meet" operation is the "." operation in a semilattice (L, ., T, B):
165286425Sdim  // (1)  x.x = x
166286425Sdim  // (2)  x.y = y.x
167286425Sdim  // (3)  x.(y.z) = (x.y).z
168286425Sdim  // (4)  x.T = x  (i.e. T = "top")
169286425Sdim  // (5)  x.B = B  (i.e. B = "bottom")
170286425Sdim  //
171286425Sdim  // This "meet" function will update the value of the "*this" object with
172286425Sdim  // the newly calculated one, and return "true" if the value of *this has
173286425Sdim  // changed, and "false" otherwise.
174286425Sdim  // To prove that it satisfies the conditions (1)-(5), it is sufficient
175286425Sdim  // to show that a relation
176286425Sdim  //   x <= y  <=>  x.y = x
177286425Sdim  // defines a partial order (i.e. that "meet" is same as "infimum").
178286425Sdim  bool meet(const BitValue &V, const BitRef &Self) {
179286425Sdim    // First, check the cases where there is nothing to be done.
180286425Sdim    if (Type == Ref && RefI == Self)    // Bottom.meet(V) = Bottom (i.e. This)
181286425Sdim      return false;
182286425Sdim    if (V.Type == Top)                  // This.meet(Top) = This
183286425Sdim      return false;
184286425Sdim    if (*this == V)                     // This.meet(This) = This
185286425Sdim      return false;
186286425Sdim
187286425Sdim    // At this point, we know that the value of "this" will change.
188286425Sdim    // If it is Top, it will become the same as V, otherwise it will
189286425Sdim    // become "bottom" (i.e. Self).
190286425Sdim    if (Type == Top) {
191286425Sdim      Type = V.Type;
192286425Sdim      RefI = V.RefI;  // This may be irrelevant, but copy anyway.
193286425Sdim      return true;
194286425Sdim    }
195286425Sdim    // Become "bottom".
196286425Sdim    Type = Ref;
197286425Sdim    RefI = Self;
198286425Sdim    return true;
199286425Sdim  }
200286425Sdim
201286425Sdim  // Create a reference to the bit value V.
202286425Sdim  static BitValue ref(const BitValue &V);
203286425Sdim  // Create a "self".
204286425Sdim  static BitValue self(const BitRef &Self = BitRef());
205286425Sdim
206286425Sdim  bool num() const {
207286425Sdim    return Type == Zero || Type == One;
208286425Sdim  }
209286425Sdim  operator bool() const {
210286425Sdim    assert(Type == Zero || Type == One);
211286425Sdim    return Type == One;
212286425Sdim  }
213286425Sdim
214286425Sdim  friend raw_ostream &operator<<(raw_ostream &OS, const BitValue &BV);
215286425Sdim};
216286425Sdim
217286425Sdim
218286425Sdim// This operation must be idempotent, i.e. ref(ref(V)) == ref(V).
219286425Sdiminline BitTracker::BitValue
220286425SdimBitTracker::BitValue::ref(const BitValue &V) {
221286425Sdim  if (V.Type != Ref)
222286425Sdim    return BitValue(V.Type);
223286425Sdim  if (V.RefI.Reg != 0)
224286425Sdim    return BitValue(V.RefI.Reg, V.RefI.Pos);
225286425Sdim  return self();
226286425Sdim}
227286425Sdim
228286425Sdim
229286425Sdiminline BitTracker::BitValue
230286425SdimBitTracker::BitValue::self(const BitRef &Self) {
231286425Sdim  return BitValue(Self.Reg, Self.Pos);
232286425Sdim}
233286425Sdim
234286425Sdim
235286425Sdim// A sequence of bits starting from index B up to and including index E.
236286425Sdim// If E < B, the mask represents two sections: [0..E] and [B..W) where
237286425Sdim// W is the width of the register.
238286425Sdimstruct BitTracker::BitMask {
239286425Sdim  BitMask() : B(0), E(0) {}
240286425Sdim  BitMask(uint16_t b, uint16_t e) : B(b), E(e) {}
241286425Sdim  uint16_t first() const { return B; }
242286425Sdim  uint16_t last() const { return E; }
243286425Sdimprivate:
244286425Sdim  uint16_t B, E;
245286425Sdim};
246286425Sdim
247286425Sdim
248286425Sdim// Representation of a register: a list of BitValues.
249286425Sdimstruct BitTracker::RegisterCell {
250286425Sdim  RegisterCell(uint16_t Width = DefaultBitN) : Bits(Width) {}
251286425Sdim
252286425Sdim  uint16_t width() const {
253286425Sdim    return Bits.size();
254286425Sdim  }
255286425Sdim  const BitValue &operator[](uint16_t BitN) const {
256286425Sdim    assert(BitN < Bits.size());
257286425Sdim    return Bits[BitN];
258286425Sdim  }
259286425Sdim  BitValue &operator[](uint16_t BitN) {
260286425Sdim    assert(BitN < Bits.size());
261286425Sdim    return Bits[BitN];
262286425Sdim  }
263286425Sdim
264286425Sdim  bool meet(const RegisterCell &RC, unsigned SelfR);
265286425Sdim  RegisterCell &insert(const RegisterCell &RC, const BitMask &M);
266286425Sdim  RegisterCell extract(const BitMask &M) const;  // Returns a new cell.
267286425Sdim  RegisterCell &rol(uint16_t Sh);    // Rotate left.
268286425Sdim  RegisterCell &fill(uint16_t B, uint16_t E, const BitValue &V);
269286425Sdim  RegisterCell &cat(const RegisterCell &RC);  // Concatenate.
270286425Sdim  uint16_t cl(bool B) const;
271286425Sdim  uint16_t ct(bool B) const;
272286425Sdim
273286425Sdim  bool operator== (const RegisterCell &RC) const;
274286425Sdim  bool operator!= (const RegisterCell &RC) const {
275286425Sdim    return !operator==(RC);
276286425Sdim  }
277286425Sdim
278286425Sdim  // Generate a "ref" cell for the corresponding register. In the resulting
279286425Sdim  // cell each bit will be described as being the same as the corresponding
280286425Sdim  // bit in register Reg (i.e. the cell is "defined" by register Reg).
281286425Sdim  static RegisterCell self(unsigned Reg, uint16_t Width);
282286425Sdim  // Generate a "top" cell of given size.
283286425Sdim  static RegisterCell top(uint16_t Width);
284286425Sdim  // Generate a cell that is a "ref" to another cell.
285286425Sdim  static RegisterCell ref(const RegisterCell &C);
286286425Sdim
287286425Sdimprivate:
288286425Sdim  // The DefaultBitN is here only to avoid frequent reallocation of the
289286425Sdim  // memory in the vector.
290286425Sdim  static const unsigned DefaultBitN = 32;
291286425Sdim  typedef SmallVector<BitValue, DefaultBitN> BitValueList;
292286425Sdim  BitValueList Bits;
293286425Sdim
294286425Sdim  friend raw_ostream &operator<<(raw_ostream &OS, const RegisterCell &RC);
295286425Sdim};
296286425Sdim
297286425Sdim
298286425Sdiminline bool BitTracker::has(unsigned Reg) const {
299286425Sdim  return Map.find(Reg) != Map.end();
300286425Sdim}
301286425Sdim
302286425Sdim
303286425Sdiminline const BitTracker::RegisterCell&
304286425SdimBitTracker::lookup(unsigned Reg) const {
305286425Sdim  CellMapType::const_iterator F = Map.find(Reg);
306286425Sdim  assert(F != Map.end());
307286425Sdim  return F->second;
308286425Sdim}
309286425Sdim
310286425Sdim
311286425Sdiminline BitTracker::RegisterCell
312286425SdimBitTracker::RegisterCell::self(unsigned Reg, uint16_t Width) {
313286425Sdim  RegisterCell RC(Width);
314286425Sdim  for (uint16_t i = 0; i < Width; ++i)
315286425Sdim    RC.Bits[i] = BitValue::self(BitRef(Reg, i));
316286425Sdim  return RC;
317286425Sdim}
318286425Sdim
319286425Sdim
320286425Sdiminline BitTracker::RegisterCell
321286425SdimBitTracker::RegisterCell::top(uint16_t Width) {
322286425Sdim  RegisterCell RC(Width);
323286425Sdim  for (uint16_t i = 0; i < Width; ++i)
324286425Sdim    RC.Bits[i] = BitValue(BitValue::Top);
325286425Sdim  return RC;
326286425Sdim}
327286425Sdim
328286425Sdim
329286425Sdiminline BitTracker::RegisterCell
330286425SdimBitTracker::RegisterCell::ref(const RegisterCell &C) {
331286425Sdim  uint16_t W = C.width();
332286425Sdim  RegisterCell RC(W);
333286425Sdim  for (unsigned i = 0; i < W; ++i)
334286425Sdim    RC[i] = BitValue::ref(C[i]);
335286425Sdim  return RC;
336286425Sdim}
337286425Sdim
338286425Sdim// A class to evaluate target's instructions and update the cell maps.
339286425Sdim// This is used internally by the bit tracker.  A target that wants to
340286425Sdim// utilize this should implement the evaluation functions (noted below)
341286425Sdim// in a subclass of this class.
342286425Sdimstruct BitTracker::MachineEvaluator {
343286425Sdim  MachineEvaluator(const TargetRegisterInfo &T, MachineRegisterInfo &M)
344286425Sdim      : TRI(T), MRI(M) {}
345286425Sdim  virtual ~MachineEvaluator() {}
346286425Sdim
347286425Sdim  uint16_t getRegBitWidth(const RegisterRef &RR) const;
348286425Sdim
349286425Sdim  RegisterCell getCell(const RegisterRef &RR, const CellMapType &M) const;
350286425Sdim  void putCell(const RegisterRef &RR, RegisterCell RC, CellMapType &M) const;
351286425Sdim  // A result of any operation should use refs to the source cells, not
352286425Sdim  // the cells directly. This function is a convenience wrapper to quickly
353286425Sdim  // generate a ref for a cell corresponding to a register reference.
354286425Sdim  RegisterCell getRef(const RegisterRef &RR, const CellMapType &M) const {
355286425Sdim    RegisterCell RC = getCell(RR, M);
356286425Sdim    return RegisterCell::ref(RC);
357286425Sdim  }
358286425Sdim
359286425Sdim  // Helper functions.
360286425Sdim  // Check if a cell is an immediate value (i.e. all bits are either 0 or 1).
361286425Sdim  bool isInt(const RegisterCell &A) const;
362286425Sdim  // Convert cell to an immediate value.
363286425Sdim  uint64_t toInt(const RegisterCell &A) const;
364286425Sdim
365286425Sdim  // Generate cell from an immediate value.
366286425Sdim  RegisterCell eIMM(int64_t V, uint16_t W) const;
367286425Sdim  RegisterCell eIMM(const ConstantInt *CI) const;
368286425Sdim
369286425Sdim  // Arithmetic.
370286425Sdim  RegisterCell eADD(const RegisterCell &A1, const RegisterCell &A2) const;
371286425Sdim  RegisterCell eSUB(const RegisterCell &A1, const RegisterCell &A2) const;
372286425Sdim  RegisterCell eMLS(const RegisterCell &A1, const RegisterCell &A2) const;
373286425Sdim  RegisterCell eMLU(const RegisterCell &A1, const RegisterCell &A2) const;
374286425Sdim
375286425Sdim  // Shifts.
376286425Sdim  RegisterCell eASL(const RegisterCell &A1, uint16_t Sh) const;
377286425Sdim  RegisterCell eLSR(const RegisterCell &A1, uint16_t Sh) const;
378286425Sdim  RegisterCell eASR(const RegisterCell &A1, uint16_t Sh) const;
379286425Sdim
380286425Sdim  // Logical.
381286425Sdim  RegisterCell eAND(const RegisterCell &A1, const RegisterCell &A2) const;
382286425Sdim  RegisterCell eORL(const RegisterCell &A1, const RegisterCell &A2) const;
383286425Sdim  RegisterCell eXOR(const RegisterCell &A1, const RegisterCell &A2) const;
384286425Sdim  RegisterCell eNOT(const RegisterCell &A1) const;
385286425Sdim
386286425Sdim  // Set bit, clear bit.
387286425Sdim  RegisterCell eSET(const RegisterCell &A1, uint16_t BitN) const;
388286425Sdim  RegisterCell eCLR(const RegisterCell &A1, uint16_t BitN) const;
389286425Sdim
390286425Sdim  // Count leading/trailing bits (zeros/ones).
391286425Sdim  RegisterCell eCLB(const RegisterCell &A1, bool B, uint16_t W) const;
392286425Sdim  RegisterCell eCTB(const RegisterCell &A1, bool B, uint16_t W) const;
393286425Sdim
394286425Sdim  // Sign/zero extension.
395286425Sdim  RegisterCell eSXT(const RegisterCell &A1, uint16_t FromN) const;
396286425Sdim  RegisterCell eZXT(const RegisterCell &A1, uint16_t FromN) const;
397286425Sdim
398286425Sdim  // Extract/insert
399286425Sdim  // XTR R,b,e:  extract bits from A1 starting at bit b, ending at e-1.
400286425Sdim  // INS R,S,b:  take R and replace bits starting from b with S.
401286425Sdim  RegisterCell eXTR(const RegisterCell &A1, uint16_t B, uint16_t E) const;
402286425Sdim  RegisterCell eINS(const RegisterCell &A1, const RegisterCell &A2,
403286425Sdim                    uint16_t AtN) const;
404286425Sdim
405286425Sdim  // User-provided functions for individual targets:
406286425Sdim
407286425Sdim  // Return a sub-register mask that indicates which bits in Reg belong
408286425Sdim  // to the subregister Sub. These bits are assumed to be contiguous in
409286425Sdim  // the super-register, and have the same ordering in the sub-register
410286425Sdim  // as in the super-register. It is valid to call this function with
411286425Sdim  // Sub == 0, in this case, the function should return a mask that spans
412286425Sdim  // the entire register Reg (which is what the default implementation
413286425Sdim  // does).
414286425Sdim  virtual BitMask mask(unsigned Reg, unsigned Sub) const;
415286425Sdim  // Indicate whether a given register class should be tracked.
416286425Sdim  virtual bool track(const TargetRegisterClass *RC) const { return true; }
417286425Sdim  // Evaluate a non-branching machine instruction, given the cell map with
418286425Sdim  // the input values. Place the results in the Outputs map. Return "true"
419286425Sdim  // if evaluation succeeded, "false" otherwise.
420286425Sdim  virtual bool evaluate(const MachineInstr *MI, const CellMapType &Inputs,
421286425Sdim                        CellMapType &Outputs) const;
422286425Sdim  // Evaluate a branch, given the cell map with the input values. Fill out
423286425Sdim  // a list of all possible branch targets and indicate (through a flag)
424286425Sdim  // whether the branch could fall-through. Return "true" if this information
425286425Sdim  // has been successfully computed, "false" otherwise.
426286425Sdim  virtual bool evaluate(const MachineInstr *BI, const CellMapType &Inputs,
427286425Sdim                        BranchTargetList &Targets, bool &FallsThru) const = 0;
428286425Sdim
429286425Sdim  const TargetRegisterInfo &TRI;
430286425Sdim  MachineRegisterInfo &MRI;
431286425Sdim};
432286425Sdim
433286425Sdim} // end namespace llvm
434286425Sdim
435286425Sdim#endif
436