ARMISelLowering.cpp revision 224145
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "arm-isel"
16#include "ARM.h"
17#include "ARMAddressingModes.h"
18#include "ARMCallingConv.h"
19#include "ARMConstantPoolValue.h"
20#include "ARMISelLowering.h"
21#include "ARMMachineFunctionInfo.h"
22#include "ARMPerfectShuffle.h"
23#include "ARMRegisterInfo.h"
24#include "ARMSubtarget.h"
25#include "ARMTargetMachine.h"
26#include "ARMTargetObjectFile.h"
27#include "llvm/CallingConv.h"
28#include "llvm/Constants.h"
29#include "llvm/Function.h"
30#include "llvm/GlobalValue.h"
31#include "llvm/Instruction.h"
32#include "llvm/Instructions.h"
33#include "llvm/Intrinsics.h"
34#include "llvm/Type.h"
35#include "llvm/CodeGen/CallingConvLower.h"
36#include "llvm/CodeGen/IntrinsicLowering.h"
37#include "llvm/CodeGen/MachineBasicBlock.h"
38#include "llvm/CodeGen/MachineFrameInfo.h"
39#include "llvm/CodeGen/MachineFunction.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineRegisterInfo.h"
42#include "llvm/CodeGen/PseudoSourceValue.h"
43#include "llvm/CodeGen/SelectionDAG.h"
44#include "llvm/MC/MCSectionMachO.h"
45#include "llvm/Target/TargetOptions.h"
46#include "llvm/ADT/VectorExtras.h"
47#include "llvm/ADT/StringExtras.h"
48#include "llvm/ADT/Statistic.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/MathExtras.h"
52#include "llvm/Support/raw_ostream.h"
53#include <sstream>
54using namespace llvm;
55
56STATISTIC(NumTailCalls, "Number of tail calls");
57STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
58
59// This option should go away when tail calls fully work.
60static cl::opt<bool>
61EnableARMTailCalls("arm-tail-calls", cl::Hidden,
62  cl::desc("Generate tail calls (TEMPORARY OPTION)."),
63  cl::init(false));
64
65cl::opt<bool>
66EnableARMLongCalls("arm-long-calls", cl::Hidden,
67  cl::desc("Generate calls via indirect call instructions"),
68  cl::init(false));
69
70static cl::opt<bool>
71ARMInterworking("arm-interworking", cl::Hidden,
72  cl::desc("Enable / disable ARM interworking (for debugging only)"),
73  cl::init(true));
74
75namespace llvm {
76  class ARMCCState : public CCState {
77  public:
78    ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
79               const TargetMachine &TM, SmallVector<CCValAssign, 16> &locs,
80               LLVMContext &C, ParmContext PC)
81        : CCState(CC, isVarArg, MF, TM, locs, C) {
82      assert(((PC == Call) || (PC == Prologue)) &&
83             "ARMCCState users must specify whether their context is call"
84             "or prologue generation.");
85      CallOrPrologue = PC;
86    }
87  };
88}
89
90// The APCS parameter registers.
91static const unsigned GPRArgRegs[] = {
92  ARM::R0, ARM::R1, ARM::R2, ARM::R3
93};
94
95void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
96                                       EVT PromotedBitwiseVT) {
97  if (VT != PromotedLdStVT) {
98    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
99    AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
100                       PromotedLdStVT.getSimpleVT());
101
102    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
103    AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
104                       PromotedLdStVT.getSimpleVT());
105  }
106
107  EVT ElemTy = VT.getVectorElementType();
108  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
109    setOperationAction(ISD::VSETCC, VT.getSimpleVT(), Custom);
110  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
111  if (ElemTy != MVT::i32) {
112    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
113    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
114    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
115    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
116  }
117  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
118  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
119  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
120  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Legal);
121  setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
122  setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
123  if (VT.isInteger()) {
124    setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
125    setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
126    setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
127    setLoadExtAction(ISD::SEXTLOAD, VT.getSimpleVT(), Expand);
128    setLoadExtAction(ISD::ZEXTLOAD, VT.getSimpleVT(), Expand);
129    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
130         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
131      setTruncStoreAction(VT.getSimpleVT(),
132                          (MVT::SimpleValueType)InnerVT, Expand);
133  }
134  setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand);
135
136  // Promote all bit-wise operations.
137  if (VT.isInteger() && VT != PromotedBitwiseVT) {
138    setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
139    AddPromotedToType (ISD::AND, VT.getSimpleVT(),
140                       PromotedBitwiseVT.getSimpleVT());
141    setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
142    AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
143                       PromotedBitwiseVT.getSimpleVT());
144    setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
145    AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
146                       PromotedBitwiseVT.getSimpleVT());
147  }
148
149  // Neon does not support vector divide/remainder operations.
150  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
151  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
152  setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
153  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
154  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
155  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
156}
157
158void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
159  addRegisterClass(VT, ARM::DPRRegisterClass);
160  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
161}
162
163void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
164  addRegisterClass(VT, ARM::QPRRegisterClass);
165  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
166}
167
168static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
169  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
170    return new TargetLoweringObjectFileMachO();
171
172  return new ARMElfTargetObjectFile();
173}
174
175ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
176    : TargetLowering(TM, createTLOF(TM)) {
177  Subtarget = &TM.getSubtarget<ARMSubtarget>();
178  RegInfo = TM.getRegisterInfo();
179  Itins = TM.getInstrItineraryData();
180
181  if (Subtarget->isTargetDarwin()) {
182    // Uses VFP for Thumb libfuncs if available.
183    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
184      // Single-precision floating-point arithmetic.
185      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
186      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
187      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
188      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
189
190      // Double-precision floating-point arithmetic.
191      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
192      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
193      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
194      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
195
196      // Single-precision comparisons.
197      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
198      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
199      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
200      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
201      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
202      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
203      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
204      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
205
206      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
207      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
208      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
209      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
210      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
211      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
212      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
213      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
214
215      // Double-precision comparisons.
216      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
217      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
218      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
219      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
220      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
221      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
222      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
223      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
224
225      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
226      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
227      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
228      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
229      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
230      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
231      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
232      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
233
234      // Floating-point to integer conversions.
235      // i64 conversions are done via library routines even when generating VFP
236      // instructions, so use the same ones.
237      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
238      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
239      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
240      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
241
242      // Conversions between floating types.
243      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
244      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
245
246      // Integer to floating-point conversions.
247      // i64 conversions are done via library routines even when generating VFP
248      // instructions, so use the same ones.
249      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
250      // e.g., __floatunsidf vs. __floatunssidfvfp.
251      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
252      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
253      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
254      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
255    }
256  }
257
258  // These libcalls are not available in 32-bit.
259  setLibcallName(RTLIB::SHL_I128, 0);
260  setLibcallName(RTLIB::SRL_I128, 0);
261  setLibcallName(RTLIB::SRA_I128, 0);
262
263  if (Subtarget->isAAPCS_ABI()) {
264    // Double-precision floating-point arithmetic helper functions
265    // RTABI chapter 4.1.2, Table 2
266    setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
267    setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
268    setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
269    setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
270    setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
271    setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
272    setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
273    setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
274
275    // Double-precision floating-point comparison helper functions
276    // RTABI chapter 4.1.2, Table 3
277    setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
278    setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
279    setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
280    setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
281    setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
282    setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
283    setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
284    setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
285    setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
286    setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
287    setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
288    setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
289    setLibcallName(RTLIB::UO_F64,  "__aeabi_dcmpun");
290    setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
291    setLibcallName(RTLIB::O_F64,   "__aeabi_dcmpun");
292    setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
293    setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
294    setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
295    setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
296    setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
297    setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
298    setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
299    setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
300    setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
301
302    // Single-precision floating-point arithmetic helper functions
303    // RTABI chapter 4.1.2, Table 4
304    setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
305    setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
306    setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
307    setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
308    setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
309    setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
310    setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
311    setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
312
313    // Single-precision floating-point comparison helper functions
314    // RTABI chapter 4.1.2, Table 5
315    setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
316    setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
317    setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
318    setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
319    setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
320    setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
321    setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
322    setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
323    setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
324    setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
325    setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
326    setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
327    setLibcallName(RTLIB::UO_F32,  "__aeabi_fcmpun");
328    setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
329    setLibcallName(RTLIB::O_F32,   "__aeabi_fcmpun");
330    setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
331    setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
332    setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
333    setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
334    setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
335    setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
336    setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
337    setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
338    setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
339
340    // Floating-point to integer conversions.
341    // RTABI chapter 4.1.2, Table 6
342    setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
343    setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
344    setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
345    setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
346    setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
347    setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
348    setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
349    setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
350    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
351    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
352    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
353    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
354    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
355    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
356    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
357    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
358
359    // Conversions between floating types.
360    // RTABI chapter 4.1.2, Table 7
361    setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
362    setLibcallName(RTLIB::FPEXT_F32_F64,   "__aeabi_f2d");
363    setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
364    setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
365
366    // Integer to floating-point conversions.
367    // RTABI chapter 4.1.2, Table 8
368    setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
369    setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
370    setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
371    setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
372    setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
373    setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
374    setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
375    setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
376    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
377    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
378    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
379    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
380    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
381    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
382    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
383    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
384
385    // Long long helper functions
386    // RTABI chapter 4.2, Table 9
387    setLibcallName(RTLIB::MUL_I64,  "__aeabi_lmul");
388    setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
389    setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
390    setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
391    setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
392    setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
393    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
394    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
395    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
396    setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
397    setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
398    setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
399
400    // Integer division functions
401    // RTABI chapter 4.3.1
402    setLibcallName(RTLIB::SDIV_I8,  "__aeabi_idiv");
403    setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
404    setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
405    setLibcallName(RTLIB::UDIV_I8,  "__aeabi_uidiv");
406    setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
407    setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
408    setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
409    setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
410    setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
411    setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
412    setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
413    setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
414
415    // Memory operations
416    // RTABI chapter 4.3.4
417    setLibcallName(RTLIB::MEMCPY,  "__aeabi_memcpy");
418    setLibcallName(RTLIB::MEMMOVE, "__aeabi_memmove");
419    setLibcallName(RTLIB::MEMSET,  "__aeabi_memset");
420  }
421
422  if (Subtarget->isThumb1Only())
423    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
424  else
425    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
426  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
427    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
428    if (!Subtarget->isFPOnlySP())
429      addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
430
431    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
432  }
433
434  if (Subtarget->hasNEON()) {
435    addDRTypeForNEON(MVT::v2f32);
436    addDRTypeForNEON(MVT::v8i8);
437    addDRTypeForNEON(MVT::v4i16);
438    addDRTypeForNEON(MVT::v2i32);
439    addDRTypeForNEON(MVT::v1i64);
440
441    addQRTypeForNEON(MVT::v4f32);
442    addQRTypeForNEON(MVT::v2f64);
443    addQRTypeForNEON(MVT::v16i8);
444    addQRTypeForNEON(MVT::v8i16);
445    addQRTypeForNEON(MVT::v4i32);
446    addQRTypeForNEON(MVT::v2i64);
447
448    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
449    // neither Neon nor VFP support any arithmetic operations on it.
450    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
451    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
452    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
453    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
454    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
455    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
456    setOperationAction(ISD::VSETCC, MVT::v2f64, Expand);
457    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
458    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
459    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
460    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
461    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
462    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
463    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
464    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
465    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
466    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
467    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
468    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
469    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
470    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
471    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
472    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
473    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
474
475    setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
476
477    // Neon does not support some operations on v1i64 and v2i64 types.
478    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
479    // Custom handling for some quad-vector types to detect VMULL.
480    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
481    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
482    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
483    // Custom handling for some vector types to avoid expensive expansions
484    setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
485    setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
486    setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
487    setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
488    setOperationAction(ISD::VSETCC, MVT::v1i64, Expand);
489    setOperationAction(ISD::VSETCC, MVT::v2i64, Expand);
490    // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
491    // a destination type that is wider than the source.
492    setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
493    setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
494
495    setTargetDAGCombine(ISD::INTRINSIC_VOID);
496    setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
497    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
498    setTargetDAGCombine(ISD::SHL);
499    setTargetDAGCombine(ISD::SRL);
500    setTargetDAGCombine(ISD::SRA);
501    setTargetDAGCombine(ISD::SIGN_EXTEND);
502    setTargetDAGCombine(ISD::ZERO_EXTEND);
503    setTargetDAGCombine(ISD::ANY_EXTEND);
504    setTargetDAGCombine(ISD::SELECT_CC);
505    setTargetDAGCombine(ISD::BUILD_VECTOR);
506    setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
507    setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
508    setTargetDAGCombine(ISD::STORE);
509    setTargetDAGCombine(ISD::FP_TO_SINT);
510    setTargetDAGCombine(ISD::FP_TO_UINT);
511    setTargetDAGCombine(ISD::FDIV);
512  }
513
514  computeRegisterProperties();
515
516  // ARM does not have f32 extending load.
517  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
518
519  // ARM does not have i1 sign extending load.
520  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
521
522  // ARM supports all 4 flavors of integer indexed load / store.
523  if (!Subtarget->isThumb1Only()) {
524    for (unsigned im = (unsigned)ISD::PRE_INC;
525         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
526      setIndexedLoadAction(im,  MVT::i1,  Legal);
527      setIndexedLoadAction(im,  MVT::i8,  Legal);
528      setIndexedLoadAction(im,  MVT::i16, Legal);
529      setIndexedLoadAction(im,  MVT::i32, Legal);
530      setIndexedStoreAction(im, MVT::i1,  Legal);
531      setIndexedStoreAction(im, MVT::i8,  Legal);
532      setIndexedStoreAction(im, MVT::i16, Legal);
533      setIndexedStoreAction(im, MVT::i32, Legal);
534    }
535  }
536
537  // i64 operation support.
538  setOperationAction(ISD::MUL,     MVT::i64, Expand);
539  setOperationAction(ISD::MULHU,   MVT::i32, Expand);
540  if (Subtarget->isThumb1Only()) {
541    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
542    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
543  }
544  if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
545      || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP()))
546    setOperationAction(ISD::MULHS, MVT::i32, Expand);
547
548  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
549  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
550  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
551  setOperationAction(ISD::SRL,       MVT::i64, Custom);
552  setOperationAction(ISD::SRA,       MVT::i64, Custom);
553
554  // ARM does not have ROTL.
555  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
556  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
557  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
558  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
559    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
560
561  // Only ARMv6 has BSWAP.
562  if (!Subtarget->hasV6Ops())
563    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
564
565  // These are expanded into libcalls.
566  if (!Subtarget->hasDivide() || !Subtarget->isThumb2()) {
567    // v7M has a hardware divider
568    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
569    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
570  }
571  setOperationAction(ISD::SREM,  MVT::i32, Expand);
572  setOperationAction(ISD::UREM,  MVT::i32, Expand);
573  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
574  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
575
576  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
577  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
578  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
579  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
580  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
581
582  setOperationAction(ISD::TRAP, MVT::Other, Legal);
583
584  // Use the default implementation.
585  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
586  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
587  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
588  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
589  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
590  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
591  setOperationAction(ISD::EHSELECTION,        MVT::i32,   Expand);
592  setOperationAction(ISD::EXCEPTIONADDR,      MVT::i32,   Expand);
593  setExceptionPointerRegister(ARM::R0);
594  setExceptionSelectorRegister(ARM::R1);
595
596  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
597  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
598  // the default expansion.
599  if (Subtarget->hasDataBarrier() ||
600      (Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
601    // membarrier needs custom lowering; the rest are legal and handled
602    // normally.
603    setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
604  } else {
605    // Set them all for expansion, which will force libcalls.
606    setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
607    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i8,  Expand);
608    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i16, Expand);
609    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
610    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i8,  Expand);
611    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i16, Expand);
612    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
613    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i8,  Expand);
614    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i16, Expand);
615    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
616    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i8,  Expand);
617    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i16, Expand);
618    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
619    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i8,  Expand);
620    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i16, Expand);
621    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
622    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i8,  Expand);
623    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i16, Expand);
624    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
625    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i8,  Expand);
626    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i16, Expand);
627    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
628    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i8,  Expand);
629    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i16, Expand);
630    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
631    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i8,  Expand);
632    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i16, Expand);
633    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
634    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i8,  Expand);
635    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i16, Expand);
636    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
637    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i8,  Expand);
638    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i16, Expand);
639    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
640    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i8,  Expand);
641    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i16, Expand);
642    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
643    // Since the libcalls include locking, fold in the fences
644    setShouldFoldAtomicFences(true);
645  }
646  // 64-bit versions are always libcalls (for now)
647  setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Expand);
648  setOperationAction(ISD::ATOMIC_SWAP,      MVT::i64, Expand);
649  setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Expand);
650  setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Expand);
651  setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Expand);
652  setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Expand);
653  setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Expand);
654  setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Expand);
655
656  setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
657
658  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
659  if (!Subtarget->hasV6Ops()) {
660    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
661    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
662  }
663  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
664
665  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
666    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
667    // iff target supports vfp2.
668    setOperationAction(ISD::BITCAST, MVT::i64, Custom);
669    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
670  }
671
672  // We want to custom lower some of our intrinsics.
673  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
674  if (Subtarget->isTargetDarwin()) {
675    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
676    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
677    setOperationAction(ISD::EH_SJLJ_DISPATCHSETUP, MVT::Other, Custom);
678    setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
679  }
680
681  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
682  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
683  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
684  setOperationAction(ISD::SELECT,    MVT::i32, Custom);
685  setOperationAction(ISD::SELECT,    MVT::f32, Custom);
686  setOperationAction(ISD::SELECT,    MVT::f64, Custom);
687  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
688  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
689  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
690
691  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
692  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
693  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
694  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
695  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
696
697  // We don't support sin/cos/fmod/copysign/pow
698  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
699  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
700  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
701  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
702  setOperationAction(ISD::FREM,      MVT::f64, Expand);
703  setOperationAction(ISD::FREM,      MVT::f32, Expand);
704  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
705    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
706    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
707  }
708  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
709  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
710
711  setOperationAction(ISD::FMA, MVT::f64, Expand);
712  setOperationAction(ISD::FMA, MVT::f32, Expand);
713
714  // Various VFP goodness
715  if (!UseSoftFloat && !Subtarget->isThumb1Only()) {
716    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
717    if (Subtarget->hasVFP2()) {
718      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
719      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
720      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
721      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
722    }
723    // Special handling for half-precision FP.
724    if (!Subtarget->hasFP16()) {
725      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
726      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
727    }
728  }
729
730  // We have target-specific dag combine patterns for the following nodes:
731  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
732  setTargetDAGCombine(ISD::ADD);
733  setTargetDAGCombine(ISD::SUB);
734  setTargetDAGCombine(ISD::MUL);
735
736  if (Subtarget->hasV6T2Ops() || Subtarget->hasNEON())
737    setTargetDAGCombine(ISD::OR);
738  if (Subtarget->hasNEON())
739    setTargetDAGCombine(ISD::AND);
740
741  setStackPointerRegisterToSaveRestore(ARM::SP);
742
743  if (UseSoftFloat || Subtarget->isThumb1Only() || !Subtarget->hasVFP2())
744    setSchedulingPreference(Sched::RegPressure);
745  else
746    setSchedulingPreference(Sched::Hybrid);
747
748  //// temporary - rewrite interface to use type
749  maxStoresPerMemcpy = maxStoresPerMemcpyOptSize = 1;
750
751  // On ARM arguments smaller than 4 bytes are extended, so all arguments
752  // are at least 4 bytes aligned.
753  setMinStackArgumentAlignment(4);
754
755  benefitFromCodePlacementOpt = true;
756
757  setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
758}
759
760// FIXME: It might make sense to define the representative register class as the
761// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
762// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
763// SPR's representative would be DPR_VFP2. This should work well if register
764// pressure tracking were modified such that a register use would increment the
765// pressure of the register class's representative and all of it's super
766// classes' representatives transitively. We have not implemented this because
767// of the difficulty prior to coalescing of modeling operand register classes
768// due to the common occurrence of cross class copies and subregister insertions
769// and extractions.
770std::pair<const TargetRegisterClass*, uint8_t>
771ARMTargetLowering::findRepresentativeClass(EVT VT) const{
772  const TargetRegisterClass *RRC = 0;
773  uint8_t Cost = 1;
774  switch (VT.getSimpleVT().SimpleTy) {
775  default:
776    return TargetLowering::findRepresentativeClass(VT);
777  // Use DPR as representative register class for all floating point
778  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
779  // the cost is 1 for both f32 and f64.
780  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
781  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
782    RRC = ARM::DPRRegisterClass;
783    // When NEON is used for SP, only half of the register file is available
784    // because operations that define both SP and DP results will be constrained
785    // to the VFP2 class (D0-D15). We currently model this constraint prior to
786    // coalescing by double-counting the SP regs. See the FIXME above.
787    if (Subtarget->useNEONForSinglePrecisionFP())
788      Cost = 2;
789    break;
790  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
791  case MVT::v4f32: case MVT::v2f64:
792    RRC = ARM::DPRRegisterClass;
793    Cost = 2;
794    break;
795  case MVT::v4i64:
796    RRC = ARM::DPRRegisterClass;
797    Cost = 4;
798    break;
799  case MVT::v8i64:
800    RRC = ARM::DPRRegisterClass;
801    Cost = 8;
802    break;
803  }
804  return std::make_pair(RRC, Cost);
805}
806
807const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
808  switch (Opcode) {
809  default: return 0;
810  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
811  case ARMISD::WrapperDYN:    return "ARMISD::WrapperDYN";
812  case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
813  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
814  case ARMISD::CALL:          return "ARMISD::CALL";
815  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
816  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
817  case ARMISD::tCALL:         return "ARMISD::tCALL";
818  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
819  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
820  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
821  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
822  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
823  case ARMISD::CMP:           return "ARMISD::CMP";
824  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
825  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
826  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
827  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
828  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
829  case ARMISD::CMOV:          return "ARMISD::CMOV";
830
831  case ARMISD::RBIT:          return "ARMISD::RBIT";
832
833  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
834  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
835  case ARMISD::SITOF:         return "ARMISD::SITOF";
836  case ARMISD::UITOF:         return "ARMISD::UITOF";
837
838  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
839  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
840  case ARMISD::RRX:           return "ARMISD::RRX";
841
842  case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
843  case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
844
845  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
846  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
847  case ARMISD::EH_SJLJ_DISPATCHSETUP:return "ARMISD::EH_SJLJ_DISPATCHSETUP";
848
849  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
850
851  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
852
853  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
854
855  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
856  case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
857
858  case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
859
860  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
861  case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
862  case ARMISD::VCGE:          return "ARMISD::VCGE";
863  case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
864  case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
865  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
866  case ARMISD::VCGT:          return "ARMISD::VCGT";
867  case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
868  case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
869  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
870  case ARMISD::VTST:          return "ARMISD::VTST";
871
872  case ARMISD::VSHL:          return "ARMISD::VSHL";
873  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
874  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
875  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
876  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
877  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
878  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
879  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
880  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
881  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
882  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
883  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
884  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
885  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
886  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
887  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
888  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
889  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
890  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
891  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
892  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
893  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
894  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
895  case ARMISD::VDUP:          return "ARMISD::VDUP";
896  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
897  case ARMISD::VEXT:          return "ARMISD::VEXT";
898  case ARMISD::VREV64:        return "ARMISD::VREV64";
899  case ARMISD::VREV32:        return "ARMISD::VREV32";
900  case ARMISD::VREV16:        return "ARMISD::VREV16";
901  case ARMISD::VZIP:          return "ARMISD::VZIP";
902  case ARMISD::VUZP:          return "ARMISD::VUZP";
903  case ARMISD::VTRN:          return "ARMISD::VTRN";
904  case ARMISD::VTBL1:         return "ARMISD::VTBL1";
905  case ARMISD::VTBL2:         return "ARMISD::VTBL2";
906  case ARMISD::VMULLs:        return "ARMISD::VMULLs";
907  case ARMISD::VMULLu:        return "ARMISD::VMULLu";
908  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
909  case ARMISD::FMAX:          return "ARMISD::FMAX";
910  case ARMISD::FMIN:          return "ARMISD::FMIN";
911  case ARMISD::BFI:           return "ARMISD::BFI";
912  case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
913  case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
914  case ARMISD::VBSL:          return "ARMISD::VBSL";
915  case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
916  case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
917  case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
918  case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
919  case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
920  case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
921  case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
922  case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
923  case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
924  case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
925  case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
926  case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
927  case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
928  case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
929  case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
930  case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
931  case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
932  case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
933  case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
934  case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
935  }
936}
937
938/// getRegClassFor - Return the register class that should be used for the
939/// specified value type.
940TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
941  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
942  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
943  // load / store 4 to 8 consecutive D registers.
944  if (Subtarget->hasNEON()) {
945    if (VT == MVT::v4i64)
946      return ARM::QQPRRegisterClass;
947    else if (VT == MVT::v8i64)
948      return ARM::QQQQPRRegisterClass;
949  }
950  return TargetLowering::getRegClassFor(VT);
951}
952
953// Create a fast isel object.
954FastISel *
955ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
956  return ARM::createFastISel(funcInfo);
957}
958
959/// getMaximalGlobalOffset - Returns the maximal possible offset which can
960/// be used for loads / stores from the global.
961unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
962  return (Subtarget->isThumb1Only() ? 127 : 4095);
963}
964
965Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
966  unsigned NumVals = N->getNumValues();
967  if (!NumVals)
968    return Sched::RegPressure;
969
970  for (unsigned i = 0; i != NumVals; ++i) {
971    EVT VT = N->getValueType(i);
972    if (VT == MVT::Glue || VT == MVT::Other)
973      continue;
974    if (VT.isFloatingPoint() || VT.isVector())
975      return Sched::Latency;
976  }
977
978  if (!N->isMachineOpcode())
979    return Sched::RegPressure;
980
981  // Load are scheduled for latency even if there instruction itinerary
982  // is not available.
983  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
984  const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
985
986  if (MCID.getNumDefs() == 0)
987    return Sched::RegPressure;
988  if (!Itins->isEmpty() &&
989      Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
990    return Sched::Latency;
991
992  return Sched::RegPressure;
993}
994
995//===----------------------------------------------------------------------===//
996// Lowering Code
997//===----------------------------------------------------------------------===//
998
999/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1000static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1001  switch (CC) {
1002  default: llvm_unreachable("Unknown condition code!");
1003  case ISD::SETNE:  return ARMCC::NE;
1004  case ISD::SETEQ:  return ARMCC::EQ;
1005  case ISD::SETGT:  return ARMCC::GT;
1006  case ISD::SETGE:  return ARMCC::GE;
1007  case ISD::SETLT:  return ARMCC::LT;
1008  case ISD::SETLE:  return ARMCC::LE;
1009  case ISD::SETUGT: return ARMCC::HI;
1010  case ISD::SETUGE: return ARMCC::HS;
1011  case ISD::SETULT: return ARMCC::LO;
1012  case ISD::SETULE: return ARMCC::LS;
1013  }
1014}
1015
1016/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1017static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1018                        ARMCC::CondCodes &CondCode2) {
1019  CondCode2 = ARMCC::AL;
1020  switch (CC) {
1021  default: llvm_unreachable("Unknown FP condition!");
1022  case ISD::SETEQ:
1023  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1024  case ISD::SETGT:
1025  case ISD::SETOGT: CondCode = ARMCC::GT; break;
1026  case ISD::SETGE:
1027  case ISD::SETOGE: CondCode = ARMCC::GE; break;
1028  case ISD::SETOLT: CondCode = ARMCC::MI; break;
1029  case ISD::SETOLE: CondCode = ARMCC::LS; break;
1030  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1031  case ISD::SETO:   CondCode = ARMCC::VC; break;
1032  case ISD::SETUO:  CondCode = ARMCC::VS; break;
1033  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1034  case ISD::SETUGT: CondCode = ARMCC::HI; break;
1035  case ISD::SETUGE: CondCode = ARMCC::PL; break;
1036  case ISD::SETLT:
1037  case ISD::SETULT: CondCode = ARMCC::LT; break;
1038  case ISD::SETLE:
1039  case ISD::SETULE: CondCode = ARMCC::LE; break;
1040  case ISD::SETNE:
1041  case ISD::SETUNE: CondCode = ARMCC::NE; break;
1042  }
1043}
1044
1045//===----------------------------------------------------------------------===//
1046//                      Calling Convention Implementation
1047//===----------------------------------------------------------------------===//
1048
1049#include "ARMGenCallingConv.inc"
1050
1051/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1052/// given CallingConvention value.
1053CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1054                                                 bool Return,
1055                                                 bool isVarArg) const {
1056  switch (CC) {
1057  default:
1058    llvm_unreachable("Unsupported calling convention");
1059  case CallingConv::Fast:
1060    if (Subtarget->hasVFP2() && !isVarArg) {
1061      if (!Subtarget->isAAPCS_ABI())
1062        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1063      // For AAPCS ABI targets, just use VFP variant of the calling convention.
1064      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1065    }
1066    // Fallthrough
1067  case CallingConv::C: {
1068    // Use target triple & subtarget features to do actual dispatch.
1069    if (!Subtarget->isAAPCS_ABI())
1070      return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1071    else if (Subtarget->hasVFP2() &&
1072             FloatABIType == FloatABI::Hard && !isVarArg)
1073      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1074    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1075  }
1076  case CallingConv::ARM_AAPCS_VFP:
1077    return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1078  case CallingConv::ARM_AAPCS:
1079    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1080  case CallingConv::ARM_APCS:
1081    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1082  }
1083}
1084
1085/// LowerCallResult - Lower the result values of a call into the
1086/// appropriate copies out of appropriate physical registers.
1087SDValue
1088ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1089                                   CallingConv::ID CallConv, bool isVarArg,
1090                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1091                                   DebugLoc dl, SelectionDAG &DAG,
1092                                   SmallVectorImpl<SDValue> &InVals) const {
1093
1094  // Assign locations to each value returned by this call.
1095  SmallVector<CCValAssign, 16> RVLocs;
1096  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1097                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1098  CCInfo.AnalyzeCallResult(Ins,
1099                           CCAssignFnForNode(CallConv, /* Return*/ true,
1100                                             isVarArg));
1101
1102  // Copy all of the result registers out of their specified physreg.
1103  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1104    CCValAssign VA = RVLocs[i];
1105
1106    SDValue Val;
1107    if (VA.needsCustom()) {
1108      // Handle f64 or half of a v2f64.
1109      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1110                                      InFlag);
1111      Chain = Lo.getValue(1);
1112      InFlag = Lo.getValue(2);
1113      VA = RVLocs[++i]; // skip ahead to next loc
1114      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1115                                      InFlag);
1116      Chain = Hi.getValue(1);
1117      InFlag = Hi.getValue(2);
1118      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1119
1120      if (VA.getLocVT() == MVT::v2f64) {
1121        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1122        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1123                          DAG.getConstant(0, MVT::i32));
1124
1125        VA = RVLocs[++i]; // skip ahead to next loc
1126        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1127        Chain = Lo.getValue(1);
1128        InFlag = Lo.getValue(2);
1129        VA = RVLocs[++i]; // skip ahead to next loc
1130        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1131        Chain = Hi.getValue(1);
1132        InFlag = Hi.getValue(2);
1133        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1134        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1135                          DAG.getConstant(1, MVT::i32));
1136      }
1137    } else {
1138      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1139                               InFlag);
1140      Chain = Val.getValue(1);
1141      InFlag = Val.getValue(2);
1142    }
1143
1144    switch (VA.getLocInfo()) {
1145    default: llvm_unreachable("Unknown loc info!");
1146    case CCValAssign::Full: break;
1147    case CCValAssign::BCvt:
1148      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1149      break;
1150    }
1151
1152    InVals.push_back(Val);
1153  }
1154
1155  return Chain;
1156}
1157
1158/// LowerMemOpCallTo - Store the argument to the stack.
1159SDValue
1160ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1161                                    SDValue StackPtr, SDValue Arg,
1162                                    DebugLoc dl, SelectionDAG &DAG,
1163                                    const CCValAssign &VA,
1164                                    ISD::ArgFlagsTy Flags) const {
1165  unsigned LocMemOffset = VA.getLocMemOffset();
1166  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1167  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1168  return DAG.getStore(Chain, dl, Arg, PtrOff,
1169                      MachinePointerInfo::getStack(LocMemOffset),
1170                      false, false, 0);
1171}
1172
1173void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
1174                                         SDValue Chain, SDValue &Arg,
1175                                         RegsToPassVector &RegsToPass,
1176                                         CCValAssign &VA, CCValAssign &NextVA,
1177                                         SDValue &StackPtr,
1178                                         SmallVector<SDValue, 8> &MemOpChains,
1179                                         ISD::ArgFlagsTy Flags) const {
1180
1181  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1182                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1183  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1184
1185  if (NextVA.isRegLoc())
1186    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1187  else {
1188    assert(NextVA.isMemLoc());
1189    if (StackPtr.getNode() == 0)
1190      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1191
1192    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1193                                           dl, DAG, NextVA,
1194                                           Flags));
1195  }
1196}
1197
1198/// LowerCall - Lowering a call into a callseq_start <-
1199/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1200/// nodes.
1201SDValue
1202ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1203                             CallingConv::ID CallConv, bool isVarArg,
1204                             bool &isTailCall,
1205                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1206                             const SmallVectorImpl<SDValue> &OutVals,
1207                             const SmallVectorImpl<ISD::InputArg> &Ins,
1208                             DebugLoc dl, SelectionDAG &DAG,
1209                             SmallVectorImpl<SDValue> &InVals) const {
1210  MachineFunction &MF = DAG.getMachineFunction();
1211  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1212  bool IsSibCall = false;
1213  // Temporarily disable tail calls so things don't break.
1214  if (!EnableARMTailCalls)
1215    isTailCall = false;
1216  if (isTailCall) {
1217    // Check if it's really possible to do a tail call.
1218    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1219                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1220                                                   Outs, OutVals, Ins, DAG);
1221    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1222    // detected sibcalls.
1223    if (isTailCall) {
1224      ++NumTailCalls;
1225      IsSibCall = true;
1226    }
1227  }
1228
1229  // Analyze operands of the call, assigning locations to each operand.
1230  SmallVector<CCValAssign, 16> ArgLocs;
1231  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1232                 getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1233  CCInfo.AnalyzeCallOperands(Outs,
1234                             CCAssignFnForNode(CallConv, /* Return*/ false,
1235                                               isVarArg));
1236
1237  // Get a count of how many bytes are to be pushed on the stack.
1238  unsigned NumBytes = CCInfo.getNextStackOffset();
1239
1240  // For tail calls, memory operands are available in our caller's stack.
1241  if (IsSibCall)
1242    NumBytes = 0;
1243
1244  // Adjust the stack pointer for the new arguments...
1245  // These operations are automatically eliminated by the prolog/epilog pass
1246  if (!IsSibCall)
1247    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1248
1249  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1250
1251  RegsToPassVector RegsToPass;
1252  SmallVector<SDValue, 8> MemOpChains;
1253
1254  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1255  // of tail call optimization, arguments are handled later.
1256  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1257       i != e;
1258       ++i, ++realArgIdx) {
1259    CCValAssign &VA = ArgLocs[i];
1260    SDValue Arg = OutVals[realArgIdx];
1261    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1262    bool isByVal = Flags.isByVal();
1263
1264    // Promote the value if needed.
1265    switch (VA.getLocInfo()) {
1266    default: llvm_unreachable("Unknown loc info!");
1267    case CCValAssign::Full: break;
1268    case CCValAssign::SExt:
1269      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1270      break;
1271    case CCValAssign::ZExt:
1272      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1273      break;
1274    case CCValAssign::AExt:
1275      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1276      break;
1277    case CCValAssign::BCvt:
1278      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1279      break;
1280    }
1281
1282    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1283    if (VA.needsCustom()) {
1284      if (VA.getLocVT() == MVT::v2f64) {
1285        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1286                                  DAG.getConstant(0, MVT::i32));
1287        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1288                                  DAG.getConstant(1, MVT::i32));
1289
1290        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1291                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1292
1293        VA = ArgLocs[++i]; // skip ahead to next loc
1294        if (VA.isRegLoc()) {
1295          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1296                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1297        } else {
1298          assert(VA.isMemLoc());
1299
1300          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1301                                                 dl, DAG, VA, Flags));
1302        }
1303      } else {
1304        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1305                         StackPtr, MemOpChains, Flags);
1306      }
1307    } else if (VA.isRegLoc()) {
1308      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1309    } else if (isByVal) {
1310      assert(VA.isMemLoc());
1311      unsigned offset = 0;
1312
1313      // True if this byval aggregate will be split between registers
1314      // and memory.
1315      if (CCInfo.isFirstByValRegValid()) {
1316        EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1317        unsigned int i, j;
1318        for (i = 0, j = CCInfo.getFirstByValReg(); j < ARM::R4; i++, j++) {
1319          SDValue Const = DAG.getConstant(4*i, MVT::i32);
1320          SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1321          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1322                                     MachinePointerInfo(),
1323                                     false, false, 0);
1324          MemOpChains.push_back(Load.getValue(1));
1325          RegsToPass.push_back(std::make_pair(j, Load));
1326        }
1327        offset = ARM::R4 - CCInfo.getFirstByValReg();
1328        CCInfo.clearFirstByValReg();
1329      }
1330
1331      unsigned LocMemOffset = VA.getLocMemOffset();
1332      SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
1333      SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
1334                                StkPtrOff);
1335      SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
1336      SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
1337      SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
1338                                         MVT::i32);
1339      MemOpChains.push_back(DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
1340                                          Flags.getByValAlign(),
1341                                          /*isVolatile=*/false,
1342                                          /*AlwaysInline=*/false,
1343                                          MachinePointerInfo(0),
1344                                          MachinePointerInfo(0)));
1345
1346    } else if (!IsSibCall) {
1347      assert(VA.isMemLoc());
1348
1349      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1350                                             dl, DAG, VA, Flags));
1351    }
1352  }
1353
1354  if (!MemOpChains.empty())
1355    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1356                        &MemOpChains[0], MemOpChains.size());
1357
1358  // Build a sequence of copy-to-reg nodes chained together with token chain
1359  // and flag operands which copy the outgoing args into the appropriate regs.
1360  SDValue InFlag;
1361  // Tail call byval lowering might overwrite argument registers so in case of
1362  // tail call optimization the copies to registers are lowered later.
1363  if (!isTailCall)
1364    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1365      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1366                               RegsToPass[i].second, InFlag);
1367      InFlag = Chain.getValue(1);
1368    }
1369
1370  // For tail calls lower the arguments to the 'real' stack slot.
1371  if (isTailCall) {
1372    // Force all the incoming stack arguments to be loaded from the stack
1373    // before any new outgoing arguments are stored to the stack, because the
1374    // outgoing stack slots may alias the incoming argument stack slots, and
1375    // the alias isn't otherwise explicit. This is slightly more conservative
1376    // than necessary, because it means that each store effectively depends
1377    // on every argument instead of just those arguments it would clobber.
1378
1379    // Do not flag preceding copytoreg stuff together with the following stuff.
1380    InFlag = SDValue();
1381    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1382      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1383                               RegsToPass[i].second, InFlag);
1384      InFlag = Chain.getValue(1);
1385    }
1386    InFlag =SDValue();
1387  }
1388
1389  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1390  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1391  // node so that legalize doesn't hack it.
1392  bool isDirect = false;
1393  bool isARMFunc = false;
1394  bool isLocalARMFunc = false;
1395  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1396
1397  if (EnableARMLongCalls) {
1398    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1399            && "long-calls with non-static relocation model!");
1400    // Handle a global address or an external symbol. If it's not one of
1401    // those, the target's already in a register, so we don't need to do
1402    // anything extra.
1403    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1404      const GlobalValue *GV = G->getGlobal();
1405      // Create a constant pool entry for the callee address
1406      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1407      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1408                                                           ARMPCLabelIndex,
1409                                                           ARMCP::CPValue, 0);
1410      // Get the address of the callee into a register
1411      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1412      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1413      Callee = DAG.getLoad(getPointerTy(), dl,
1414                           DAG.getEntryNode(), CPAddr,
1415                           MachinePointerInfo::getConstantPool(),
1416                           false, false, 0);
1417    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1418      const char *Sym = S->getSymbol();
1419
1420      // Create a constant pool entry for the callee address
1421      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1422      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1423                                                       Sym, ARMPCLabelIndex, 0);
1424      // Get the address of the callee into a register
1425      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1426      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1427      Callee = DAG.getLoad(getPointerTy(), dl,
1428                           DAG.getEntryNode(), CPAddr,
1429                           MachinePointerInfo::getConstantPool(),
1430                           false, false, 0);
1431    }
1432  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1433    const GlobalValue *GV = G->getGlobal();
1434    isDirect = true;
1435    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1436    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1437                   getTargetMachine().getRelocationModel() != Reloc::Static;
1438    isARMFunc = !Subtarget->isThumb() || isStub;
1439    // ARM call to a local ARM function is predicable.
1440    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1441    // tBX takes a register source operand.
1442    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1443      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1444      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1445                                                           ARMPCLabelIndex,
1446                                                           ARMCP::CPValue, 4);
1447      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1448      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1449      Callee = DAG.getLoad(getPointerTy(), dl,
1450                           DAG.getEntryNode(), CPAddr,
1451                           MachinePointerInfo::getConstantPool(),
1452                           false, false, 0);
1453      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1454      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1455                           getPointerTy(), Callee, PICLabel);
1456    } else {
1457      // On ELF targets for PIC code, direct calls should go through the PLT
1458      unsigned OpFlags = 0;
1459      if (Subtarget->isTargetELF() &&
1460                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1461        OpFlags = ARMII::MO_PLT;
1462      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1463    }
1464  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1465    isDirect = true;
1466    bool isStub = Subtarget->isTargetDarwin() &&
1467                  getTargetMachine().getRelocationModel() != Reloc::Static;
1468    isARMFunc = !Subtarget->isThumb() || isStub;
1469    // tBX takes a register source operand.
1470    const char *Sym = S->getSymbol();
1471    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1472      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1473      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1474                                                       Sym, ARMPCLabelIndex, 4);
1475      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1476      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1477      Callee = DAG.getLoad(getPointerTy(), dl,
1478                           DAG.getEntryNode(), CPAddr,
1479                           MachinePointerInfo::getConstantPool(),
1480                           false, false, 0);
1481      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1482      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1483                           getPointerTy(), Callee, PICLabel);
1484    } else {
1485      unsigned OpFlags = 0;
1486      // On ELF targets for PIC code, direct calls should go through the PLT
1487      if (Subtarget->isTargetELF() &&
1488                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1489        OpFlags = ARMII::MO_PLT;
1490      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1491    }
1492  }
1493
1494  // FIXME: handle tail calls differently.
1495  unsigned CallOpc;
1496  if (Subtarget->isThumb()) {
1497    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1498      CallOpc = ARMISD::CALL_NOLINK;
1499    else
1500      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1501  } else {
1502    CallOpc = (isDirect || Subtarget->hasV5TOps())
1503      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
1504      : ARMISD::CALL_NOLINK;
1505  }
1506
1507  std::vector<SDValue> Ops;
1508  Ops.push_back(Chain);
1509  Ops.push_back(Callee);
1510
1511  // Add argument registers to the end of the list so that they are known live
1512  // into the call.
1513  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1514    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1515                                  RegsToPass[i].second.getValueType()));
1516
1517  if (InFlag.getNode())
1518    Ops.push_back(InFlag);
1519
1520  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1521  if (isTailCall)
1522    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1523
1524  // Returns a chain and a flag for retval copy to use.
1525  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1526  InFlag = Chain.getValue(1);
1527
1528  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1529                             DAG.getIntPtrConstant(0, true), InFlag);
1530  if (!Ins.empty())
1531    InFlag = Chain.getValue(1);
1532
1533  // Handle result values, copying them out of physregs into vregs that we
1534  // return.
1535  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1536                         dl, DAG, InVals);
1537}
1538
1539/// HandleByVal - Every parameter *after* a byval parameter is passed
1540/// on the stack.  Remember the next parameter register to allocate,
1541/// and then confiscate the rest of the parameter registers to insure
1542/// this.
1543void
1544llvm::ARMTargetLowering::HandleByVal(CCState *State, unsigned &size) const {
1545  unsigned reg = State->AllocateReg(GPRArgRegs, 4);
1546  assert((State->getCallOrPrologue() == Prologue ||
1547          State->getCallOrPrologue() == Call) &&
1548         "unhandled ParmContext");
1549  if ((!State->isFirstByValRegValid()) &&
1550      (ARM::R0 <= reg) && (reg <= ARM::R3)) {
1551    State->setFirstByValReg(reg);
1552    // At a call site, a byval parameter that is split between
1553    // registers and memory needs its size truncated here.  In a
1554    // function prologue, such byval parameters are reassembled in
1555    // memory, and are not truncated.
1556    if (State->getCallOrPrologue() == Call) {
1557      unsigned excess = 4 * (ARM::R4 - reg);
1558      assert(size >= excess && "expected larger existing stack allocation");
1559      size -= excess;
1560    }
1561  }
1562  // Confiscate any remaining parameter registers to preclude their
1563  // assignment to subsequent parameters.
1564  while (State->AllocateReg(GPRArgRegs, 4))
1565    ;
1566}
1567
1568/// MatchingStackOffset - Return true if the given stack call argument is
1569/// already available in the same position (relatively) of the caller's
1570/// incoming argument stack.
1571static
1572bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1573                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1574                         const ARMInstrInfo *TII) {
1575  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1576  int FI = INT_MAX;
1577  if (Arg.getOpcode() == ISD::CopyFromReg) {
1578    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1579    if (!TargetRegisterInfo::isVirtualRegister(VR))
1580      return false;
1581    MachineInstr *Def = MRI->getVRegDef(VR);
1582    if (!Def)
1583      return false;
1584    if (!Flags.isByVal()) {
1585      if (!TII->isLoadFromStackSlot(Def, FI))
1586        return false;
1587    } else {
1588      return false;
1589    }
1590  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1591    if (Flags.isByVal())
1592      // ByVal argument is passed in as a pointer but it's now being
1593      // dereferenced. e.g.
1594      // define @foo(%struct.X* %A) {
1595      //   tail call @bar(%struct.X* byval %A)
1596      // }
1597      return false;
1598    SDValue Ptr = Ld->getBasePtr();
1599    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1600    if (!FINode)
1601      return false;
1602    FI = FINode->getIndex();
1603  } else
1604    return false;
1605
1606  assert(FI != INT_MAX);
1607  if (!MFI->isFixedObjectIndex(FI))
1608    return false;
1609  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1610}
1611
1612/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1613/// for tail call optimization. Targets which want to do tail call
1614/// optimization should implement this function.
1615bool
1616ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1617                                                     CallingConv::ID CalleeCC,
1618                                                     bool isVarArg,
1619                                                     bool isCalleeStructRet,
1620                                                     bool isCallerStructRet,
1621                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1622                                    const SmallVectorImpl<SDValue> &OutVals,
1623                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1624                                                     SelectionDAG& DAG) const {
1625  const Function *CallerF = DAG.getMachineFunction().getFunction();
1626  CallingConv::ID CallerCC = CallerF->getCallingConv();
1627  bool CCMatch = CallerCC == CalleeCC;
1628
1629  // Look for obvious safe cases to perform tail call optimization that do not
1630  // require ABI changes. This is what gcc calls sibcall.
1631
1632  // Do not sibcall optimize vararg calls unless the call site is not passing
1633  // any arguments.
1634  if (isVarArg && !Outs.empty())
1635    return false;
1636
1637  // Also avoid sibcall optimization if either caller or callee uses struct
1638  // return semantics.
1639  if (isCalleeStructRet || isCallerStructRet)
1640    return false;
1641
1642  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1643  // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
1644  // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
1645  // support in the assembler and linker to be used. This would need to be
1646  // fixed to fully support tail calls in Thumb1.
1647  //
1648  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1649  // LR.  This means if we need to reload LR, it takes an extra instructions,
1650  // which outweighs the value of the tail call; but here we don't know yet
1651  // whether LR is going to be used.  Probably the right approach is to
1652  // generate the tail call here and turn it back into CALL/RET in
1653  // emitEpilogue if LR is used.
1654
1655  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1656  // but we need to make sure there are enough registers; the only valid
1657  // registers are the 4 used for parameters.  We don't currently do this
1658  // case.
1659  if (Subtarget->isThumb1Only())
1660    return false;
1661
1662  // If the calling conventions do not match, then we'd better make sure the
1663  // results are returned in the same way as what the caller expects.
1664  if (!CCMatch) {
1665    SmallVector<CCValAssign, 16> RVLocs1;
1666    ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
1667                       getTargetMachine(), RVLocs1, *DAG.getContext(), Call);
1668    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1669
1670    SmallVector<CCValAssign, 16> RVLocs2;
1671    ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
1672                       getTargetMachine(), RVLocs2, *DAG.getContext(), Call);
1673    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1674
1675    if (RVLocs1.size() != RVLocs2.size())
1676      return false;
1677    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1678      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1679        return false;
1680      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1681        return false;
1682      if (RVLocs1[i].isRegLoc()) {
1683        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1684          return false;
1685      } else {
1686        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1687          return false;
1688      }
1689    }
1690  }
1691
1692  // If the callee takes no arguments then go on to check the results of the
1693  // call.
1694  if (!Outs.empty()) {
1695    // Check if stack adjustment is needed. For now, do not do this if any
1696    // argument is passed on the stack.
1697    SmallVector<CCValAssign, 16> ArgLocs;
1698    ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
1699                      getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1700    CCInfo.AnalyzeCallOperands(Outs,
1701                               CCAssignFnForNode(CalleeCC, false, isVarArg));
1702    if (CCInfo.getNextStackOffset()) {
1703      MachineFunction &MF = DAG.getMachineFunction();
1704
1705      // Check if the arguments are already laid out in the right way as
1706      // the caller's fixed stack objects.
1707      MachineFrameInfo *MFI = MF.getFrameInfo();
1708      const MachineRegisterInfo *MRI = &MF.getRegInfo();
1709      const ARMInstrInfo *TII =
1710        ((ARMTargetMachine&)getTargetMachine()).getInstrInfo();
1711      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1712           i != e;
1713           ++i, ++realArgIdx) {
1714        CCValAssign &VA = ArgLocs[i];
1715        EVT RegVT = VA.getLocVT();
1716        SDValue Arg = OutVals[realArgIdx];
1717        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1718        if (VA.getLocInfo() == CCValAssign::Indirect)
1719          return false;
1720        if (VA.needsCustom()) {
1721          // f64 and vector types are split into multiple registers or
1722          // register/stack-slot combinations.  The types will not match
1723          // the registers; give up on memory f64 refs until we figure
1724          // out what to do about this.
1725          if (!VA.isRegLoc())
1726            return false;
1727          if (!ArgLocs[++i].isRegLoc())
1728            return false;
1729          if (RegVT == MVT::v2f64) {
1730            if (!ArgLocs[++i].isRegLoc())
1731              return false;
1732            if (!ArgLocs[++i].isRegLoc())
1733              return false;
1734          }
1735        } else if (!VA.isRegLoc()) {
1736          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
1737                                   MFI, MRI, TII))
1738            return false;
1739        }
1740      }
1741    }
1742  }
1743
1744  return true;
1745}
1746
1747SDValue
1748ARMTargetLowering::LowerReturn(SDValue Chain,
1749                               CallingConv::ID CallConv, bool isVarArg,
1750                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1751                               const SmallVectorImpl<SDValue> &OutVals,
1752                               DebugLoc dl, SelectionDAG &DAG) const {
1753
1754  // CCValAssign - represent the assignment of the return value to a location.
1755  SmallVector<CCValAssign, 16> RVLocs;
1756
1757  // CCState - Info about the registers and stack slots.
1758  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1759                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1760
1761  // Analyze outgoing return values.
1762  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1763                                               isVarArg));
1764
1765  // If this is the first return lowered for this function, add
1766  // the regs to the liveout set for the function.
1767  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1768    for (unsigned i = 0; i != RVLocs.size(); ++i)
1769      if (RVLocs[i].isRegLoc())
1770        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1771  }
1772
1773  SDValue Flag;
1774
1775  // Copy the result values into the output registers.
1776  for (unsigned i = 0, realRVLocIdx = 0;
1777       i != RVLocs.size();
1778       ++i, ++realRVLocIdx) {
1779    CCValAssign &VA = RVLocs[i];
1780    assert(VA.isRegLoc() && "Can only return in registers!");
1781
1782    SDValue Arg = OutVals[realRVLocIdx];
1783
1784    switch (VA.getLocInfo()) {
1785    default: llvm_unreachable("Unknown loc info!");
1786    case CCValAssign::Full: break;
1787    case CCValAssign::BCvt:
1788      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1789      break;
1790    }
1791
1792    if (VA.needsCustom()) {
1793      if (VA.getLocVT() == MVT::v2f64) {
1794        // Extract the first half and return it in two registers.
1795        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1796                                   DAG.getConstant(0, MVT::i32));
1797        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1798                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1799
1800        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1801        Flag = Chain.getValue(1);
1802        VA = RVLocs[++i]; // skip ahead to next loc
1803        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1804                                 HalfGPRs.getValue(1), Flag);
1805        Flag = Chain.getValue(1);
1806        VA = RVLocs[++i]; // skip ahead to next loc
1807
1808        // Extract the 2nd half and fall through to handle it as an f64 value.
1809        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1810                          DAG.getConstant(1, MVT::i32));
1811      }
1812      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1813      // available.
1814      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1815                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1816      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1817      Flag = Chain.getValue(1);
1818      VA = RVLocs[++i]; // skip ahead to next loc
1819      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1820                               Flag);
1821    } else
1822      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1823
1824    // Guarantee that all emitted copies are
1825    // stuck together, avoiding something bad.
1826    Flag = Chain.getValue(1);
1827  }
1828
1829  SDValue result;
1830  if (Flag.getNode())
1831    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1832  else // Return Void
1833    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1834
1835  return result;
1836}
1837
1838bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N) const {
1839  if (N->getNumValues() != 1)
1840    return false;
1841  if (!N->hasNUsesOfValue(1, 0))
1842    return false;
1843
1844  unsigned NumCopies = 0;
1845  SDNode* Copies[2];
1846  SDNode *Use = *N->use_begin();
1847  if (Use->getOpcode() == ISD::CopyToReg) {
1848    Copies[NumCopies++] = Use;
1849  } else if (Use->getOpcode() == ARMISD::VMOVRRD) {
1850    // f64 returned in a pair of GPRs.
1851    for (SDNode::use_iterator UI = Use->use_begin(), UE = Use->use_end();
1852         UI != UE; ++UI) {
1853      if (UI->getOpcode() != ISD::CopyToReg)
1854        return false;
1855      Copies[UI.getUse().getResNo()] = *UI;
1856      ++NumCopies;
1857    }
1858  } else if (Use->getOpcode() == ISD::BITCAST) {
1859    // f32 returned in a single GPR.
1860    if (!Use->hasNUsesOfValue(1, 0))
1861      return false;
1862    Use = *Use->use_begin();
1863    if (Use->getOpcode() != ISD::CopyToReg || !Use->hasNUsesOfValue(1, 0))
1864      return false;
1865    Copies[NumCopies++] = Use;
1866  } else {
1867    return false;
1868  }
1869
1870  if (NumCopies != 1 && NumCopies != 2)
1871    return false;
1872
1873  bool HasRet = false;
1874  for (unsigned i = 0; i < NumCopies; ++i) {
1875    SDNode *Copy = Copies[i];
1876    for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1877         UI != UE; ++UI) {
1878      if (UI->getOpcode() == ISD::CopyToReg) {
1879        SDNode *Use = *UI;
1880        if (Use == Copies[0] || Use == Copies[1])
1881          continue;
1882        return false;
1883      }
1884      if (UI->getOpcode() != ARMISD::RET_FLAG)
1885        return false;
1886      HasRet = true;
1887    }
1888  }
1889
1890  return HasRet;
1891}
1892
1893bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1894  if (!EnableARMTailCalls)
1895    return false;
1896
1897  if (!CI->isTailCall())
1898    return false;
1899
1900  return !Subtarget->isThumb1Only();
1901}
1902
1903// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1904// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
1905// one of the above mentioned nodes. It has to be wrapped because otherwise
1906// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1907// be used to form addressing mode. These wrapped nodes will be selected
1908// into MOVi.
1909static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1910  EVT PtrVT = Op.getValueType();
1911  // FIXME there is no actual debug info here
1912  DebugLoc dl = Op.getDebugLoc();
1913  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1914  SDValue Res;
1915  if (CP->isMachineConstantPoolEntry())
1916    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1917                                    CP->getAlignment());
1918  else
1919    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1920                                    CP->getAlignment());
1921  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1922}
1923
1924unsigned ARMTargetLowering::getJumpTableEncoding() const {
1925  return MachineJumpTableInfo::EK_Inline;
1926}
1927
1928SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
1929                                             SelectionDAG &DAG) const {
1930  MachineFunction &MF = DAG.getMachineFunction();
1931  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1932  unsigned ARMPCLabelIndex = 0;
1933  DebugLoc DL = Op.getDebugLoc();
1934  EVT PtrVT = getPointerTy();
1935  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1936  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1937  SDValue CPAddr;
1938  if (RelocM == Reloc::Static) {
1939    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
1940  } else {
1941    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1942    ARMPCLabelIndex = AFI->createPICLabelUId();
1943    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(BA, ARMPCLabelIndex,
1944                                                         ARMCP::CPBlockAddress,
1945                                                         PCAdj);
1946    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1947  }
1948  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
1949  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
1950                               MachinePointerInfo::getConstantPool(),
1951                               false, false, 0);
1952  if (RelocM == Reloc::Static)
1953    return Result;
1954  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1955  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
1956}
1957
1958// Lower ISD::GlobalTLSAddress using the "general dynamic" model
1959SDValue
1960ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1961                                                 SelectionDAG &DAG) const {
1962  DebugLoc dl = GA->getDebugLoc();
1963  EVT PtrVT = getPointerTy();
1964  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1965  MachineFunction &MF = DAG.getMachineFunction();
1966  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1967  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1968  ARMConstantPoolValue *CPV =
1969    new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1970                             ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
1971  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1972  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
1973  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
1974                         MachinePointerInfo::getConstantPool(),
1975                         false, false, 0);
1976  SDValue Chain = Argument.getValue(1);
1977
1978  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1979  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
1980
1981  // call __tls_get_addr.
1982  ArgListTy Args;
1983  ArgListEntry Entry;
1984  Entry.Node = Argument;
1985  Entry.Ty = (const Type *) Type::getInt32Ty(*DAG.getContext());
1986  Args.push_back(Entry);
1987  // FIXME: is there useful debug info available here?
1988  std::pair<SDValue, SDValue> CallResult =
1989    LowerCallTo(Chain, (const Type *) Type::getInt32Ty(*DAG.getContext()),
1990                false, false, false, false,
1991                0, CallingConv::C, false, /*isReturnValueUsed=*/true,
1992                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
1993  return CallResult.first;
1994}
1995
1996// Lower ISD::GlobalTLSAddress using the "initial exec" or
1997// "local exec" model.
1998SDValue
1999ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2000                                        SelectionDAG &DAG) const {
2001  const GlobalValue *GV = GA->getGlobal();
2002  DebugLoc dl = GA->getDebugLoc();
2003  SDValue Offset;
2004  SDValue Chain = DAG.getEntryNode();
2005  EVT PtrVT = getPointerTy();
2006  // Get the Thread Pointer
2007  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2008
2009  if (GV->isDeclaration()) {
2010    MachineFunction &MF = DAG.getMachineFunction();
2011    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2012    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2013    // Initial exec model.
2014    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2015    ARMConstantPoolValue *CPV =
2016      new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
2017                               ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF, true);
2018    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2019    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2020    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2021                         MachinePointerInfo::getConstantPool(),
2022                         false, false, 0);
2023    Chain = Offset.getValue(1);
2024
2025    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2026    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2027
2028    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2029                         MachinePointerInfo::getConstantPool(),
2030                         false, false, 0);
2031  } else {
2032    // local exec model
2033    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMCP::TPOFF);
2034    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2035    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2036    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2037                         MachinePointerInfo::getConstantPool(),
2038                         false, false, 0);
2039  }
2040
2041  // The address of the thread local variable is the add of the thread
2042  // pointer with the offset of the variable.
2043  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2044}
2045
2046SDValue
2047ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
2048  // TODO: implement the "local dynamic" model
2049  assert(Subtarget->isTargetELF() &&
2050         "TLS not implemented for non-ELF targets");
2051  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2052  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
2053  // otherwise use the "Local Exec" TLS Model
2054  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
2055    return LowerToTLSGeneralDynamicModel(GA, DAG);
2056  else
2057    return LowerToTLSExecModels(GA, DAG);
2058}
2059
2060SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
2061                                                 SelectionDAG &DAG) const {
2062  EVT PtrVT = getPointerTy();
2063  DebugLoc dl = Op.getDebugLoc();
2064  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2065  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2066  if (RelocM == Reloc::PIC_) {
2067    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
2068    ARMConstantPoolValue *CPV =
2069      new ARMConstantPoolValue(GV, UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
2070    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2071    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2072    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
2073                                 CPAddr,
2074                                 MachinePointerInfo::getConstantPool(),
2075                                 false, false, 0);
2076    SDValue Chain = Result.getValue(1);
2077    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2078    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
2079    if (!UseGOTOFF)
2080      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
2081                           MachinePointerInfo::getGOT(), false, false, 0);
2082    return Result;
2083  }
2084
2085  // If we have T2 ops, we can materialize the address directly via movt/movw
2086  // pair. This is always cheaper.
2087  if (Subtarget->useMovt()) {
2088    ++NumMovwMovt;
2089    // FIXME: Once remat is capable of dealing with instructions with register
2090    // operands, expand this into two nodes.
2091    return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2092                       DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2093  } else {
2094    SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2095    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2096    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2097                       MachinePointerInfo::getConstantPool(),
2098                       false, false, 0);
2099  }
2100}
2101
2102SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
2103                                                    SelectionDAG &DAG) const {
2104  EVT PtrVT = getPointerTy();
2105  DebugLoc dl = Op.getDebugLoc();
2106  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2107  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2108  MachineFunction &MF = DAG.getMachineFunction();
2109  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2110
2111  // FIXME: Enable this for static codegen when tool issues are fixed.
2112  if (Subtarget->useMovt() && RelocM != Reloc::Static) {
2113    ++NumMovwMovt;
2114    // FIXME: Once remat is capable of dealing with instructions with register
2115    // operands, expand this into two nodes.
2116    if (RelocM == Reloc::Static)
2117      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2118                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2119
2120    unsigned Wrapper = (RelocM == Reloc::PIC_)
2121      ? ARMISD::WrapperPIC : ARMISD::WrapperDYN;
2122    SDValue Result = DAG.getNode(Wrapper, dl, PtrVT,
2123                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2124    if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2125      Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
2126                           MachinePointerInfo::getGOT(), false, false, 0);
2127    return Result;
2128  }
2129
2130  unsigned ARMPCLabelIndex = 0;
2131  SDValue CPAddr;
2132  if (RelocM == Reloc::Static) {
2133    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2134  } else {
2135    ARMPCLabelIndex = AFI->createPICLabelUId();
2136    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
2137    ARMConstantPoolValue *CPV =
2138      new ARMConstantPoolValue(GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj);
2139    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2140  }
2141  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2142
2143  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2144                               MachinePointerInfo::getConstantPool(),
2145                               false, false, 0);
2146  SDValue Chain = Result.getValue(1);
2147
2148  if (RelocM == Reloc::PIC_) {
2149    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2150    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2151  }
2152
2153  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2154    Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
2155                         false, false, 0);
2156
2157  return Result;
2158}
2159
2160SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
2161                                                    SelectionDAG &DAG) const {
2162  assert(Subtarget->isTargetELF() &&
2163         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
2164  MachineFunction &MF = DAG.getMachineFunction();
2165  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2166  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2167  EVT PtrVT = getPointerTy();
2168  DebugLoc dl = Op.getDebugLoc();
2169  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2170  ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
2171                                                       "_GLOBAL_OFFSET_TABLE_",
2172                                                       ARMPCLabelIndex, PCAdj);
2173  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2174  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2175  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2176                               MachinePointerInfo::getConstantPool(),
2177                               false, false, 0);
2178  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2179  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2180}
2181
2182SDValue
2183ARMTargetLowering::LowerEH_SJLJ_DISPATCHSETUP(SDValue Op, SelectionDAG &DAG)
2184  const {
2185  DebugLoc dl = Op.getDebugLoc();
2186  return DAG.getNode(ARMISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
2187                     Op.getOperand(0), Op.getOperand(1));
2188}
2189
2190SDValue
2191ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
2192  DebugLoc dl = Op.getDebugLoc();
2193  SDValue Val = DAG.getConstant(0, MVT::i32);
2194  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(0),
2195                     Op.getOperand(1), Val);
2196}
2197
2198SDValue
2199ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
2200  DebugLoc dl = Op.getDebugLoc();
2201  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
2202                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
2203}
2204
2205SDValue
2206ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
2207                                          const ARMSubtarget *Subtarget) const {
2208  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2209  DebugLoc dl = Op.getDebugLoc();
2210  switch (IntNo) {
2211  default: return SDValue();    // Don't custom lower most intrinsics.
2212  case Intrinsic::arm_thread_pointer: {
2213    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2214    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2215  }
2216  case Intrinsic::eh_sjlj_lsda: {
2217    MachineFunction &MF = DAG.getMachineFunction();
2218    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2219    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2220    EVT PtrVT = getPointerTy();
2221    DebugLoc dl = Op.getDebugLoc();
2222    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2223    SDValue CPAddr;
2224    unsigned PCAdj = (RelocM != Reloc::PIC_)
2225      ? 0 : (Subtarget->isThumb() ? 4 : 8);
2226    ARMConstantPoolValue *CPV =
2227      new ARMConstantPoolValue(MF.getFunction(), ARMPCLabelIndex,
2228                               ARMCP::CPLSDA, PCAdj);
2229    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2230    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2231    SDValue Result =
2232      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2233                  MachinePointerInfo::getConstantPool(),
2234                  false, false, 0);
2235
2236    if (RelocM == Reloc::PIC_) {
2237      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2238      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2239    }
2240    return Result;
2241  }
2242  case Intrinsic::arm_neon_vmulls:
2243  case Intrinsic::arm_neon_vmullu: {
2244    unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
2245      ? ARMISD::VMULLs : ARMISD::VMULLu;
2246    return DAG.getNode(NewOpc, Op.getDebugLoc(), Op.getValueType(),
2247                       Op.getOperand(1), Op.getOperand(2));
2248  }
2249  }
2250}
2251
2252static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
2253                               const ARMSubtarget *Subtarget) {
2254  DebugLoc dl = Op.getDebugLoc();
2255  if (!Subtarget->hasDataBarrier()) {
2256    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2257    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2258    // here.
2259    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2260           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2261    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2262                       DAG.getConstant(0, MVT::i32));
2263  }
2264
2265  SDValue Op5 = Op.getOperand(5);
2266  bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0;
2267  unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2268  unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2269  bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0);
2270
2271  ARM_MB::MemBOpt DMBOpt;
2272  if (isDeviceBarrier)
2273    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY;
2274  else
2275    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH;
2276  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2277                     DAG.getConstant(DMBOpt, MVT::i32));
2278}
2279
2280static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
2281                             const ARMSubtarget *Subtarget) {
2282  // ARM pre v5TE and Thumb1 does not have preload instructions.
2283  if (!(Subtarget->isThumb2() ||
2284        (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
2285    // Just preserve the chain.
2286    return Op.getOperand(0);
2287
2288  DebugLoc dl = Op.getDebugLoc();
2289  unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
2290  if (!isRead &&
2291      (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
2292    // ARMv7 with MP extension has PLDW.
2293    return Op.getOperand(0);
2294
2295  unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2296  if (Subtarget->isThumb()) {
2297    // Invert the bits.
2298    isRead = ~isRead & 1;
2299    isData = ~isData & 1;
2300  }
2301
2302  return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
2303                     Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
2304                     DAG.getConstant(isData, MVT::i32));
2305}
2306
2307static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2308  MachineFunction &MF = DAG.getMachineFunction();
2309  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2310
2311  // vastart just stores the address of the VarArgsFrameIndex slot into the
2312  // memory location argument.
2313  DebugLoc dl = Op.getDebugLoc();
2314  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2315  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2316  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2317  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2318                      MachinePointerInfo(SV), false, false, 0);
2319}
2320
2321SDValue
2322ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2323                                        SDValue &Root, SelectionDAG &DAG,
2324                                        DebugLoc dl) const {
2325  MachineFunction &MF = DAG.getMachineFunction();
2326  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2327
2328  TargetRegisterClass *RC;
2329  if (AFI->isThumb1OnlyFunction())
2330    RC = ARM::tGPRRegisterClass;
2331  else
2332    RC = ARM::GPRRegisterClass;
2333
2334  // Transform the arguments stored in physical registers into virtual ones.
2335  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2336  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2337
2338  SDValue ArgValue2;
2339  if (NextVA.isMemLoc()) {
2340    MachineFrameInfo *MFI = MF.getFrameInfo();
2341    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2342
2343    // Create load node to retrieve arguments from the stack.
2344    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2345    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2346                            MachinePointerInfo::getFixedStack(FI),
2347                            false, false, 0);
2348  } else {
2349    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2350    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2351  }
2352
2353  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2354}
2355
2356void
2357ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
2358                                  unsigned &VARegSize, unsigned &VARegSaveSize)
2359  const {
2360  unsigned NumGPRs;
2361  if (CCInfo.isFirstByValRegValid())
2362    NumGPRs = ARM::R4 - CCInfo.getFirstByValReg();
2363  else {
2364    unsigned int firstUnalloced;
2365    firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs,
2366                                                sizeof(GPRArgRegs) /
2367                                                sizeof(GPRArgRegs[0]));
2368    NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
2369  }
2370
2371  unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
2372  VARegSize = NumGPRs * 4;
2373  VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
2374}
2375
2376// The remaining GPRs hold either the beginning of variable-argument
2377// data, or the beginning of an aggregate passed by value (usuall
2378// byval).  Either way, we allocate stack slots adjacent to the data
2379// provided by our caller, and store the unallocated registers there.
2380// If this is a variadic function, the va_list pointer will begin with
2381// these values; otherwise, this reassembles a (byval) structure that
2382// was split between registers and memory.
2383void
2384ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
2385                                        DebugLoc dl, SDValue &Chain,
2386                                        unsigned ArgOffset) const {
2387  MachineFunction &MF = DAG.getMachineFunction();
2388  MachineFrameInfo *MFI = MF.getFrameInfo();
2389  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2390  unsigned firstRegToSaveIndex;
2391  if (CCInfo.isFirstByValRegValid())
2392    firstRegToSaveIndex = CCInfo.getFirstByValReg() - ARM::R0;
2393  else {
2394    firstRegToSaveIndex = CCInfo.getFirstUnallocated
2395      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2396  }
2397
2398  unsigned VARegSize, VARegSaveSize;
2399  computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2400  if (VARegSaveSize) {
2401    // If this function is vararg, store any remaining integer argument regs
2402    // to their spots on the stack so that they may be loaded by deferencing
2403    // the result of va_next.
2404    AFI->setVarArgsRegSaveSize(VARegSaveSize);
2405    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(VARegSaveSize,
2406                                                     ArgOffset + VARegSaveSize
2407                                                     - VARegSize,
2408                                                     false));
2409    SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
2410                                    getPointerTy());
2411
2412    SmallVector<SDValue, 4> MemOps;
2413    for (; firstRegToSaveIndex < 4; ++firstRegToSaveIndex) {
2414      TargetRegisterClass *RC;
2415      if (AFI->isThumb1OnlyFunction())
2416        RC = ARM::tGPRRegisterClass;
2417      else
2418        RC = ARM::GPRRegisterClass;
2419
2420      unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC);
2421      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2422      SDValue Store =
2423        DAG.getStore(Val.getValue(1), dl, Val, FIN,
2424                 MachinePointerInfo::getFixedStack(AFI->getVarArgsFrameIndex()),
2425                     false, false, 0);
2426      MemOps.push_back(Store);
2427      FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2428                        DAG.getConstant(4, getPointerTy()));
2429    }
2430    if (!MemOps.empty())
2431      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2432                          &MemOps[0], MemOps.size());
2433  } else
2434    // This will point to the next argument passed via stack.
2435    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
2436}
2437
2438SDValue
2439ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2440                                        CallingConv::ID CallConv, bool isVarArg,
2441                                        const SmallVectorImpl<ISD::InputArg>
2442                                          &Ins,
2443                                        DebugLoc dl, SelectionDAG &DAG,
2444                                        SmallVectorImpl<SDValue> &InVals)
2445                                          const {
2446  MachineFunction &MF = DAG.getMachineFunction();
2447  MachineFrameInfo *MFI = MF.getFrameInfo();
2448
2449  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2450
2451  // Assign locations to all of the incoming arguments.
2452  SmallVector<CCValAssign, 16> ArgLocs;
2453  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2454                    getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue);
2455  CCInfo.AnalyzeFormalArguments(Ins,
2456                                CCAssignFnForNode(CallConv, /* Return*/ false,
2457                                                  isVarArg));
2458
2459  SmallVector<SDValue, 16> ArgValues;
2460  int lastInsIndex = -1;
2461
2462  SDValue ArgValue;
2463  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2464    CCValAssign &VA = ArgLocs[i];
2465
2466    // Arguments stored in registers.
2467    if (VA.isRegLoc()) {
2468      EVT RegVT = VA.getLocVT();
2469
2470      if (VA.needsCustom()) {
2471        // f64 and vector types are split up into multiple registers or
2472        // combinations of registers and stack slots.
2473        if (VA.getLocVT() == MVT::v2f64) {
2474          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2475                                                   Chain, DAG, dl);
2476          VA = ArgLocs[++i]; // skip ahead to next loc
2477          SDValue ArgValue2;
2478          if (VA.isMemLoc()) {
2479            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2480            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2481            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2482                                    MachinePointerInfo::getFixedStack(FI),
2483                                    false, false, 0);
2484          } else {
2485            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2486                                             Chain, DAG, dl);
2487          }
2488          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2489          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2490                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2491          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2492                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2493        } else
2494          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2495
2496      } else {
2497        TargetRegisterClass *RC;
2498
2499        if (RegVT == MVT::f32)
2500          RC = ARM::SPRRegisterClass;
2501        else if (RegVT == MVT::f64)
2502          RC = ARM::DPRRegisterClass;
2503        else if (RegVT == MVT::v2f64)
2504          RC = ARM::QPRRegisterClass;
2505        else if (RegVT == MVT::i32)
2506          RC = (AFI->isThumb1OnlyFunction() ?
2507                ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
2508        else
2509          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2510
2511        // Transform the arguments in physical registers into virtual ones.
2512        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2513        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2514      }
2515
2516      // If this is an 8 or 16-bit value, it is really passed promoted
2517      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2518      // truncate to the right size.
2519      switch (VA.getLocInfo()) {
2520      default: llvm_unreachable("Unknown loc info!");
2521      case CCValAssign::Full: break;
2522      case CCValAssign::BCvt:
2523        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2524        break;
2525      case CCValAssign::SExt:
2526        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2527                               DAG.getValueType(VA.getValVT()));
2528        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2529        break;
2530      case CCValAssign::ZExt:
2531        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2532                               DAG.getValueType(VA.getValVT()));
2533        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2534        break;
2535      }
2536
2537      InVals.push_back(ArgValue);
2538
2539    } else { // VA.isRegLoc()
2540
2541      // sanity check
2542      assert(VA.isMemLoc());
2543      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2544
2545      int index = ArgLocs[i].getValNo();
2546
2547      // Some Ins[] entries become multiple ArgLoc[] entries.
2548      // Process them only once.
2549      if (index != lastInsIndex)
2550        {
2551          ISD::ArgFlagsTy Flags = Ins[index].Flags;
2552          // FIXME: For now, all byval parameter objects are marked mutable.
2553          // This can be changed with more analysis.
2554          // In case of tail call optimization mark all arguments mutable.
2555          // Since they could be overwritten by lowering of arguments in case of
2556          // a tail call.
2557          if (Flags.isByVal()) {
2558            unsigned VARegSize, VARegSaveSize;
2559            computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2560            VarArgStyleRegisters(CCInfo, DAG, dl, Chain, 0);
2561            unsigned Bytes = Flags.getByValSize() - VARegSize;
2562            if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
2563            int FI = MFI->CreateFixedObject(Bytes,
2564                                            VA.getLocMemOffset(), false);
2565            InVals.push_back(DAG.getFrameIndex(FI, getPointerTy()));
2566          } else {
2567            int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
2568                                            VA.getLocMemOffset(), true);
2569
2570            // Create load nodes to retrieve arguments from the stack.
2571            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2572            InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2573                                         MachinePointerInfo::getFixedStack(FI),
2574                                         false, false, 0));
2575          }
2576          lastInsIndex = index;
2577        }
2578    }
2579  }
2580
2581  // varargs
2582  if (isVarArg)
2583    VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.getNextStackOffset());
2584
2585  return Chain;
2586}
2587
2588/// isFloatingPointZero - Return true if this is +0.0.
2589static bool isFloatingPointZero(SDValue Op) {
2590  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2591    return CFP->getValueAPF().isPosZero();
2592  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2593    // Maybe this has already been legalized into the constant pool?
2594    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2595      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2596      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2597        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2598          return CFP->getValueAPF().isPosZero();
2599    }
2600  }
2601  return false;
2602}
2603
2604/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2605/// the given operands.
2606SDValue
2607ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2608                             SDValue &ARMcc, SelectionDAG &DAG,
2609                             DebugLoc dl) const {
2610  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2611    unsigned C = RHSC->getZExtValue();
2612    if (!isLegalICmpImmediate(C)) {
2613      // Constant does not fit, try adjusting it by one?
2614      switch (CC) {
2615      default: break;
2616      case ISD::SETLT:
2617      case ISD::SETGE:
2618        if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
2619          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2620          RHS = DAG.getConstant(C-1, MVT::i32);
2621        }
2622        break;
2623      case ISD::SETULT:
2624      case ISD::SETUGE:
2625        if (C != 0 && isLegalICmpImmediate(C-1)) {
2626          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2627          RHS = DAG.getConstant(C-1, MVT::i32);
2628        }
2629        break;
2630      case ISD::SETLE:
2631      case ISD::SETGT:
2632        if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
2633          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2634          RHS = DAG.getConstant(C+1, MVT::i32);
2635        }
2636        break;
2637      case ISD::SETULE:
2638      case ISD::SETUGT:
2639        if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
2640          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2641          RHS = DAG.getConstant(C+1, MVT::i32);
2642        }
2643        break;
2644      }
2645    }
2646  }
2647
2648  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2649  ARMISD::NodeType CompareType;
2650  switch (CondCode) {
2651  default:
2652    CompareType = ARMISD::CMP;
2653    break;
2654  case ARMCC::EQ:
2655  case ARMCC::NE:
2656    // Uses only Z Flag
2657    CompareType = ARMISD::CMPZ;
2658    break;
2659  }
2660  ARMcc = DAG.getConstant(CondCode, MVT::i32);
2661  return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
2662}
2663
2664/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
2665SDValue
2666ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
2667                             DebugLoc dl) const {
2668  SDValue Cmp;
2669  if (!isFloatingPointZero(RHS))
2670    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
2671  else
2672    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
2673  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
2674}
2675
2676/// duplicateCmp - Glue values can have only one use, so this function
2677/// duplicates a comparison node.
2678SDValue
2679ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
2680  unsigned Opc = Cmp.getOpcode();
2681  DebugLoc DL = Cmp.getDebugLoc();
2682  if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
2683    return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2684
2685  assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
2686  Cmp = Cmp.getOperand(0);
2687  Opc = Cmp.getOpcode();
2688  if (Opc == ARMISD::CMPFP)
2689    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2690  else {
2691    assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
2692    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
2693  }
2694  return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
2695}
2696
2697SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2698  SDValue Cond = Op.getOperand(0);
2699  SDValue SelectTrue = Op.getOperand(1);
2700  SDValue SelectFalse = Op.getOperand(2);
2701  DebugLoc dl = Op.getDebugLoc();
2702
2703  // Convert:
2704  //
2705  //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
2706  //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
2707  //
2708  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
2709    const ConstantSDNode *CMOVTrue =
2710      dyn_cast<ConstantSDNode>(Cond.getOperand(0));
2711    const ConstantSDNode *CMOVFalse =
2712      dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2713
2714    if (CMOVTrue && CMOVFalse) {
2715      unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
2716      unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
2717
2718      SDValue True;
2719      SDValue False;
2720      if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
2721        True = SelectTrue;
2722        False = SelectFalse;
2723      } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
2724        True = SelectFalse;
2725        False = SelectTrue;
2726      }
2727
2728      if (True.getNode() && False.getNode()) {
2729        EVT VT = Op.getValueType();
2730        SDValue ARMcc = Cond.getOperand(2);
2731        SDValue CCR = Cond.getOperand(3);
2732        SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
2733        assert(True.getValueType() == VT);
2734        return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
2735      }
2736    }
2737  }
2738
2739  return DAG.getSelectCC(dl, Cond,
2740                         DAG.getConstant(0, Cond.getValueType()),
2741                         SelectTrue, SelectFalse, ISD::SETNE);
2742}
2743
2744SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2745  EVT VT = Op.getValueType();
2746  SDValue LHS = Op.getOperand(0);
2747  SDValue RHS = Op.getOperand(1);
2748  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2749  SDValue TrueVal = Op.getOperand(2);
2750  SDValue FalseVal = Op.getOperand(3);
2751  DebugLoc dl = Op.getDebugLoc();
2752
2753  if (LHS.getValueType() == MVT::i32) {
2754    SDValue ARMcc;
2755    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2756    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2757    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp);
2758  }
2759
2760  ARMCC::CondCodes CondCode, CondCode2;
2761  FPCCToARMCC(CC, CondCode, CondCode2);
2762
2763  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2764  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2765  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2766  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
2767                               ARMcc, CCR, Cmp);
2768  if (CondCode2 != ARMCC::AL) {
2769    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
2770    // FIXME: Needs another CMP because flag can have but one use.
2771    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
2772    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
2773                         Result, TrueVal, ARMcc2, CCR, Cmp2);
2774  }
2775  return Result;
2776}
2777
2778/// canChangeToInt - Given the fp compare operand, return true if it is suitable
2779/// to morph to an integer compare sequence.
2780static bool canChangeToInt(SDValue Op, bool &SeenZero,
2781                           const ARMSubtarget *Subtarget) {
2782  SDNode *N = Op.getNode();
2783  if (!N->hasOneUse())
2784    // Otherwise it requires moving the value from fp to integer registers.
2785    return false;
2786  if (!N->getNumValues())
2787    return false;
2788  EVT VT = Op.getValueType();
2789  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
2790    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
2791    // vmrs are very slow, e.g. cortex-a8.
2792    return false;
2793
2794  if (isFloatingPointZero(Op)) {
2795    SeenZero = true;
2796    return true;
2797  }
2798  return ISD::isNormalLoad(N);
2799}
2800
2801static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
2802  if (isFloatingPointZero(Op))
2803    return DAG.getConstant(0, MVT::i32);
2804
2805  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
2806    return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2807                       Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
2808                       Ld->isVolatile(), Ld->isNonTemporal(),
2809                       Ld->getAlignment());
2810
2811  llvm_unreachable("Unknown VFP cmp argument!");
2812}
2813
2814static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
2815                           SDValue &RetVal1, SDValue &RetVal2) {
2816  if (isFloatingPointZero(Op)) {
2817    RetVal1 = DAG.getConstant(0, MVT::i32);
2818    RetVal2 = DAG.getConstant(0, MVT::i32);
2819    return;
2820  }
2821
2822  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
2823    SDValue Ptr = Ld->getBasePtr();
2824    RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2825                          Ld->getChain(), Ptr,
2826                          Ld->getPointerInfo(),
2827                          Ld->isVolatile(), Ld->isNonTemporal(),
2828                          Ld->getAlignment());
2829
2830    EVT PtrType = Ptr.getValueType();
2831    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
2832    SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
2833                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
2834    RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2835                          Ld->getChain(), NewPtr,
2836                          Ld->getPointerInfo().getWithOffset(4),
2837                          Ld->isVolatile(), Ld->isNonTemporal(),
2838                          NewAlign);
2839    return;
2840  }
2841
2842  llvm_unreachable("Unknown VFP cmp argument!");
2843}
2844
2845/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
2846/// f32 and even f64 comparisons to integer ones.
2847SDValue
2848ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
2849  SDValue Chain = Op.getOperand(0);
2850  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2851  SDValue LHS = Op.getOperand(2);
2852  SDValue RHS = Op.getOperand(3);
2853  SDValue Dest = Op.getOperand(4);
2854  DebugLoc dl = Op.getDebugLoc();
2855
2856  bool SeenZero = false;
2857  if (canChangeToInt(LHS, SeenZero, Subtarget) &&
2858      canChangeToInt(RHS, SeenZero, Subtarget) &&
2859      // If one of the operand is zero, it's safe to ignore the NaN case since
2860      // we only care about equality comparisons.
2861      (SeenZero || (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS)))) {
2862    // If unsafe fp math optimization is enabled and there are no other uses of
2863    // the CMP operands, and the condition code is EQ or NE, we can optimize it
2864    // to an integer comparison.
2865    if (CC == ISD::SETOEQ)
2866      CC = ISD::SETEQ;
2867    else if (CC == ISD::SETUNE)
2868      CC = ISD::SETNE;
2869
2870    SDValue ARMcc;
2871    if (LHS.getValueType() == MVT::f32) {
2872      LHS = bitcastf32Toi32(LHS, DAG);
2873      RHS = bitcastf32Toi32(RHS, DAG);
2874      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2875      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2876      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2877                         Chain, Dest, ARMcc, CCR, Cmp);
2878    }
2879
2880    SDValue LHS1, LHS2;
2881    SDValue RHS1, RHS2;
2882    expandf64Toi32(LHS, DAG, LHS1, LHS2);
2883    expandf64Toi32(RHS, DAG, RHS1, RHS2);
2884    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2885    ARMcc = DAG.getConstant(CondCode, MVT::i32);
2886    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
2887    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
2888    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
2889  }
2890
2891  return SDValue();
2892}
2893
2894SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2895  SDValue Chain = Op.getOperand(0);
2896  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2897  SDValue LHS = Op.getOperand(2);
2898  SDValue RHS = Op.getOperand(3);
2899  SDValue Dest = Op.getOperand(4);
2900  DebugLoc dl = Op.getDebugLoc();
2901
2902  if (LHS.getValueType() == MVT::i32) {
2903    SDValue ARMcc;
2904    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2905    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2906    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2907                       Chain, Dest, ARMcc, CCR, Cmp);
2908  }
2909
2910  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
2911
2912  if (UnsafeFPMath &&
2913      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
2914       CC == ISD::SETNE || CC == ISD::SETUNE)) {
2915    SDValue Result = OptimizeVFPBrcond(Op, DAG);
2916    if (Result.getNode())
2917      return Result;
2918  }
2919
2920  ARMCC::CondCodes CondCode, CondCode2;
2921  FPCCToARMCC(CC, CondCode, CondCode2);
2922
2923  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2924  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2925  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2926  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
2927  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
2928  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2929  if (CondCode2 != ARMCC::AL) {
2930    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
2931    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
2932    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2933  }
2934  return Res;
2935}
2936
2937SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
2938  SDValue Chain = Op.getOperand(0);
2939  SDValue Table = Op.getOperand(1);
2940  SDValue Index = Op.getOperand(2);
2941  DebugLoc dl = Op.getDebugLoc();
2942
2943  EVT PTy = getPointerTy();
2944  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
2945  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
2946  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
2947  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
2948  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
2949  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
2950  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2951  if (Subtarget->isThumb2()) {
2952    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
2953    // which does another jump to the destination. This also makes it easier
2954    // to translate it to TBB / TBH later.
2955    // FIXME: This might not work if the function is extremely large.
2956    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
2957                       Addr, Op.getOperand(2), JTI, UId);
2958  }
2959  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2960    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
2961                       MachinePointerInfo::getJumpTable(),
2962                       false, false, 0);
2963    Chain = Addr.getValue(1);
2964    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
2965    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2966  } else {
2967    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
2968                       MachinePointerInfo::getJumpTable(), false, false, 0);
2969    Chain = Addr.getValue(1);
2970    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2971  }
2972}
2973
2974static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
2975  DebugLoc dl = Op.getDebugLoc();
2976  unsigned Opc;
2977
2978  switch (Op.getOpcode()) {
2979  default:
2980    assert(0 && "Invalid opcode!");
2981  case ISD::FP_TO_SINT:
2982    Opc = ARMISD::FTOSI;
2983    break;
2984  case ISD::FP_TO_UINT:
2985    Opc = ARMISD::FTOUI;
2986    break;
2987  }
2988  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
2989  return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
2990}
2991
2992static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2993  EVT VT = Op.getValueType();
2994  DebugLoc dl = Op.getDebugLoc();
2995
2996  EVT OperandVT = Op.getOperand(0).getValueType();
2997  assert(OperandVT == MVT::v4i16 && "Invalid type for custom lowering!");
2998  if (VT != MVT::v4f32)
2999    return DAG.UnrollVectorOp(Op.getNode());
3000
3001  unsigned CastOpc;
3002  unsigned Opc;
3003  switch (Op.getOpcode()) {
3004  default:
3005    assert(0 && "Invalid opcode!");
3006  case ISD::SINT_TO_FP:
3007    CastOpc = ISD::SIGN_EXTEND;
3008    Opc = ISD::SINT_TO_FP;
3009    break;
3010  case ISD::UINT_TO_FP:
3011    CastOpc = ISD::ZERO_EXTEND;
3012    Opc = ISD::UINT_TO_FP;
3013    break;
3014  }
3015
3016  Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
3017  return DAG.getNode(Opc, dl, VT, Op);
3018}
3019
3020static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3021  EVT VT = Op.getValueType();
3022  if (VT.isVector())
3023    return LowerVectorINT_TO_FP(Op, DAG);
3024
3025  DebugLoc dl = Op.getDebugLoc();
3026  unsigned Opc;
3027
3028  switch (Op.getOpcode()) {
3029  default:
3030    assert(0 && "Invalid opcode!");
3031  case ISD::SINT_TO_FP:
3032    Opc = ARMISD::SITOF;
3033    break;
3034  case ISD::UINT_TO_FP:
3035    Opc = ARMISD::UITOF;
3036    break;
3037  }
3038
3039  Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
3040  return DAG.getNode(Opc, dl, VT, Op);
3041}
3042
3043SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
3044  // Implement fcopysign with a fabs and a conditional fneg.
3045  SDValue Tmp0 = Op.getOperand(0);
3046  SDValue Tmp1 = Op.getOperand(1);
3047  DebugLoc dl = Op.getDebugLoc();
3048  EVT VT = Op.getValueType();
3049  EVT SrcVT = Tmp1.getValueType();
3050  bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
3051    Tmp0.getOpcode() == ARMISD::VMOVDRR;
3052  bool UseNEON = !InGPR && Subtarget->hasNEON();
3053
3054  if (UseNEON) {
3055    // Use VBSL to copy the sign bit.
3056    unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
3057    SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
3058                               DAG.getTargetConstant(EncodedVal, MVT::i32));
3059    EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
3060    if (VT == MVT::f64)
3061      Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3062                         DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
3063                         DAG.getConstant(32, MVT::i32));
3064    else /*if (VT == MVT::f32)*/
3065      Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
3066    if (SrcVT == MVT::f32) {
3067      Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
3068      if (VT == MVT::f64)
3069        Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3070                           DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
3071                           DAG.getConstant(32, MVT::i32));
3072    } else if (VT == MVT::f32)
3073      Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
3074                         DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
3075                         DAG.getConstant(32, MVT::i32));
3076    Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
3077    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
3078
3079    SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
3080                                            MVT::i32);
3081    AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
3082    SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
3083                                  DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
3084
3085    SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
3086                              DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
3087                              DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
3088    if (VT == MVT::f32) {
3089      Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
3090      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
3091                        DAG.getConstant(0, MVT::i32));
3092    } else {
3093      Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
3094    }
3095
3096    return Res;
3097  }
3098
3099  // Bitcast operand 1 to i32.
3100  if (SrcVT == MVT::f64)
3101    Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3102                       &Tmp1, 1).getValue(1);
3103  Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
3104
3105  // Or in the signbit with integer operations.
3106  SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
3107  SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
3108  Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
3109  if (VT == MVT::f32) {
3110    Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
3111                       DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
3112    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3113                       DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
3114  }
3115
3116  // f64: Or the high part with signbit and then combine two parts.
3117  Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3118                     &Tmp0, 1);
3119  SDValue Lo = Tmp0.getValue(0);
3120  SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
3121  Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
3122  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
3123}
3124
3125SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
3126  MachineFunction &MF = DAG.getMachineFunction();
3127  MachineFrameInfo *MFI = MF.getFrameInfo();
3128  MFI->setReturnAddressIsTaken(true);
3129
3130  EVT VT = Op.getValueType();
3131  DebugLoc dl = Op.getDebugLoc();
3132  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3133  if (Depth) {
3134    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
3135    SDValue Offset = DAG.getConstant(4, MVT::i32);
3136    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
3137                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
3138                       MachinePointerInfo(), false, false, 0);
3139  }
3140
3141  // Return LR, which contains the return address. Mark it an implicit live-in.
3142  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
3143  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
3144}
3145
3146SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
3147  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3148  MFI->setFrameAddressIsTaken(true);
3149
3150  EVT VT = Op.getValueType();
3151  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
3152  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3153  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
3154    ? ARM::R7 : ARM::R11;
3155  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
3156  while (Depth--)
3157    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
3158                            MachinePointerInfo(),
3159                            false, false, 0);
3160  return FrameAddr;
3161}
3162
3163/// ExpandBITCAST - If the target supports VFP, this function is called to
3164/// expand a bit convert where either the source or destination type is i64 to
3165/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
3166/// operand type is illegal (e.g., v2f32 for a target that doesn't support
3167/// vectors), since the legalizer won't know what to do with that.
3168static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
3169  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3170  DebugLoc dl = N->getDebugLoc();
3171  SDValue Op = N->getOperand(0);
3172
3173  // This function is only supposed to be called for i64 types, either as the
3174  // source or destination of the bit convert.
3175  EVT SrcVT = Op.getValueType();
3176  EVT DstVT = N->getValueType(0);
3177  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
3178         "ExpandBITCAST called for non-i64 type");
3179
3180  // Turn i64->f64 into VMOVDRR.
3181  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
3182    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3183                             DAG.getConstant(0, MVT::i32));
3184    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3185                             DAG.getConstant(1, MVT::i32));
3186    return DAG.getNode(ISD::BITCAST, dl, DstVT,
3187                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
3188  }
3189
3190  // Turn f64->i64 into VMOVRRD.
3191  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
3192    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
3193                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
3194    // Merge the pieces into a single i64 value.
3195    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
3196  }
3197
3198  return SDValue();
3199}
3200
3201/// getZeroVector - Returns a vector of specified type with all zero elements.
3202/// Zero vectors are used to represent vector negation and in those cases
3203/// will be implemented with the NEON VNEG instruction.  However, VNEG does
3204/// not support i64 elements, so sometimes the zero vectors will need to be
3205/// explicitly constructed.  Regardless, use a canonical VMOV to create the
3206/// zero vector.
3207static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3208  assert(VT.isVector() && "Expected a vector type");
3209  // The canonical modified immediate encoding of a zero vector is....0!
3210  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
3211  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
3212  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
3213  return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3214}
3215
3216/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
3217/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3218SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
3219                                                SelectionDAG &DAG) const {
3220  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3221  EVT VT = Op.getValueType();
3222  unsigned VTBits = VT.getSizeInBits();
3223  DebugLoc dl = Op.getDebugLoc();
3224  SDValue ShOpLo = Op.getOperand(0);
3225  SDValue ShOpHi = Op.getOperand(1);
3226  SDValue ShAmt  = Op.getOperand(2);
3227  SDValue ARMcc;
3228  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
3229
3230  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
3231
3232  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3233                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3234  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
3235  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3236                                   DAG.getConstant(VTBits, MVT::i32));
3237  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
3238  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3239  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
3240
3241  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3242  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3243                          ARMcc, DAG, dl);
3244  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
3245  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
3246                           CCR, Cmp);
3247
3248  SDValue Ops[2] = { Lo, Hi };
3249  return DAG.getMergeValues(Ops, 2, dl);
3250}
3251
3252/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
3253/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3254SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
3255                                               SelectionDAG &DAG) const {
3256  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3257  EVT VT = Op.getValueType();
3258  unsigned VTBits = VT.getSizeInBits();
3259  DebugLoc dl = Op.getDebugLoc();
3260  SDValue ShOpLo = Op.getOperand(0);
3261  SDValue ShOpHi = Op.getOperand(1);
3262  SDValue ShAmt  = Op.getOperand(2);
3263  SDValue ARMcc;
3264
3265  assert(Op.getOpcode() == ISD::SHL_PARTS);
3266  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3267                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3268  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
3269  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3270                                   DAG.getConstant(VTBits, MVT::i32));
3271  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
3272  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
3273
3274  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3275  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3276  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3277                          ARMcc, DAG, dl);
3278  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
3279  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
3280                           CCR, Cmp);
3281
3282  SDValue Ops[2] = { Lo, Hi };
3283  return DAG.getMergeValues(Ops, 2, dl);
3284}
3285
3286SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3287                                            SelectionDAG &DAG) const {
3288  // The rounding mode is in bits 23:22 of the FPSCR.
3289  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
3290  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
3291  // so that the shift + and get folded into a bitfield extract.
3292  DebugLoc dl = Op.getDebugLoc();
3293  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
3294                              DAG.getConstant(Intrinsic::arm_get_fpscr,
3295                                              MVT::i32));
3296  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
3297                                  DAG.getConstant(1U << 22, MVT::i32));
3298  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
3299                              DAG.getConstant(22, MVT::i32));
3300  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
3301                     DAG.getConstant(3, MVT::i32));
3302}
3303
3304static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
3305                         const ARMSubtarget *ST) {
3306  EVT VT = N->getValueType(0);
3307  DebugLoc dl = N->getDebugLoc();
3308
3309  if (!ST->hasV6T2Ops())
3310    return SDValue();
3311
3312  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
3313  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
3314}
3315
3316static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
3317                          const ARMSubtarget *ST) {
3318  EVT VT = N->getValueType(0);
3319  DebugLoc dl = N->getDebugLoc();
3320
3321  if (!VT.isVector())
3322    return SDValue();
3323
3324  // Lower vector shifts on NEON to use VSHL.
3325  assert(ST->hasNEON() && "unexpected vector shift");
3326
3327  // Left shifts translate directly to the vshiftu intrinsic.
3328  if (N->getOpcode() == ISD::SHL)
3329    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3330                       DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
3331                       N->getOperand(0), N->getOperand(1));
3332
3333  assert((N->getOpcode() == ISD::SRA ||
3334          N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
3335
3336  // NEON uses the same intrinsics for both left and right shifts.  For
3337  // right shifts, the shift amounts are negative, so negate the vector of
3338  // shift amounts.
3339  EVT ShiftVT = N->getOperand(1).getValueType();
3340  SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
3341                                     getZeroVector(ShiftVT, DAG, dl),
3342                                     N->getOperand(1));
3343  Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
3344                             Intrinsic::arm_neon_vshifts :
3345                             Intrinsic::arm_neon_vshiftu);
3346  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3347                     DAG.getConstant(vshiftInt, MVT::i32),
3348                     N->getOperand(0), NegatedCount);
3349}
3350
3351static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
3352                                const ARMSubtarget *ST) {
3353  EVT VT = N->getValueType(0);
3354  DebugLoc dl = N->getDebugLoc();
3355
3356  // We can get here for a node like i32 = ISD::SHL i32, i64
3357  if (VT != MVT::i64)
3358    return SDValue();
3359
3360  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
3361         "Unknown shift to lower!");
3362
3363  // We only lower SRA, SRL of 1 here, all others use generic lowering.
3364  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
3365      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
3366    return SDValue();
3367
3368  // If we are in thumb mode, we don't have RRX.
3369  if (ST->isThumb1Only()) return SDValue();
3370
3371  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
3372  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3373                           DAG.getConstant(0, MVT::i32));
3374  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3375                           DAG.getConstant(1, MVT::i32));
3376
3377  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
3378  // captures the result into a carry flag.
3379  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
3380  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
3381
3382  // The low part is an ARMISD::RRX operand, which shifts the carry in.
3383  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
3384
3385  // Merge the pieces into a single i64 value.
3386 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
3387}
3388
3389static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
3390  SDValue TmpOp0, TmpOp1;
3391  bool Invert = false;
3392  bool Swap = false;
3393  unsigned Opc = 0;
3394
3395  SDValue Op0 = Op.getOperand(0);
3396  SDValue Op1 = Op.getOperand(1);
3397  SDValue CC = Op.getOperand(2);
3398  EVT VT = Op.getValueType();
3399  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3400  DebugLoc dl = Op.getDebugLoc();
3401
3402  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
3403    switch (SetCCOpcode) {
3404    default: llvm_unreachable("Illegal FP comparison"); break;
3405    case ISD::SETUNE:
3406    case ISD::SETNE:  Invert = true; // Fallthrough
3407    case ISD::SETOEQ:
3408    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3409    case ISD::SETOLT:
3410    case ISD::SETLT: Swap = true; // Fallthrough
3411    case ISD::SETOGT:
3412    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3413    case ISD::SETOLE:
3414    case ISD::SETLE:  Swap = true; // Fallthrough
3415    case ISD::SETOGE:
3416    case ISD::SETGE: Opc = ARMISD::VCGE; break;
3417    case ISD::SETUGE: Swap = true; // Fallthrough
3418    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
3419    case ISD::SETUGT: Swap = true; // Fallthrough
3420    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
3421    case ISD::SETUEQ: Invert = true; // Fallthrough
3422    case ISD::SETONE:
3423      // Expand this to (OLT | OGT).
3424      TmpOp0 = Op0;
3425      TmpOp1 = Op1;
3426      Opc = ISD::OR;
3427      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3428      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
3429      break;
3430    case ISD::SETUO: Invert = true; // Fallthrough
3431    case ISD::SETO:
3432      // Expand this to (OLT | OGE).
3433      TmpOp0 = Op0;
3434      TmpOp1 = Op1;
3435      Opc = ISD::OR;
3436      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3437      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
3438      break;
3439    }
3440  } else {
3441    // Integer comparisons.
3442    switch (SetCCOpcode) {
3443    default: llvm_unreachable("Illegal integer comparison"); break;
3444    case ISD::SETNE:  Invert = true;
3445    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3446    case ISD::SETLT:  Swap = true;
3447    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3448    case ISD::SETLE:  Swap = true;
3449    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
3450    case ISD::SETULT: Swap = true;
3451    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
3452    case ISD::SETULE: Swap = true;
3453    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
3454    }
3455
3456    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
3457    if (Opc == ARMISD::VCEQ) {
3458
3459      SDValue AndOp;
3460      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3461        AndOp = Op0;
3462      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
3463        AndOp = Op1;
3464
3465      // Ignore bitconvert.
3466      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
3467        AndOp = AndOp.getOperand(0);
3468
3469      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
3470        Opc = ARMISD::VTST;
3471        Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
3472        Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
3473        Invert = !Invert;
3474      }
3475    }
3476  }
3477
3478  if (Swap)
3479    std::swap(Op0, Op1);
3480
3481  // If one of the operands is a constant vector zero, attempt to fold the
3482  // comparison to a specialized compare-against-zero form.
3483  SDValue SingleOp;
3484  if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3485    SingleOp = Op0;
3486  else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
3487    if (Opc == ARMISD::VCGE)
3488      Opc = ARMISD::VCLEZ;
3489    else if (Opc == ARMISD::VCGT)
3490      Opc = ARMISD::VCLTZ;
3491    SingleOp = Op1;
3492  }
3493
3494  SDValue Result;
3495  if (SingleOp.getNode()) {
3496    switch (Opc) {
3497    case ARMISD::VCEQ:
3498      Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
3499    case ARMISD::VCGE:
3500      Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
3501    case ARMISD::VCLEZ:
3502      Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
3503    case ARMISD::VCGT:
3504      Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
3505    case ARMISD::VCLTZ:
3506      Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
3507    default:
3508      Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3509    }
3510  } else {
3511     Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3512  }
3513
3514  if (Invert)
3515    Result = DAG.getNOT(dl, Result, VT);
3516
3517  return Result;
3518}
3519
3520/// isNEONModifiedImm - Check if the specified splat value corresponds to a
3521/// valid vector constant for a NEON instruction with a "modified immediate"
3522/// operand (e.g., VMOV).  If so, return the encoded value.
3523static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
3524                                 unsigned SplatBitSize, SelectionDAG &DAG,
3525                                 EVT &VT, bool is128Bits, NEONModImmType type) {
3526  unsigned OpCmode, Imm;
3527
3528  // SplatBitSize is set to the smallest size that splats the vector, so a
3529  // zero vector will always have SplatBitSize == 8.  However, NEON modified
3530  // immediate instructions others than VMOV do not support the 8-bit encoding
3531  // of a zero vector, and the default encoding of zero is supposed to be the
3532  // 32-bit version.
3533  if (SplatBits == 0)
3534    SplatBitSize = 32;
3535
3536  switch (SplatBitSize) {
3537  case 8:
3538    if (type != VMOVModImm)
3539      return SDValue();
3540    // Any 1-byte value is OK.  Op=0, Cmode=1110.
3541    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
3542    OpCmode = 0xe;
3543    Imm = SplatBits;
3544    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
3545    break;
3546
3547  case 16:
3548    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
3549    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
3550    if ((SplatBits & ~0xff) == 0) {
3551      // Value = 0x00nn: Op=x, Cmode=100x.
3552      OpCmode = 0x8;
3553      Imm = SplatBits;
3554      break;
3555    }
3556    if ((SplatBits & ~0xff00) == 0) {
3557      // Value = 0xnn00: Op=x, Cmode=101x.
3558      OpCmode = 0xa;
3559      Imm = SplatBits >> 8;
3560      break;
3561    }
3562    return SDValue();
3563
3564  case 32:
3565    // NEON's 32-bit VMOV supports splat values where:
3566    // * only one byte is nonzero, or
3567    // * the least significant byte is 0xff and the second byte is nonzero, or
3568    // * the least significant 2 bytes are 0xff and the third is nonzero.
3569    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
3570    if ((SplatBits & ~0xff) == 0) {
3571      // Value = 0x000000nn: Op=x, Cmode=000x.
3572      OpCmode = 0;
3573      Imm = SplatBits;
3574      break;
3575    }
3576    if ((SplatBits & ~0xff00) == 0) {
3577      // Value = 0x0000nn00: Op=x, Cmode=001x.
3578      OpCmode = 0x2;
3579      Imm = SplatBits >> 8;
3580      break;
3581    }
3582    if ((SplatBits & ~0xff0000) == 0) {
3583      // Value = 0x00nn0000: Op=x, Cmode=010x.
3584      OpCmode = 0x4;
3585      Imm = SplatBits >> 16;
3586      break;
3587    }
3588    if ((SplatBits & ~0xff000000) == 0) {
3589      // Value = 0xnn000000: Op=x, Cmode=011x.
3590      OpCmode = 0x6;
3591      Imm = SplatBits >> 24;
3592      break;
3593    }
3594
3595    // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
3596    if (type == OtherModImm) return SDValue();
3597
3598    if ((SplatBits & ~0xffff) == 0 &&
3599        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
3600      // Value = 0x0000nnff: Op=x, Cmode=1100.
3601      OpCmode = 0xc;
3602      Imm = SplatBits >> 8;
3603      SplatBits |= 0xff;
3604      break;
3605    }
3606
3607    if ((SplatBits & ~0xffffff) == 0 &&
3608        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3609      // Value = 0x00nnffff: Op=x, Cmode=1101.
3610      OpCmode = 0xd;
3611      Imm = SplatBits >> 16;
3612      SplatBits |= 0xffff;
3613      break;
3614    }
3615
3616    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
3617    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
3618    // VMOV.I32.  A (very) minor optimization would be to replicate the value
3619    // and fall through here to test for a valid 64-bit splat.  But, then the
3620    // caller would also need to check and handle the change in size.
3621    return SDValue();
3622
3623  case 64: {
3624    if (type != VMOVModImm)
3625      return SDValue();
3626    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
3627    uint64_t BitMask = 0xff;
3628    uint64_t Val = 0;
3629    unsigned ImmMask = 1;
3630    Imm = 0;
3631    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3632      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3633        Val |= BitMask;
3634        Imm |= ImmMask;
3635      } else if ((SplatBits & BitMask) != 0) {
3636        return SDValue();
3637      }
3638      BitMask <<= 8;
3639      ImmMask <<= 1;
3640    }
3641    // Op=1, Cmode=1110.
3642    OpCmode = 0x1e;
3643    SplatBits = Val;
3644    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
3645    break;
3646  }
3647
3648  default:
3649    llvm_unreachable("unexpected size for isNEONModifiedImm");
3650    return SDValue();
3651  }
3652
3653  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
3654  return DAG.getTargetConstant(EncodedVal, MVT::i32);
3655}
3656
3657static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
3658                       bool &ReverseVEXT, unsigned &Imm) {
3659  unsigned NumElts = VT.getVectorNumElements();
3660  ReverseVEXT = false;
3661
3662  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
3663  if (M[0] < 0)
3664    return false;
3665
3666  Imm = M[0];
3667
3668  // If this is a VEXT shuffle, the immediate value is the index of the first
3669  // element.  The other shuffle indices must be the successive elements after
3670  // the first one.
3671  unsigned ExpectedElt = Imm;
3672  for (unsigned i = 1; i < NumElts; ++i) {
3673    // Increment the expected index.  If it wraps around, it may still be
3674    // a VEXT but the source vectors must be swapped.
3675    ExpectedElt += 1;
3676    if (ExpectedElt == NumElts * 2) {
3677      ExpectedElt = 0;
3678      ReverseVEXT = true;
3679    }
3680
3681    if (M[i] < 0) continue; // ignore UNDEF indices
3682    if (ExpectedElt != static_cast<unsigned>(M[i]))
3683      return false;
3684  }
3685
3686  // Adjust the index value if the source operands will be swapped.
3687  if (ReverseVEXT)
3688    Imm -= NumElts;
3689
3690  return true;
3691}
3692
3693/// isVREVMask - Check if a vector shuffle corresponds to a VREV
3694/// instruction with the specified blocksize.  (The order of the elements
3695/// within each block of the vector is reversed.)
3696static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
3697                       unsigned BlockSize) {
3698  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
3699         "Only possible block sizes for VREV are: 16, 32, 64");
3700
3701  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3702  if (EltSz == 64)
3703    return false;
3704
3705  unsigned NumElts = VT.getVectorNumElements();
3706  unsigned BlockElts = M[0] + 1;
3707  // If the first shuffle index is UNDEF, be optimistic.
3708  if (M[0] < 0)
3709    BlockElts = BlockSize / EltSz;
3710
3711  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
3712    return false;
3713
3714  for (unsigned i = 0; i < NumElts; ++i) {
3715    if (M[i] < 0) continue; // ignore UNDEF indices
3716    if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
3717      return false;
3718  }
3719
3720  return true;
3721}
3722
3723static bool isVTBLMask(const SmallVectorImpl<int> &M, EVT VT) {
3724  // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
3725  // range, then 0 is placed into the resulting vector. So pretty much any mask
3726  // of 8 elements can work here.
3727  return VT == MVT::v8i8 && M.size() == 8;
3728}
3729
3730static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
3731                       unsigned &WhichResult) {
3732  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3733  if (EltSz == 64)
3734    return false;
3735
3736  unsigned NumElts = VT.getVectorNumElements();
3737  WhichResult = (M[0] == 0 ? 0 : 1);
3738  for (unsigned i = 0; i < NumElts; i += 2) {
3739    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3740        (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
3741      return false;
3742  }
3743  return true;
3744}
3745
3746/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
3747/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3748/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
3749static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3750                                unsigned &WhichResult) {
3751  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3752  if (EltSz == 64)
3753    return false;
3754
3755  unsigned NumElts = VT.getVectorNumElements();
3756  WhichResult = (M[0] == 0 ? 0 : 1);
3757  for (unsigned i = 0; i < NumElts; i += 2) {
3758    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3759        (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
3760      return false;
3761  }
3762  return true;
3763}
3764
3765static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
3766                       unsigned &WhichResult) {
3767  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3768  if (EltSz == 64)
3769    return false;
3770
3771  unsigned NumElts = VT.getVectorNumElements();
3772  WhichResult = (M[0] == 0 ? 0 : 1);
3773  for (unsigned i = 0; i != NumElts; ++i) {
3774    if (M[i] < 0) continue; // ignore UNDEF indices
3775    if ((unsigned) M[i] != 2 * i + WhichResult)
3776      return false;
3777  }
3778
3779  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3780  if (VT.is64BitVector() && EltSz == 32)
3781    return false;
3782
3783  return true;
3784}
3785
3786/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
3787/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3788/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
3789static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3790                                unsigned &WhichResult) {
3791  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3792  if (EltSz == 64)
3793    return false;
3794
3795  unsigned Half = VT.getVectorNumElements() / 2;
3796  WhichResult = (M[0] == 0 ? 0 : 1);
3797  for (unsigned j = 0; j != 2; ++j) {
3798    unsigned Idx = WhichResult;
3799    for (unsigned i = 0; i != Half; ++i) {
3800      int MIdx = M[i + j * Half];
3801      if (MIdx >= 0 && (unsigned) MIdx != Idx)
3802        return false;
3803      Idx += 2;
3804    }
3805  }
3806
3807  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3808  if (VT.is64BitVector() && EltSz == 32)
3809    return false;
3810
3811  return true;
3812}
3813
3814static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
3815                       unsigned &WhichResult) {
3816  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3817  if (EltSz == 64)
3818    return false;
3819
3820  unsigned NumElts = VT.getVectorNumElements();
3821  WhichResult = (M[0] == 0 ? 0 : 1);
3822  unsigned Idx = WhichResult * NumElts / 2;
3823  for (unsigned i = 0; i != NumElts; i += 2) {
3824    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3825        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
3826      return false;
3827    Idx += 1;
3828  }
3829
3830  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3831  if (VT.is64BitVector() && EltSz == 32)
3832    return false;
3833
3834  return true;
3835}
3836
3837/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
3838/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3839/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
3840static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3841                                unsigned &WhichResult) {
3842  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3843  if (EltSz == 64)
3844    return false;
3845
3846  unsigned NumElts = VT.getVectorNumElements();
3847  WhichResult = (M[0] == 0 ? 0 : 1);
3848  unsigned Idx = WhichResult * NumElts / 2;
3849  for (unsigned i = 0; i != NumElts; i += 2) {
3850    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3851        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
3852      return false;
3853    Idx += 1;
3854  }
3855
3856  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3857  if (VT.is64BitVector() && EltSz == 32)
3858    return false;
3859
3860  return true;
3861}
3862
3863// If N is an integer constant that can be moved into a register in one
3864// instruction, return an SDValue of such a constant (will become a MOV
3865// instruction).  Otherwise return null.
3866static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
3867                                     const ARMSubtarget *ST, DebugLoc dl) {
3868  uint64_t Val;
3869  if (!isa<ConstantSDNode>(N))
3870    return SDValue();
3871  Val = cast<ConstantSDNode>(N)->getZExtValue();
3872
3873  if (ST->isThumb1Only()) {
3874    if (Val <= 255 || ~Val <= 255)
3875      return DAG.getConstant(Val, MVT::i32);
3876  } else {
3877    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
3878      return DAG.getConstant(Val, MVT::i32);
3879  }
3880  return SDValue();
3881}
3882
3883// If this is a case we can't handle, return null and let the default
3884// expansion code take care of it.
3885SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
3886                                             const ARMSubtarget *ST) const {
3887  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
3888  DebugLoc dl = Op.getDebugLoc();
3889  EVT VT = Op.getValueType();
3890
3891  APInt SplatBits, SplatUndef;
3892  unsigned SplatBitSize;
3893  bool HasAnyUndefs;
3894  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
3895    if (SplatBitSize <= 64) {
3896      // Check if an immediate VMOV works.
3897      EVT VmovVT;
3898      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
3899                                      SplatUndef.getZExtValue(), SplatBitSize,
3900                                      DAG, VmovVT, VT.is128BitVector(),
3901                                      VMOVModImm);
3902      if (Val.getNode()) {
3903        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
3904        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3905      }
3906
3907      // Try an immediate VMVN.
3908      uint64_t NegatedImm = (SplatBits.getZExtValue() ^
3909                             ((1LL << SplatBitSize) - 1));
3910      Val = isNEONModifiedImm(NegatedImm,
3911                                      SplatUndef.getZExtValue(), SplatBitSize,
3912                                      DAG, VmovVT, VT.is128BitVector(),
3913                                      VMVNModImm);
3914      if (Val.getNode()) {
3915        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
3916        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3917      }
3918    }
3919  }
3920
3921  // Scan through the operands to see if only one value is used.
3922  unsigned NumElts = VT.getVectorNumElements();
3923  bool isOnlyLowElement = true;
3924  bool usesOnlyOneValue = true;
3925  bool isConstant = true;
3926  SDValue Value;
3927  for (unsigned i = 0; i < NumElts; ++i) {
3928    SDValue V = Op.getOperand(i);
3929    if (V.getOpcode() == ISD::UNDEF)
3930      continue;
3931    if (i > 0)
3932      isOnlyLowElement = false;
3933    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
3934      isConstant = false;
3935
3936    if (!Value.getNode())
3937      Value = V;
3938    else if (V != Value)
3939      usesOnlyOneValue = false;
3940  }
3941
3942  if (!Value.getNode())
3943    return DAG.getUNDEF(VT);
3944
3945  if (isOnlyLowElement)
3946    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
3947
3948  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3949
3950  // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
3951  // i32 and try again.
3952  if (usesOnlyOneValue && EltSize <= 32) {
3953    if (!isConstant)
3954      return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
3955    if (VT.getVectorElementType().isFloatingPoint()) {
3956      SmallVector<SDValue, 8> Ops;
3957      for (unsigned i = 0; i < NumElts; ++i)
3958        Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
3959                                  Op.getOperand(i)));
3960      EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
3961      SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
3962      Val = LowerBUILD_VECTOR(Val, DAG, ST);
3963      if (Val.getNode())
3964        return DAG.getNode(ISD::BITCAST, dl, VT, Val);
3965    }
3966    SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
3967    if (Val.getNode())
3968      return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
3969  }
3970
3971  // If all elements are constants and the case above didn't get hit, fall back
3972  // to the default expansion, which will generate a load from the constant
3973  // pool.
3974  if (isConstant)
3975    return SDValue();
3976
3977  // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
3978  if (NumElts >= 4) {
3979    SDValue shuffle = ReconstructShuffle(Op, DAG);
3980    if (shuffle != SDValue())
3981      return shuffle;
3982  }
3983
3984  // Vectors with 32- or 64-bit elements can be built by directly assigning
3985  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
3986  // will be legalized.
3987  if (EltSize >= 32) {
3988    // Do the expansion with floating-point types, since that is what the VFP
3989    // registers are defined to use, and since i64 is not legal.
3990    EVT EltVT = EVT::getFloatingPointVT(EltSize);
3991    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
3992    SmallVector<SDValue, 8> Ops;
3993    for (unsigned i = 0; i < NumElts; ++i)
3994      Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
3995    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
3996    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
3997  }
3998
3999  return SDValue();
4000}
4001
4002// Gather data to see if the operation can be modelled as a
4003// shuffle in combination with VEXTs.
4004SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
4005                                              SelectionDAG &DAG) const {
4006  DebugLoc dl = Op.getDebugLoc();
4007  EVT VT = Op.getValueType();
4008  unsigned NumElts = VT.getVectorNumElements();
4009
4010  SmallVector<SDValue, 2> SourceVecs;
4011  SmallVector<unsigned, 2> MinElts;
4012  SmallVector<unsigned, 2> MaxElts;
4013
4014  for (unsigned i = 0; i < NumElts; ++i) {
4015    SDValue V = Op.getOperand(i);
4016    if (V.getOpcode() == ISD::UNDEF)
4017      continue;
4018    else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4019      // A shuffle can only come from building a vector from various
4020      // elements of other vectors.
4021      return SDValue();
4022    }
4023
4024    // Record this extraction against the appropriate vector if possible...
4025    SDValue SourceVec = V.getOperand(0);
4026    unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4027    bool FoundSource = false;
4028    for (unsigned j = 0; j < SourceVecs.size(); ++j) {
4029      if (SourceVecs[j] == SourceVec) {
4030        if (MinElts[j] > EltNo)
4031          MinElts[j] = EltNo;
4032        if (MaxElts[j] < EltNo)
4033          MaxElts[j] = EltNo;
4034        FoundSource = true;
4035        break;
4036      }
4037    }
4038
4039    // Or record a new source if not...
4040    if (!FoundSource) {
4041      SourceVecs.push_back(SourceVec);
4042      MinElts.push_back(EltNo);
4043      MaxElts.push_back(EltNo);
4044    }
4045  }
4046
4047  // Currently only do something sane when at most two source vectors
4048  // involved.
4049  if (SourceVecs.size() > 2)
4050    return SDValue();
4051
4052  SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
4053  int VEXTOffsets[2] = {0, 0};
4054
4055  // This loop extracts the usage patterns of the source vectors
4056  // and prepares appropriate SDValues for a shuffle if possible.
4057  for (unsigned i = 0; i < SourceVecs.size(); ++i) {
4058    if (SourceVecs[i].getValueType() == VT) {
4059      // No VEXT necessary
4060      ShuffleSrcs[i] = SourceVecs[i];
4061      VEXTOffsets[i] = 0;
4062      continue;
4063    } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
4064      // It probably isn't worth padding out a smaller vector just to
4065      // break it down again in a shuffle.
4066      return SDValue();
4067    }
4068
4069    // Since only 64-bit and 128-bit vectors are legal on ARM and
4070    // we've eliminated the other cases...
4071    assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
4072           "unexpected vector sizes in ReconstructShuffle");
4073
4074    if (MaxElts[i] - MinElts[i] >= NumElts) {
4075      // Span too large for a VEXT to cope
4076      return SDValue();
4077    }
4078
4079    if (MinElts[i] >= NumElts) {
4080      // The extraction can just take the second half
4081      VEXTOffsets[i] = NumElts;
4082      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4083                                   SourceVecs[i],
4084                                   DAG.getIntPtrConstant(NumElts));
4085    } else if (MaxElts[i] < NumElts) {
4086      // The extraction can just take the first half
4087      VEXTOffsets[i] = 0;
4088      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4089                                   SourceVecs[i],
4090                                   DAG.getIntPtrConstant(0));
4091    } else {
4092      // An actual VEXT is needed
4093      VEXTOffsets[i] = MinElts[i];
4094      SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4095                                     SourceVecs[i],
4096                                     DAG.getIntPtrConstant(0));
4097      SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4098                                     SourceVecs[i],
4099                                     DAG.getIntPtrConstant(NumElts));
4100      ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
4101                                   DAG.getConstant(VEXTOffsets[i], MVT::i32));
4102    }
4103  }
4104
4105  SmallVector<int, 8> Mask;
4106
4107  for (unsigned i = 0; i < NumElts; ++i) {
4108    SDValue Entry = Op.getOperand(i);
4109    if (Entry.getOpcode() == ISD::UNDEF) {
4110      Mask.push_back(-1);
4111      continue;
4112    }
4113
4114    SDValue ExtractVec = Entry.getOperand(0);
4115    int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
4116                                          .getOperand(1))->getSExtValue();
4117    if (ExtractVec == SourceVecs[0]) {
4118      Mask.push_back(ExtractElt - VEXTOffsets[0]);
4119    } else {
4120      Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
4121    }
4122  }
4123
4124  // Final check before we try to produce nonsense...
4125  if (isShuffleMaskLegal(Mask, VT))
4126    return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
4127                                &Mask[0]);
4128
4129  return SDValue();
4130}
4131
4132/// isShuffleMaskLegal - Targets can use this to indicate that they only
4133/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4134/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4135/// are assumed to be legal.
4136bool
4137ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
4138                                      EVT VT) const {
4139  if (VT.getVectorNumElements() == 4 &&
4140      (VT.is128BitVector() || VT.is64BitVector())) {
4141    unsigned PFIndexes[4];
4142    for (unsigned i = 0; i != 4; ++i) {
4143      if (M[i] < 0)
4144        PFIndexes[i] = 8;
4145      else
4146        PFIndexes[i] = M[i];
4147    }
4148
4149    // Compute the index in the perfect shuffle table.
4150    unsigned PFTableIndex =
4151      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4152    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4153    unsigned Cost = (PFEntry >> 30);
4154
4155    if (Cost <= 4)
4156      return true;
4157  }
4158
4159  bool ReverseVEXT;
4160  unsigned Imm, WhichResult;
4161
4162  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4163  return (EltSize >= 32 ||
4164          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
4165          isVREVMask(M, VT, 64) ||
4166          isVREVMask(M, VT, 32) ||
4167          isVREVMask(M, VT, 16) ||
4168          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
4169          isVTBLMask(M, VT) ||
4170          isVTRNMask(M, VT, WhichResult) ||
4171          isVUZPMask(M, VT, WhichResult) ||
4172          isVZIPMask(M, VT, WhichResult) ||
4173          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
4174          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
4175          isVZIP_v_undef_Mask(M, VT, WhichResult));
4176}
4177
4178/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4179/// the specified operations to build the shuffle.
4180static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4181                                      SDValue RHS, SelectionDAG &DAG,
4182                                      DebugLoc dl) {
4183  unsigned OpNum = (PFEntry >> 26) & 0x0F;
4184  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
4185  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
4186
4187  enum {
4188    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4189    OP_VREV,
4190    OP_VDUP0,
4191    OP_VDUP1,
4192    OP_VDUP2,
4193    OP_VDUP3,
4194    OP_VEXT1,
4195    OP_VEXT2,
4196    OP_VEXT3,
4197    OP_VUZPL, // VUZP, left result
4198    OP_VUZPR, // VUZP, right result
4199    OP_VZIPL, // VZIP, left result
4200    OP_VZIPR, // VZIP, right result
4201    OP_VTRNL, // VTRN, left result
4202    OP_VTRNR  // VTRN, right result
4203  };
4204
4205  if (OpNum == OP_COPY) {
4206    if (LHSID == (1*9+2)*9+3) return LHS;
4207    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4208    return RHS;
4209  }
4210
4211  SDValue OpLHS, OpRHS;
4212  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4213  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4214  EVT VT = OpLHS.getValueType();
4215
4216  switch (OpNum) {
4217  default: llvm_unreachable("Unknown shuffle opcode!");
4218  case OP_VREV:
4219    // VREV divides the vector in half and swaps within the half.
4220    if (VT.getVectorElementType() == MVT::i32 ||
4221        VT.getVectorElementType() == MVT::f32)
4222      return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
4223    // vrev <4 x i16> -> VREV32
4224    if (VT.getVectorElementType() == MVT::i16)
4225      return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
4226    // vrev <4 x i8> -> VREV16
4227    assert(VT.getVectorElementType() == MVT::i8);
4228    return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
4229  case OP_VDUP0:
4230  case OP_VDUP1:
4231  case OP_VDUP2:
4232  case OP_VDUP3:
4233    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4234                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
4235  case OP_VEXT1:
4236  case OP_VEXT2:
4237  case OP_VEXT3:
4238    return DAG.getNode(ARMISD::VEXT, dl, VT,
4239                       OpLHS, OpRHS,
4240                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
4241  case OP_VUZPL:
4242  case OP_VUZPR:
4243    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4244                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
4245  case OP_VZIPL:
4246  case OP_VZIPR:
4247    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4248                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
4249  case OP_VTRNL:
4250  case OP_VTRNR:
4251    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4252                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
4253  }
4254}
4255
4256static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
4257                                       SmallVectorImpl<int> &ShuffleMask,
4258                                       SelectionDAG &DAG) {
4259  // Check to see if we can use the VTBL instruction.
4260  SDValue V1 = Op.getOperand(0);
4261  SDValue V2 = Op.getOperand(1);
4262  DebugLoc DL = Op.getDebugLoc();
4263
4264  SmallVector<SDValue, 8> VTBLMask;
4265  for (SmallVectorImpl<int>::iterator
4266         I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
4267    VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
4268
4269  if (V2.getNode()->getOpcode() == ISD::UNDEF)
4270    return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
4271                       DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4272                                   &VTBLMask[0], 8));
4273
4274  return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
4275                     DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4276                                 &VTBLMask[0], 8));
4277}
4278
4279static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4280  SDValue V1 = Op.getOperand(0);
4281  SDValue V2 = Op.getOperand(1);
4282  DebugLoc dl = Op.getDebugLoc();
4283  EVT VT = Op.getValueType();
4284  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
4285  SmallVector<int, 8> ShuffleMask;
4286
4287  // Convert shuffles that are directly supported on NEON to target-specific
4288  // DAG nodes, instead of keeping them as shuffles and matching them again
4289  // during code selection.  This is more efficient and avoids the possibility
4290  // of inconsistencies between legalization and selection.
4291  // FIXME: floating-point vectors should be canonicalized to integer vectors
4292  // of the same time so that they get CSEd properly.
4293  SVN->getMask(ShuffleMask);
4294
4295  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4296  if (EltSize <= 32) {
4297    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
4298      int Lane = SVN->getSplatIndex();
4299      // If this is undef splat, generate it via "just" vdup, if possible.
4300      if (Lane == -1) Lane = 0;
4301
4302      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4303        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4304      }
4305      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
4306                         DAG.getConstant(Lane, MVT::i32));
4307    }
4308
4309    bool ReverseVEXT;
4310    unsigned Imm;
4311    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
4312      if (ReverseVEXT)
4313        std::swap(V1, V2);
4314      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
4315                         DAG.getConstant(Imm, MVT::i32));
4316    }
4317
4318    if (isVREVMask(ShuffleMask, VT, 64))
4319      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
4320    if (isVREVMask(ShuffleMask, VT, 32))
4321      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
4322    if (isVREVMask(ShuffleMask, VT, 16))
4323      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
4324
4325    // Check for Neon shuffles that modify both input vectors in place.
4326    // If both results are used, i.e., if there are two shuffles with the same
4327    // source operands and with masks corresponding to both results of one of
4328    // these operations, DAG memoization will ensure that a single node is
4329    // used for both shuffles.
4330    unsigned WhichResult;
4331    if (isVTRNMask(ShuffleMask, VT, WhichResult))
4332      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4333                         V1, V2).getValue(WhichResult);
4334    if (isVUZPMask(ShuffleMask, VT, WhichResult))
4335      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4336                         V1, V2).getValue(WhichResult);
4337    if (isVZIPMask(ShuffleMask, VT, WhichResult))
4338      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4339                         V1, V2).getValue(WhichResult);
4340
4341    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
4342      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4343                         V1, V1).getValue(WhichResult);
4344    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4345      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4346                         V1, V1).getValue(WhichResult);
4347    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4348      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4349                         V1, V1).getValue(WhichResult);
4350  }
4351
4352  // If the shuffle is not directly supported and it has 4 elements, use
4353  // the PerfectShuffle-generated table to synthesize it from other shuffles.
4354  unsigned NumElts = VT.getVectorNumElements();
4355  if (NumElts == 4) {
4356    unsigned PFIndexes[4];
4357    for (unsigned i = 0; i != 4; ++i) {
4358      if (ShuffleMask[i] < 0)
4359        PFIndexes[i] = 8;
4360      else
4361        PFIndexes[i] = ShuffleMask[i];
4362    }
4363
4364    // Compute the index in the perfect shuffle table.
4365    unsigned PFTableIndex =
4366      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4367    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4368    unsigned Cost = (PFEntry >> 30);
4369
4370    if (Cost <= 4)
4371      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4372  }
4373
4374  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
4375  if (EltSize >= 32) {
4376    // Do the expansion with floating-point types, since that is what the VFP
4377    // registers are defined to use, and since i64 is not legal.
4378    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4379    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4380    V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
4381    V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
4382    SmallVector<SDValue, 8> Ops;
4383    for (unsigned i = 0; i < NumElts; ++i) {
4384      if (ShuffleMask[i] < 0)
4385        Ops.push_back(DAG.getUNDEF(EltVT));
4386      else
4387        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
4388                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
4389                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
4390                                                  MVT::i32)));
4391    }
4392    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4393    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4394  }
4395
4396  if (VT == MVT::v8i8) {
4397    SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
4398    if (NewOp.getNode())
4399      return NewOp;
4400  }
4401
4402  return SDValue();
4403}
4404
4405static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4406  // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
4407  SDValue Lane = Op.getOperand(1);
4408  if (!isa<ConstantSDNode>(Lane))
4409    return SDValue();
4410
4411  SDValue Vec = Op.getOperand(0);
4412  if (Op.getValueType() == MVT::i32 &&
4413      Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
4414    DebugLoc dl = Op.getDebugLoc();
4415    return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
4416  }
4417
4418  return Op;
4419}
4420
4421static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
4422  // The only time a CONCAT_VECTORS operation can have legal types is when
4423  // two 64-bit vectors are concatenated to a 128-bit vector.
4424  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
4425         "unexpected CONCAT_VECTORS");
4426  DebugLoc dl = Op.getDebugLoc();
4427  SDValue Val = DAG.getUNDEF(MVT::v2f64);
4428  SDValue Op0 = Op.getOperand(0);
4429  SDValue Op1 = Op.getOperand(1);
4430  if (Op0.getOpcode() != ISD::UNDEF)
4431    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4432                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
4433                      DAG.getIntPtrConstant(0));
4434  if (Op1.getOpcode() != ISD::UNDEF)
4435    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4436                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
4437                      DAG.getIntPtrConstant(1));
4438  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
4439}
4440
4441/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
4442/// element has been zero/sign-extended, depending on the isSigned parameter,
4443/// from an integer type half its size.
4444static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
4445                                   bool isSigned) {
4446  // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
4447  EVT VT = N->getValueType(0);
4448  if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
4449    SDNode *BVN = N->getOperand(0).getNode();
4450    if (BVN->getValueType(0) != MVT::v4i32 ||
4451        BVN->getOpcode() != ISD::BUILD_VECTOR)
4452      return false;
4453    unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4454    unsigned HiElt = 1 - LoElt;
4455    ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
4456    ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
4457    ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
4458    ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
4459    if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
4460      return false;
4461    if (isSigned) {
4462      if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
4463          Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
4464        return true;
4465    } else {
4466      if (Hi0->isNullValue() && Hi1->isNullValue())
4467        return true;
4468    }
4469    return false;
4470  }
4471
4472  if (N->getOpcode() != ISD::BUILD_VECTOR)
4473    return false;
4474
4475  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
4476    SDNode *Elt = N->getOperand(i).getNode();
4477    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
4478      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4479      unsigned HalfSize = EltSize / 2;
4480      if (isSigned) {
4481        int64_t SExtVal = C->getSExtValue();
4482        if ((SExtVal >> HalfSize) != (SExtVal >> EltSize))
4483          return false;
4484      } else {
4485        if ((C->getZExtValue() >> HalfSize) != 0)
4486          return false;
4487      }
4488      continue;
4489    }
4490    return false;
4491  }
4492
4493  return true;
4494}
4495
4496/// isSignExtended - Check if a node is a vector value that is sign-extended
4497/// or a constant BUILD_VECTOR with sign-extended elements.
4498static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
4499  if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
4500    return true;
4501  if (isExtendedBUILD_VECTOR(N, DAG, true))
4502    return true;
4503  return false;
4504}
4505
4506/// isZeroExtended - Check if a node is a vector value that is zero-extended
4507/// or a constant BUILD_VECTOR with zero-extended elements.
4508static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
4509  if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
4510    return true;
4511  if (isExtendedBUILD_VECTOR(N, DAG, false))
4512    return true;
4513  return false;
4514}
4515
4516/// SkipExtension - For a node that is a SIGN_EXTEND, ZERO_EXTEND, extending
4517/// load, or BUILD_VECTOR with extended elements, return the unextended value.
4518static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
4519  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
4520    return N->getOperand(0);
4521  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
4522    return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
4523                       LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
4524                       LD->isNonTemporal(), LD->getAlignment());
4525  // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
4526  // have been legalized as a BITCAST from v4i32.
4527  if (N->getOpcode() == ISD::BITCAST) {
4528    SDNode *BVN = N->getOperand(0).getNode();
4529    assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
4530           BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
4531    unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4532    return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), MVT::v2i32,
4533                       BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
4534  }
4535  // Construct a new BUILD_VECTOR with elements truncated to half the size.
4536  assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
4537  EVT VT = N->getValueType(0);
4538  unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
4539  unsigned NumElts = VT.getVectorNumElements();
4540  MVT TruncVT = MVT::getIntegerVT(EltSize);
4541  SmallVector<SDValue, 8> Ops;
4542  for (unsigned i = 0; i != NumElts; ++i) {
4543    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
4544    const APInt &CInt = C->getAPIntValue();
4545    Ops.push_back(DAG.getConstant(CInt.trunc(EltSize), TruncVT));
4546  }
4547  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
4548                     MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
4549}
4550
4551static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
4552  unsigned Opcode = N->getOpcode();
4553  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4554    SDNode *N0 = N->getOperand(0).getNode();
4555    SDNode *N1 = N->getOperand(1).getNode();
4556    return N0->hasOneUse() && N1->hasOneUse() &&
4557      isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
4558  }
4559  return false;
4560}
4561
4562static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
4563  unsigned Opcode = N->getOpcode();
4564  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4565    SDNode *N0 = N->getOperand(0).getNode();
4566    SDNode *N1 = N->getOperand(1).getNode();
4567    return N0->hasOneUse() && N1->hasOneUse() &&
4568      isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
4569  }
4570  return false;
4571}
4572
4573static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
4574  // Multiplications are only custom-lowered for 128-bit vectors so that
4575  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
4576  EVT VT = Op.getValueType();
4577  assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL");
4578  SDNode *N0 = Op.getOperand(0).getNode();
4579  SDNode *N1 = Op.getOperand(1).getNode();
4580  unsigned NewOpc = 0;
4581  bool isMLA = false;
4582  bool isN0SExt = isSignExtended(N0, DAG);
4583  bool isN1SExt = isSignExtended(N1, DAG);
4584  if (isN0SExt && isN1SExt)
4585    NewOpc = ARMISD::VMULLs;
4586  else {
4587    bool isN0ZExt = isZeroExtended(N0, DAG);
4588    bool isN1ZExt = isZeroExtended(N1, DAG);
4589    if (isN0ZExt && isN1ZExt)
4590      NewOpc = ARMISD::VMULLu;
4591    else if (isN1SExt || isN1ZExt) {
4592      // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
4593      // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
4594      if (isN1SExt && isAddSubSExt(N0, DAG)) {
4595        NewOpc = ARMISD::VMULLs;
4596        isMLA = true;
4597      } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
4598        NewOpc = ARMISD::VMULLu;
4599        isMLA = true;
4600      } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
4601        std::swap(N0, N1);
4602        NewOpc = ARMISD::VMULLu;
4603        isMLA = true;
4604      }
4605    }
4606
4607    if (!NewOpc) {
4608      if (VT == MVT::v2i64)
4609        // Fall through to expand this.  It is not legal.
4610        return SDValue();
4611      else
4612        // Other vector multiplications are legal.
4613        return Op;
4614    }
4615  }
4616
4617  // Legalize to a VMULL instruction.
4618  DebugLoc DL = Op.getDebugLoc();
4619  SDValue Op0;
4620  SDValue Op1 = SkipExtension(N1, DAG);
4621  if (!isMLA) {
4622    Op0 = SkipExtension(N0, DAG);
4623    assert(Op0.getValueType().is64BitVector() &&
4624           Op1.getValueType().is64BitVector() &&
4625           "unexpected types for extended operands to VMULL");
4626    return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
4627  }
4628
4629  // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
4630  // isel lowering to take advantage of no-stall back to back vmul + vmla.
4631  //   vmull q0, d4, d6
4632  //   vmlal q0, d5, d6
4633  // is faster than
4634  //   vaddl q0, d4, d5
4635  //   vmovl q1, d6
4636  //   vmul  q0, q0, q1
4637  SDValue N00 = SkipExtension(N0->getOperand(0).getNode(), DAG);
4638  SDValue N01 = SkipExtension(N0->getOperand(1).getNode(), DAG);
4639  EVT Op1VT = Op1.getValueType();
4640  return DAG.getNode(N0->getOpcode(), DL, VT,
4641                     DAG.getNode(NewOpc, DL, VT,
4642                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
4643                     DAG.getNode(NewOpc, DL, VT,
4644                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
4645}
4646
4647static SDValue
4648LowerSDIV_v4i8(SDValue X, SDValue Y, DebugLoc dl, SelectionDAG &DAG) {
4649  // Convert to float
4650  // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
4651  // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
4652  X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
4653  Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
4654  X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
4655  Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
4656  // Get reciprocal estimate.
4657  // float4 recip = vrecpeq_f32(yf);
4658  Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4659                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
4660  // Because char has a smaller range than uchar, we can actually get away
4661  // without any newton steps.  This requires that we use a weird bias
4662  // of 0xb000, however (again, this has been exhaustively tested).
4663  // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
4664  X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
4665  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
4666  Y = DAG.getConstant(0xb000, MVT::i32);
4667  Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
4668  X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
4669  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
4670  // Convert back to short.
4671  X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
4672  X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
4673  return X;
4674}
4675
4676static SDValue
4677LowerSDIV_v4i16(SDValue N0, SDValue N1, DebugLoc dl, SelectionDAG &DAG) {
4678  SDValue N2;
4679  // Convert to float.
4680  // float4 yf = vcvt_f32_s32(vmovl_s16(y));
4681  // float4 xf = vcvt_f32_s32(vmovl_s16(x));
4682  N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
4683  N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
4684  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
4685  N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
4686
4687  // Use reciprocal estimate and one refinement step.
4688  // float4 recip = vrecpeq_f32(yf);
4689  // recip *= vrecpsq_f32(yf, recip);
4690  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4691                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
4692  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4693                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4694                   N1, N2);
4695  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4696  // Because short has a smaller range than ushort, we can actually get away
4697  // with only a single newton step.  This requires that we use a weird bias
4698  // of 89, however (again, this has been exhaustively tested).
4699  // float4 result = as_float4(as_int4(xf*recip) + 0x89);
4700  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
4701  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
4702  N1 = DAG.getConstant(0x89, MVT::i32);
4703  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
4704  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
4705  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
4706  // Convert back to integer and return.
4707  // return vmovn_s32(vcvt_s32_f32(result));
4708  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
4709  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
4710  return N0;
4711}
4712
4713static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
4714  EVT VT = Op.getValueType();
4715  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
4716         "unexpected type for custom-lowering ISD::SDIV");
4717
4718  DebugLoc dl = Op.getDebugLoc();
4719  SDValue N0 = Op.getOperand(0);
4720  SDValue N1 = Op.getOperand(1);
4721  SDValue N2, N3;
4722
4723  if (VT == MVT::v8i8) {
4724    N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
4725    N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
4726
4727    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4728                     DAG.getIntPtrConstant(4));
4729    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4730                     DAG.getIntPtrConstant(4));
4731    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4732                     DAG.getIntPtrConstant(0));
4733    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4734                     DAG.getIntPtrConstant(0));
4735
4736    N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
4737    N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
4738
4739    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
4740    N0 = LowerCONCAT_VECTORS(N0, DAG);
4741
4742    N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
4743    return N0;
4744  }
4745  return LowerSDIV_v4i16(N0, N1, dl, DAG);
4746}
4747
4748static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
4749  EVT VT = Op.getValueType();
4750  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
4751         "unexpected type for custom-lowering ISD::UDIV");
4752
4753  DebugLoc dl = Op.getDebugLoc();
4754  SDValue N0 = Op.getOperand(0);
4755  SDValue N1 = Op.getOperand(1);
4756  SDValue N2, N3;
4757
4758  if (VT == MVT::v8i8) {
4759    N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
4760    N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
4761
4762    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4763                     DAG.getIntPtrConstant(4));
4764    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4765                     DAG.getIntPtrConstant(4));
4766    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4767                     DAG.getIntPtrConstant(0));
4768    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4769                     DAG.getIntPtrConstant(0));
4770
4771    N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
4772    N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
4773
4774    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
4775    N0 = LowerCONCAT_VECTORS(N0, DAG);
4776
4777    N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
4778                     DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
4779                     N0);
4780    return N0;
4781  }
4782
4783  // v4i16 sdiv ... Convert to float.
4784  // float4 yf = vcvt_f32_s32(vmovl_u16(y));
4785  // float4 xf = vcvt_f32_s32(vmovl_u16(x));
4786  N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
4787  N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
4788  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
4789  SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
4790
4791  // Use reciprocal estimate and two refinement steps.
4792  // float4 recip = vrecpeq_f32(yf);
4793  // recip *= vrecpsq_f32(yf, recip);
4794  // recip *= vrecpsq_f32(yf, recip);
4795  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4796                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1);
4797  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4798                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4799                   BN1, N2);
4800  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4801  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4802                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4803                   BN1, N2);
4804  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4805  // Simply multiplying by the reciprocal estimate can leave us a few ulps
4806  // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
4807  // and that it will never cause us to return an answer too large).
4808  // float4 result = as_float4(as_int4(xf*recip) + 2);
4809  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
4810  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
4811  N1 = DAG.getConstant(2, MVT::i32);
4812  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
4813  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
4814  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
4815  // Convert back to integer and return.
4816  // return vmovn_u32(vcvt_s32_f32(result));
4817  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
4818  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
4819  return N0;
4820}
4821
4822SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4823  switch (Op.getOpcode()) {
4824  default: llvm_unreachable("Don't know how to custom lower this!");
4825  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
4826  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
4827  case ISD::GlobalAddress:
4828    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
4829      LowerGlobalAddressELF(Op, DAG);
4830  case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
4831  case ISD::SELECT:        return LowerSELECT(Op, DAG);
4832  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
4833  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
4834  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
4835  case ISD::VASTART:       return LowerVASTART(Op, DAG);
4836  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
4837  case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
4838  case ISD::SINT_TO_FP:
4839  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
4840  case ISD::FP_TO_SINT:
4841  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
4842  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
4843  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
4844  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
4845  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
4846  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
4847  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
4848  case ISD::EH_SJLJ_DISPATCHSETUP: return LowerEH_SJLJ_DISPATCHSETUP(Op, DAG);
4849  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
4850                                                               Subtarget);
4851  case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
4852  case ISD::SHL:
4853  case ISD::SRL:
4854  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
4855  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
4856  case ISD::SRL_PARTS:
4857  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
4858  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
4859  case ISD::VSETCC:        return LowerVSETCC(Op, DAG);
4860  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
4861  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
4862  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4863  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
4864  case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
4865  case ISD::MUL:           return LowerMUL(Op, DAG);
4866  case ISD::SDIV:          return LowerSDIV(Op, DAG);
4867  case ISD::UDIV:          return LowerUDIV(Op, DAG);
4868  }
4869  return SDValue();
4870}
4871
4872/// ReplaceNodeResults - Replace the results of node with an illegal result
4873/// type with new values built out of custom code.
4874void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
4875                                           SmallVectorImpl<SDValue>&Results,
4876                                           SelectionDAG &DAG) const {
4877  SDValue Res;
4878  switch (N->getOpcode()) {
4879  default:
4880    llvm_unreachable("Don't know how to custom expand this!");
4881    break;
4882  case ISD::BITCAST:
4883    Res = ExpandBITCAST(N, DAG);
4884    break;
4885  case ISD::SRL:
4886  case ISD::SRA:
4887    Res = Expand64BitShift(N, DAG, Subtarget);
4888    break;
4889  }
4890  if (Res.getNode())
4891    Results.push_back(Res);
4892}
4893
4894//===----------------------------------------------------------------------===//
4895//                           ARM Scheduler Hooks
4896//===----------------------------------------------------------------------===//
4897
4898MachineBasicBlock *
4899ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
4900                                     MachineBasicBlock *BB,
4901                                     unsigned Size) const {
4902  unsigned dest    = MI->getOperand(0).getReg();
4903  unsigned ptr     = MI->getOperand(1).getReg();
4904  unsigned oldval  = MI->getOperand(2).getReg();
4905  unsigned newval  = MI->getOperand(3).getReg();
4906  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4907  DebugLoc dl = MI->getDebugLoc();
4908  bool isThumb2 = Subtarget->isThumb2();
4909
4910  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4911  unsigned scratch =
4912    MRI.createVirtualRegister(isThumb2 ? ARM::rGPRRegisterClass
4913                                       : ARM::GPRRegisterClass);
4914
4915  if (isThumb2) {
4916    MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
4917    MRI.constrainRegClass(oldval, ARM::rGPRRegisterClass);
4918    MRI.constrainRegClass(newval, ARM::rGPRRegisterClass);
4919  }
4920
4921  unsigned ldrOpc, strOpc;
4922  switch (Size) {
4923  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
4924  case 1:
4925    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
4926    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
4927    break;
4928  case 2:
4929    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
4930    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
4931    break;
4932  case 4:
4933    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
4934    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
4935    break;
4936  }
4937
4938  MachineFunction *MF = BB->getParent();
4939  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4940  MachineFunction::iterator It = BB;
4941  ++It; // insert the new blocks after the current block
4942
4943  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
4944  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
4945  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
4946  MF->insert(It, loop1MBB);
4947  MF->insert(It, loop2MBB);
4948  MF->insert(It, exitMBB);
4949
4950  // Transfer the remainder of BB and its successor edges to exitMBB.
4951  exitMBB->splice(exitMBB->begin(), BB,
4952                  llvm::next(MachineBasicBlock::iterator(MI)),
4953                  BB->end());
4954  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4955
4956  //  thisMBB:
4957  //   ...
4958  //   fallthrough --> loop1MBB
4959  BB->addSuccessor(loop1MBB);
4960
4961  // loop1MBB:
4962  //   ldrex dest, [ptr]
4963  //   cmp dest, oldval
4964  //   bne exitMBB
4965  BB = loop1MBB;
4966  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
4967  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
4968                 .addReg(dest).addReg(oldval));
4969  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4970    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
4971  BB->addSuccessor(loop2MBB);
4972  BB->addSuccessor(exitMBB);
4973
4974  // loop2MBB:
4975  //   strex scratch, newval, [ptr]
4976  //   cmp scratch, #0
4977  //   bne loop1MBB
4978  BB = loop2MBB;
4979  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval)
4980                 .addReg(ptr));
4981  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4982                 .addReg(scratch).addImm(0));
4983  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4984    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
4985  BB->addSuccessor(loop1MBB);
4986  BB->addSuccessor(exitMBB);
4987
4988  //  exitMBB:
4989  //   ...
4990  BB = exitMBB;
4991
4992  MI->eraseFromParent();   // The instruction is gone now.
4993
4994  return BB;
4995}
4996
4997MachineBasicBlock *
4998ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
4999                                    unsigned Size, unsigned BinOpcode) const {
5000  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5001  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5002
5003  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5004  MachineFunction *MF = BB->getParent();
5005  MachineFunction::iterator It = BB;
5006  ++It;
5007
5008  unsigned dest = MI->getOperand(0).getReg();
5009  unsigned ptr = MI->getOperand(1).getReg();
5010  unsigned incr = MI->getOperand(2).getReg();
5011  DebugLoc dl = MI->getDebugLoc();
5012  bool isThumb2 = Subtarget->isThumb2();
5013
5014  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5015  if (isThumb2) {
5016    MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
5017    MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
5018  }
5019
5020  unsigned ldrOpc, strOpc;
5021  switch (Size) {
5022  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5023  case 1:
5024    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5025    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5026    break;
5027  case 2:
5028    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5029    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5030    break;
5031  case 4:
5032    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5033    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5034    break;
5035  }
5036
5037  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5038  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5039  MF->insert(It, loopMBB);
5040  MF->insert(It, exitMBB);
5041
5042  // Transfer the remainder of BB and its successor edges to exitMBB.
5043  exitMBB->splice(exitMBB->begin(), BB,
5044                  llvm::next(MachineBasicBlock::iterator(MI)),
5045                  BB->end());
5046  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5047
5048  TargetRegisterClass *TRC =
5049    isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5050  unsigned scratch = MRI.createVirtualRegister(TRC);
5051  unsigned scratch2 = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
5052
5053  //  thisMBB:
5054  //   ...
5055  //   fallthrough --> loopMBB
5056  BB->addSuccessor(loopMBB);
5057
5058  //  loopMBB:
5059  //   ldrex dest, ptr
5060  //   <binop> scratch2, dest, incr
5061  //   strex scratch, scratch2, ptr
5062  //   cmp scratch, #0
5063  //   bne- loopMBB
5064  //   fallthrough --> exitMBB
5065  BB = loopMBB;
5066  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
5067  if (BinOpcode) {
5068    // operand order needs to go the other way for NAND
5069    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
5070      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5071                     addReg(incr).addReg(dest)).addReg(0);
5072    else
5073      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5074                     addReg(dest).addReg(incr)).addReg(0);
5075  }
5076
5077  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2)
5078                 .addReg(ptr));
5079  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5080                 .addReg(scratch).addImm(0));
5081  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5082    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5083
5084  BB->addSuccessor(loopMBB);
5085  BB->addSuccessor(exitMBB);
5086
5087  //  exitMBB:
5088  //   ...
5089  BB = exitMBB;
5090
5091  MI->eraseFromParent();   // The instruction is gone now.
5092
5093  return BB;
5094}
5095
5096MachineBasicBlock *
5097ARMTargetLowering::EmitAtomicBinaryMinMax(MachineInstr *MI,
5098                                          MachineBasicBlock *BB,
5099                                          unsigned Size,
5100                                          bool signExtend,
5101                                          ARMCC::CondCodes Cond) const {
5102  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5103
5104  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5105  MachineFunction *MF = BB->getParent();
5106  MachineFunction::iterator It = BB;
5107  ++It;
5108
5109  unsigned dest = MI->getOperand(0).getReg();
5110  unsigned ptr = MI->getOperand(1).getReg();
5111  unsigned incr = MI->getOperand(2).getReg();
5112  unsigned oldval = dest;
5113  DebugLoc dl = MI->getDebugLoc();
5114  bool isThumb2 = Subtarget->isThumb2();
5115
5116  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5117  if (isThumb2) {
5118    MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
5119    MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
5120  }
5121
5122  unsigned ldrOpc, strOpc, extendOpc;
5123  switch (Size) {
5124  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5125  case 1:
5126    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5127    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5128    extendOpc = isThumb2 ? ARM::t2SXTBr : ARM::SXTBr;
5129    break;
5130  case 2:
5131    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5132    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5133    extendOpc = isThumb2 ? ARM::t2SXTHr : ARM::SXTHr;
5134    break;
5135  case 4:
5136    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5137    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5138    extendOpc = 0;
5139    break;
5140  }
5141
5142  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5143  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5144  MF->insert(It, loopMBB);
5145  MF->insert(It, exitMBB);
5146
5147  // Transfer the remainder of BB and its successor edges to exitMBB.
5148  exitMBB->splice(exitMBB->begin(), BB,
5149                  llvm::next(MachineBasicBlock::iterator(MI)),
5150                  BB->end());
5151  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5152
5153  TargetRegisterClass *TRC =
5154    isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5155  unsigned scratch = MRI.createVirtualRegister(TRC);
5156  unsigned scratch2 = MRI.createVirtualRegister(TRC);
5157
5158  //  thisMBB:
5159  //   ...
5160  //   fallthrough --> loopMBB
5161  BB->addSuccessor(loopMBB);
5162
5163  //  loopMBB:
5164  //   ldrex dest, ptr
5165  //   (sign extend dest, if required)
5166  //   cmp dest, incr
5167  //   cmov.cond scratch2, dest, incr
5168  //   strex scratch, scratch2, ptr
5169  //   cmp scratch, #0
5170  //   bne- loopMBB
5171  //   fallthrough --> exitMBB
5172  BB = loopMBB;
5173  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
5174
5175  // Sign extend the value, if necessary.
5176  if (signExtend && extendOpc) {
5177    oldval = MRI.createVirtualRegister(ARM::GPRRegisterClass);
5178    AddDefaultPred(BuildMI(BB, dl, TII->get(extendOpc), oldval).addReg(dest));
5179  }
5180
5181  // Build compare and cmov instructions.
5182  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5183                 .addReg(oldval).addReg(incr));
5184  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr), scratch2)
5185         .addReg(oldval).addReg(incr).addImm(Cond).addReg(ARM::CPSR);
5186
5187  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2)
5188                 .addReg(ptr));
5189  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5190                 .addReg(scratch).addImm(0));
5191  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5192    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5193
5194  BB->addSuccessor(loopMBB);
5195  BB->addSuccessor(exitMBB);
5196
5197  //  exitMBB:
5198  //   ...
5199  BB = exitMBB;
5200
5201  MI->eraseFromParent();   // The instruction is gone now.
5202
5203  return BB;
5204}
5205
5206static
5207MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
5208  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
5209       E = MBB->succ_end(); I != E; ++I)
5210    if (*I != Succ)
5211      return *I;
5212  llvm_unreachable("Expecting a BB with two successors!");
5213}
5214
5215// FIXME: This opcode table should obviously be expressed in the target
5216// description. We probably just need a "machine opcode" value in the pseudo
5217// instruction. But the ideal solution maybe to simply remove the "S" version
5218// of the opcode altogether.
5219struct AddSubFlagsOpcodePair {
5220  unsigned PseudoOpc;
5221  unsigned MachineOpc;
5222};
5223
5224static AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
5225  {ARM::ADCSri, ARM::ADCri},
5226  {ARM::ADCSrr, ARM::ADCrr},
5227  {ARM::ADCSrs, ARM::ADCrs},
5228  {ARM::SBCSri, ARM::SBCri},
5229  {ARM::SBCSrr, ARM::SBCrr},
5230  {ARM::SBCSrs, ARM::SBCrs},
5231  {ARM::RSBSri, ARM::RSBri},
5232  {ARM::RSBSrr, ARM::RSBrr},
5233  {ARM::RSBSrs, ARM::RSBrs},
5234  {ARM::RSCSri, ARM::RSCri},
5235  {ARM::RSCSrs, ARM::RSCrs},
5236  {ARM::t2ADCSri, ARM::t2ADCri},
5237  {ARM::t2ADCSrr, ARM::t2ADCrr},
5238  {ARM::t2ADCSrs, ARM::t2ADCrs},
5239  {ARM::t2SBCSri, ARM::t2SBCri},
5240  {ARM::t2SBCSrr, ARM::t2SBCrr},
5241  {ARM::t2SBCSrs, ARM::t2SBCrs},
5242  {ARM::t2RSBSri, ARM::t2RSBri},
5243  {ARM::t2RSBSrs, ARM::t2RSBrs},
5244};
5245
5246// Convert and Add or Subtract with Carry and Flags to a generic opcode with
5247// CPSR<def> operand. e.g. ADCS (...) -> ADC (... CPSR<def>).
5248//
5249// FIXME: Somewhere we should assert that CPSR<def> is in the correct
5250// position to be recognized by the target descrition as the 'S' bit.
5251bool ARMTargetLowering::RemapAddSubWithFlags(MachineInstr *MI,
5252                                             MachineBasicBlock *BB) const {
5253  unsigned OldOpc = MI->getOpcode();
5254  unsigned NewOpc = 0;
5255
5256  // This is only called for instructions that need remapping, so iterating over
5257  // the tiny opcode table is not costly.
5258  static const int NPairs =
5259    sizeof(AddSubFlagsOpcodeMap) / sizeof(AddSubFlagsOpcodePair);
5260  for (AddSubFlagsOpcodePair *Pair = &AddSubFlagsOpcodeMap[0],
5261         *End = &AddSubFlagsOpcodeMap[NPairs]; Pair != End; ++Pair) {
5262    if (OldOpc == Pair->PseudoOpc) {
5263      NewOpc = Pair->MachineOpc;
5264      break;
5265    }
5266  }
5267  if (!NewOpc)
5268    return false;
5269
5270  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5271  DebugLoc dl = MI->getDebugLoc();
5272  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
5273  for (unsigned i = 0; i < MI->getNumOperands(); ++i)
5274    MIB.addOperand(MI->getOperand(i));
5275  AddDefaultPred(MIB);
5276  MIB.addReg(ARM::CPSR, RegState::Define); // S bit
5277  MI->eraseFromParent();
5278  return true;
5279}
5280
5281MachineBasicBlock *
5282ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
5283                                               MachineBasicBlock *BB) const {
5284  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5285  DebugLoc dl = MI->getDebugLoc();
5286  bool isThumb2 = Subtarget->isThumb2();
5287  switch (MI->getOpcode()) {
5288  default: {
5289    if (RemapAddSubWithFlags(MI, BB))
5290      return BB;
5291
5292    MI->dump();
5293    llvm_unreachable("Unexpected instr type to insert");
5294  }
5295  case ARM::ATOMIC_LOAD_ADD_I8:
5296     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
5297  case ARM::ATOMIC_LOAD_ADD_I16:
5298     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
5299  case ARM::ATOMIC_LOAD_ADD_I32:
5300     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
5301
5302  case ARM::ATOMIC_LOAD_AND_I8:
5303     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
5304  case ARM::ATOMIC_LOAD_AND_I16:
5305     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
5306  case ARM::ATOMIC_LOAD_AND_I32:
5307     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
5308
5309  case ARM::ATOMIC_LOAD_OR_I8:
5310     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
5311  case ARM::ATOMIC_LOAD_OR_I16:
5312     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
5313  case ARM::ATOMIC_LOAD_OR_I32:
5314     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
5315
5316  case ARM::ATOMIC_LOAD_XOR_I8:
5317     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
5318  case ARM::ATOMIC_LOAD_XOR_I16:
5319     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
5320  case ARM::ATOMIC_LOAD_XOR_I32:
5321     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
5322
5323  case ARM::ATOMIC_LOAD_NAND_I8:
5324     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
5325  case ARM::ATOMIC_LOAD_NAND_I16:
5326     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
5327  case ARM::ATOMIC_LOAD_NAND_I32:
5328     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
5329
5330  case ARM::ATOMIC_LOAD_SUB_I8:
5331     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
5332  case ARM::ATOMIC_LOAD_SUB_I16:
5333     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
5334  case ARM::ATOMIC_LOAD_SUB_I32:
5335     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
5336
5337  case ARM::ATOMIC_LOAD_MIN_I8:
5338     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::LT);
5339  case ARM::ATOMIC_LOAD_MIN_I16:
5340     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::LT);
5341  case ARM::ATOMIC_LOAD_MIN_I32:
5342     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::LT);
5343
5344  case ARM::ATOMIC_LOAD_MAX_I8:
5345     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::GT);
5346  case ARM::ATOMIC_LOAD_MAX_I16:
5347     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::GT);
5348  case ARM::ATOMIC_LOAD_MAX_I32:
5349     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::GT);
5350
5351  case ARM::ATOMIC_LOAD_UMIN_I8:
5352     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::LO);
5353  case ARM::ATOMIC_LOAD_UMIN_I16:
5354     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::LO);
5355  case ARM::ATOMIC_LOAD_UMIN_I32:
5356     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::LO);
5357
5358  case ARM::ATOMIC_LOAD_UMAX_I8:
5359     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::HI);
5360  case ARM::ATOMIC_LOAD_UMAX_I16:
5361     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::HI);
5362  case ARM::ATOMIC_LOAD_UMAX_I32:
5363     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::HI);
5364
5365  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
5366  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
5367  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
5368
5369  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
5370  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
5371  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
5372
5373  case ARM::tMOVCCr_pseudo: {
5374    // To "insert" a SELECT_CC instruction, we actually have to insert the
5375    // diamond control-flow pattern.  The incoming instruction knows the
5376    // destination vreg to set, the condition code register to branch on, the
5377    // true/false values to select between, and a branch opcode to use.
5378    const BasicBlock *LLVM_BB = BB->getBasicBlock();
5379    MachineFunction::iterator It = BB;
5380    ++It;
5381
5382    //  thisMBB:
5383    //  ...
5384    //   TrueVal = ...
5385    //   cmpTY ccX, r1, r2
5386    //   bCC copy1MBB
5387    //   fallthrough --> copy0MBB
5388    MachineBasicBlock *thisMBB  = BB;
5389    MachineFunction *F = BB->getParent();
5390    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
5391    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
5392    F->insert(It, copy0MBB);
5393    F->insert(It, sinkMBB);
5394
5395    // Transfer the remainder of BB and its successor edges to sinkMBB.
5396    sinkMBB->splice(sinkMBB->begin(), BB,
5397                    llvm::next(MachineBasicBlock::iterator(MI)),
5398                    BB->end());
5399    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
5400
5401    BB->addSuccessor(copy0MBB);
5402    BB->addSuccessor(sinkMBB);
5403
5404    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
5405      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
5406
5407    //  copy0MBB:
5408    //   %FalseValue = ...
5409    //   # fallthrough to sinkMBB
5410    BB = copy0MBB;
5411
5412    // Update machine-CFG edges
5413    BB->addSuccessor(sinkMBB);
5414
5415    //  sinkMBB:
5416    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
5417    //  ...
5418    BB = sinkMBB;
5419    BuildMI(*BB, BB->begin(), dl,
5420            TII->get(ARM::PHI), MI->getOperand(0).getReg())
5421      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
5422      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
5423
5424    MI->eraseFromParent();   // The pseudo instruction is gone now.
5425    return BB;
5426  }
5427
5428  case ARM::BCCi64:
5429  case ARM::BCCZi64: {
5430    // If there is an unconditional branch to the other successor, remove it.
5431    BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
5432
5433    // Compare both parts that make up the double comparison separately for
5434    // equality.
5435    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
5436
5437    unsigned LHS1 = MI->getOperand(1).getReg();
5438    unsigned LHS2 = MI->getOperand(2).getReg();
5439    if (RHSisZero) {
5440      AddDefaultPred(BuildMI(BB, dl,
5441                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5442                     .addReg(LHS1).addImm(0));
5443      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5444        .addReg(LHS2).addImm(0)
5445        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
5446    } else {
5447      unsigned RHS1 = MI->getOperand(3).getReg();
5448      unsigned RHS2 = MI->getOperand(4).getReg();
5449      AddDefaultPred(BuildMI(BB, dl,
5450                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5451                     .addReg(LHS1).addReg(RHS1));
5452      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5453        .addReg(LHS2).addReg(RHS2)
5454        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
5455    }
5456
5457    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
5458    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
5459    if (MI->getOperand(0).getImm() == ARMCC::NE)
5460      std::swap(destMBB, exitMBB);
5461
5462    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5463      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
5464    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2B : ARM::B))
5465      .addMBB(exitMBB);
5466
5467    MI->eraseFromParent();   // The pseudo instruction is gone now.
5468    return BB;
5469  }
5470  }
5471}
5472
5473//===----------------------------------------------------------------------===//
5474//                           ARM Optimization Hooks
5475//===----------------------------------------------------------------------===//
5476
5477static
5478SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
5479                            TargetLowering::DAGCombinerInfo &DCI) {
5480  SelectionDAG &DAG = DCI.DAG;
5481  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5482  EVT VT = N->getValueType(0);
5483  unsigned Opc = N->getOpcode();
5484  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
5485  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
5486  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
5487  ISD::CondCode CC = ISD::SETCC_INVALID;
5488
5489  if (isSlctCC) {
5490    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
5491  } else {
5492    SDValue CCOp = Slct.getOperand(0);
5493    if (CCOp.getOpcode() == ISD::SETCC)
5494      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
5495  }
5496
5497  bool DoXform = false;
5498  bool InvCC = false;
5499  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
5500          "Bad input!");
5501
5502  if (LHS.getOpcode() == ISD::Constant &&
5503      cast<ConstantSDNode>(LHS)->isNullValue()) {
5504    DoXform = true;
5505  } else if (CC != ISD::SETCC_INVALID &&
5506             RHS.getOpcode() == ISD::Constant &&
5507             cast<ConstantSDNode>(RHS)->isNullValue()) {
5508    std::swap(LHS, RHS);
5509    SDValue Op0 = Slct.getOperand(0);
5510    EVT OpVT = isSlctCC ? Op0.getValueType() :
5511                          Op0.getOperand(0).getValueType();
5512    bool isInt = OpVT.isInteger();
5513    CC = ISD::getSetCCInverse(CC, isInt);
5514
5515    if (!TLI.isCondCodeLegal(CC, OpVT))
5516      return SDValue();         // Inverse operator isn't legal.
5517
5518    DoXform = true;
5519    InvCC = true;
5520  }
5521
5522  if (DoXform) {
5523    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
5524    if (isSlctCC)
5525      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
5526                             Slct.getOperand(0), Slct.getOperand(1), CC);
5527    SDValue CCOp = Slct.getOperand(0);
5528    if (InvCC)
5529      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
5530                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
5531    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
5532                       CCOp, OtherOp, Result);
5533  }
5534  return SDValue();
5535}
5536
5537// AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
5538// (only after legalization).
5539static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
5540                                 TargetLowering::DAGCombinerInfo &DCI,
5541                                 const ARMSubtarget *Subtarget) {
5542
5543  // Only perform optimization if after legalize, and if NEON is available. We
5544  // also expected both operands to be BUILD_VECTORs.
5545  if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
5546      || N0.getOpcode() != ISD::BUILD_VECTOR
5547      || N1.getOpcode() != ISD::BUILD_VECTOR)
5548    return SDValue();
5549
5550  // Check output type since VPADDL operand elements can only be 8, 16, or 32.
5551  EVT VT = N->getValueType(0);
5552  if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
5553    return SDValue();
5554
5555  // Check that the vector operands are of the right form.
5556  // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
5557  // operands, where N is the size of the formed vector.
5558  // Each EXTRACT_VECTOR should have the same input vector and odd or even
5559  // index such that we have a pair wise add pattern.
5560
5561  // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
5562  if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
5563    return SDValue();
5564  SDValue Vec = N0->getOperand(0)->getOperand(0);
5565  SDNode *V = Vec.getNode();
5566  unsigned nextIndex = 0;
5567
5568  // For each operands to the ADD which are BUILD_VECTORs,
5569  // check to see if each of their operands are an EXTRACT_VECTOR with
5570  // the same vector and appropriate index.
5571  for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
5572    if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
5573        && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
5574
5575      SDValue ExtVec0 = N0->getOperand(i);
5576      SDValue ExtVec1 = N1->getOperand(i);
5577
5578      // First operand is the vector, verify its the same.
5579      if (V != ExtVec0->getOperand(0).getNode() ||
5580          V != ExtVec1->getOperand(0).getNode())
5581        return SDValue();
5582
5583      // Second is the constant, verify its correct.
5584      ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
5585      ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
5586
5587      // For the constant, we want to see all the even or all the odd.
5588      if (!C0 || !C1 || C0->getZExtValue() != nextIndex
5589          || C1->getZExtValue() != nextIndex+1)
5590        return SDValue();
5591
5592      // Increment index.
5593      nextIndex+=2;
5594    } else
5595      return SDValue();
5596  }
5597
5598  // Create VPADDL node.
5599  SelectionDAG &DAG = DCI.DAG;
5600  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5601
5602  // Build operand list.
5603  SmallVector<SDValue, 8> Ops;
5604  Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls,
5605                                TLI.getPointerTy()));
5606
5607  // Input is the vector.
5608  Ops.push_back(Vec);
5609
5610  // Get widened type and narrowed type.
5611  MVT widenType;
5612  unsigned numElem = VT.getVectorNumElements();
5613  switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
5614    case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
5615    case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
5616    case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
5617    default:
5618      assert(0 && "Invalid vector element type for padd optimization.");
5619  }
5620
5621  SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
5622                            widenType, &Ops[0], Ops.size());
5623  return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, tmp);
5624}
5625
5626/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
5627/// operands N0 and N1.  This is a helper for PerformADDCombine that is
5628/// called with the default operands, and if that fails, with commuted
5629/// operands.
5630static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
5631                                          TargetLowering::DAGCombinerInfo &DCI,
5632                                          const ARMSubtarget *Subtarget){
5633
5634  // Attempt to create vpaddl for this add.
5635  SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
5636  if (Result.getNode())
5637    return Result;
5638
5639  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
5640  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
5641    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
5642    if (Result.getNode()) return Result;
5643  }
5644  return SDValue();
5645}
5646
5647/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
5648///
5649static SDValue PerformADDCombine(SDNode *N,
5650                                 TargetLowering::DAGCombinerInfo &DCI,
5651                                 const ARMSubtarget *Subtarget) {
5652  SDValue N0 = N->getOperand(0);
5653  SDValue N1 = N->getOperand(1);
5654
5655  // First try with the default operand order.
5656  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
5657  if (Result.getNode())
5658    return Result;
5659
5660  // If that didn't work, try again with the operands commuted.
5661  return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
5662}
5663
5664/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
5665///
5666static SDValue PerformSUBCombine(SDNode *N,
5667                                 TargetLowering::DAGCombinerInfo &DCI) {
5668  SDValue N0 = N->getOperand(0);
5669  SDValue N1 = N->getOperand(1);
5670
5671  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
5672  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
5673    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
5674    if (Result.getNode()) return Result;
5675  }
5676
5677  return SDValue();
5678}
5679
5680/// PerformVMULCombine
5681/// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
5682/// special multiplier accumulator forwarding.
5683///   vmul d3, d0, d2
5684///   vmla d3, d1, d2
5685/// is faster than
5686///   vadd d3, d0, d1
5687///   vmul d3, d3, d2
5688static SDValue PerformVMULCombine(SDNode *N,
5689                                  TargetLowering::DAGCombinerInfo &DCI,
5690                                  const ARMSubtarget *Subtarget) {
5691  if (!Subtarget->hasVMLxForwarding())
5692    return SDValue();
5693
5694  SelectionDAG &DAG = DCI.DAG;
5695  SDValue N0 = N->getOperand(0);
5696  SDValue N1 = N->getOperand(1);
5697  unsigned Opcode = N0.getOpcode();
5698  if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
5699      Opcode != ISD::FADD && Opcode != ISD::FSUB) {
5700    Opcode = N1.getOpcode();
5701    if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
5702        Opcode != ISD::FADD && Opcode != ISD::FSUB)
5703      return SDValue();
5704    std::swap(N0, N1);
5705  }
5706
5707  EVT VT = N->getValueType(0);
5708  DebugLoc DL = N->getDebugLoc();
5709  SDValue N00 = N0->getOperand(0);
5710  SDValue N01 = N0->getOperand(1);
5711  return DAG.getNode(Opcode, DL, VT,
5712                     DAG.getNode(ISD::MUL, DL, VT, N00, N1),
5713                     DAG.getNode(ISD::MUL, DL, VT, N01, N1));
5714}
5715
5716static SDValue PerformMULCombine(SDNode *N,
5717                                 TargetLowering::DAGCombinerInfo &DCI,
5718                                 const ARMSubtarget *Subtarget) {
5719  SelectionDAG &DAG = DCI.DAG;
5720
5721  if (Subtarget->isThumb1Only())
5722    return SDValue();
5723
5724  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
5725    return SDValue();
5726
5727  EVT VT = N->getValueType(0);
5728  if (VT.is64BitVector() || VT.is128BitVector())
5729    return PerformVMULCombine(N, DCI, Subtarget);
5730  if (VT != MVT::i32)
5731    return SDValue();
5732
5733  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
5734  if (!C)
5735    return SDValue();
5736
5737  uint64_t MulAmt = C->getZExtValue();
5738  unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
5739  ShiftAmt = ShiftAmt & (32 - 1);
5740  SDValue V = N->getOperand(0);
5741  DebugLoc DL = N->getDebugLoc();
5742
5743  SDValue Res;
5744  MulAmt >>= ShiftAmt;
5745  if (isPowerOf2_32(MulAmt - 1)) {
5746    // (mul x, 2^N + 1) => (add (shl x, N), x)
5747    Res = DAG.getNode(ISD::ADD, DL, VT,
5748                      V, DAG.getNode(ISD::SHL, DL, VT,
5749                                     V, DAG.getConstant(Log2_32(MulAmt-1),
5750                                                        MVT::i32)));
5751  } else if (isPowerOf2_32(MulAmt + 1)) {
5752    // (mul x, 2^N - 1) => (sub (shl x, N), x)
5753    Res = DAG.getNode(ISD::SUB, DL, VT,
5754                      DAG.getNode(ISD::SHL, DL, VT,
5755                                  V, DAG.getConstant(Log2_32(MulAmt+1),
5756                                                     MVT::i32)),
5757                                                     V);
5758  } else
5759    return SDValue();
5760
5761  if (ShiftAmt != 0)
5762    Res = DAG.getNode(ISD::SHL, DL, VT, Res,
5763                      DAG.getConstant(ShiftAmt, MVT::i32));
5764
5765  // Do not add new nodes to DAG combiner worklist.
5766  DCI.CombineTo(N, Res, false);
5767  return SDValue();
5768}
5769
5770static SDValue PerformANDCombine(SDNode *N,
5771                                TargetLowering::DAGCombinerInfo &DCI) {
5772
5773  // Attempt to use immediate-form VBIC
5774  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
5775  DebugLoc dl = N->getDebugLoc();
5776  EVT VT = N->getValueType(0);
5777  SelectionDAG &DAG = DCI.DAG;
5778
5779  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
5780    return SDValue();
5781
5782  APInt SplatBits, SplatUndef;
5783  unsigned SplatBitSize;
5784  bool HasAnyUndefs;
5785  if (BVN &&
5786      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
5787    if (SplatBitSize <= 64) {
5788      EVT VbicVT;
5789      SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
5790                                      SplatUndef.getZExtValue(), SplatBitSize,
5791                                      DAG, VbicVT, VT.is128BitVector(),
5792                                      OtherModImm);
5793      if (Val.getNode()) {
5794        SDValue Input =
5795          DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
5796        SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
5797        return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
5798      }
5799    }
5800  }
5801
5802  return SDValue();
5803}
5804
5805/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
5806static SDValue PerformORCombine(SDNode *N,
5807                                TargetLowering::DAGCombinerInfo &DCI,
5808                                const ARMSubtarget *Subtarget) {
5809  // Attempt to use immediate-form VORR
5810  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
5811  DebugLoc dl = N->getDebugLoc();
5812  EVT VT = N->getValueType(0);
5813  SelectionDAG &DAG = DCI.DAG;
5814
5815  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
5816    return SDValue();
5817
5818  APInt SplatBits, SplatUndef;
5819  unsigned SplatBitSize;
5820  bool HasAnyUndefs;
5821  if (BVN && Subtarget->hasNEON() &&
5822      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
5823    if (SplatBitSize <= 64) {
5824      EVT VorrVT;
5825      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
5826                                      SplatUndef.getZExtValue(), SplatBitSize,
5827                                      DAG, VorrVT, VT.is128BitVector(),
5828                                      OtherModImm);
5829      if (Val.getNode()) {
5830        SDValue Input =
5831          DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
5832        SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
5833        return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
5834      }
5835    }
5836  }
5837
5838  SDValue N0 = N->getOperand(0);
5839  if (N0.getOpcode() != ISD::AND)
5840    return SDValue();
5841  SDValue N1 = N->getOperand(1);
5842
5843  // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
5844  if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
5845      DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
5846    APInt SplatUndef;
5847    unsigned SplatBitSize;
5848    bool HasAnyUndefs;
5849
5850    BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
5851    APInt SplatBits0;
5852    if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
5853                                  HasAnyUndefs) && !HasAnyUndefs) {
5854      BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
5855      APInt SplatBits1;
5856      if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
5857                                    HasAnyUndefs) && !HasAnyUndefs &&
5858          SplatBits0 == ~SplatBits1) {
5859        // Canonicalize the vector type to make instruction selection simpler.
5860        EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
5861        SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
5862                                     N0->getOperand(1), N0->getOperand(0),
5863                                     N1->getOperand(0));
5864        return DAG.getNode(ISD::BITCAST, dl, VT, Result);
5865      }
5866    }
5867  }
5868
5869  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
5870  // reasonable.
5871
5872  // BFI is only available on V6T2+
5873  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
5874    return SDValue();
5875
5876  DebugLoc DL = N->getDebugLoc();
5877  // 1) or (and A, mask), val => ARMbfi A, val, mask
5878  //      iff (val & mask) == val
5879  //
5880  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
5881  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
5882  //          && mask == ~mask2
5883  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
5884  //          && ~mask == mask2
5885  //  (i.e., copy a bitfield value into another bitfield of the same width)
5886
5887  if (VT != MVT::i32)
5888    return SDValue();
5889
5890  SDValue N00 = N0.getOperand(0);
5891
5892  // The value and the mask need to be constants so we can verify this is
5893  // actually a bitfield set. If the mask is 0xffff, we can do better
5894  // via a movt instruction, so don't use BFI in that case.
5895  SDValue MaskOp = N0.getOperand(1);
5896  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
5897  if (!MaskC)
5898    return SDValue();
5899  unsigned Mask = MaskC->getZExtValue();
5900  if (Mask == 0xffff)
5901    return SDValue();
5902  SDValue Res;
5903  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
5904  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5905  if (N1C) {
5906    unsigned Val = N1C->getZExtValue();
5907    if ((Val & ~Mask) != Val)
5908      return SDValue();
5909
5910    if (ARM::isBitFieldInvertedMask(Mask)) {
5911      Val >>= CountTrailingZeros_32(~Mask);
5912
5913      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
5914                        DAG.getConstant(Val, MVT::i32),
5915                        DAG.getConstant(Mask, MVT::i32));
5916
5917      // Do not add new nodes to DAG combiner worklist.
5918      DCI.CombineTo(N, Res, false);
5919      return SDValue();
5920    }
5921  } else if (N1.getOpcode() == ISD::AND) {
5922    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
5923    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
5924    if (!N11C)
5925      return SDValue();
5926    unsigned Mask2 = N11C->getZExtValue();
5927
5928    // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
5929    // as is to match.
5930    if (ARM::isBitFieldInvertedMask(Mask) &&
5931        (Mask == ~Mask2)) {
5932      // The pack halfword instruction works better for masks that fit it,
5933      // so use that when it's available.
5934      if (Subtarget->hasT2ExtractPack() &&
5935          (Mask == 0xffff || Mask == 0xffff0000))
5936        return SDValue();
5937      // 2a
5938      unsigned amt = CountTrailingZeros_32(Mask2);
5939      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
5940                        DAG.getConstant(amt, MVT::i32));
5941      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
5942                        DAG.getConstant(Mask, MVT::i32));
5943      // Do not add new nodes to DAG combiner worklist.
5944      DCI.CombineTo(N, Res, false);
5945      return SDValue();
5946    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
5947               (~Mask == Mask2)) {
5948      // The pack halfword instruction works better for masks that fit it,
5949      // so use that when it's available.
5950      if (Subtarget->hasT2ExtractPack() &&
5951          (Mask2 == 0xffff || Mask2 == 0xffff0000))
5952        return SDValue();
5953      // 2b
5954      unsigned lsb = CountTrailingZeros_32(Mask);
5955      Res = DAG.getNode(ISD::SRL, DL, VT, N00,
5956                        DAG.getConstant(lsb, MVT::i32));
5957      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
5958                        DAG.getConstant(Mask2, MVT::i32));
5959      // Do not add new nodes to DAG combiner worklist.
5960      DCI.CombineTo(N, Res, false);
5961      return SDValue();
5962    }
5963  }
5964
5965  if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
5966      N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
5967      ARM::isBitFieldInvertedMask(~Mask)) {
5968    // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
5969    // where lsb(mask) == #shamt and masked bits of B are known zero.
5970    SDValue ShAmt = N00.getOperand(1);
5971    unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
5972    unsigned LSB = CountTrailingZeros_32(Mask);
5973    if (ShAmtC != LSB)
5974      return SDValue();
5975
5976    Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
5977                      DAG.getConstant(~Mask, MVT::i32));
5978
5979    // Do not add new nodes to DAG combiner worklist.
5980    DCI.CombineTo(N, Res, false);
5981  }
5982
5983  return SDValue();
5984}
5985
5986/// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
5987/// the bits being cleared by the AND are not demanded by the BFI.
5988static SDValue PerformBFICombine(SDNode *N,
5989                                 TargetLowering::DAGCombinerInfo &DCI) {
5990  SDValue N1 = N->getOperand(1);
5991  if (N1.getOpcode() == ISD::AND) {
5992    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
5993    if (!N11C)
5994      return SDValue();
5995    unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
5996    unsigned LSB = CountTrailingZeros_32(~InvMask);
5997    unsigned Width = (32 - CountLeadingZeros_32(~InvMask)) - LSB;
5998    unsigned Mask = (1 << Width)-1;
5999    unsigned Mask2 = N11C->getZExtValue();
6000    if ((Mask & (~Mask2)) == 0)
6001      return DCI.DAG.getNode(ARMISD::BFI, N->getDebugLoc(), N->getValueType(0),
6002                             N->getOperand(0), N1.getOperand(0),
6003                             N->getOperand(2));
6004  }
6005  return SDValue();
6006}
6007
6008/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
6009/// ARMISD::VMOVRRD.
6010static SDValue PerformVMOVRRDCombine(SDNode *N,
6011                                     TargetLowering::DAGCombinerInfo &DCI) {
6012  // vmovrrd(vmovdrr x, y) -> x,y
6013  SDValue InDouble = N->getOperand(0);
6014  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
6015    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
6016
6017  // vmovrrd(load f64) -> (load i32), (load i32)
6018  SDNode *InNode = InDouble.getNode();
6019  if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
6020      InNode->getValueType(0) == MVT::f64 &&
6021      InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
6022      !cast<LoadSDNode>(InNode)->isVolatile()) {
6023    // TODO: Should this be done for non-FrameIndex operands?
6024    LoadSDNode *LD = cast<LoadSDNode>(InNode);
6025
6026    SelectionDAG &DAG = DCI.DAG;
6027    DebugLoc DL = LD->getDebugLoc();
6028    SDValue BasePtr = LD->getBasePtr();
6029    SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
6030                                 LD->getPointerInfo(), LD->isVolatile(),
6031                                 LD->isNonTemporal(), LD->getAlignment());
6032
6033    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
6034                                    DAG.getConstant(4, MVT::i32));
6035    SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
6036                                 LD->getPointerInfo(), LD->isVolatile(),
6037                                 LD->isNonTemporal(),
6038                                 std::min(4U, LD->getAlignment() / 2));
6039
6040    DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
6041    SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
6042    DCI.RemoveFromWorklist(LD);
6043    DAG.DeleteNode(LD);
6044    return Result;
6045  }
6046
6047  return SDValue();
6048}
6049
6050/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
6051/// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
6052static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
6053  // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
6054  SDValue Op0 = N->getOperand(0);
6055  SDValue Op1 = N->getOperand(1);
6056  if (Op0.getOpcode() == ISD::BITCAST)
6057    Op0 = Op0.getOperand(0);
6058  if (Op1.getOpcode() == ISD::BITCAST)
6059    Op1 = Op1.getOperand(0);
6060  if (Op0.getOpcode() == ARMISD::VMOVRRD &&
6061      Op0.getNode() == Op1.getNode() &&
6062      Op0.getResNo() == 0 && Op1.getResNo() == 1)
6063    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
6064                       N->getValueType(0), Op0.getOperand(0));
6065  return SDValue();
6066}
6067
6068/// PerformSTORECombine - Target-specific dag combine xforms for
6069/// ISD::STORE.
6070static SDValue PerformSTORECombine(SDNode *N,
6071                                   TargetLowering::DAGCombinerInfo &DCI) {
6072  // Bitcast an i64 store extracted from a vector to f64.
6073  // Otherwise, the i64 value will be legalized to a pair of i32 values.
6074  StoreSDNode *St = cast<StoreSDNode>(N);
6075  SDValue StVal = St->getValue();
6076  if (!ISD::isNormalStore(St) || St->isVolatile())
6077    return SDValue();
6078
6079  if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
6080      StVal.getNode()->hasOneUse() && !St->isVolatile()) {
6081    SelectionDAG  &DAG = DCI.DAG;
6082    DebugLoc DL = St->getDebugLoc();
6083    SDValue BasePtr = St->getBasePtr();
6084    SDValue NewST1 = DAG.getStore(St->getChain(), DL,
6085                                  StVal.getNode()->getOperand(0), BasePtr,
6086                                  St->getPointerInfo(), St->isVolatile(),
6087                                  St->isNonTemporal(), St->getAlignment());
6088
6089    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
6090                                    DAG.getConstant(4, MVT::i32));
6091    return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(1),
6092                        OffsetPtr, St->getPointerInfo(), St->isVolatile(),
6093                        St->isNonTemporal(),
6094                        std::min(4U, St->getAlignment() / 2));
6095  }
6096
6097  if (StVal.getValueType() != MVT::i64 ||
6098      StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6099    return SDValue();
6100
6101  SelectionDAG &DAG = DCI.DAG;
6102  DebugLoc dl = StVal.getDebugLoc();
6103  SDValue IntVec = StVal.getOperand(0);
6104  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
6105                                 IntVec.getValueType().getVectorNumElements());
6106  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
6107  SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6108                               Vec, StVal.getOperand(1));
6109  dl = N->getDebugLoc();
6110  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
6111  // Make the DAGCombiner fold the bitcasts.
6112  DCI.AddToWorklist(Vec.getNode());
6113  DCI.AddToWorklist(ExtElt.getNode());
6114  DCI.AddToWorklist(V.getNode());
6115  return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
6116                      St->getPointerInfo(), St->isVolatile(),
6117                      St->isNonTemporal(), St->getAlignment(),
6118                      St->getTBAAInfo());
6119}
6120
6121/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
6122/// are normal, non-volatile loads.  If so, it is profitable to bitcast an
6123/// i64 vector to have f64 elements, since the value can then be loaded
6124/// directly into a VFP register.
6125static bool hasNormalLoadOperand(SDNode *N) {
6126  unsigned NumElts = N->getValueType(0).getVectorNumElements();
6127  for (unsigned i = 0; i < NumElts; ++i) {
6128    SDNode *Elt = N->getOperand(i).getNode();
6129    if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
6130      return true;
6131  }
6132  return false;
6133}
6134
6135/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
6136/// ISD::BUILD_VECTOR.
6137static SDValue PerformBUILD_VECTORCombine(SDNode *N,
6138                                          TargetLowering::DAGCombinerInfo &DCI){
6139  // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
6140  // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
6141  // into a pair of GPRs, which is fine when the value is used as a scalar,
6142  // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
6143  SelectionDAG &DAG = DCI.DAG;
6144  if (N->getNumOperands() == 2) {
6145    SDValue RV = PerformVMOVDRRCombine(N, DAG);
6146    if (RV.getNode())
6147      return RV;
6148  }
6149
6150  // Load i64 elements as f64 values so that type legalization does not split
6151  // them up into i32 values.
6152  EVT VT = N->getValueType(0);
6153  if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
6154    return SDValue();
6155  DebugLoc dl = N->getDebugLoc();
6156  SmallVector<SDValue, 8> Ops;
6157  unsigned NumElts = VT.getVectorNumElements();
6158  for (unsigned i = 0; i < NumElts; ++i) {
6159    SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
6160    Ops.push_back(V);
6161    // Make the DAGCombiner fold the bitcast.
6162    DCI.AddToWorklist(V.getNode());
6163  }
6164  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
6165  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
6166  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
6167}
6168
6169/// PerformInsertEltCombine - Target-specific dag combine xforms for
6170/// ISD::INSERT_VECTOR_ELT.
6171static SDValue PerformInsertEltCombine(SDNode *N,
6172                                       TargetLowering::DAGCombinerInfo &DCI) {
6173  // Bitcast an i64 load inserted into a vector to f64.
6174  // Otherwise, the i64 value will be legalized to a pair of i32 values.
6175  EVT VT = N->getValueType(0);
6176  SDNode *Elt = N->getOperand(1).getNode();
6177  if (VT.getVectorElementType() != MVT::i64 ||
6178      !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
6179    return SDValue();
6180
6181  SelectionDAG &DAG = DCI.DAG;
6182  DebugLoc dl = N->getDebugLoc();
6183  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
6184                                 VT.getVectorNumElements());
6185  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
6186  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
6187  // Make the DAGCombiner fold the bitcasts.
6188  DCI.AddToWorklist(Vec.getNode());
6189  DCI.AddToWorklist(V.getNode());
6190  SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
6191                               Vec, V, N->getOperand(2));
6192  return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
6193}
6194
6195/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
6196/// ISD::VECTOR_SHUFFLE.
6197static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
6198  // The LLVM shufflevector instruction does not require the shuffle mask
6199  // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
6200  // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
6201  // operands do not match the mask length, they are extended by concatenating
6202  // them with undef vectors.  That is probably the right thing for other
6203  // targets, but for NEON it is better to concatenate two double-register
6204  // size vector operands into a single quad-register size vector.  Do that
6205  // transformation here:
6206  //   shuffle(concat(v1, undef), concat(v2, undef)) ->
6207  //   shuffle(concat(v1, v2), undef)
6208  SDValue Op0 = N->getOperand(0);
6209  SDValue Op1 = N->getOperand(1);
6210  if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
6211      Op1.getOpcode() != ISD::CONCAT_VECTORS ||
6212      Op0.getNumOperands() != 2 ||
6213      Op1.getNumOperands() != 2)
6214    return SDValue();
6215  SDValue Concat0Op1 = Op0.getOperand(1);
6216  SDValue Concat1Op1 = Op1.getOperand(1);
6217  if (Concat0Op1.getOpcode() != ISD::UNDEF ||
6218      Concat1Op1.getOpcode() != ISD::UNDEF)
6219    return SDValue();
6220  // Skip the transformation if any of the types are illegal.
6221  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6222  EVT VT = N->getValueType(0);
6223  if (!TLI.isTypeLegal(VT) ||
6224      !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
6225      !TLI.isTypeLegal(Concat1Op1.getValueType()))
6226    return SDValue();
6227
6228  SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
6229                                  Op0.getOperand(0), Op1.getOperand(0));
6230  // Translate the shuffle mask.
6231  SmallVector<int, 16> NewMask;
6232  unsigned NumElts = VT.getVectorNumElements();
6233  unsigned HalfElts = NumElts/2;
6234  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
6235  for (unsigned n = 0; n < NumElts; ++n) {
6236    int MaskElt = SVN->getMaskElt(n);
6237    int NewElt = -1;
6238    if (MaskElt < (int)HalfElts)
6239      NewElt = MaskElt;
6240    else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
6241      NewElt = HalfElts + MaskElt - NumElts;
6242    NewMask.push_back(NewElt);
6243  }
6244  return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
6245                              DAG.getUNDEF(VT), NewMask.data());
6246}
6247
6248/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
6249/// NEON load/store intrinsics to merge base address updates.
6250static SDValue CombineBaseUpdate(SDNode *N,
6251                                 TargetLowering::DAGCombinerInfo &DCI) {
6252  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
6253    return SDValue();
6254
6255  SelectionDAG &DAG = DCI.DAG;
6256  bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
6257                      N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
6258  unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
6259  SDValue Addr = N->getOperand(AddrOpIdx);
6260
6261  // Search for a use of the address operand that is an increment.
6262  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
6263         UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
6264    SDNode *User = *UI;
6265    if (User->getOpcode() != ISD::ADD ||
6266        UI.getUse().getResNo() != Addr.getResNo())
6267      continue;
6268
6269    // Check that the add is independent of the load/store.  Otherwise, folding
6270    // it would create a cycle.
6271    if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
6272      continue;
6273
6274    // Find the new opcode for the updating load/store.
6275    bool isLoad = true;
6276    bool isLaneOp = false;
6277    unsigned NewOpc = 0;
6278    unsigned NumVecs = 0;
6279    if (isIntrinsic) {
6280      unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
6281      switch (IntNo) {
6282      default: assert(0 && "unexpected intrinsic for Neon base update");
6283      case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
6284        NumVecs = 1; break;
6285      case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
6286        NumVecs = 2; break;
6287      case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
6288        NumVecs = 3; break;
6289      case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
6290        NumVecs = 4; break;
6291      case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
6292        NumVecs = 2; isLaneOp = true; break;
6293      case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
6294        NumVecs = 3; isLaneOp = true; break;
6295      case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
6296        NumVecs = 4; isLaneOp = true; break;
6297      case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
6298        NumVecs = 1; isLoad = false; break;
6299      case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
6300        NumVecs = 2; isLoad = false; break;
6301      case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
6302        NumVecs = 3; isLoad = false; break;
6303      case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
6304        NumVecs = 4; isLoad = false; break;
6305      case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
6306        NumVecs = 2; isLoad = false; isLaneOp = true; break;
6307      case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
6308        NumVecs = 3; isLoad = false; isLaneOp = true; break;
6309      case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
6310        NumVecs = 4; isLoad = false; isLaneOp = true; break;
6311      }
6312    } else {
6313      isLaneOp = true;
6314      switch (N->getOpcode()) {
6315      default: assert(0 && "unexpected opcode for Neon base update");
6316      case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
6317      case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
6318      case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
6319      }
6320    }
6321
6322    // Find the size of memory referenced by the load/store.
6323    EVT VecTy;
6324    if (isLoad)
6325      VecTy = N->getValueType(0);
6326    else
6327      VecTy = N->getOperand(AddrOpIdx+1).getValueType();
6328    unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
6329    if (isLaneOp)
6330      NumBytes /= VecTy.getVectorNumElements();
6331
6332    // If the increment is a constant, it must match the memory ref size.
6333    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
6334    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
6335      uint64_t IncVal = CInc->getZExtValue();
6336      if (IncVal != NumBytes)
6337        continue;
6338    } else if (NumBytes >= 3 * 16) {
6339      // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
6340      // separate instructions that make it harder to use a non-constant update.
6341      continue;
6342    }
6343
6344    // Create the new updating load/store node.
6345    EVT Tys[6];
6346    unsigned NumResultVecs = (isLoad ? NumVecs : 0);
6347    unsigned n;
6348    for (n = 0; n < NumResultVecs; ++n)
6349      Tys[n] = VecTy;
6350    Tys[n++] = MVT::i32;
6351    Tys[n] = MVT::Other;
6352    SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2);
6353    SmallVector<SDValue, 8> Ops;
6354    Ops.push_back(N->getOperand(0)); // incoming chain
6355    Ops.push_back(N->getOperand(AddrOpIdx));
6356    Ops.push_back(Inc);
6357    for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
6358      Ops.push_back(N->getOperand(i));
6359    }
6360    MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
6361    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, N->getDebugLoc(), SDTys,
6362                                           Ops.data(), Ops.size(),
6363                                           MemInt->getMemoryVT(),
6364                                           MemInt->getMemOperand());
6365
6366    // Update the uses.
6367    std::vector<SDValue> NewResults;
6368    for (unsigned i = 0; i < NumResultVecs; ++i) {
6369      NewResults.push_back(SDValue(UpdN.getNode(), i));
6370    }
6371    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
6372    DCI.CombineTo(N, NewResults);
6373    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
6374
6375    break;
6376  }
6377  return SDValue();
6378}
6379
6380/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
6381/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
6382/// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
6383/// return true.
6384static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
6385  SelectionDAG &DAG = DCI.DAG;
6386  EVT VT = N->getValueType(0);
6387  // vldN-dup instructions only support 64-bit vectors for N > 1.
6388  if (!VT.is64BitVector())
6389    return false;
6390
6391  // Check if the VDUPLANE operand is a vldN-dup intrinsic.
6392  SDNode *VLD = N->getOperand(0).getNode();
6393  if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
6394    return false;
6395  unsigned NumVecs = 0;
6396  unsigned NewOpc = 0;
6397  unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
6398  if (IntNo == Intrinsic::arm_neon_vld2lane) {
6399    NumVecs = 2;
6400    NewOpc = ARMISD::VLD2DUP;
6401  } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
6402    NumVecs = 3;
6403    NewOpc = ARMISD::VLD3DUP;
6404  } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
6405    NumVecs = 4;
6406    NewOpc = ARMISD::VLD4DUP;
6407  } else {
6408    return false;
6409  }
6410
6411  // First check that all the vldN-lane uses are VDUPLANEs and that the lane
6412  // numbers match the load.
6413  unsigned VLDLaneNo =
6414    cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
6415  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
6416       UI != UE; ++UI) {
6417    // Ignore uses of the chain result.
6418    if (UI.getUse().getResNo() == NumVecs)
6419      continue;
6420    SDNode *User = *UI;
6421    if (User->getOpcode() != ARMISD::VDUPLANE ||
6422        VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
6423      return false;
6424  }
6425
6426  // Create the vldN-dup node.
6427  EVT Tys[5];
6428  unsigned n;
6429  for (n = 0; n < NumVecs; ++n)
6430    Tys[n] = VT;
6431  Tys[n] = MVT::Other;
6432  SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
6433  SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
6434  MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
6435  SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, VLD->getDebugLoc(), SDTys,
6436                                           Ops, 2, VLDMemInt->getMemoryVT(),
6437                                           VLDMemInt->getMemOperand());
6438
6439  // Update the uses.
6440  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
6441       UI != UE; ++UI) {
6442    unsigned ResNo = UI.getUse().getResNo();
6443    // Ignore uses of the chain result.
6444    if (ResNo == NumVecs)
6445      continue;
6446    SDNode *User = *UI;
6447    DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
6448  }
6449
6450  // Now the vldN-lane intrinsic is dead except for its chain result.
6451  // Update uses of the chain.
6452  std::vector<SDValue> VLDDupResults;
6453  for (unsigned n = 0; n < NumVecs; ++n)
6454    VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
6455  VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
6456  DCI.CombineTo(VLD, VLDDupResults);
6457
6458  return true;
6459}
6460
6461/// PerformVDUPLANECombine - Target-specific dag combine xforms for
6462/// ARMISD::VDUPLANE.
6463static SDValue PerformVDUPLANECombine(SDNode *N,
6464                                      TargetLowering::DAGCombinerInfo &DCI) {
6465  SDValue Op = N->getOperand(0);
6466
6467  // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
6468  // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
6469  if (CombineVLDDUP(N, DCI))
6470    return SDValue(N, 0);
6471
6472  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
6473  // redundant.  Ignore bit_converts for now; element sizes are checked below.
6474  while (Op.getOpcode() == ISD::BITCAST)
6475    Op = Op.getOperand(0);
6476  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
6477    return SDValue();
6478
6479  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
6480  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
6481  // The canonical VMOV for a zero vector uses a 32-bit element size.
6482  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6483  unsigned EltBits;
6484  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
6485    EltSize = 8;
6486  EVT VT = N->getValueType(0);
6487  if (EltSize > VT.getVectorElementType().getSizeInBits())
6488    return SDValue();
6489
6490  return DCI.DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
6491}
6492
6493// isConstVecPow2 - Return true if each vector element is a power of 2, all
6494// elements are the same constant, C, and Log2(C) ranges from 1 to 32.
6495static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
6496{
6497  integerPart cN;
6498  integerPart c0 = 0;
6499  for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements();
6500       I != E; I++) {
6501    ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I));
6502    if (!C)
6503      return false;
6504
6505    bool isExact;
6506    APFloat APF = C->getValueAPF();
6507    if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact)
6508        != APFloat::opOK || !isExact)
6509      return false;
6510
6511    c0 = (I == 0) ? cN : c0;
6512    if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32)
6513      return false;
6514  }
6515  C = c0;
6516  return true;
6517}
6518
6519/// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
6520/// can replace combinations of VMUL and VCVT (floating-point to integer)
6521/// when the VMUL has a constant operand that is a power of 2.
6522///
6523/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
6524///  vmul.f32        d16, d17, d16
6525///  vcvt.s32.f32    d16, d16
6526/// becomes:
6527///  vcvt.s32.f32    d16, d16, #3
6528static SDValue PerformVCVTCombine(SDNode *N,
6529                                  TargetLowering::DAGCombinerInfo &DCI,
6530                                  const ARMSubtarget *Subtarget) {
6531  SelectionDAG &DAG = DCI.DAG;
6532  SDValue Op = N->getOperand(0);
6533
6534  if (!Subtarget->hasNEON() || !Op.getValueType().isVector() ||
6535      Op.getOpcode() != ISD::FMUL)
6536    return SDValue();
6537
6538  uint64_t C;
6539  SDValue N0 = Op->getOperand(0);
6540  SDValue ConstVec = Op->getOperand(1);
6541  bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
6542
6543  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
6544      !isConstVecPow2(ConstVec, isSigned, C))
6545    return SDValue();
6546
6547  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
6548    Intrinsic::arm_neon_vcvtfp2fxu;
6549  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
6550                     N->getValueType(0),
6551                     DAG.getConstant(IntrinsicOpcode, MVT::i32), N0,
6552                     DAG.getConstant(Log2_64(C), MVT::i32));
6553}
6554
6555/// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
6556/// can replace combinations of VCVT (integer to floating-point) and VDIV
6557/// when the VDIV has a constant operand that is a power of 2.
6558///
6559/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
6560///  vcvt.f32.s32    d16, d16
6561///  vdiv.f32        d16, d17, d16
6562/// becomes:
6563///  vcvt.f32.s32    d16, d16, #3
6564static SDValue PerformVDIVCombine(SDNode *N,
6565                                  TargetLowering::DAGCombinerInfo &DCI,
6566                                  const ARMSubtarget *Subtarget) {
6567  SelectionDAG &DAG = DCI.DAG;
6568  SDValue Op = N->getOperand(0);
6569  unsigned OpOpcode = Op.getNode()->getOpcode();
6570
6571  if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() ||
6572      (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
6573    return SDValue();
6574
6575  uint64_t C;
6576  SDValue ConstVec = N->getOperand(1);
6577  bool isSigned = OpOpcode == ISD::SINT_TO_FP;
6578
6579  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
6580      !isConstVecPow2(ConstVec, isSigned, C))
6581    return SDValue();
6582
6583  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
6584    Intrinsic::arm_neon_vcvtfxu2fp;
6585  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
6586                     Op.getValueType(),
6587                     DAG.getConstant(IntrinsicOpcode, MVT::i32),
6588                     Op.getOperand(0), DAG.getConstant(Log2_64(C), MVT::i32));
6589}
6590
6591/// Getvshiftimm - Check if this is a valid build_vector for the immediate
6592/// operand of a vector shift operation, where all the elements of the
6593/// build_vector must have the same constant integer value.
6594static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
6595  // Ignore bit_converts.
6596  while (Op.getOpcode() == ISD::BITCAST)
6597    Op = Op.getOperand(0);
6598  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6599  APInt SplatBits, SplatUndef;
6600  unsigned SplatBitSize;
6601  bool HasAnyUndefs;
6602  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
6603                                      HasAnyUndefs, ElementBits) ||
6604      SplatBitSize > ElementBits)
6605    return false;
6606  Cnt = SplatBits.getSExtValue();
6607  return true;
6608}
6609
6610/// isVShiftLImm - Check if this is a valid build_vector for the immediate
6611/// operand of a vector shift left operation.  That value must be in the range:
6612///   0 <= Value < ElementBits for a left shift; or
6613///   0 <= Value <= ElementBits for a long left shift.
6614static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
6615  assert(VT.isVector() && "vector shift count is not a vector type");
6616  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
6617  if (! getVShiftImm(Op, ElementBits, Cnt))
6618    return false;
6619  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
6620}
6621
6622/// isVShiftRImm - Check if this is a valid build_vector for the immediate
6623/// operand of a vector shift right operation.  For a shift opcode, the value
6624/// is positive, but for an intrinsic the value count must be negative. The
6625/// absolute value must be in the range:
6626///   1 <= |Value| <= ElementBits for a right shift; or
6627///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
6628static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
6629                         int64_t &Cnt) {
6630  assert(VT.isVector() && "vector shift count is not a vector type");
6631  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
6632  if (! getVShiftImm(Op, ElementBits, Cnt))
6633    return false;
6634  if (isIntrinsic)
6635    Cnt = -Cnt;
6636  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
6637}
6638
6639/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
6640static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
6641  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
6642  switch (IntNo) {
6643  default:
6644    // Don't do anything for most intrinsics.
6645    break;
6646
6647  // Vector shifts: check for immediate versions and lower them.
6648  // Note: This is done during DAG combining instead of DAG legalizing because
6649  // the build_vectors for 64-bit vector element shift counts are generally
6650  // not legal, and it is hard to see their values after they get legalized to
6651  // loads from a constant pool.
6652  case Intrinsic::arm_neon_vshifts:
6653  case Intrinsic::arm_neon_vshiftu:
6654  case Intrinsic::arm_neon_vshiftls:
6655  case Intrinsic::arm_neon_vshiftlu:
6656  case Intrinsic::arm_neon_vshiftn:
6657  case Intrinsic::arm_neon_vrshifts:
6658  case Intrinsic::arm_neon_vrshiftu:
6659  case Intrinsic::arm_neon_vrshiftn:
6660  case Intrinsic::arm_neon_vqshifts:
6661  case Intrinsic::arm_neon_vqshiftu:
6662  case Intrinsic::arm_neon_vqshiftsu:
6663  case Intrinsic::arm_neon_vqshiftns:
6664  case Intrinsic::arm_neon_vqshiftnu:
6665  case Intrinsic::arm_neon_vqshiftnsu:
6666  case Intrinsic::arm_neon_vqrshiftns:
6667  case Intrinsic::arm_neon_vqrshiftnu:
6668  case Intrinsic::arm_neon_vqrshiftnsu: {
6669    EVT VT = N->getOperand(1).getValueType();
6670    int64_t Cnt;
6671    unsigned VShiftOpc = 0;
6672
6673    switch (IntNo) {
6674    case Intrinsic::arm_neon_vshifts:
6675    case Intrinsic::arm_neon_vshiftu:
6676      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
6677        VShiftOpc = ARMISD::VSHL;
6678        break;
6679      }
6680      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
6681        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
6682                     ARMISD::VSHRs : ARMISD::VSHRu);
6683        break;
6684      }
6685      return SDValue();
6686
6687    case Intrinsic::arm_neon_vshiftls:
6688    case Intrinsic::arm_neon_vshiftlu:
6689      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
6690        break;
6691      llvm_unreachable("invalid shift count for vshll intrinsic");
6692
6693    case Intrinsic::arm_neon_vrshifts:
6694    case Intrinsic::arm_neon_vrshiftu:
6695      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
6696        break;
6697      return SDValue();
6698
6699    case Intrinsic::arm_neon_vqshifts:
6700    case Intrinsic::arm_neon_vqshiftu:
6701      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
6702        break;
6703      return SDValue();
6704
6705    case Intrinsic::arm_neon_vqshiftsu:
6706      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
6707        break;
6708      llvm_unreachable("invalid shift count for vqshlu intrinsic");
6709
6710    case Intrinsic::arm_neon_vshiftn:
6711    case Intrinsic::arm_neon_vrshiftn:
6712    case Intrinsic::arm_neon_vqshiftns:
6713    case Intrinsic::arm_neon_vqshiftnu:
6714    case Intrinsic::arm_neon_vqshiftnsu:
6715    case Intrinsic::arm_neon_vqrshiftns:
6716    case Intrinsic::arm_neon_vqrshiftnu:
6717    case Intrinsic::arm_neon_vqrshiftnsu:
6718      // Narrowing shifts require an immediate right shift.
6719      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
6720        break;
6721      llvm_unreachable("invalid shift count for narrowing vector shift "
6722                       "intrinsic");
6723
6724    default:
6725      llvm_unreachable("unhandled vector shift");
6726    }
6727
6728    switch (IntNo) {
6729    case Intrinsic::arm_neon_vshifts:
6730    case Intrinsic::arm_neon_vshiftu:
6731      // Opcode already set above.
6732      break;
6733    case Intrinsic::arm_neon_vshiftls:
6734    case Intrinsic::arm_neon_vshiftlu:
6735      if (Cnt == VT.getVectorElementType().getSizeInBits())
6736        VShiftOpc = ARMISD::VSHLLi;
6737      else
6738        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
6739                     ARMISD::VSHLLs : ARMISD::VSHLLu);
6740      break;
6741    case Intrinsic::arm_neon_vshiftn:
6742      VShiftOpc = ARMISD::VSHRN; break;
6743    case Intrinsic::arm_neon_vrshifts:
6744      VShiftOpc = ARMISD::VRSHRs; break;
6745    case Intrinsic::arm_neon_vrshiftu:
6746      VShiftOpc = ARMISD::VRSHRu; break;
6747    case Intrinsic::arm_neon_vrshiftn:
6748      VShiftOpc = ARMISD::VRSHRN; break;
6749    case Intrinsic::arm_neon_vqshifts:
6750      VShiftOpc = ARMISD::VQSHLs; break;
6751    case Intrinsic::arm_neon_vqshiftu:
6752      VShiftOpc = ARMISD::VQSHLu; break;
6753    case Intrinsic::arm_neon_vqshiftsu:
6754      VShiftOpc = ARMISD::VQSHLsu; break;
6755    case Intrinsic::arm_neon_vqshiftns:
6756      VShiftOpc = ARMISD::VQSHRNs; break;
6757    case Intrinsic::arm_neon_vqshiftnu:
6758      VShiftOpc = ARMISD::VQSHRNu; break;
6759    case Intrinsic::arm_neon_vqshiftnsu:
6760      VShiftOpc = ARMISD::VQSHRNsu; break;
6761    case Intrinsic::arm_neon_vqrshiftns:
6762      VShiftOpc = ARMISD::VQRSHRNs; break;
6763    case Intrinsic::arm_neon_vqrshiftnu:
6764      VShiftOpc = ARMISD::VQRSHRNu; break;
6765    case Intrinsic::arm_neon_vqrshiftnsu:
6766      VShiftOpc = ARMISD::VQRSHRNsu; break;
6767    }
6768
6769    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
6770                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
6771  }
6772
6773  case Intrinsic::arm_neon_vshiftins: {
6774    EVT VT = N->getOperand(1).getValueType();
6775    int64_t Cnt;
6776    unsigned VShiftOpc = 0;
6777
6778    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
6779      VShiftOpc = ARMISD::VSLI;
6780    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
6781      VShiftOpc = ARMISD::VSRI;
6782    else {
6783      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
6784    }
6785
6786    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
6787                       N->getOperand(1), N->getOperand(2),
6788                       DAG.getConstant(Cnt, MVT::i32));
6789  }
6790
6791  case Intrinsic::arm_neon_vqrshifts:
6792  case Intrinsic::arm_neon_vqrshiftu:
6793    // No immediate versions of these to check for.
6794    break;
6795  }
6796
6797  return SDValue();
6798}
6799
6800/// PerformShiftCombine - Checks for immediate versions of vector shifts and
6801/// lowers them.  As with the vector shift intrinsics, this is done during DAG
6802/// combining instead of DAG legalizing because the build_vectors for 64-bit
6803/// vector element shift counts are generally not legal, and it is hard to see
6804/// their values after they get legalized to loads from a constant pool.
6805static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
6806                                   const ARMSubtarget *ST) {
6807  EVT VT = N->getValueType(0);
6808
6809  // Nothing to be done for scalar shifts.
6810  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6811  if (!VT.isVector() || !TLI.isTypeLegal(VT))
6812    return SDValue();
6813
6814  assert(ST->hasNEON() && "unexpected vector shift");
6815  int64_t Cnt;
6816
6817  switch (N->getOpcode()) {
6818  default: llvm_unreachable("unexpected shift opcode");
6819
6820  case ISD::SHL:
6821    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
6822      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
6823                         DAG.getConstant(Cnt, MVT::i32));
6824    break;
6825
6826  case ISD::SRA:
6827  case ISD::SRL:
6828    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
6829      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
6830                            ARMISD::VSHRs : ARMISD::VSHRu);
6831      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
6832                         DAG.getConstant(Cnt, MVT::i32));
6833    }
6834  }
6835  return SDValue();
6836}
6837
6838/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
6839/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
6840static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
6841                                    const ARMSubtarget *ST) {
6842  SDValue N0 = N->getOperand(0);
6843
6844  // Check for sign- and zero-extensions of vector extract operations of 8-
6845  // and 16-bit vector elements.  NEON supports these directly.  They are
6846  // handled during DAG combining because type legalization will promote them
6847  // to 32-bit types and it is messy to recognize the operations after that.
6848  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
6849    SDValue Vec = N0.getOperand(0);
6850    SDValue Lane = N0.getOperand(1);
6851    EVT VT = N->getValueType(0);
6852    EVT EltVT = N0.getValueType();
6853    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6854
6855    if (VT == MVT::i32 &&
6856        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
6857        TLI.isTypeLegal(Vec.getValueType()) &&
6858        isa<ConstantSDNode>(Lane)) {
6859
6860      unsigned Opc = 0;
6861      switch (N->getOpcode()) {
6862      default: llvm_unreachable("unexpected opcode");
6863      case ISD::SIGN_EXTEND:
6864        Opc = ARMISD::VGETLANEs;
6865        break;
6866      case ISD::ZERO_EXTEND:
6867      case ISD::ANY_EXTEND:
6868        Opc = ARMISD::VGETLANEu;
6869        break;
6870      }
6871      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
6872    }
6873  }
6874
6875  return SDValue();
6876}
6877
6878/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
6879/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
6880static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
6881                                       const ARMSubtarget *ST) {
6882  // If the target supports NEON, try to use vmax/vmin instructions for f32
6883  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
6884  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
6885  // a NaN; only do the transformation when it matches that behavior.
6886
6887  // For now only do this when using NEON for FP operations; if using VFP, it
6888  // is not obvious that the benefit outweighs the cost of switching to the
6889  // NEON pipeline.
6890  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
6891      N->getValueType(0) != MVT::f32)
6892    return SDValue();
6893
6894  SDValue CondLHS = N->getOperand(0);
6895  SDValue CondRHS = N->getOperand(1);
6896  SDValue LHS = N->getOperand(2);
6897  SDValue RHS = N->getOperand(3);
6898  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
6899
6900  unsigned Opcode = 0;
6901  bool IsReversed;
6902  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
6903    IsReversed = false; // x CC y ? x : y
6904  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
6905    IsReversed = true ; // x CC y ? y : x
6906  } else {
6907    return SDValue();
6908  }
6909
6910  bool IsUnordered;
6911  switch (CC) {
6912  default: break;
6913  case ISD::SETOLT:
6914  case ISD::SETOLE:
6915  case ISD::SETLT:
6916  case ISD::SETLE:
6917  case ISD::SETULT:
6918  case ISD::SETULE:
6919    // If LHS is NaN, an ordered comparison will be false and the result will
6920    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
6921    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
6922    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
6923    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
6924      break;
6925    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
6926    // will return -0, so vmin can only be used for unsafe math or if one of
6927    // the operands is known to be nonzero.
6928    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
6929        !UnsafeFPMath &&
6930        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
6931      break;
6932    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
6933    break;
6934
6935  case ISD::SETOGT:
6936  case ISD::SETOGE:
6937  case ISD::SETGT:
6938  case ISD::SETGE:
6939  case ISD::SETUGT:
6940  case ISD::SETUGE:
6941    // If LHS is NaN, an ordered comparison will be false and the result will
6942    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
6943    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
6944    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
6945    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
6946      break;
6947    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
6948    // will return +0, so vmax can only be used for unsafe math or if one of
6949    // the operands is known to be nonzero.
6950    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
6951        !UnsafeFPMath &&
6952        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
6953      break;
6954    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
6955    break;
6956  }
6957
6958  if (!Opcode)
6959    return SDValue();
6960  return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
6961}
6962
6963/// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
6964SDValue
6965ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
6966  SDValue Cmp = N->getOperand(4);
6967  if (Cmp.getOpcode() != ARMISD::CMPZ)
6968    // Only looking at EQ and NE cases.
6969    return SDValue();
6970
6971  EVT VT = N->getValueType(0);
6972  DebugLoc dl = N->getDebugLoc();
6973  SDValue LHS = Cmp.getOperand(0);
6974  SDValue RHS = Cmp.getOperand(1);
6975  SDValue FalseVal = N->getOperand(0);
6976  SDValue TrueVal = N->getOperand(1);
6977  SDValue ARMcc = N->getOperand(2);
6978  ARMCC::CondCodes CC = (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
6979
6980  // Simplify
6981  //   mov     r1, r0
6982  //   cmp     r1, x
6983  //   mov     r0, y
6984  //   moveq   r0, x
6985  // to
6986  //   cmp     r0, x
6987  //   movne   r0, y
6988  //
6989  //   mov     r1, r0
6990  //   cmp     r1, x
6991  //   mov     r0, x
6992  //   movne   r0, y
6993  // to
6994  //   cmp     r0, x
6995  //   movne   r0, y
6996  /// FIXME: Turn this into a target neutral optimization?
6997  SDValue Res;
6998  if (CC == ARMCC::NE && FalseVal == RHS) {
6999    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
7000                      N->getOperand(3), Cmp);
7001  } else if (CC == ARMCC::EQ && TrueVal == RHS) {
7002    SDValue ARMcc;
7003    SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
7004    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
7005                      N->getOperand(3), NewCmp);
7006  }
7007
7008  if (Res.getNode()) {
7009    APInt KnownZero, KnownOne;
7010    APInt Mask = APInt::getAllOnesValue(VT.getScalarType().getSizeInBits());
7011    DAG.ComputeMaskedBits(SDValue(N,0), Mask, KnownZero, KnownOne);
7012    // Capture demanded bits information that would be otherwise lost.
7013    if (KnownZero == 0xfffffffe)
7014      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
7015                        DAG.getValueType(MVT::i1));
7016    else if (KnownZero == 0xffffff00)
7017      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
7018                        DAG.getValueType(MVT::i8));
7019    else if (KnownZero == 0xffff0000)
7020      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
7021                        DAG.getValueType(MVT::i16));
7022  }
7023
7024  return Res;
7025}
7026
7027SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
7028                                             DAGCombinerInfo &DCI) const {
7029  switch (N->getOpcode()) {
7030  default: break;
7031  case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
7032  case ISD::SUB:        return PerformSUBCombine(N, DCI);
7033  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
7034  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
7035  case ISD::AND:        return PerformANDCombine(N, DCI);
7036  case ARMISD::BFI:     return PerformBFICombine(N, DCI);
7037  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
7038  case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
7039  case ISD::STORE:      return PerformSTORECombine(N, DCI);
7040  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
7041  case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
7042  case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
7043  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
7044  case ISD::FP_TO_SINT:
7045  case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget);
7046  case ISD::FDIV:       return PerformVDIVCombine(N, DCI, Subtarget);
7047  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
7048  case ISD::SHL:
7049  case ISD::SRA:
7050  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
7051  case ISD::SIGN_EXTEND:
7052  case ISD::ZERO_EXTEND:
7053  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
7054  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
7055  case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
7056  case ARMISD::VLD2DUP:
7057  case ARMISD::VLD3DUP:
7058  case ARMISD::VLD4DUP:
7059    return CombineBaseUpdate(N, DCI);
7060  case ISD::INTRINSIC_VOID:
7061  case ISD::INTRINSIC_W_CHAIN:
7062    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
7063    case Intrinsic::arm_neon_vld1:
7064    case Intrinsic::arm_neon_vld2:
7065    case Intrinsic::arm_neon_vld3:
7066    case Intrinsic::arm_neon_vld4:
7067    case Intrinsic::arm_neon_vld2lane:
7068    case Intrinsic::arm_neon_vld3lane:
7069    case Intrinsic::arm_neon_vld4lane:
7070    case Intrinsic::arm_neon_vst1:
7071    case Intrinsic::arm_neon_vst2:
7072    case Intrinsic::arm_neon_vst3:
7073    case Intrinsic::arm_neon_vst4:
7074    case Intrinsic::arm_neon_vst2lane:
7075    case Intrinsic::arm_neon_vst3lane:
7076    case Intrinsic::arm_neon_vst4lane:
7077      return CombineBaseUpdate(N, DCI);
7078    default: break;
7079    }
7080    break;
7081  }
7082  return SDValue();
7083}
7084
7085bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
7086                                                          EVT VT) const {
7087  return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
7088}
7089
7090bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
7091  if (!Subtarget->allowsUnalignedMem())
7092    return false;
7093
7094  switch (VT.getSimpleVT().SimpleTy) {
7095  default:
7096    return false;
7097  case MVT::i8:
7098  case MVT::i16:
7099  case MVT::i32:
7100    return true;
7101  // FIXME: VLD1 etc with standard alignment is legal.
7102  }
7103}
7104
7105static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
7106  if (V < 0)
7107    return false;
7108
7109  unsigned Scale = 1;
7110  switch (VT.getSimpleVT().SimpleTy) {
7111  default: return false;
7112  case MVT::i1:
7113  case MVT::i8:
7114    // Scale == 1;
7115    break;
7116  case MVT::i16:
7117    // Scale == 2;
7118    Scale = 2;
7119    break;
7120  case MVT::i32:
7121    // Scale == 4;
7122    Scale = 4;
7123    break;
7124  }
7125
7126  if ((V & (Scale - 1)) != 0)
7127    return false;
7128  V /= Scale;
7129  return V == (V & ((1LL << 5) - 1));
7130}
7131
7132static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
7133                                      const ARMSubtarget *Subtarget) {
7134  bool isNeg = false;
7135  if (V < 0) {
7136    isNeg = true;
7137    V = - V;
7138  }
7139
7140  switch (VT.getSimpleVT().SimpleTy) {
7141  default: return false;
7142  case MVT::i1:
7143  case MVT::i8:
7144  case MVT::i16:
7145  case MVT::i32:
7146    // + imm12 or - imm8
7147    if (isNeg)
7148      return V == (V & ((1LL << 8) - 1));
7149    return V == (V & ((1LL << 12) - 1));
7150  case MVT::f32:
7151  case MVT::f64:
7152    // Same as ARM mode. FIXME: NEON?
7153    if (!Subtarget->hasVFP2())
7154      return false;
7155    if ((V & 3) != 0)
7156      return false;
7157    V >>= 2;
7158    return V == (V & ((1LL << 8) - 1));
7159  }
7160}
7161
7162/// isLegalAddressImmediate - Return true if the integer value can be used
7163/// as the offset of the target addressing mode for load / store of the
7164/// given type.
7165static bool isLegalAddressImmediate(int64_t V, EVT VT,
7166                                    const ARMSubtarget *Subtarget) {
7167  if (V == 0)
7168    return true;
7169
7170  if (!VT.isSimple())
7171    return false;
7172
7173  if (Subtarget->isThumb1Only())
7174    return isLegalT1AddressImmediate(V, VT);
7175  else if (Subtarget->isThumb2())
7176    return isLegalT2AddressImmediate(V, VT, Subtarget);
7177
7178  // ARM mode.
7179  if (V < 0)
7180    V = - V;
7181  switch (VT.getSimpleVT().SimpleTy) {
7182  default: return false;
7183  case MVT::i1:
7184  case MVT::i8:
7185  case MVT::i32:
7186    // +- imm12
7187    return V == (V & ((1LL << 12) - 1));
7188  case MVT::i16:
7189    // +- imm8
7190    return V == (V & ((1LL << 8) - 1));
7191  case MVT::f32:
7192  case MVT::f64:
7193    if (!Subtarget->hasVFP2()) // FIXME: NEON?
7194      return false;
7195    if ((V & 3) != 0)
7196      return false;
7197    V >>= 2;
7198    return V == (V & ((1LL << 8) - 1));
7199  }
7200}
7201
7202bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
7203                                                      EVT VT) const {
7204  int Scale = AM.Scale;
7205  if (Scale < 0)
7206    return false;
7207
7208  switch (VT.getSimpleVT().SimpleTy) {
7209  default: return false;
7210  case MVT::i1:
7211  case MVT::i8:
7212  case MVT::i16:
7213  case MVT::i32:
7214    if (Scale == 1)
7215      return true;
7216    // r + r << imm
7217    Scale = Scale & ~1;
7218    return Scale == 2 || Scale == 4 || Scale == 8;
7219  case MVT::i64:
7220    // r + r
7221    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
7222      return true;
7223    return false;
7224  case MVT::isVoid:
7225    // Note, we allow "void" uses (basically, uses that aren't loads or
7226    // stores), because arm allows folding a scale into many arithmetic
7227    // operations.  This should be made more precise and revisited later.
7228
7229    // Allow r << imm, but the imm has to be a multiple of two.
7230    if (Scale & 1) return false;
7231    return isPowerOf2_32(Scale);
7232  }
7233}
7234
7235/// isLegalAddressingMode - Return true if the addressing mode represented
7236/// by AM is legal for this target, for a load/store of the specified type.
7237bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
7238                                              const Type *Ty) const {
7239  EVT VT = getValueType(Ty, true);
7240  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
7241    return false;
7242
7243  // Can never fold addr of global into load/store.
7244  if (AM.BaseGV)
7245    return false;
7246
7247  switch (AM.Scale) {
7248  case 0:  // no scale reg, must be "r+i" or "r", or "i".
7249    break;
7250  case 1:
7251    if (Subtarget->isThumb1Only())
7252      return false;
7253    // FALL THROUGH.
7254  default:
7255    // ARM doesn't support any R+R*scale+imm addr modes.
7256    if (AM.BaseOffs)
7257      return false;
7258
7259    if (!VT.isSimple())
7260      return false;
7261
7262    if (Subtarget->isThumb2())
7263      return isLegalT2ScaledAddressingMode(AM, VT);
7264
7265    int Scale = AM.Scale;
7266    switch (VT.getSimpleVT().SimpleTy) {
7267    default: return false;
7268    case MVT::i1:
7269    case MVT::i8:
7270    case MVT::i32:
7271      if (Scale < 0) Scale = -Scale;
7272      if (Scale == 1)
7273        return true;
7274      // r + r << imm
7275      return isPowerOf2_32(Scale & ~1);
7276    case MVT::i16:
7277    case MVT::i64:
7278      // r + r
7279      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
7280        return true;
7281      return false;
7282
7283    case MVT::isVoid:
7284      // Note, we allow "void" uses (basically, uses that aren't loads or
7285      // stores), because arm allows folding a scale into many arithmetic
7286      // operations.  This should be made more precise and revisited later.
7287
7288      // Allow r << imm, but the imm has to be a multiple of two.
7289      if (Scale & 1) return false;
7290      return isPowerOf2_32(Scale);
7291    }
7292    break;
7293  }
7294  return true;
7295}
7296
7297/// isLegalICmpImmediate - Return true if the specified immediate is legal
7298/// icmp immediate, that is the target has icmp instructions which can compare
7299/// a register against the immediate without having to materialize the
7300/// immediate into a register.
7301bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
7302  if (!Subtarget->isThumb())
7303    return ARM_AM::getSOImmVal(Imm) != -1;
7304  if (Subtarget->isThumb2())
7305    return ARM_AM::getT2SOImmVal(Imm) != -1;
7306  return Imm >= 0 && Imm <= 255;
7307}
7308
7309/// isLegalAddImmediate - Return true if the specified immediate is legal
7310/// add immediate, that is the target has add instructions which can add
7311/// a register with the immediate without having to materialize the
7312/// immediate into a register.
7313bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
7314  return ARM_AM::getSOImmVal(Imm) != -1;
7315}
7316
7317static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
7318                                      bool isSEXTLoad, SDValue &Base,
7319                                      SDValue &Offset, bool &isInc,
7320                                      SelectionDAG &DAG) {
7321  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
7322    return false;
7323
7324  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
7325    // AddressingMode 3
7326    Base = Ptr->getOperand(0);
7327    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
7328      int RHSC = (int)RHS->getZExtValue();
7329      if (RHSC < 0 && RHSC > -256) {
7330        assert(Ptr->getOpcode() == ISD::ADD);
7331        isInc = false;
7332        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
7333        return true;
7334      }
7335    }
7336    isInc = (Ptr->getOpcode() == ISD::ADD);
7337    Offset = Ptr->getOperand(1);
7338    return true;
7339  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
7340    // AddressingMode 2
7341    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
7342      int RHSC = (int)RHS->getZExtValue();
7343      if (RHSC < 0 && RHSC > -0x1000) {
7344        assert(Ptr->getOpcode() == ISD::ADD);
7345        isInc = false;
7346        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
7347        Base = Ptr->getOperand(0);
7348        return true;
7349      }
7350    }
7351
7352    if (Ptr->getOpcode() == ISD::ADD) {
7353      isInc = true;
7354      ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
7355      if (ShOpcVal != ARM_AM::no_shift) {
7356        Base = Ptr->getOperand(1);
7357        Offset = Ptr->getOperand(0);
7358      } else {
7359        Base = Ptr->getOperand(0);
7360        Offset = Ptr->getOperand(1);
7361      }
7362      return true;
7363    }
7364
7365    isInc = (Ptr->getOpcode() == ISD::ADD);
7366    Base = Ptr->getOperand(0);
7367    Offset = Ptr->getOperand(1);
7368    return true;
7369  }
7370
7371  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
7372  return false;
7373}
7374
7375static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
7376                                     bool isSEXTLoad, SDValue &Base,
7377                                     SDValue &Offset, bool &isInc,
7378                                     SelectionDAG &DAG) {
7379  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
7380    return false;
7381
7382  Base = Ptr->getOperand(0);
7383  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
7384    int RHSC = (int)RHS->getZExtValue();
7385    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
7386      assert(Ptr->getOpcode() == ISD::ADD);
7387      isInc = false;
7388      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
7389      return true;
7390    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
7391      isInc = Ptr->getOpcode() == ISD::ADD;
7392      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
7393      return true;
7394    }
7395  }
7396
7397  return false;
7398}
7399
7400/// getPreIndexedAddressParts - returns true by value, base pointer and
7401/// offset pointer and addressing mode by reference if the node's address
7402/// can be legally represented as pre-indexed load / store address.
7403bool
7404ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
7405                                             SDValue &Offset,
7406                                             ISD::MemIndexedMode &AM,
7407                                             SelectionDAG &DAG) const {
7408  if (Subtarget->isThumb1Only())
7409    return false;
7410
7411  EVT VT;
7412  SDValue Ptr;
7413  bool isSEXTLoad = false;
7414  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
7415    Ptr = LD->getBasePtr();
7416    VT  = LD->getMemoryVT();
7417    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
7418  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
7419    Ptr = ST->getBasePtr();
7420    VT  = ST->getMemoryVT();
7421  } else
7422    return false;
7423
7424  bool isInc;
7425  bool isLegal = false;
7426  if (Subtarget->isThumb2())
7427    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
7428                                       Offset, isInc, DAG);
7429  else
7430    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
7431                                        Offset, isInc, DAG);
7432  if (!isLegal)
7433    return false;
7434
7435  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
7436  return true;
7437}
7438
7439/// getPostIndexedAddressParts - returns true by value, base pointer and
7440/// offset pointer and addressing mode by reference if this node can be
7441/// combined with a load / store to form a post-indexed load / store.
7442bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
7443                                                   SDValue &Base,
7444                                                   SDValue &Offset,
7445                                                   ISD::MemIndexedMode &AM,
7446                                                   SelectionDAG &DAG) const {
7447  if (Subtarget->isThumb1Only())
7448    return false;
7449
7450  EVT VT;
7451  SDValue Ptr;
7452  bool isSEXTLoad = false;
7453  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
7454    VT  = LD->getMemoryVT();
7455    Ptr = LD->getBasePtr();
7456    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
7457  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
7458    VT  = ST->getMemoryVT();
7459    Ptr = ST->getBasePtr();
7460  } else
7461    return false;
7462
7463  bool isInc;
7464  bool isLegal = false;
7465  if (Subtarget->isThumb2())
7466    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
7467                                       isInc, DAG);
7468  else
7469    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
7470                                        isInc, DAG);
7471  if (!isLegal)
7472    return false;
7473
7474  if (Ptr != Base) {
7475    // Swap base ptr and offset to catch more post-index load / store when
7476    // it's legal. In Thumb2 mode, offset must be an immediate.
7477    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
7478        !Subtarget->isThumb2())
7479      std::swap(Base, Offset);
7480
7481    // Post-indexed load / store update the base pointer.
7482    if (Ptr != Base)
7483      return false;
7484  }
7485
7486  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
7487  return true;
7488}
7489
7490void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
7491                                                       const APInt &Mask,
7492                                                       APInt &KnownZero,
7493                                                       APInt &KnownOne,
7494                                                       const SelectionDAG &DAG,
7495                                                       unsigned Depth) const {
7496  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
7497  switch (Op.getOpcode()) {
7498  default: break;
7499  case ARMISD::CMOV: {
7500    // Bits are known zero/one if known on the LHS and RHS.
7501    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
7502    if (KnownZero == 0 && KnownOne == 0) return;
7503
7504    APInt KnownZeroRHS, KnownOneRHS;
7505    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
7506                          KnownZeroRHS, KnownOneRHS, Depth+1);
7507    KnownZero &= KnownZeroRHS;
7508    KnownOne  &= KnownOneRHS;
7509    return;
7510  }
7511  }
7512}
7513
7514//===----------------------------------------------------------------------===//
7515//                           ARM Inline Assembly Support
7516//===----------------------------------------------------------------------===//
7517
7518bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
7519  // Looking for "rev" which is V6+.
7520  if (!Subtarget->hasV6Ops())
7521    return false;
7522
7523  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
7524  std::string AsmStr = IA->getAsmString();
7525  SmallVector<StringRef, 4> AsmPieces;
7526  SplitString(AsmStr, AsmPieces, ";\n");
7527
7528  switch (AsmPieces.size()) {
7529  default: return false;
7530  case 1:
7531    AsmStr = AsmPieces[0];
7532    AsmPieces.clear();
7533    SplitString(AsmStr, AsmPieces, " \t,");
7534
7535    // rev $0, $1
7536    if (AsmPieces.size() == 3 &&
7537        AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
7538        IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
7539      const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
7540      if (Ty && Ty->getBitWidth() == 32)
7541        return IntrinsicLowering::LowerToByteSwap(CI);
7542    }
7543    break;
7544  }
7545
7546  return false;
7547}
7548
7549/// getConstraintType - Given a constraint letter, return the type of
7550/// constraint it is for this target.
7551ARMTargetLowering::ConstraintType
7552ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
7553  if (Constraint.size() == 1) {
7554    switch (Constraint[0]) {
7555    default:  break;
7556    case 'l': return C_RegisterClass;
7557    case 'w': return C_RegisterClass;
7558    case 'h': return C_RegisterClass;
7559    case 'x': return C_RegisterClass;
7560    case 't': return C_RegisterClass;
7561    case 'j': return C_Other; // Constant for movw.
7562    }
7563  } else if (Constraint.size() == 2) {
7564    switch (Constraint[0]) {
7565    default: break;
7566    // All 'U+' constraints are addresses.
7567    case 'U': return C_Memory;
7568    }
7569  }
7570  return TargetLowering::getConstraintType(Constraint);
7571}
7572
7573/// Examine constraint type and operand type and determine a weight value.
7574/// This object must already have been set up with the operand type
7575/// and the current alternative constraint selected.
7576TargetLowering::ConstraintWeight
7577ARMTargetLowering::getSingleConstraintMatchWeight(
7578    AsmOperandInfo &info, const char *constraint) const {
7579  ConstraintWeight weight = CW_Invalid;
7580  Value *CallOperandVal = info.CallOperandVal;
7581    // If we don't have a value, we can't do a match,
7582    // but allow it at the lowest weight.
7583  if (CallOperandVal == NULL)
7584    return CW_Default;
7585  const Type *type = CallOperandVal->getType();
7586  // Look at the constraint type.
7587  switch (*constraint) {
7588  default:
7589    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
7590    break;
7591  case 'l':
7592    if (type->isIntegerTy()) {
7593      if (Subtarget->isThumb())
7594        weight = CW_SpecificReg;
7595      else
7596        weight = CW_Register;
7597    }
7598    break;
7599  case 'w':
7600    if (type->isFloatingPointTy())
7601      weight = CW_Register;
7602    break;
7603  }
7604  return weight;
7605}
7606
7607typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
7608RCPair
7609ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
7610                                                EVT VT) const {
7611  if (Constraint.size() == 1) {
7612    // GCC ARM Constraint Letters
7613    switch (Constraint[0]) {
7614    case 'l': // Low regs or general regs.
7615      if (Subtarget->isThumb())
7616        return RCPair(0U, ARM::tGPRRegisterClass);
7617      else
7618        return RCPair(0U, ARM::GPRRegisterClass);
7619    case 'h': // High regs or no regs.
7620      if (Subtarget->isThumb())
7621	return RCPair(0U, ARM::hGPRRegisterClass);
7622      break;
7623    case 'r':
7624      return RCPair(0U, ARM::GPRRegisterClass);
7625    case 'w':
7626      if (VT == MVT::f32)
7627        return RCPair(0U, ARM::SPRRegisterClass);
7628      if (VT.getSizeInBits() == 64)
7629        return RCPair(0U, ARM::DPRRegisterClass);
7630      if (VT.getSizeInBits() == 128)
7631        return RCPair(0U, ARM::QPRRegisterClass);
7632      break;
7633    case 'x':
7634      if (VT == MVT::f32)
7635	return RCPair(0U, ARM::SPR_8RegisterClass);
7636      if (VT.getSizeInBits() == 64)
7637	return RCPair(0U, ARM::DPR_8RegisterClass);
7638      if (VT.getSizeInBits() == 128)
7639	return RCPair(0U, ARM::QPR_8RegisterClass);
7640      break;
7641    case 't':
7642      if (VT == MVT::f32)
7643	return RCPair(0U, ARM::SPRRegisterClass);
7644      break;
7645    }
7646  }
7647  if (StringRef("{cc}").equals_lower(Constraint))
7648    return std::make_pair(unsigned(ARM::CPSR), ARM::CCRRegisterClass);
7649
7650  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
7651}
7652
7653/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
7654/// vector.  If it is invalid, don't add anything to Ops.
7655void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
7656                                                     std::string &Constraint,
7657                                                     std::vector<SDValue>&Ops,
7658                                                     SelectionDAG &DAG) const {
7659  SDValue Result(0, 0);
7660
7661  // Currently only support length 1 constraints.
7662  if (Constraint.length() != 1) return;
7663
7664  char ConstraintLetter = Constraint[0];
7665  switch (ConstraintLetter) {
7666  default: break;
7667  case 'j':
7668  case 'I': case 'J': case 'K': case 'L':
7669  case 'M': case 'N': case 'O':
7670    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
7671    if (!C)
7672      return;
7673
7674    int64_t CVal64 = C->getSExtValue();
7675    int CVal = (int) CVal64;
7676    // None of these constraints allow values larger than 32 bits.  Check
7677    // that the value fits in an int.
7678    if (CVal != CVal64)
7679      return;
7680
7681    switch (ConstraintLetter) {
7682      case 'j':
7683	// Constant suitable for movw, must be between 0 and
7684	// 65535.
7685	if (Subtarget->hasV6T2Ops())
7686	  if (CVal >= 0 && CVal <= 65535)
7687	    break;
7688	return;
7689      case 'I':
7690        if (Subtarget->isThumb1Only()) {
7691          // This must be a constant between 0 and 255, for ADD
7692          // immediates.
7693          if (CVal >= 0 && CVal <= 255)
7694            break;
7695        } else if (Subtarget->isThumb2()) {
7696          // A constant that can be used as an immediate value in a
7697          // data-processing instruction.
7698          if (ARM_AM::getT2SOImmVal(CVal) != -1)
7699            break;
7700        } else {
7701          // A constant that can be used as an immediate value in a
7702          // data-processing instruction.
7703          if (ARM_AM::getSOImmVal(CVal) != -1)
7704            break;
7705        }
7706        return;
7707
7708      case 'J':
7709        if (Subtarget->isThumb()) {  // FIXME thumb2
7710          // This must be a constant between -255 and -1, for negated ADD
7711          // immediates. This can be used in GCC with an "n" modifier that
7712          // prints the negated value, for use with SUB instructions. It is
7713          // not useful otherwise but is implemented for compatibility.
7714          if (CVal >= -255 && CVal <= -1)
7715            break;
7716        } else {
7717          // This must be a constant between -4095 and 4095. It is not clear
7718          // what this constraint is intended for. Implemented for
7719          // compatibility with GCC.
7720          if (CVal >= -4095 && CVal <= 4095)
7721            break;
7722        }
7723        return;
7724
7725      case 'K':
7726        if (Subtarget->isThumb1Only()) {
7727          // A 32-bit value where only one byte has a nonzero value. Exclude
7728          // zero to match GCC. This constraint is used by GCC internally for
7729          // constants that can be loaded with a move/shift combination.
7730          // It is not useful otherwise but is implemented for compatibility.
7731          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
7732            break;
7733        } else if (Subtarget->isThumb2()) {
7734          // A constant whose bitwise inverse can be used as an immediate
7735          // value in a data-processing instruction. This can be used in GCC
7736          // with a "B" modifier that prints the inverted value, for use with
7737          // BIC and MVN instructions. It is not useful otherwise but is
7738          // implemented for compatibility.
7739          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
7740            break;
7741        } else {
7742          // A constant whose bitwise inverse can be used as an immediate
7743          // value in a data-processing instruction. This can be used in GCC
7744          // with a "B" modifier that prints the inverted value, for use with
7745          // BIC and MVN instructions. It is not useful otherwise but is
7746          // implemented for compatibility.
7747          if (ARM_AM::getSOImmVal(~CVal) != -1)
7748            break;
7749        }
7750        return;
7751
7752      case 'L':
7753        if (Subtarget->isThumb1Only()) {
7754          // This must be a constant between -7 and 7,
7755          // for 3-operand ADD/SUB immediate instructions.
7756          if (CVal >= -7 && CVal < 7)
7757            break;
7758        } else if (Subtarget->isThumb2()) {
7759          // A constant whose negation can be used as an immediate value in a
7760          // data-processing instruction. This can be used in GCC with an "n"
7761          // modifier that prints the negated value, for use with SUB
7762          // instructions. It is not useful otherwise but is implemented for
7763          // compatibility.
7764          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
7765            break;
7766        } else {
7767          // A constant whose negation can be used as an immediate value in a
7768          // data-processing instruction. This can be used in GCC with an "n"
7769          // modifier that prints the negated value, for use with SUB
7770          // instructions. It is not useful otherwise but is implemented for
7771          // compatibility.
7772          if (ARM_AM::getSOImmVal(-CVal) != -1)
7773            break;
7774        }
7775        return;
7776
7777      case 'M':
7778        if (Subtarget->isThumb()) { // FIXME thumb2
7779          // This must be a multiple of 4 between 0 and 1020, for
7780          // ADD sp + immediate.
7781          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
7782            break;
7783        } else {
7784          // A power of two or a constant between 0 and 32.  This is used in
7785          // GCC for the shift amount on shifted register operands, but it is
7786          // useful in general for any shift amounts.
7787          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
7788            break;
7789        }
7790        return;
7791
7792      case 'N':
7793        if (Subtarget->isThumb()) {  // FIXME thumb2
7794          // This must be a constant between 0 and 31, for shift amounts.
7795          if (CVal >= 0 && CVal <= 31)
7796            break;
7797        }
7798        return;
7799
7800      case 'O':
7801        if (Subtarget->isThumb()) {  // FIXME thumb2
7802          // This must be a multiple of 4 between -508 and 508, for
7803          // ADD/SUB sp = sp + immediate.
7804          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
7805            break;
7806        }
7807        return;
7808    }
7809    Result = DAG.getTargetConstant(CVal, Op.getValueType());
7810    break;
7811  }
7812
7813  if (Result.getNode()) {
7814    Ops.push_back(Result);
7815    return;
7816  }
7817  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
7818}
7819
7820bool
7821ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
7822  // The ARM target isn't yet aware of offsets.
7823  return false;
7824}
7825
7826int ARM::getVFPf32Imm(const APFloat &FPImm) {
7827  APInt Imm = FPImm.bitcastToAPInt();
7828  uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
7829  int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
7830  int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
7831
7832  // We can handle 4 bits of mantissa.
7833  // mantissa = (16+UInt(e:f:g:h))/16.
7834  if (Mantissa & 0x7ffff)
7835    return -1;
7836  Mantissa >>= 19;
7837  if ((Mantissa & 0xf) != Mantissa)
7838    return -1;
7839
7840  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
7841  if (Exp < -3 || Exp > 4)
7842    return -1;
7843  Exp = ((Exp+3) & 0x7) ^ 4;
7844
7845  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
7846}
7847
7848int ARM::getVFPf64Imm(const APFloat &FPImm) {
7849  APInt Imm = FPImm.bitcastToAPInt();
7850  uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
7851  int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;   // -1022 to 1023
7852  uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffLL;
7853
7854  // We can handle 4 bits of mantissa.
7855  // mantissa = (16+UInt(e:f:g:h))/16.
7856  if (Mantissa & 0xffffffffffffLL)
7857    return -1;
7858  Mantissa >>= 48;
7859  if ((Mantissa & 0xf) != Mantissa)
7860    return -1;
7861
7862  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
7863  if (Exp < -3 || Exp > 4)
7864    return -1;
7865  Exp = ((Exp+3) & 0x7) ^ 4;
7866
7867  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
7868}
7869
7870bool ARM::isBitFieldInvertedMask(unsigned v) {
7871  if (v == 0xffffffff)
7872    return 0;
7873  // there can be 1's on either or both "outsides", all the "inside"
7874  // bits must be 0's
7875  unsigned int lsb = 0, msb = 31;
7876  while (v & (1 << msb)) --msb;
7877  while (v & (1 << lsb)) ++lsb;
7878  for (unsigned int i = lsb; i <= msb; ++i) {
7879    if (v & (1 << i))
7880      return 0;
7881  }
7882  return 1;
7883}
7884
7885/// isFPImmLegal - Returns true if the target can instruction select the
7886/// specified FP immediate natively. If false, the legalizer will
7887/// materialize the FP immediate as a load from a constant pool.
7888bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
7889  if (!Subtarget->hasVFP3())
7890    return false;
7891  if (VT == MVT::f32)
7892    return ARM::getVFPf32Imm(Imm) != -1;
7893  if (VT == MVT::f64)
7894    return ARM::getVFPf64Imm(Imm) != -1;
7895  return false;
7896}
7897
7898/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
7899/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
7900/// specified in the intrinsic calls.
7901bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
7902                                           const CallInst &I,
7903                                           unsigned Intrinsic) const {
7904  switch (Intrinsic) {
7905  case Intrinsic::arm_neon_vld1:
7906  case Intrinsic::arm_neon_vld2:
7907  case Intrinsic::arm_neon_vld3:
7908  case Intrinsic::arm_neon_vld4:
7909  case Intrinsic::arm_neon_vld2lane:
7910  case Intrinsic::arm_neon_vld3lane:
7911  case Intrinsic::arm_neon_vld4lane: {
7912    Info.opc = ISD::INTRINSIC_W_CHAIN;
7913    // Conservatively set memVT to the entire set of vectors loaded.
7914    uint64_t NumElts = getTargetData()->getTypeAllocSize(I.getType()) / 8;
7915    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
7916    Info.ptrVal = I.getArgOperand(0);
7917    Info.offset = 0;
7918    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
7919    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
7920    Info.vol = false; // volatile loads with NEON intrinsics not supported
7921    Info.readMem = true;
7922    Info.writeMem = false;
7923    return true;
7924  }
7925  case Intrinsic::arm_neon_vst1:
7926  case Intrinsic::arm_neon_vst2:
7927  case Intrinsic::arm_neon_vst3:
7928  case Intrinsic::arm_neon_vst4:
7929  case Intrinsic::arm_neon_vst2lane:
7930  case Intrinsic::arm_neon_vst3lane:
7931  case Intrinsic::arm_neon_vst4lane: {
7932    Info.opc = ISD::INTRINSIC_VOID;
7933    // Conservatively set memVT to the entire set of vectors stored.
7934    unsigned NumElts = 0;
7935    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
7936      const Type *ArgTy = I.getArgOperand(ArgI)->getType();
7937      if (!ArgTy->isVectorTy())
7938        break;
7939      NumElts += getTargetData()->getTypeAllocSize(ArgTy) / 8;
7940    }
7941    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
7942    Info.ptrVal = I.getArgOperand(0);
7943    Info.offset = 0;
7944    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
7945    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
7946    Info.vol = false; // volatile stores with NEON intrinsics not supported
7947    Info.readMem = false;
7948    Info.writeMem = true;
7949    return true;
7950  }
7951  case Intrinsic::arm_strexd: {
7952    Info.opc = ISD::INTRINSIC_W_CHAIN;
7953    Info.memVT = MVT::i64;
7954    Info.ptrVal = I.getArgOperand(2);
7955    Info.offset = 0;
7956    Info.align = 8;
7957    Info.vol = true;
7958    Info.readMem = false;
7959    Info.writeMem = true;
7960    return true;
7961  }
7962  case Intrinsic::arm_ldrexd: {
7963    Info.opc = ISD::INTRINSIC_W_CHAIN;
7964    Info.memVT = MVT::i64;
7965    Info.ptrVal = I.getArgOperand(0);
7966    Info.offset = 0;
7967    Info.align = 8;
7968    Info.vol = true;
7969    Info.readMem = true;
7970    Info.writeMem = false;
7971    return true;
7972  }
7973  default:
7974    break;
7975  }
7976
7977  return false;
7978}
7979