ARMBaseInstrInfo.cpp revision 288943
1//===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Base ARM implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "ARM.h"
15#include "ARMBaseInstrInfo.h"
16#include "ARMBaseRegisterInfo.h"
17#include "ARMConstantPoolValue.h"
18#include "ARMFeatures.h"
19#include "ARMHazardRecognizer.h"
20#include "ARMMachineFunctionInfo.h"
21#include "MCTargetDesc/ARMAddressingModes.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/CodeGen/LiveVariables.h"
24#include "llvm/CodeGen/MachineConstantPool.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineJumpTableInfo.h"
28#include "llvm/CodeGen/MachineMemOperand.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/SelectionDAGNodes.h"
31#include "llvm/CodeGen/TargetSchedule.h"
32#include "llvm/IR/Constants.h"
33#include "llvm/IR/Function.h"
34#include "llvm/IR/GlobalValue.h"
35#include "llvm/MC/MCAsmInfo.h"
36#include "llvm/MC/MCExpr.h"
37#include "llvm/Support/BranchProbability.h"
38#include "llvm/Support/CommandLine.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/raw_ostream.h"
42
43using namespace llvm;
44
45#define DEBUG_TYPE "arm-instrinfo"
46
47#define GET_INSTRINFO_CTOR_DTOR
48#include "ARMGenInstrInfo.inc"
49
50static cl::opt<bool>
51EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
52               cl::desc("Enable ARM 2-addr to 3-addr conv"));
53
54static cl::opt<bool>
55WidenVMOVS("widen-vmovs", cl::Hidden, cl::init(true),
56           cl::desc("Widen ARM vmovs to vmovd when possible"));
57
58static cl::opt<unsigned>
59SwiftPartialUpdateClearance("swift-partial-update-clearance",
60     cl::Hidden, cl::init(12),
61     cl::desc("Clearance before partial register updates"));
62
63/// ARM_MLxEntry - Record information about MLA / MLS instructions.
64struct ARM_MLxEntry {
65  uint16_t MLxOpc;     // MLA / MLS opcode
66  uint16_t MulOpc;     // Expanded multiplication opcode
67  uint16_t AddSubOpc;  // Expanded add / sub opcode
68  bool NegAcc;         // True if the acc is negated before the add / sub.
69  bool HasLane;        // True if instruction has an extra "lane" operand.
70};
71
72static const ARM_MLxEntry ARM_MLxTable[] = {
73  // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
74  // fp scalar ops
75  { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
76  { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
77  { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
78  { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
79  { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
80  { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
81  { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
82  { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
83
84  // fp SIMD ops
85  { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
86  { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
87  { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
88  { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
89  { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
90  { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
91  { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
92  { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
93};
94
95ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
96  : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
97    Subtarget(STI) {
98  for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
99    if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
100      assert(false && "Duplicated entries?");
101    MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
102    MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
103  }
104}
105
106// Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
107// currently defaults to no prepass hazard recognizer.
108ScheduleHazardRecognizer *
109ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
110                                               const ScheduleDAG *DAG) const {
111  if (usePreRAHazardRecognizer()) {
112    const InstrItineraryData *II =
113        static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
114    return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
115  }
116  return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
117}
118
119ScheduleHazardRecognizer *ARMBaseInstrInfo::
120CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
121                                   const ScheduleDAG *DAG) const {
122  if (Subtarget.isThumb2() || Subtarget.hasVFP2())
123    return (ScheduleHazardRecognizer *)new ARMHazardRecognizer(II, DAG);
124  return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
125}
126
127MachineInstr *
128ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
129                                        MachineBasicBlock::iterator &MBBI,
130                                        LiveVariables *LV) const {
131  // FIXME: Thumb2 support.
132
133  if (!EnableARM3Addr)
134    return nullptr;
135
136  MachineInstr *MI = MBBI;
137  MachineFunction &MF = *MI->getParent()->getParent();
138  uint64_t TSFlags = MI->getDesc().TSFlags;
139  bool isPre = false;
140  switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
141  default: return nullptr;
142  case ARMII::IndexModePre:
143    isPre = true;
144    break;
145  case ARMII::IndexModePost:
146    break;
147  }
148
149  // Try splitting an indexed load/store to an un-indexed one plus an add/sub
150  // operation.
151  unsigned MemOpc = getUnindexedOpcode(MI->getOpcode());
152  if (MemOpc == 0)
153    return nullptr;
154
155  MachineInstr *UpdateMI = nullptr;
156  MachineInstr *MemMI = nullptr;
157  unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
158  const MCInstrDesc &MCID = MI->getDesc();
159  unsigned NumOps = MCID.getNumOperands();
160  bool isLoad = !MI->mayStore();
161  const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0);
162  const MachineOperand &Base = MI->getOperand(2);
163  const MachineOperand &Offset = MI->getOperand(NumOps-3);
164  unsigned WBReg = WB.getReg();
165  unsigned BaseReg = Base.getReg();
166  unsigned OffReg = Offset.getReg();
167  unsigned OffImm = MI->getOperand(NumOps-2).getImm();
168  ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm();
169  switch (AddrMode) {
170  default: llvm_unreachable("Unknown indexed op!");
171  case ARMII::AddrMode2: {
172    bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
173    unsigned Amt = ARM_AM::getAM2Offset(OffImm);
174    if (OffReg == 0) {
175      if (ARM_AM::getSOImmVal(Amt) == -1)
176        // Can't encode it in a so_imm operand. This transformation will
177        // add more than 1 instruction. Abandon!
178        return nullptr;
179      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
180                         get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
181        .addReg(BaseReg).addImm(Amt)
182        .addImm(Pred).addReg(0).addReg(0);
183    } else if (Amt != 0) {
184      ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
185      unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
186      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
187                         get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
188        .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc)
189        .addImm(Pred).addReg(0).addReg(0);
190    } else
191      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
192                         get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
193        .addReg(BaseReg).addReg(OffReg)
194        .addImm(Pred).addReg(0).addReg(0);
195    break;
196  }
197  case ARMII::AddrMode3 : {
198    bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
199    unsigned Amt = ARM_AM::getAM3Offset(OffImm);
200    if (OffReg == 0)
201      // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
202      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
203                         get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
204        .addReg(BaseReg).addImm(Amt)
205        .addImm(Pred).addReg(0).addReg(0);
206    else
207      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
208                         get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
209        .addReg(BaseReg).addReg(OffReg)
210        .addImm(Pred).addReg(0).addReg(0);
211    break;
212  }
213  }
214
215  std::vector<MachineInstr*> NewMIs;
216  if (isPre) {
217    if (isLoad)
218      MemMI = BuildMI(MF, MI->getDebugLoc(),
219                      get(MemOpc), MI->getOperand(0).getReg())
220        .addReg(WBReg).addImm(0).addImm(Pred);
221    else
222      MemMI = BuildMI(MF, MI->getDebugLoc(),
223                      get(MemOpc)).addReg(MI->getOperand(1).getReg())
224        .addReg(WBReg).addReg(0).addImm(0).addImm(Pred);
225    NewMIs.push_back(MemMI);
226    NewMIs.push_back(UpdateMI);
227  } else {
228    if (isLoad)
229      MemMI = BuildMI(MF, MI->getDebugLoc(),
230                      get(MemOpc), MI->getOperand(0).getReg())
231        .addReg(BaseReg).addImm(0).addImm(Pred);
232    else
233      MemMI = BuildMI(MF, MI->getDebugLoc(),
234                      get(MemOpc)).addReg(MI->getOperand(1).getReg())
235        .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred);
236    if (WB.isDead())
237      UpdateMI->getOperand(0).setIsDead();
238    NewMIs.push_back(UpdateMI);
239    NewMIs.push_back(MemMI);
240  }
241
242  // Transfer LiveVariables states, kill / dead info.
243  if (LV) {
244    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
245      MachineOperand &MO = MI->getOperand(i);
246      if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
247        unsigned Reg = MO.getReg();
248
249        LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
250        if (MO.isDef()) {
251          MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
252          if (MO.isDead())
253            LV->addVirtualRegisterDead(Reg, NewMI);
254        }
255        if (MO.isUse() && MO.isKill()) {
256          for (unsigned j = 0; j < 2; ++j) {
257            // Look at the two new MI's in reverse order.
258            MachineInstr *NewMI = NewMIs[j];
259            if (!NewMI->readsRegister(Reg))
260              continue;
261            LV->addVirtualRegisterKilled(Reg, NewMI);
262            if (VI.removeKill(MI))
263              VI.Kills.push_back(NewMI);
264            break;
265          }
266        }
267      }
268    }
269  }
270
271  MFI->insert(MBBI, NewMIs[1]);
272  MFI->insert(MBBI, NewMIs[0]);
273  return NewMIs[0];
274}
275
276// Branch analysis.
277bool
278ARMBaseInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
279                                MachineBasicBlock *&FBB,
280                                SmallVectorImpl<MachineOperand> &Cond,
281                                bool AllowModify) const {
282  TBB = nullptr;
283  FBB = nullptr;
284
285  MachineBasicBlock::iterator I = MBB.end();
286  if (I == MBB.begin())
287    return false; // Empty blocks are easy.
288  --I;
289
290  // Walk backwards from the end of the basic block until the branch is
291  // analyzed or we give up.
292  while (isPredicated(I) || I->isTerminator() || I->isDebugValue()) {
293
294    // Flag to be raised on unanalyzeable instructions. This is useful in cases
295    // where we want to clean up on the end of the basic block before we bail
296    // out.
297    bool CantAnalyze = false;
298
299    // Skip over DEBUG values and predicated nonterminators.
300    while (I->isDebugValue() || !I->isTerminator()) {
301      if (I == MBB.begin())
302        return false;
303      --I;
304    }
305
306    if (isIndirectBranchOpcode(I->getOpcode()) ||
307        isJumpTableBranchOpcode(I->getOpcode())) {
308      // Indirect branches and jump tables can't be analyzed, but we still want
309      // to clean up any instructions at the tail of the basic block.
310      CantAnalyze = true;
311    } else if (isUncondBranchOpcode(I->getOpcode())) {
312      TBB = I->getOperand(0).getMBB();
313    } else if (isCondBranchOpcode(I->getOpcode())) {
314      // Bail out if we encounter multiple conditional branches.
315      if (!Cond.empty())
316        return true;
317
318      assert(!FBB && "FBB should have been null.");
319      FBB = TBB;
320      TBB = I->getOperand(0).getMBB();
321      Cond.push_back(I->getOperand(1));
322      Cond.push_back(I->getOperand(2));
323    } else if (I->isReturn()) {
324      // Returns can't be analyzed, but we should run cleanup.
325      CantAnalyze = !isPredicated(I);
326    } else {
327      // We encountered other unrecognized terminator. Bail out immediately.
328      return true;
329    }
330
331    // Cleanup code - to be run for unpredicated unconditional branches and
332    //                returns.
333    if (!isPredicated(I) &&
334          (isUncondBranchOpcode(I->getOpcode()) ||
335           isIndirectBranchOpcode(I->getOpcode()) ||
336           isJumpTableBranchOpcode(I->getOpcode()) ||
337           I->isReturn())) {
338      // Forget any previous condition branch information - it no longer applies.
339      Cond.clear();
340      FBB = nullptr;
341
342      // If we can modify the function, delete everything below this
343      // unconditional branch.
344      if (AllowModify) {
345        MachineBasicBlock::iterator DI = std::next(I);
346        while (DI != MBB.end()) {
347          MachineInstr *InstToDelete = DI;
348          ++DI;
349          InstToDelete->eraseFromParent();
350        }
351      }
352    }
353
354    if (CantAnalyze)
355      return true;
356
357    if (I == MBB.begin())
358      return false;
359
360    --I;
361  }
362
363  // We made it past the terminators without bailing out - we must have
364  // analyzed this branch successfully.
365  return false;
366}
367
368
369unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
370  MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
371  if (I == MBB.end())
372    return 0;
373
374  if (!isUncondBranchOpcode(I->getOpcode()) &&
375      !isCondBranchOpcode(I->getOpcode()))
376    return 0;
377
378  // Remove the branch.
379  I->eraseFromParent();
380
381  I = MBB.end();
382
383  if (I == MBB.begin()) return 1;
384  --I;
385  if (!isCondBranchOpcode(I->getOpcode()))
386    return 1;
387
388  // Remove the branch.
389  I->eraseFromParent();
390  return 2;
391}
392
393unsigned
394ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
395                               MachineBasicBlock *FBB,
396                               ArrayRef<MachineOperand> Cond,
397                               DebugLoc DL) const {
398  ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
399  int BOpc   = !AFI->isThumbFunction()
400    ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
401  int BccOpc = !AFI->isThumbFunction()
402    ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
403  bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
404
405  // Shouldn't be a fall through.
406  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
407  assert((Cond.size() == 2 || Cond.size() == 0) &&
408         "ARM branch conditions have two components!");
409
410  // For conditional branches, we use addOperand to preserve CPSR flags.
411
412  if (!FBB) {
413    if (Cond.empty()) { // Unconditional branch?
414      if (isThumb)
415        BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).addImm(ARMCC::AL).addReg(0);
416      else
417        BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
418    } else
419      BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
420        .addImm(Cond[0].getImm()).addOperand(Cond[1]);
421    return 1;
422  }
423
424  // Two-way conditional branch.
425  BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
426    .addImm(Cond[0].getImm()).addOperand(Cond[1]);
427  if (isThumb)
428    BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).addImm(ARMCC::AL).addReg(0);
429  else
430    BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
431  return 2;
432}
433
434bool ARMBaseInstrInfo::
435ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
436  ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
437  Cond[0].setImm(ARMCC::getOppositeCondition(CC));
438  return false;
439}
440
441bool ARMBaseInstrInfo::isPredicated(const MachineInstr *MI) const {
442  if (MI->isBundle()) {
443    MachineBasicBlock::const_instr_iterator I = MI;
444    MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
445    while (++I != E && I->isInsideBundle()) {
446      int PIdx = I->findFirstPredOperandIdx();
447      if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
448        return true;
449    }
450    return false;
451  }
452
453  int PIdx = MI->findFirstPredOperandIdx();
454  return PIdx != -1 && MI->getOperand(PIdx).getImm() != ARMCC::AL;
455}
456
457bool ARMBaseInstrInfo::
458PredicateInstruction(MachineInstr *MI, ArrayRef<MachineOperand> Pred) const {
459  unsigned Opc = MI->getOpcode();
460  if (isUncondBranchOpcode(Opc)) {
461    MI->setDesc(get(getMatchingCondBranchOpcode(Opc)));
462    MachineInstrBuilder(*MI->getParent()->getParent(), MI)
463      .addImm(Pred[0].getImm())
464      .addReg(Pred[1].getReg());
465    return true;
466  }
467
468  int PIdx = MI->findFirstPredOperandIdx();
469  if (PIdx != -1) {
470    MachineOperand &PMO = MI->getOperand(PIdx);
471    PMO.setImm(Pred[0].getImm());
472    MI->getOperand(PIdx+1).setReg(Pred[1].getReg());
473    return true;
474  }
475  return false;
476}
477
478bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
479                                         ArrayRef<MachineOperand> Pred2) const {
480  if (Pred1.size() > 2 || Pred2.size() > 2)
481    return false;
482
483  ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
484  ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
485  if (CC1 == CC2)
486    return true;
487
488  switch (CC1) {
489  default:
490    return false;
491  case ARMCC::AL:
492    return true;
493  case ARMCC::HS:
494    return CC2 == ARMCC::HI;
495  case ARMCC::LS:
496    return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
497  case ARMCC::GE:
498    return CC2 == ARMCC::GT;
499  case ARMCC::LE:
500    return CC2 == ARMCC::LT;
501  }
502}
503
504bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr *MI,
505                                    std::vector<MachineOperand> &Pred) const {
506  bool Found = false;
507  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
508    const MachineOperand &MO = MI->getOperand(i);
509    if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) ||
510        (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) {
511      Pred.push_back(MO);
512      Found = true;
513    }
514  }
515
516  return Found;
517}
518
519static bool isCPSRDefined(const MachineInstr *MI) {
520  for (const auto &MO : MI->operands())
521    if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef())
522      return true;
523  return false;
524}
525
526static bool isEligibleForITBlock(const MachineInstr *MI) {
527  switch (MI->getOpcode()) {
528  default: return true;
529  case ARM::tADC:   // ADC (register) T1
530  case ARM::tADDi3: // ADD (immediate) T1
531  case ARM::tADDi8: // ADD (immediate) T2
532  case ARM::tADDrr: // ADD (register) T1
533  case ARM::tAND:   // AND (register) T1
534  case ARM::tASRri: // ASR (immediate) T1
535  case ARM::tASRrr: // ASR (register) T1
536  case ARM::tBIC:   // BIC (register) T1
537  case ARM::tEOR:   // EOR (register) T1
538  case ARM::tLSLri: // LSL (immediate) T1
539  case ARM::tLSLrr: // LSL (register) T1
540  case ARM::tLSRri: // LSR (immediate) T1
541  case ARM::tLSRrr: // LSR (register) T1
542  case ARM::tMUL:   // MUL T1
543  case ARM::tMVN:   // MVN (register) T1
544  case ARM::tORR:   // ORR (register) T1
545  case ARM::tROR:   // ROR (register) T1
546  case ARM::tRSB:   // RSB (immediate) T1
547  case ARM::tSBC:   // SBC (register) T1
548  case ARM::tSUBi3: // SUB (immediate) T1
549  case ARM::tSUBi8: // SUB (immediate) T2
550  case ARM::tSUBrr: // SUB (register) T1
551    return !isCPSRDefined(MI);
552  }
553}
554
555/// isPredicable - Return true if the specified instruction can be predicated.
556/// By default, this returns true for every instruction with a
557/// PredicateOperand.
558bool ARMBaseInstrInfo::isPredicable(MachineInstr *MI) const {
559  if (!MI->isPredicable())
560    return false;
561
562  if (!isEligibleForITBlock(MI))
563    return false;
564
565  ARMFunctionInfo *AFI =
566    MI->getParent()->getParent()->getInfo<ARMFunctionInfo>();
567
568  if (AFI->isThumb2Function()) {
569    if (getSubtarget().restrictIT())
570      return isV8EligibleForIT(MI);
571  } else { // non-Thumb
572    if ((MI->getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
573      return false;
574  }
575
576  return true;
577}
578
579namespace llvm {
580template <> bool IsCPSRDead<MachineInstr>(MachineInstr *MI) {
581  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
582    const MachineOperand &MO = MI->getOperand(i);
583    if (!MO.isReg() || MO.isUndef() || MO.isUse())
584      continue;
585    if (MO.getReg() != ARM::CPSR)
586      continue;
587    if (!MO.isDead())
588      return false;
589  }
590  // all definitions of CPSR are dead
591  return true;
592}
593}
594
595/// GetInstSize - Return the size of the specified MachineInstr.
596///
597unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
598  const MachineBasicBlock &MBB = *MI->getParent();
599  const MachineFunction *MF = MBB.getParent();
600  const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
601
602  const MCInstrDesc &MCID = MI->getDesc();
603  if (MCID.getSize())
604    return MCID.getSize();
605
606  // If this machine instr is an inline asm, measure it.
607  if (MI->getOpcode() == ARM::INLINEASM)
608    return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI);
609  unsigned Opc = MI->getOpcode();
610  switch (Opc) {
611  default:
612    // pseudo-instruction sizes are zero.
613    return 0;
614  case TargetOpcode::BUNDLE:
615    return getInstBundleLength(MI);
616  case ARM::MOVi16_ga_pcrel:
617  case ARM::MOVTi16_ga_pcrel:
618  case ARM::t2MOVi16_ga_pcrel:
619  case ARM::t2MOVTi16_ga_pcrel:
620    return 4;
621  case ARM::MOVi32imm:
622  case ARM::t2MOVi32imm:
623    return 8;
624  case ARM::CONSTPOOL_ENTRY:
625  case ARM::JUMPTABLE_INSTS:
626  case ARM::JUMPTABLE_ADDRS:
627  case ARM::JUMPTABLE_TBB:
628  case ARM::JUMPTABLE_TBH:
629    // If this machine instr is a constant pool entry, its size is recorded as
630    // operand #2.
631    return MI->getOperand(2).getImm();
632  case ARM::Int_eh_sjlj_longjmp:
633    return 16;
634  case ARM::tInt_eh_sjlj_longjmp:
635    return 10;
636  case ARM::Int_eh_sjlj_setjmp:
637  case ARM::Int_eh_sjlj_setjmp_nofp:
638    return 20;
639  case ARM::tInt_eh_sjlj_setjmp:
640  case ARM::t2Int_eh_sjlj_setjmp:
641  case ARM::t2Int_eh_sjlj_setjmp_nofp:
642    return 12;
643  case ARM::SPACE:
644    return MI->getOperand(1).getImm();
645  }
646}
647
648unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr *MI) const {
649  unsigned Size = 0;
650  MachineBasicBlock::const_instr_iterator I = MI;
651  MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
652  while (++I != E && I->isInsideBundle()) {
653    assert(!I->isBundle() && "No nested bundle!");
654    Size += GetInstSizeInBytes(&*I);
655  }
656  return Size;
657}
658
659void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB,
660                                    MachineBasicBlock::iterator I,
661                                    unsigned DestReg, bool KillSrc,
662                                    const ARMSubtarget &Subtarget) const {
663  unsigned Opc = Subtarget.isThumb()
664                     ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR)
665                     : ARM::MRS;
666
667  MachineInstrBuilder MIB =
668      BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg);
669
670  // There is only 1 A/R class MRS instruction, and it always refers to
671  // APSR. However, there are lots of other possibilities on M-class cores.
672  if (Subtarget.isMClass())
673    MIB.addImm(0x800);
674
675  AddDefaultPred(MIB);
676
677  MIB.addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc));
678}
679
680void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB,
681                                  MachineBasicBlock::iterator I,
682                                  unsigned SrcReg, bool KillSrc,
683                                  const ARMSubtarget &Subtarget) const {
684  unsigned Opc = Subtarget.isThumb()
685                     ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR)
686                     : ARM::MSR;
687
688  MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc));
689
690  if (Subtarget.isMClass())
691    MIB.addImm(0x800);
692  else
693    MIB.addImm(8);
694
695  MIB.addReg(SrcReg, getKillRegState(KillSrc));
696
697  AddDefaultPred(MIB);
698
699  MIB.addReg(ARM::CPSR, RegState::Implicit | RegState::Define);
700}
701
702void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
703                                   MachineBasicBlock::iterator I, DebugLoc DL,
704                                   unsigned DestReg, unsigned SrcReg,
705                                   bool KillSrc) const {
706  bool GPRDest = ARM::GPRRegClass.contains(DestReg);
707  bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
708
709  if (GPRDest && GPRSrc) {
710    AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
711                                    .addReg(SrcReg, getKillRegState(KillSrc))));
712    return;
713  }
714
715  bool SPRDest = ARM::SPRRegClass.contains(DestReg);
716  bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
717
718  unsigned Opc = 0;
719  if (SPRDest && SPRSrc)
720    Opc = ARM::VMOVS;
721  else if (GPRDest && SPRSrc)
722    Opc = ARM::VMOVRS;
723  else if (SPRDest && GPRSrc)
724    Opc = ARM::VMOVSR;
725  else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && !Subtarget.isFPOnlySP())
726    Opc = ARM::VMOVD;
727  else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
728    Opc = ARM::VORRq;
729
730  if (Opc) {
731    MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
732    MIB.addReg(SrcReg, getKillRegState(KillSrc));
733    if (Opc == ARM::VORRq)
734      MIB.addReg(SrcReg, getKillRegState(KillSrc));
735    AddDefaultPred(MIB);
736    return;
737  }
738
739  // Handle register classes that require multiple instructions.
740  unsigned BeginIdx = 0;
741  unsigned SubRegs = 0;
742  int Spacing = 1;
743
744  // Use VORRq when possible.
745  if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
746    Opc = ARM::VORRq;
747    BeginIdx = ARM::qsub_0;
748    SubRegs = 2;
749  } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
750    Opc = ARM::VORRq;
751    BeginIdx = ARM::qsub_0;
752    SubRegs = 4;
753  // Fall back to VMOVD.
754  } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
755    Opc = ARM::VMOVD;
756    BeginIdx = ARM::dsub_0;
757    SubRegs = 2;
758  } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
759    Opc = ARM::VMOVD;
760    BeginIdx = ARM::dsub_0;
761    SubRegs = 3;
762  } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
763    Opc = ARM::VMOVD;
764    BeginIdx = ARM::dsub_0;
765    SubRegs = 4;
766  } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
767    Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
768    BeginIdx = ARM::gsub_0;
769    SubRegs = 2;
770  } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
771    Opc = ARM::VMOVD;
772    BeginIdx = ARM::dsub_0;
773    SubRegs = 2;
774    Spacing = 2;
775  } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
776    Opc = ARM::VMOVD;
777    BeginIdx = ARM::dsub_0;
778    SubRegs = 3;
779    Spacing = 2;
780  } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
781    Opc = ARM::VMOVD;
782    BeginIdx = ARM::dsub_0;
783    SubRegs = 4;
784    Spacing = 2;
785  } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.isFPOnlySP()) {
786    Opc = ARM::VMOVS;
787    BeginIdx = ARM::ssub_0;
788    SubRegs = 2;
789  } else if (SrcReg == ARM::CPSR) {
790    copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget);
791    return;
792  } else if (DestReg == ARM::CPSR) {
793    copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget);
794    return;
795  }
796
797  assert(Opc && "Impossible reg-to-reg copy");
798
799  const TargetRegisterInfo *TRI = &getRegisterInfo();
800  MachineInstrBuilder Mov;
801
802  // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
803  if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
804    BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
805    Spacing = -Spacing;
806  }
807#ifndef NDEBUG
808  SmallSet<unsigned, 4> DstRegs;
809#endif
810  for (unsigned i = 0; i != SubRegs; ++i) {
811    unsigned Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
812    unsigned Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
813    assert(Dst && Src && "Bad sub-register");
814#ifndef NDEBUG
815    assert(!DstRegs.count(Src) && "destructive vector copy");
816    DstRegs.insert(Dst);
817#endif
818    Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
819    // VORR takes two source operands.
820    if (Opc == ARM::VORRq)
821      Mov.addReg(Src);
822    Mov = AddDefaultPred(Mov);
823    // MOVr can set CC.
824    if (Opc == ARM::MOVr)
825      Mov = AddDefaultCC(Mov);
826  }
827  // Add implicit super-register defs and kills to the last instruction.
828  Mov->addRegisterDefined(DestReg, TRI);
829  if (KillSrc)
830    Mov->addRegisterKilled(SrcReg, TRI);
831}
832
833const MachineInstrBuilder &
834ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
835                          unsigned SubIdx, unsigned State,
836                          const TargetRegisterInfo *TRI) const {
837  if (!SubIdx)
838    return MIB.addReg(Reg, State);
839
840  if (TargetRegisterInfo::isPhysicalRegister(Reg))
841    return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
842  return MIB.addReg(Reg, State, SubIdx);
843}
844
845void ARMBaseInstrInfo::
846storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
847                    unsigned SrcReg, bool isKill, int FI,
848                    const TargetRegisterClass *RC,
849                    const TargetRegisterInfo *TRI) const {
850  DebugLoc DL;
851  if (I != MBB.end()) DL = I->getDebugLoc();
852  MachineFunction &MF = *MBB.getParent();
853  MachineFrameInfo &MFI = *MF.getFrameInfo();
854  unsigned Align = MFI.getObjectAlignment(FI);
855
856  MachineMemOperand *MMO =
857    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
858                            MachineMemOperand::MOStore,
859                            MFI.getObjectSize(FI),
860                            Align);
861
862  switch (RC->getSize()) {
863    case 4:
864      if (ARM::GPRRegClass.hasSubClassEq(RC)) {
865        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STRi12))
866                   .addReg(SrcReg, getKillRegState(isKill))
867                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
868      } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
869        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRS))
870                   .addReg(SrcReg, getKillRegState(isKill))
871                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
872      } else
873        llvm_unreachable("Unknown reg class!");
874      break;
875    case 8:
876      if (ARM::DPRRegClass.hasSubClassEq(RC)) {
877        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRD))
878                   .addReg(SrcReg, getKillRegState(isKill))
879                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
880      } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
881        if (Subtarget.hasV5TEOps()) {
882          MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::STRD));
883          AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
884          AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
885          MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO);
886
887          AddDefaultPred(MIB);
888        } else {
889          // Fallback to STM instruction, which has existed since the dawn of
890          // time.
891          MachineInstrBuilder MIB =
892            AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STMIA))
893                             .addFrameIndex(FI).addMemOperand(MMO));
894          AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
895          AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
896        }
897      } else
898        llvm_unreachable("Unknown reg class!");
899      break;
900    case 16:
901      if (ARM::DPairRegClass.hasSubClassEq(RC)) {
902        // Use aligned spills if the stack can be realigned.
903        if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
904          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1q64))
905                     .addFrameIndex(FI).addImm(16)
906                     .addReg(SrcReg, getKillRegState(isKill))
907                     .addMemOperand(MMO));
908        } else {
909          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMQIA))
910                     .addReg(SrcReg, getKillRegState(isKill))
911                     .addFrameIndex(FI)
912                     .addMemOperand(MMO));
913        }
914      } else
915        llvm_unreachable("Unknown reg class!");
916      break;
917    case 24:
918      if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
919        // Use aligned spills if the stack can be realigned.
920        if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
921          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64TPseudo))
922                     .addFrameIndex(FI).addImm(16)
923                     .addReg(SrcReg, getKillRegState(isKill))
924                     .addMemOperand(MMO));
925        } else {
926          MachineInstrBuilder MIB =
927          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
928                       .addFrameIndex(FI))
929                       .addMemOperand(MMO);
930          MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
931          MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
932          AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
933        }
934      } else
935        llvm_unreachable("Unknown reg class!");
936      break;
937    case 32:
938      if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
939        if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
940          // FIXME: It's possible to only store part of the QQ register if the
941          // spilled def has a sub-register index.
942          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo))
943                     .addFrameIndex(FI).addImm(16)
944                     .addReg(SrcReg, getKillRegState(isKill))
945                     .addMemOperand(MMO));
946        } else {
947          MachineInstrBuilder MIB =
948          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
949                       .addFrameIndex(FI))
950                       .addMemOperand(MMO);
951          MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
952          MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
953          MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
954                AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
955        }
956      } else
957        llvm_unreachable("Unknown reg class!");
958      break;
959    case 64:
960      if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
961        MachineInstrBuilder MIB =
962          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
963                         .addFrameIndex(FI))
964                         .addMemOperand(MMO);
965        MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
966        MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
967        MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
968        MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
969        MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
970        MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
971        MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
972              AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
973      } else
974        llvm_unreachable("Unknown reg class!");
975      break;
976    default:
977      llvm_unreachable("Unknown reg class!");
978  }
979}
980
981unsigned
982ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
983                                     int &FrameIndex) const {
984  switch (MI->getOpcode()) {
985  default: break;
986  case ARM::STRrs:
987  case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
988    if (MI->getOperand(1).isFI() &&
989        MI->getOperand(2).isReg() &&
990        MI->getOperand(3).isImm() &&
991        MI->getOperand(2).getReg() == 0 &&
992        MI->getOperand(3).getImm() == 0) {
993      FrameIndex = MI->getOperand(1).getIndex();
994      return MI->getOperand(0).getReg();
995    }
996    break;
997  case ARM::STRi12:
998  case ARM::t2STRi12:
999  case ARM::tSTRspi:
1000  case ARM::VSTRD:
1001  case ARM::VSTRS:
1002    if (MI->getOperand(1).isFI() &&
1003        MI->getOperand(2).isImm() &&
1004        MI->getOperand(2).getImm() == 0) {
1005      FrameIndex = MI->getOperand(1).getIndex();
1006      return MI->getOperand(0).getReg();
1007    }
1008    break;
1009  case ARM::VST1q64:
1010  case ARM::VST1d64TPseudo:
1011  case ARM::VST1d64QPseudo:
1012    if (MI->getOperand(0).isFI() &&
1013        MI->getOperand(2).getSubReg() == 0) {
1014      FrameIndex = MI->getOperand(0).getIndex();
1015      return MI->getOperand(2).getReg();
1016    }
1017    break;
1018  case ARM::VSTMQIA:
1019    if (MI->getOperand(1).isFI() &&
1020        MI->getOperand(0).getSubReg() == 0) {
1021      FrameIndex = MI->getOperand(1).getIndex();
1022      return MI->getOperand(0).getReg();
1023    }
1024    break;
1025  }
1026
1027  return 0;
1028}
1029
1030unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
1031                                                    int &FrameIndex) const {
1032  const MachineMemOperand *Dummy;
1033  return MI->mayStore() && hasStoreToStackSlot(MI, Dummy, FrameIndex);
1034}
1035
1036void ARMBaseInstrInfo::
1037loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1038                     unsigned DestReg, int FI,
1039                     const TargetRegisterClass *RC,
1040                     const TargetRegisterInfo *TRI) const {
1041  DebugLoc DL;
1042  if (I != MBB.end()) DL = I->getDebugLoc();
1043  MachineFunction &MF = *MBB.getParent();
1044  MachineFrameInfo &MFI = *MF.getFrameInfo();
1045  unsigned Align = MFI.getObjectAlignment(FI);
1046  MachineMemOperand *MMO =
1047    MF.getMachineMemOperand(
1048                    MachinePointerInfo::getFixedStack(FI),
1049                            MachineMemOperand::MOLoad,
1050                            MFI.getObjectSize(FI),
1051                            Align);
1052
1053  switch (RC->getSize()) {
1054  case 4:
1055    if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1056      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
1057                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
1058
1059    } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1060      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
1061                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
1062    } else
1063      llvm_unreachable("Unknown reg class!");
1064    break;
1065  case 8:
1066    if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1067      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
1068                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
1069    } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1070      MachineInstrBuilder MIB;
1071
1072      if (Subtarget.hasV5TEOps()) {
1073        MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
1074        AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1075        AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1076        MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO);
1077
1078        AddDefaultPred(MIB);
1079      } else {
1080        // Fallback to LDM instruction, which has existed since the dawn of
1081        // time.
1082        MIB = AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDMIA))
1083                                 .addFrameIndex(FI).addMemOperand(MMO));
1084        MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1085        MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1086      }
1087
1088      if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1089        MIB.addReg(DestReg, RegState::ImplicitDefine);
1090    } else
1091      llvm_unreachable("Unknown reg class!");
1092    break;
1093  case 16:
1094    if (ARM::DPairRegClass.hasSubClassEq(RC)) {
1095      if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1096        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
1097                     .addFrameIndex(FI).addImm(16)
1098                     .addMemOperand(MMO));
1099      } else {
1100        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
1101                       .addFrameIndex(FI)
1102                       .addMemOperand(MMO));
1103      }
1104    } else
1105      llvm_unreachable("Unknown reg class!");
1106    break;
1107  case 24:
1108    if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1109      if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1110        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
1111                     .addFrameIndex(FI).addImm(16)
1112                     .addMemOperand(MMO));
1113      } else {
1114        MachineInstrBuilder MIB =
1115          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1116                         .addFrameIndex(FI)
1117                         .addMemOperand(MMO));
1118        MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1119        MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1120        MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1121        if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1122          MIB.addReg(DestReg, RegState::ImplicitDefine);
1123      }
1124    } else
1125      llvm_unreachable("Unknown reg class!");
1126    break;
1127   case 32:
1128    if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
1129      if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1130        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
1131                     .addFrameIndex(FI).addImm(16)
1132                     .addMemOperand(MMO));
1133      } else {
1134        MachineInstrBuilder MIB =
1135        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1136                       .addFrameIndex(FI))
1137                       .addMemOperand(MMO);
1138        MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1139        MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1140        MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1141        MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1142        if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1143          MIB.addReg(DestReg, RegState::ImplicitDefine);
1144      }
1145    } else
1146      llvm_unreachable("Unknown reg class!");
1147    break;
1148  case 64:
1149    if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1150      MachineInstrBuilder MIB =
1151      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1152                     .addFrameIndex(FI))
1153                     .addMemOperand(MMO);
1154      MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1155      MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1156      MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1157      MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1158      MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
1159      MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
1160      MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
1161      MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
1162      if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1163        MIB.addReg(DestReg, RegState::ImplicitDefine);
1164    } else
1165      llvm_unreachable("Unknown reg class!");
1166    break;
1167  default:
1168    llvm_unreachable("Unknown regclass!");
1169  }
1170}
1171
1172unsigned
1173ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
1174                                      int &FrameIndex) const {
1175  switch (MI->getOpcode()) {
1176  default: break;
1177  case ARM::LDRrs:
1178  case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
1179    if (MI->getOperand(1).isFI() &&
1180        MI->getOperand(2).isReg() &&
1181        MI->getOperand(3).isImm() &&
1182        MI->getOperand(2).getReg() == 0 &&
1183        MI->getOperand(3).getImm() == 0) {
1184      FrameIndex = MI->getOperand(1).getIndex();
1185      return MI->getOperand(0).getReg();
1186    }
1187    break;
1188  case ARM::LDRi12:
1189  case ARM::t2LDRi12:
1190  case ARM::tLDRspi:
1191  case ARM::VLDRD:
1192  case ARM::VLDRS:
1193    if (MI->getOperand(1).isFI() &&
1194        MI->getOperand(2).isImm() &&
1195        MI->getOperand(2).getImm() == 0) {
1196      FrameIndex = MI->getOperand(1).getIndex();
1197      return MI->getOperand(0).getReg();
1198    }
1199    break;
1200  case ARM::VLD1q64:
1201  case ARM::VLD1d64TPseudo:
1202  case ARM::VLD1d64QPseudo:
1203    if (MI->getOperand(1).isFI() &&
1204        MI->getOperand(0).getSubReg() == 0) {
1205      FrameIndex = MI->getOperand(1).getIndex();
1206      return MI->getOperand(0).getReg();
1207    }
1208    break;
1209  case ARM::VLDMQIA:
1210    if (MI->getOperand(1).isFI() &&
1211        MI->getOperand(0).getSubReg() == 0) {
1212      FrameIndex = MI->getOperand(1).getIndex();
1213      return MI->getOperand(0).getReg();
1214    }
1215    break;
1216  }
1217
1218  return 0;
1219}
1220
1221unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
1222                                             int &FrameIndex) const {
1223  const MachineMemOperand *Dummy;
1224  return MI->mayLoad() && hasLoadFromStackSlot(MI, Dummy, FrameIndex);
1225}
1226
1227bool
1228ARMBaseInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
1229  MachineFunction &MF = *MI->getParent()->getParent();
1230  Reloc::Model RM = MF.getTarget().getRelocationModel();
1231
1232  if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD) {
1233    assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() &&
1234           "LOAD_STACK_GUARD currently supported only for MachO.");
1235    expandLoadStackGuard(MI, RM);
1236    MI->getParent()->erase(MI);
1237    return true;
1238  }
1239
1240  // This hook gets to expand COPY instructions before they become
1241  // copyPhysReg() calls.  Look for VMOVS instructions that can legally be
1242  // widened to VMOVD.  We prefer the VMOVD when possible because it may be
1243  // changed into a VORR that can go down the NEON pipeline.
1244  if (!WidenVMOVS || !MI->isCopy() || Subtarget.isCortexA15() ||
1245      Subtarget.isFPOnlySP())
1246    return false;
1247
1248  // Look for a copy between even S-registers.  That is where we keep floats
1249  // when using NEON v2f32 instructions for f32 arithmetic.
1250  unsigned DstRegS = MI->getOperand(0).getReg();
1251  unsigned SrcRegS = MI->getOperand(1).getReg();
1252  if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1253    return false;
1254
1255  const TargetRegisterInfo *TRI = &getRegisterInfo();
1256  unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1257                                              &ARM::DPRRegClass);
1258  unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1259                                              &ARM::DPRRegClass);
1260  if (!DstRegD || !SrcRegD)
1261    return false;
1262
1263  // We want to widen this into a DstRegD = VMOVD SrcRegD copy.  This is only
1264  // legal if the COPY already defines the full DstRegD, and it isn't a
1265  // sub-register insertion.
1266  if (!MI->definesRegister(DstRegD, TRI) || MI->readsRegister(DstRegD, TRI))
1267    return false;
1268
1269  // A dead copy shouldn't show up here, but reject it just in case.
1270  if (MI->getOperand(0).isDead())
1271    return false;
1272
1273  // All clear, widen the COPY.
1274  DEBUG(dbgs() << "widening:    " << *MI);
1275  MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
1276
1277  // Get rid of the old <imp-def> of DstRegD.  Leave it if it defines a Q-reg
1278  // or some other super-register.
1279  int ImpDefIdx = MI->findRegisterDefOperandIdx(DstRegD);
1280  if (ImpDefIdx != -1)
1281    MI->RemoveOperand(ImpDefIdx);
1282
1283  // Change the opcode and operands.
1284  MI->setDesc(get(ARM::VMOVD));
1285  MI->getOperand(0).setReg(DstRegD);
1286  MI->getOperand(1).setReg(SrcRegD);
1287  AddDefaultPred(MIB);
1288
1289  // We are now reading SrcRegD instead of SrcRegS.  This may upset the
1290  // register scavenger and machine verifier, so we need to indicate that we
1291  // are reading an undefined value from SrcRegD, but a proper value from
1292  // SrcRegS.
1293  MI->getOperand(1).setIsUndef();
1294  MIB.addReg(SrcRegS, RegState::Implicit);
1295
1296  // SrcRegD may actually contain an unrelated value in the ssub_1
1297  // sub-register.  Don't kill it.  Only kill the ssub_0 sub-register.
1298  if (MI->getOperand(1).isKill()) {
1299    MI->getOperand(1).setIsKill(false);
1300    MI->addRegisterKilled(SrcRegS, TRI, true);
1301  }
1302
1303  DEBUG(dbgs() << "replaced by: " << *MI);
1304  return true;
1305}
1306
1307/// Create a copy of a const pool value. Update CPI to the new index and return
1308/// the label UID.
1309static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1310  MachineConstantPool *MCP = MF.getConstantPool();
1311  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1312
1313  const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1314  assert(MCPE.isMachineConstantPoolEntry() &&
1315         "Expecting a machine constantpool entry!");
1316  ARMConstantPoolValue *ACPV =
1317    static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1318
1319  unsigned PCLabelId = AFI->createPICLabelUId();
1320  ARMConstantPoolValue *NewCPV = nullptr;
1321
1322  // FIXME: The below assumes PIC relocation model and that the function
1323  // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1324  // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1325  // instructions, so that's probably OK, but is PIC always correct when
1326  // we get here?
1327  if (ACPV->isGlobalValue())
1328    NewCPV = ARMConstantPoolConstant::
1329      Create(cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId,
1330             ARMCP::CPValue, 4);
1331  else if (ACPV->isExtSymbol())
1332    NewCPV = ARMConstantPoolSymbol::
1333      Create(MF.getFunction()->getContext(),
1334             cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1335  else if (ACPV->isBlockAddress())
1336    NewCPV = ARMConstantPoolConstant::
1337      Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1338             ARMCP::CPBlockAddress, 4);
1339  else if (ACPV->isLSDA())
1340    NewCPV = ARMConstantPoolConstant::Create(MF.getFunction(), PCLabelId,
1341                                             ARMCP::CPLSDA, 4);
1342  else if (ACPV->isMachineBasicBlock())
1343    NewCPV = ARMConstantPoolMBB::
1344      Create(MF.getFunction()->getContext(),
1345             cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1346  else
1347    llvm_unreachable("Unexpected ARM constantpool value type!!");
1348  CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
1349  return PCLabelId;
1350}
1351
1352void ARMBaseInstrInfo::
1353reMaterialize(MachineBasicBlock &MBB,
1354              MachineBasicBlock::iterator I,
1355              unsigned DestReg, unsigned SubIdx,
1356              const MachineInstr *Orig,
1357              const TargetRegisterInfo &TRI) const {
1358  unsigned Opcode = Orig->getOpcode();
1359  switch (Opcode) {
1360  default: {
1361    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
1362    MI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
1363    MBB.insert(I, MI);
1364    break;
1365  }
1366  case ARM::tLDRpci_pic:
1367  case ARM::t2LDRpci_pic: {
1368    MachineFunction &MF = *MBB.getParent();
1369    unsigned CPI = Orig->getOperand(1).getIndex();
1370    unsigned PCLabelId = duplicateCPV(MF, CPI);
1371    MachineInstrBuilder MIB = BuildMI(MBB, I, Orig->getDebugLoc(), get(Opcode),
1372                                      DestReg)
1373      .addConstantPoolIndex(CPI).addImm(PCLabelId);
1374    MIB->setMemRefs(Orig->memoperands_begin(), Orig->memoperands_end());
1375    break;
1376  }
1377  }
1378}
1379
1380MachineInstr *
1381ARMBaseInstrInfo::duplicate(MachineInstr *Orig, MachineFunction &MF) const {
1382  MachineInstr *MI = TargetInstrInfo::duplicate(Orig, MF);
1383  switch(Orig->getOpcode()) {
1384  case ARM::tLDRpci_pic:
1385  case ARM::t2LDRpci_pic: {
1386    unsigned CPI = Orig->getOperand(1).getIndex();
1387    unsigned PCLabelId = duplicateCPV(MF, CPI);
1388    Orig->getOperand(1).setIndex(CPI);
1389    Orig->getOperand(2).setImm(PCLabelId);
1390    break;
1391  }
1392  }
1393  return MI;
1394}
1395
1396bool ARMBaseInstrInfo::produceSameValue(const MachineInstr *MI0,
1397                                        const MachineInstr *MI1,
1398                                        const MachineRegisterInfo *MRI) const {
1399  unsigned Opcode = MI0->getOpcode();
1400  if (Opcode == ARM::t2LDRpci ||
1401      Opcode == ARM::t2LDRpci_pic ||
1402      Opcode == ARM::tLDRpci ||
1403      Opcode == ARM::tLDRpci_pic ||
1404      Opcode == ARM::LDRLIT_ga_pcrel ||
1405      Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1406      Opcode == ARM::tLDRLIT_ga_pcrel ||
1407      Opcode == ARM::MOV_ga_pcrel ||
1408      Opcode == ARM::MOV_ga_pcrel_ldr ||
1409      Opcode == ARM::t2MOV_ga_pcrel) {
1410    if (MI1->getOpcode() != Opcode)
1411      return false;
1412    if (MI0->getNumOperands() != MI1->getNumOperands())
1413      return false;
1414
1415    const MachineOperand &MO0 = MI0->getOperand(1);
1416    const MachineOperand &MO1 = MI1->getOperand(1);
1417    if (MO0.getOffset() != MO1.getOffset())
1418      return false;
1419
1420    if (Opcode == ARM::LDRLIT_ga_pcrel ||
1421        Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1422        Opcode == ARM::tLDRLIT_ga_pcrel ||
1423        Opcode == ARM::MOV_ga_pcrel ||
1424        Opcode == ARM::MOV_ga_pcrel_ldr ||
1425        Opcode == ARM::t2MOV_ga_pcrel)
1426      // Ignore the PC labels.
1427      return MO0.getGlobal() == MO1.getGlobal();
1428
1429    const MachineFunction *MF = MI0->getParent()->getParent();
1430    const MachineConstantPool *MCP = MF->getConstantPool();
1431    int CPI0 = MO0.getIndex();
1432    int CPI1 = MO1.getIndex();
1433    const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1434    const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1435    bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1436    bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1437    if (isARMCP0 && isARMCP1) {
1438      ARMConstantPoolValue *ACPV0 =
1439        static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1440      ARMConstantPoolValue *ACPV1 =
1441        static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1442      return ACPV0->hasSameValue(ACPV1);
1443    } else if (!isARMCP0 && !isARMCP1) {
1444      return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1445    }
1446    return false;
1447  } else if (Opcode == ARM::PICLDR) {
1448    if (MI1->getOpcode() != Opcode)
1449      return false;
1450    if (MI0->getNumOperands() != MI1->getNumOperands())
1451      return false;
1452
1453    unsigned Addr0 = MI0->getOperand(1).getReg();
1454    unsigned Addr1 = MI1->getOperand(1).getReg();
1455    if (Addr0 != Addr1) {
1456      if (!MRI ||
1457          !TargetRegisterInfo::isVirtualRegister(Addr0) ||
1458          !TargetRegisterInfo::isVirtualRegister(Addr1))
1459        return false;
1460
1461      // This assumes SSA form.
1462      MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1463      MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1464      // Check if the loaded value, e.g. a constantpool of a global address, are
1465      // the same.
1466      if (!produceSameValue(Def0, Def1, MRI))
1467        return false;
1468    }
1469
1470    for (unsigned i = 3, e = MI0->getNumOperands(); i != e; ++i) {
1471      // %vreg12<def> = PICLDR %vreg11, 0, pred:14, pred:%noreg
1472      const MachineOperand &MO0 = MI0->getOperand(i);
1473      const MachineOperand &MO1 = MI1->getOperand(i);
1474      if (!MO0.isIdenticalTo(MO1))
1475        return false;
1476    }
1477    return true;
1478  }
1479
1480  return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1481}
1482
1483/// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1484/// determine if two loads are loading from the same base address. It should
1485/// only return true if the base pointers are the same and the only differences
1486/// between the two addresses is the offset. It also returns the offsets by
1487/// reference.
1488///
1489/// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1490/// is permanently disabled.
1491bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1492                                               int64_t &Offset1,
1493                                               int64_t &Offset2) const {
1494  // Don't worry about Thumb: just ARM and Thumb2.
1495  if (Subtarget.isThumb1Only()) return false;
1496
1497  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1498    return false;
1499
1500  switch (Load1->getMachineOpcode()) {
1501  default:
1502    return false;
1503  case ARM::LDRi12:
1504  case ARM::LDRBi12:
1505  case ARM::LDRD:
1506  case ARM::LDRH:
1507  case ARM::LDRSB:
1508  case ARM::LDRSH:
1509  case ARM::VLDRD:
1510  case ARM::VLDRS:
1511  case ARM::t2LDRi8:
1512  case ARM::t2LDRBi8:
1513  case ARM::t2LDRDi8:
1514  case ARM::t2LDRSHi8:
1515  case ARM::t2LDRi12:
1516  case ARM::t2LDRBi12:
1517  case ARM::t2LDRSHi12:
1518    break;
1519  }
1520
1521  switch (Load2->getMachineOpcode()) {
1522  default:
1523    return false;
1524  case ARM::LDRi12:
1525  case ARM::LDRBi12:
1526  case ARM::LDRD:
1527  case ARM::LDRH:
1528  case ARM::LDRSB:
1529  case ARM::LDRSH:
1530  case ARM::VLDRD:
1531  case ARM::VLDRS:
1532  case ARM::t2LDRi8:
1533  case ARM::t2LDRBi8:
1534  case ARM::t2LDRSHi8:
1535  case ARM::t2LDRi12:
1536  case ARM::t2LDRBi12:
1537  case ARM::t2LDRSHi12:
1538    break;
1539  }
1540
1541  // Check if base addresses and chain operands match.
1542  if (Load1->getOperand(0) != Load2->getOperand(0) ||
1543      Load1->getOperand(4) != Load2->getOperand(4))
1544    return false;
1545
1546  // Index should be Reg0.
1547  if (Load1->getOperand(3) != Load2->getOperand(3))
1548    return false;
1549
1550  // Determine the offsets.
1551  if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
1552      isa<ConstantSDNode>(Load2->getOperand(1))) {
1553    Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
1554    Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
1555    return true;
1556  }
1557
1558  return false;
1559}
1560
1561/// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
1562/// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
1563/// be scheduled togther. On some targets if two loads are loading from
1564/// addresses in the same cache line, it's better if they are scheduled
1565/// together. This function takes two integers that represent the load offsets
1566/// from the common base address. It returns true if it decides it's desirable
1567/// to schedule the two loads together. "NumLoads" is the number of loads that
1568/// have already been scheduled after Load1.
1569///
1570/// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1571/// is permanently disabled.
1572bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1573                                               int64_t Offset1, int64_t Offset2,
1574                                               unsigned NumLoads) const {
1575  // Don't worry about Thumb: just ARM and Thumb2.
1576  if (Subtarget.isThumb1Only()) return false;
1577
1578  assert(Offset2 > Offset1);
1579
1580  if ((Offset2 - Offset1) / 8 > 64)
1581    return false;
1582
1583  // Check if the machine opcodes are different. If they are different
1584  // then we consider them to not be of the same base address,
1585  // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
1586  // In this case, they are considered to be the same because they are different
1587  // encoding forms of the same basic instruction.
1588  if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
1589      !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
1590         Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
1591        (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
1592         Load2->getMachineOpcode() == ARM::t2LDRBi8)))
1593    return false;  // FIXME: overly conservative?
1594
1595  // Four loads in a row should be sufficient.
1596  if (NumLoads >= 3)
1597    return false;
1598
1599  return true;
1600}
1601
1602bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
1603                                            const MachineBasicBlock *MBB,
1604                                            const MachineFunction &MF) const {
1605  // Debug info is never a scheduling boundary. It's necessary to be explicit
1606  // due to the special treatment of IT instructions below, otherwise a
1607  // dbg_value followed by an IT will result in the IT instruction being
1608  // considered a scheduling hazard, which is wrong. It should be the actual
1609  // instruction preceding the dbg_value instruction(s), just like it is
1610  // when debug info is not present.
1611  if (MI->isDebugValue())
1612    return false;
1613
1614  // Terminators and labels can't be scheduled around.
1615  if (MI->isTerminator() || MI->isPosition())
1616    return true;
1617
1618  // Treat the start of the IT block as a scheduling boundary, but schedule
1619  // t2IT along with all instructions following it.
1620  // FIXME: This is a big hammer. But the alternative is to add all potential
1621  // true and anti dependencies to IT block instructions as implicit operands
1622  // to the t2IT instruction. The added compile time and complexity does not
1623  // seem worth it.
1624  MachineBasicBlock::const_iterator I = MI;
1625  // Make sure to skip any dbg_value instructions
1626  while (++I != MBB->end() && I->isDebugValue())
1627    ;
1628  if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
1629    return true;
1630
1631  // Don't attempt to schedule around any instruction that defines
1632  // a stack-oriented pointer, as it's unlikely to be profitable. This
1633  // saves compile time, because it doesn't require every single
1634  // stack slot reference to depend on the instruction that does the
1635  // modification.
1636  // Calls don't actually change the stack pointer, even if they have imp-defs.
1637  // No ARM calling conventions change the stack pointer. (X86 calling
1638  // conventions sometimes do).
1639  if (!MI->isCall() && MI->definesRegister(ARM::SP))
1640    return true;
1641
1642  return false;
1643}
1644
1645bool ARMBaseInstrInfo::
1646isProfitableToIfCvt(MachineBasicBlock &MBB,
1647                    unsigned NumCycles, unsigned ExtraPredCycles,
1648                    const BranchProbability &Probability) const {
1649  if (!NumCycles)
1650    return false;
1651
1652  // If we are optimizing for size, see if the branch in the predecessor can be
1653  // lowered to cbn?z by the constant island lowering pass, and return false if
1654  // so. This results in a shorter instruction sequence.
1655  const Function *F = MBB.getParent()->getFunction();
1656  if (F->hasFnAttribute(Attribute::OptimizeForSize) ||
1657      F->hasFnAttribute(Attribute::MinSize)) {
1658    MachineBasicBlock *Pred = *MBB.pred_begin();
1659    if (!Pred->empty()) {
1660      MachineInstr *LastMI = &*Pred->rbegin();
1661      if (LastMI->getOpcode() == ARM::t2Bcc) {
1662        MachineBasicBlock::iterator CmpMI = LastMI;
1663        if (CmpMI != Pred->begin()) {
1664          --CmpMI;
1665          if (CmpMI->getOpcode() == ARM::tCMPi8 ||
1666              CmpMI->getOpcode() == ARM::t2CMPri) {
1667            unsigned Reg = CmpMI->getOperand(0).getReg();
1668            unsigned PredReg = 0;
1669            ARMCC::CondCodes P = getInstrPredicate(CmpMI, PredReg);
1670            if (P == ARMCC::AL && CmpMI->getOperand(1).getImm() == 0 &&
1671                isARMLowRegister(Reg))
1672              return false;
1673          }
1674        }
1675      }
1676    }
1677  }
1678
1679  // Attempt to estimate the relative costs of predication versus branching.
1680  unsigned UnpredCost = Probability.getNumerator() * NumCycles;
1681  UnpredCost /= Probability.getDenominator();
1682  UnpredCost += 1; // The branch itself
1683  UnpredCost += Subtarget.getMispredictionPenalty() / 10;
1684
1685  return (NumCycles + ExtraPredCycles) <= UnpredCost;
1686}
1687
1688bool ARMBaseInstrInfo::
1689isProfitableToIfCvt(MachineBasicBlock &TMBB,
1690                    unsigned TCycles, unsigned TExtra,
1691                    MachineBasicBlock &FMBB,
1692                    unsigned FCycles, unsigned FExtra,
1693                    const BranchProbability &Probability) const {
1694  if (!TCycles || !FCycles)
1695    return false;
1696
1697  // Attempt to estimate the relative costs of predication versus branching.
1698  unsigned TUnpredCost = Probability.getNumerator() * TCycles;
1699  TUnpredCost /= Probability.getDenominator();
1700
1701  uint32_t Comp = Probability.getDenominator() - Probability.getNumerator();
1702  unsigned FUnpredCost = Comp * FCycles;
1703  FUnpredCost /= Probability.getDenominator();
1704
1705  unsigned UnpredCost = TUnpredCost + FUnpredCost;
1706  UnpredCost += 1; // The branch itself
1707  UnpredCost += Subtarget.getMispredictionPenalty() / 10;
1708
1709  return (TCycles + FCycles + TExtra + FExtra) <= UnpredCost;
1710}
1711
1712bool
1713ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
1714                                            MachineBasicBlock &FMBB) const {
1715  // Reduce false anti-dependencies to let Swift's out-of-order execution
1716  // engine do its thing.
1717  return Subtarget.isSwift();
1718}
1719
1720/// getInstrPredicate - If instruction is predicated, returns its predicate
1721/// condition, otherwise returns AL. It also returns the condition code
1722/// register by reference.
1723ARMCC::CondCodes
1724llvm::getInstrPredicate(const MachineInstr *MI, unsigned &PredReg) {
1725  int PIdx = MI->findFirstPredOperandIdx();
1726  if (PIdx == -1) {
1727    PredReg = 0;
1728    return ARMCC::AL;
1729  }
1730
1731  PredReg = MI->getOperand(PIdx+1).getReg();
1732  return (ARMCC::CondCodes)MI->getOperand(PIdx).getImm();
1733}
1734
1735
1736unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) {
1737  if (Opc == ARM::B)
1738    return ARM::Bcc;
1739  if (Opc == ARM::tB)
1740    return ARM::tBcc;
1741  if (Opc == ARM::t2B)
1742    return ARM::t2Bcc;
1743
1744  llvm_unreachable("Unknown unconditional branch opcode!");
1745}
1746
1747/// commuteInstruction - Handle commutable instructions.
1748MachineInstr *
1749ARMBaseInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
1750  switch (MI->getOpcode()) {
1751  case ARM::MOVCCr:
1752  case ARM::t2MOVCCr: {
1753    // MOVCC can be commuted by inverting the condition.
1754    unsigned PredReg = 0;
1755    ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
1756    // MOVCC AL can't be inverted. Shouldn't happen.
1757    if (CC == ARMCC::AL || PredReg != ARM::CPSR)
1758      return nullptr;
1759    MI = TargetInstrInfo::commuteInstruction(MI, NewMI);
1760    if (!MI)
1761      return nullptr;
1762    // After swapping the MOVCC operands, also invert the condition.
1763    MI->getOperand(MI->findFirstPredOperandIdx())
1764      .setImm(ARMCC::getOppositeCondition(CC));
1765    return MI;
1766  }
1767  }
1768  return TargetInstrInfo::commuteInstruction(MI, NewMI);
1769}
1770
1771/// Identify instructions that can be folded into a MOVCC instruction, and
1772/// return the defining instruction.
1773static MachineInstr *canFoldIntoMOVCC(unsigned Reg,
1774                                      const MachineRegisterInfo &MRI,
1775                                      const TargetInstrInfo *TII) {
1776  if (!TargetRegisterInfo::isVirtualRegister(Reg))
1777    return nullptr;
1778  if (!MRI.hasOneNonDBGUse(Reg))
1779    return nullptr;
1780  MachineInstr *MI = MRI.getVRegDef(Reg);
1781  if (!MI)
1782    return nullptr;
1783  // MI is folded into the MOVCC by predicating it.
1784  if (!MI->isPredicable())
1785    return nullptr;
1786  // Check if MI has any non-dead defs or physreg uses. This also detects
1787  // predicated instructions which will be reading CPSR.
1788  for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
1789    const MachineOperand &MO = MI->getOperand(i);
1790    // Reject frame index operands, PEI can't handle the predicated pseudos.
1791    if (MO.isFI() || MO.isCPI() || MO.isJTI())
1792      return nullptr;
1793    if (!MO.isReg())
1794      continue;
1795    // MI can't have any tied operands, that would conflict with predication.
1796    if (MO.isTied())
1797      return nullptr;
1798    if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
1799      return nullptr;
1800    if (MO.isDef() && !MO.isDead())
1801      return nullptr;
1802  }
1803  bool DontMoveAcrossStores = true;
1804  if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores))
1805    return nullptr;
1806  return MI;
1807}
1808
1809bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr *MI,
1810                                     SmallVectorImpl<MachineOperand> &Cond,
1811                                     unsigned &TrueOp, unsigned &FalseOp,
1812                                     bool &Optimizable) const {
1813  assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) &&
1814         "Unknown select instruction");
1815  // MOVCC operands:
1816  // 0: Def.
1817  // 1: True use.
1818  // 2: False use.
1819  // 3: Condition code.
1820  // 4: CPSR use.
1821  TrueOp = 1;
1822  FalseOp = 2;
1823  Cond.push_back(MI->getOperand(3));
1824  Cond.push_back(MI->getOperand(4));
1825  // We can always fold a def.
1826  Optimizable = true;
1827  return false;
1828}
1829
1830MachineInstr *
1831ARMBaseInstrInfo::optimizeSelect(MachineInstr *MI,
1832                                 SmallPtrSetImpl<MachineInstr *> &SeenMIs,
1833                                 bool PreferFalse) const {
1834  assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) &&
1835         "Unknown select instruction");
1836  MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
1837  MachineInstr *DefMI = canFoldIntoMOVCC(MI->getOperand(2).getReg(), MRI, this);
1838  bool Invert = !DefMI;
1839  if (!DefMI)
1840    DefMI = canFoldIntoMOVCC(MI->getOperand(1).getReg(), MRI, this);
1841  if (!DefMI)
1842    return nullptr;
1843
1844  // Find new register class to use.
1845  MachineOperand FalseReg = MI->getOperand(Invert ? 2 : 1);
1846  unsigned       DestReg  = MI->getOperand(0).getReg();
1847  const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg());
1848  if (!MRI.constrainRegClass(DestReg, PreviousClass))
1849    return nullptr;
1850
1851  // Create a new predicated version of DefMI.
1852  // Rfalse is the first use.
1853  MachineInstrBuilder NewMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1854                                      DefMI->getDesc(), DestReg);
1855
1856  // Copy all the DefMI operands, excluding its (null) predicate.
1857  const MCInstrDesc &DefDesc = DefMI->getDesc();
1858  for (unsigned i = 1, e = DefDesc.getNumOperands();
1859       i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
1860    NewMI.addOperand(DefMI->getOperand(i));
1861
1862  unsigned CondCode = MI->getOperand(3).getImm();
1863  if (Invert)
1864    NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
1865  else
1866    NewMI.addImm(CondCode);
1867  NewMI.addOperand(MI->getOperand(4));
1868
1869  // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
1870  if (NewMI->hasOptionalDef())
1871    AddDefaultCC(NewMI);
1872
1873  // The output register value when the predicate is false is an implicit
1874  // register operand tied to the first def.
1875  // The tie makes the register allocator ensure the FalseReg is allocated the
1876  // same register as operand 0.
1877  FalseReg.setImplicit();
1878  NewMI.addOperand(FalseReg);
1879  NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
1880
1881  // Update SeenMIs set: register newly created MI and erase removed DefMI.
1882  SeenMIs.insert(NewMI);
1883  SeenMIs.erase(DefMI);
1884
1885  // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
1886  // DefMI would be invalid when tranferred inside the loop.  Checking for a
1887  // loop is expensive, but at least remove kill flags if they are in different
1888  // BBs.
1889  if (DefMI->getParent() != MI->getParent())
1890    NewMI->clearKillInfo();
1891
1892  // The caller will erase MI, but not DefMI.
1893  DefMI->eraseFromParent();
1894  return NewMI;
1895}
1896
1897/// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
1898/// instruction is encoded with an 'S' bit is determined by the optional CPSR
1899/// def operand.
1900///
1901/// This will go away once we can teach tblgen how to set the optional CPSR def
1902/// operand itself.
1903struct AddSubFlagsOpcodePair {
1904  uint16_t PseudoOpc;
1905  uint16_t MachineOpc;
1906};
1907
1908static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
1909  {ARM::ADDSri, ARM::ADDri},
1910  {ARM::ADDSrr, ARM::ADDrr},
1911  {ARM::ADDSrsi, ARM::ADDrsi},
1912  {ARM::ADDSrsr, ARM::ADDrsr},
1913
1914  {ARM::SUBSri, ARM::SUBri},
1915  {ARM::SUBSrr, ARM::SUBrr},
1916  {ARM::SUBSrsi, ARM::SUBrsi},
1917  {ARM::SUBSrsr, ARM::SUBrsr},
1918
1919  {ARM::RSBSri, ARM::RSBri},
1920  {ARM::RSBSrsi, ARM::RSBrsi},
1921  {ARM::RSBSrsr, ARM::RSBrsr},
1922
1923  {ARM::t2ADDSri, ARM::t2ADDri},
1924  {ARM::t2ADDSrr, ARM::t2ADDrr},
1925  {ARM::t2ADDSrs, ARM::t2ADDrs},
1926
1927  {ARM::t2SUBSri, ARM::t2SUBri},
1928  {ARM::t2SUBSrr, ARM::t2SUBrr},
1929  {ARM::t2SUBSrs, ARM::t2SUBrs},
1930
1931  {ARM::t2RSBSri, ARM::t2RSBri},
1932  {ARM::t2RSBSrs, ARM::t2RSBrs},
1933};
1934
1935unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
1936  for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
1937    if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
1938      return AddSubFlagsOpcodeMap[i].MachineOpc;
1939  return 0;
1940}
1941
1942void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
1943                               MachineBasicBlock::iterator &MBBI, DebugLoc dl,
1944                               unsigned DestReg, unsigned BaseReg, int NumBytes,
1945                               ARMCC::CondCodes Pred, unsigned PredReg,
1946                               const ARMBaseInstrInfo &TII, unsigned MIFlags) {
1947  if (NumBytes == 0 && DestReg != BaseReg) {
1948    BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
1949      .addReg(BaseReg, RegState::Kill)
1950      .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
1951      .setMIFlags(MIFlags);
1952    return;
1953  }
1954
1955  bool isSub = NumBytes < 0;
1956  if (isSub) NumBytes = -NumBytes;
1957
1958  while (NumBytes) {
1959    unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
1960    unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
1961    assert(ThisVal && "Didn't extract field correctly");
1962
1963    // We will handle these bits from offset, clear them.
1964    NumBytes &= ~ThisVal;
1965
1966    assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
1967
1968    // Build the new ADD / SUB.
1969    unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
1970    BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
1971      .addReg(BaseReg, RegState::Kill).addImm(ThisVal)
1972      .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
1973      .setMIFlags(MIFlags);
1974    BaseReg = DestReg;
1975  }
1976}
1977
1978static bool isAnySubRegLive(unsigned Reg, const TargetRegisterInfo *TRI,
1979                      MachineInstr *MI) {
1980  for (MCSubRegIterator Subreg(Reg, TRI, /* IncludeSelf */ true);
1981       Subreg.isValid(); ++Subreg)
1982    if (MI->getParent()->computeRegisterLiveness(TRI, *Subreg, MI) !=
1983        MachineBasicBlock::LQR_Dead)
1984      return true;
1985  return false;
1986}
1987bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
1988                                      MachineFunction &MF, MachineInstr *MI,
1989                                      unsigned NumBytes) {
1990  // This optimisation potentially adds lots of load and store
1991  // micro-operations, it's only really a great benefit to code-size.
1992  if (!MF.getFunction()->hasFnAttribute(Attribute::MinSize))
1993    return false;
1994
1995  // If only one register is pushed/popped, LLVM can use an LDR/STR
1996  // instead. We can't modify those so make sure we're dealing with an
1997  // instruction we understand.
1998  bool IsPop = isPopOpcode(MI->getOpcode());
1999  bool IsPush = isPushOpcode(MI->getOpcode());
2000  if (!IsPush && !IsPop)
2001    return false;
2002
2003  bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
2004                      MI->getOpcode() == ARM::VLDMDIA_UPD;
2005  bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
2006                     MI->getOpcode() == ARM::tPOP ||
2007                     MI->getOpcode() == ARM::tPOP_RET;
2008
2009  assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
2010                          MI->getOperand(1).getReg() == ARM::SP)) &&
2011         "trying to fold sp update into non-sp-updating push/pop");
2012
2013  // The VFP push & pop act on D-registers, so we can only fold an adjustment
2014  // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
2015  // if this is violated.
2016  if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
2017    return false;
2018
2019  // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
2020  // pred) so the list starts at 4. Thumb1 starts after the predicate.
2021  int RegListIdx = IsT1PushPop ? 2 : 4;
2022
2023  // Calculate the space we'll need in terms of registers.
2024  unsigned FirstReg = MI->getOperand(RegListIdx).getReg();
2025  unsigned RD0Reg, RegsNeeded;
2026  if (IsVFPPushPop) {
2027    RD0Reg = ARM::D0;
2028    RegsNeeded = NumBytes / 8;
2029  } else {
2030    RD0Reg = ARM::R0;
2031    RegsNeeded = NumBytes / 4;
2032  }
2033
2034  // We're going to have to strip all list operands off before
2035  // re-adding them since the order matters, so save the existing ones
2036  // for later.
2037  SmallVector<MachineOperand, 4> RegList;
2038  for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
2039    RegList.push_back(MI->getOperand(i));
2040
2041  const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
2042  const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
2043
2044  // Now try to find enough space in the reglist to allocate NumBytes.
2045  for (unsigned CurReg = FirstReg - 1; CurReg >= RD0Reg && RegsNeeded;
2046       --CurReg) {
2047    if (!IsPop) {
2048      // Pushing any register is completely harmless, mark the
2049      // register involved as undef since we don't care about it in
2050      // the slightest.
2051      RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
2052                                                  false, false, true));
2053      --RegsNeeded;
2054      continue;
2055    }
2056
2057    // However, we can only pop an extra register if it's not live. For
2058    // registers live within the function we might clobber a return value
2059    // register; the other way a register can be live here is if it's
2060    // callee-saved.
2061    // TODO: Currently, computeRegisterLiveness() does not report "live" if a
2062    // sub reg is live. When computeRegisterLiveness() works for sub reg, it
2063    // can replace isAnySubRegLive().
2064    if (isCalleeSavedRegister(CurReg, CSRegs) ||
2065        isAnySubRegLive(CurReg, TRI, MI)) {
2066      // VFP pops don't allow holes in the register list, so any skip is fatal
2067      // for our transformation. GPR pops do, so we should just keep looking.
2068      if (IsVFPPushPop)
2069        return false;
2070      else
2071        continue;
2072    }
2073
2074    // Mark the unimportant registers as <def,dead> in the POP.
2075    RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false,
2076                                                true));
2077    --RegsNeeded;
2078  }
2079
2080  if (RegsNeeded > 0)
2081    return false;
2082
2083  // Finally we know we can profitably perform the optimisation so go
2084  // ahead: strip all existing registers off and add them back again
2085  // in the right order.
2086  for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
2087    MI->RemoveOperand(i);
2088
2089  // Add the complete list back in.
2090  MachineInstrBuilder MIB(MF, &*MI);
2091  for (int i = RegList.size() - 1; i >= 0; --i)
2092    MIB.addOperand(RegList[i]);
2093
2094  return true;
2095}
2096
2097bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
2098                                unsigned FrameReg, int &Offset,
2099                                const ARMBaseInstrInfo &TII) {
2100  unsigned Opcode = MI.getOpcode();
2101  const MCInstrDesc &Desc = MI.getDesc();
2102  unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
2103  bool isSub = false;
2104
2105  // Memory operands in inline assembly always use AddrMode2.
2106  if (Opcode == ARM::INLINEASM)
2107    AddrMode = ARMII::AddrMode2;
2108
2109  if (Opcode == ARM::ADDri) {
2110    Offset += MI.getOperand(FrameRegIdx+1).getImm();
2111    if (Offset == 0) {
2112      // Turn it into a move.
2113      MI.setDesc(TII.get(ARM::MOVr));
2114      MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2115      MI.RemoveOperand(FrameRegIdx+1);
2116      Offset = 0;
2117      return true;
2118    } else if (Offset < 0) {
2119      Offset = -Offset;
2120      isSub = true;
2121      MI.setDesc(TII.get(ARM::SUBri));
2122    }
2123
2124    // Common case: small offset, fits into instruction.
2125    if (ARM_AM::getSOImmVal(Offset) != -1) {
2126      // Replace the FrameIndex with sp / fp
2127      MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2128      MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
2129      Offset = 0;
2130      return true;
2131    }
2132
2133    // Otherwise, pull as much of the immedidate into this ADDri/SUBri
2134    // as possible.
2135    unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
2136    unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
2137
2138    // We will handle these bits from offset, clear them.
2139    Offset &= ~ThisImmVal;
2140
2141    // Get the properly encoded SOImmVal field.
2142    assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
2143           "Bit extraction didn't work?");
2144    MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
2145 } else {
2146    unsigned ImmIdx = 0;
2147    int InstrOffs = 0;
2148    unsigned NumBits = 0;
2149    unsigned Scale = 1;
2150    switch (AddrMode) {
2151    case ARMII::AddrMode_i12: {
2152      ImmIdx = FrameRegIdx + 1;
2153      InstrOffs = MI.getOperand(ImmIdx).getImm();
2154      NumBits = 12;
2155      break;
2156    }
2157    case ARMII::AddrMode2: {
2158      ImmIdx = FrameRegIdx+2;
2159      InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
2160      if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2161        InstrOffs *= -1;
2162      NumBits = 12;
2163      break;
2164    }
2165    case ARMII::AddrMode3: {
2166      ImmIdx = FrameRegIdx+2;
2167      InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
2168      if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2169        InstrOffs *= -1;
2170      NumBits = 8;
2171      break;
2172    }
2173    case ARMII::AddrMode4:
2174    case ARMII::AddrMode6:
2175      // Can't fold any offset even if it's zero.
2176      return false;
2177    case ARMII::AddrMode5: {
2178      ImmIdx = FrameRegIdx+1;
2179      InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2180      if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2181        InstrOffs *= -1;
2182      NumBits = 8;
2183      Scale = 4;
2184      break;
2185    }
2186    default:
2187      llvm_unreachable("Unsupported addressing mode!");
2188    }
2189
2190    Offset += InstrOffs * Scale;
2191    assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
2192    if (Offset < 0) {
2193      Offset = -Offset;
2194      isSub = true;
2195    }
2196
2197    // Attempt to fold address comp. if opcode has offset bits
2198    if (NumBits > 0) {
2199      // Common case: small offset, fits into instruction.
2200      MachineOperand &ImmOp = MI.getOperand(ImmIdx);
2201      int ImmedOffset = Offset / Scale;
2202      unsigned Mask = (1 << NumBits) - 1;
2203      if ((unsigned)Offset <= Mask * Scale) {
2204        // Replace the FrameIndex with sp
2205        MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2206        // FIXME: When addrmode2 goes away, this will simplify (like the
2207        // T2 version), as the LDR.i12 versions don't need the encoding
2208        // tricks for the offset value.
2209        if (isSub) {
2210          if (AddrMode == ARMII::AddrMode_i12)
2211            ImmedOffset = -ImmedOffset;
2212          else
2213            ImmedOffset |= 1 << NumBits;
2214        }
2215        ImmOp.ChangeToImmediate(ImmedOffset);
2216        Offset = 0;
2217        return true;
2218      }
2219
2220      // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
2221      ImmedOffset = ImmedOffset & Mask;
2222      if (isSub) {
2223        if (AddrMode == ARMII::AddrMode_i12)
2224          ImmedOffset = -ImmedOffset;
2225        else
2226          ImmedOffset |= 1 << NumBits;
2227      }
2228      ImmOp.ChangeToImmediate(ImmedOffset);
2229      Offset &= ~(Mask*Scale);
2230    }
2231  }
2232
2233  Offset = (isSub) ? -Offset : Offset;
2234  return Offset == 0;
2235}
2236
2237/// analyzeCompare - For a comparison instruction, return the source registers
2238/// in SrcReg and SrcReg2 if having two register operands, and the value it
2239/// compares against in CmpValue. Return true if the comparison instruction
2240/// can be analyzed.
2241bool ARMBaseInstrInfo::
2242analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2,
2243               int &CmpMask, int &CmpValue) const {
2244  switch (MI->getOpcode()) {
2245  default: break;
2246  case ARM::CMPri:
2247  case ARM::t2CMPri:
2248    SrcReg = MI->getOperand(0).getReg();
2249    SrcReg2 = 0;
2250    CmpMask = ~0;
2251    CmpValue = MI->getOperand(1).getImm();
2252    return true;
2253  case ARM::CMPrr:
2254  case ARM::t2CMPrr:
2255    SrcReg = MI->getOperand(0).getReg();
2256    SrcReg2 = MI->getOperand(1).getReg();
2257    CmpMask = ~0;
2258    CmpValue = 0;
2259    return true;
2260  case ARM::TSTri:
2261  case ARM::t2TSTri:
2262    SrcReg = MI->getOperand(0).getReg();
2263    SrcReg2 = 0;
2264    CmpMask = MI->getOperand(1).getImm();
2265    CmpValue = 0;
2266    return true;
2267  }
2268
2269  return false;
2270}
2271
2272/// isSuitableForMask - Identify a suitable 'and' instruction that
2273/// operates on the given source register and applies the same mask
2274/// as a 'tst' instruction. Provide a limited look-through for copies.
2275/// When successful, MI will hold the found instruction.
2276static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
2277                              int CmpMask, bool CommonUse) {
2278  switch (MI->getOpcode()) {
2279    case ARM::ANDri:
2280    case ARM::t2ANDri:
2281      if (CmpMask != MI->getOperand(2).getImm())
2282        return false;
2283      if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
2284        return true;
2285      break;
2286  }
2287
2288  return false;
2289}
2290
2291/// getSwappedCondition - assume the flags are set by MI(a,b), return
2292/// the condition code if we modify the instructions such that flags are
2293/// set by MI(b,a).
2294inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) {
2295  switch (CC) {
2296  default: return ARMCC::AL;
2297  case ARMCC::EQ: return ARMCC::EQ;
2298  case ARMCC::NE: return ARMCC::NE;
2299  case ARMCC::HS: return ARMCC::LS;
2300  case ARMCC::LO: return ARMCC::HI;
2301  case ARMCC::HI: return ARMCC::LO;
2302  case ARMCC::LS: return ARMCC::HS;
2303  case ARMCC::GE: return ARMCC::LE;
2304  case ARMCC::LT: return ARMCC::GT;
2305  case ARMCC::GT: return ARMCC::LT;
2306  case ARMCC::LE: return ARMCC::GE;
2307  }
2308}
2309
2310/// isRedundantFlagInstr - check whether the first instruction, whose only
2311/// purpose is to update flags, can be made redundant.
2312/// CMPrr can be made redundant by SUBrr if the operands are the same.
2313/// CMPri can be made redundant by SUBri if the operands are the same.
2314/// This function can be extended later on.
2315inline static bool isRedundantFlagInstr(MachineInstr *CmpI, unsigned SrcReg,
2316                                        unsigned SrcReg2, int ImmValue,
2317                                        MachineInstr *OI) {
2318  if ((CmpI->getOpcode() == ARM::CMPrr ||
2319       CmpI->getOpcode() == ARM::t2CMPrr) &&
2320      (OI->getOpcode() == ARM::SUBrr ||
2321       OI->getOpcode() == ARM::t2SUBrr) &&
2322      ((OI->getOperand(1).getReg() == SrcReg &&
2323        OI->getOperand(2).getReg() == SrcReg2) ||
2324       (OI->getOperand(1).getReg() == SrcReg2 &&
2325        OI->getOperand(2).getReg() == SrcReg)))
2326    return true;
2327
2328  if ((CmpI->getOpcode() == ARM::CMPri ||
2329       CmpI->getOpcode() == ARM::t2CMPri) &&
2330      (OI->getOpcode() == ARM::SUBri ||
2331       OI->getOpcode() == ARM::t2SUBri) &&
2332      OI->getOperand(1).getReg() == SrcReg &&
2333      OI->getOperand(2).getImm() == ImmValue)
2334    return true;
2335  return false;
2336}
2337
2338/// optimizeCompareInstr - Convert the instruction supplying the argument to the
2339/// comparison into one that sets the zero bit in the flags register;
2340/// Remove a redundant Compare instruction if an earlier instruction can set the
2341/// flags in the same way as Compare.
2342/// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
2343/// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
2344/// condition code of instructions which use the flags.
2345bool ARMBaseInstrInfo::
2346optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
2347                     int CmpMask, int CmpValue,
2348                     const MachineRegisterInfo *MRI) const {
2349  // Get the unique definition of SrcReg.
2350  MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
2351  if (!MI) return false;
2352
2353  // Masked compares sometimes use the same register as the corresponding 'and'.
2354  if (CmpMask != ~0) {
2355    if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(MI)) {
2356      MI = nullptr;
2357      for (MachineRegisterInfo::use_instr_iterator
2358           UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end();
2359           UI != UE; ++UI) {
2360        if (UI->getParent() != CmpInstr->getParent()) continue;
2361        MachineInstr *PotentialAND = &*UI;
2362        if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
2363            isPredicated(PotentialAND))
2364          continue;
2365        MI = PotentialAND;
2366        break;
2367      }
2368      if (!MI) return false;
2369    }
2370  }
2371
2372  // Get ready to iterate backward from CmpInstr.
2373  MachineBasicBlock::iterator I = CmpInstr, E = MI,
2374                              B = CmpInstr->getParent()->begin();
2375
2376  // Early exit if CmpInstr is at the beginning of the BB.
2377  if (I == B) return false;
2378
2379  // There are two possible candidates which can be changed to set CPSR:
2380  // One is MI, the other is a SUB instruction.
2381  // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
2382  // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
2383  MachineInstr *Sub = nullptr;
2384  if (SrcReg2 != 0)
2385    // MI is not a candidate for CMPrr.
2386    MI = nullptr;
2387  else if (MI->getParent() != CmpInstr->getParent() || CmpValue != 0) {
2388    // Conservatively refuse to convert an instruction which isn't in the same
2389    // BB as the comparison.
2390    // For CMPri w/ CmpValue != 0, a Sub may still be a candidate.
2391    // Thus we cannot return here.
2392    if (CmpInstr->getOpcode() == ARM::CMPri ||
2393       CmpInstr->getOpcode() == ARM::t2CMPri)
2394      MI = nullptr;
2395    else
2396      return false;
2397  }
2398
2399  // Check that CPSR isn't set between the comparison instruction and the one we
2400  // want to change. At the same time, search for Sub.
2401  const TargetRegisterInfo *TRI = &getRegisterInfo();
2402  --I;
2403  for (; I != E; --I) {
2404    const MachineInstr &Instr = *I;
2405
2406    if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
2407        Instr.readsRegister(ARM::CPSR, TRI))
2408      // This instruction modifies or uses CPSR after the one we want to
2409      // change. We can't do this transformation.
2410      return false;
2411
2412    // Check whether CmpInstr can be made redundant by the current instruction.
2413    if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, &*I)) {
2414      Sub = &*I;
2415      break;
2416    }
2417
2418    if (I == B)
2419      // The 'and' is below the comparison instruction.
2420      return false;
2421  }
2422
2423  // Return false if no candidates exist.
2424  if (!MI && !Sub)
2425    return false;
2426
2427  // The single candidate is called MI.
2428  if (!MI) MI = Sub;
2429
2430  // We can't use a predicated instruction - it doesn't always write the flags.
2431  if (isPredicated(MI))
2432    return false;
2433
2434  switch (MI->getOpcode()) {
2435  default: break;
2436  case ARM::RSBrr:
2437  case ARM::RSBri:
2438  case ARM::RSCrr:
2439  case ARM::RSCri:
2440  case ARM::ADDrr:
2441  case ARM::ADDri:
2442  case ARM::ADCrr:
2443  case ARM::ADCri:
2444  case ARM::SUBrr:
2445  case ARM::SUBri:
2446  case ARM::SBCrr:
2447  case ARM::SBCri:
2448  case ARM::t2RSBri:
2449  case ARM::t2ADDrr:
2450  case ARM::t2ADDri:
2451  case ARM::t2ADCrr:
2452  case ARM::t2ADCri:
2453  case ARM::t2SUBrr:
2454  case ARM::t2SUBri:
2455  case ARM::t2SBCrr:
2456  case ARM::t2SBCri:
2457  case ARM::ANDrr:
2458  case ARM::ANDri:
2459  case ARM::t2ANDrr:
2460  case ARM::t2ANDri:
2461  case ARM::ORRrr:
2462  case ARM::ORRri:
2463  case ARM::t2ORRrr:
2464  case ARM::t2ORRri:
2465  case ARM::EORrr:
2466  case ARM::EORri:
2467  case ARM::t2EORrr:
2468  case ARM::t2EORri: {
2469    // Scan forward for the use of CPSR
2470    // When checking against MI: if it's a conditional code that requires
2471    // checking of the V bit or C bit, then this is not safe to do.
2472    // It is safe to remove CmpInstr if CPSR is redefined or killed.
2473    // If we are done with the basic block, we need to check whether CPSR is
2474    // live-out.
2475    SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
2476        OperandsToUpdate;
2477    bool isSafe = false;
2478    I = CmpInstr;
2479    E = CmpInstr->getParent()->end();
2480    while (!isSafe && ++I != E) {
2481      const MachineInstr &Instr = *I;
2482      for (unsigned IO = 0, EO = Instr.getNumOperands();
2483           !isSafe && IO != EO; ++IO) {
2484        const MachineOperand &MO = Instr.getOperand(IO);
2485        if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
2486          isSafe = true;
2487          break;
2488        }
2489        if (!MO.isReg() || MO.getReg() != ARM::CPSR)
2490          continue;
2491        if (MO.isDef()) {
2492          isSafe = true;
2493          break;
2494        }
2495        // Condition code is after the operand before CPSR except for VSELs.
2496        ARMCC::CondCodes CC;
2497        bool IsInstrVSel = true;
2498        switch (Instr.getOpcode()) {
2499        default:
2500          IsInstrVSel = false;
2501          CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm();
2502          break;
2503        case ARM::VSELEQD:
2504        case ARM::VSELEQS:
2505          CC = ARMCC::EQ;
2506          break;
2507        case ARM::VSELGTD:
2508        case ARM::VSELGTS:
2509          CC = ARMCC::GT;
2510          break;
2511        case ARM::VSELGED:
2512        case ARM::VSELGES:
2513          CC = ARMCC::GE;
2514          break;
2515        case ARM::VSELVSS:
2516        case ARM::VSELVSD:
2517          CC = ARMCC::VS;
2518          break;
2519        }
2520
2521        if (Sub) {
2522          ARMCC::CondCodes NewCC = getSwappedCondition(CC);
2523          if (NewCC == ARMCC::AL)
2524            return false;
2525          // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
2526          // on CMP needs to be updated to be based on SUB.
2527          // Push the condition code operands to OperandsToUpdate.
2528          // If it is safe to remove CmpInstr, the condition code of these
2529          // operands will be modified.
2530          if (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
2531              Sub->getOperand(2).getReg() == SrcReg) {
2532            // VSel doesn't support condition code update.
2533            if (IsInstrVSel)
2534              return false;
2535            OperandsToUpdate.push_back(
2536                std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
2537          }
2538        } else {
2539          // No Sub, so this is x = <op> y, z; cmp x, 0.
2540          switch (CC) {
2541          case ARMCC::EQ: // Z
2542          case ARMCC::NE: // Z
2543          case ARMCC::MI: // N
2544          case ARMCC::PL: // N
2545          case ARMCC::AL: // none
2546            // CPSR can be used multiple times, we should continue.
2547            break;
2548          case ARMCC::HS: // C
2549          case ARMCC::LO: // C
2550          case ARMCC::VS: // V
2551          case ARMCC::VC: // V
2552          case ARMCC::HI: // C Z
2553          case ARMCC::LS: // C Z
2554          case ARMCC::GE: // N V
2555          case ARMCC::LT: // N V
2556          case ARMCC::GT: // Z N V
2557          case ARMCC::LE: // Z N V
2558            // The instruction uses the V bit or C bit which is not safe.
2559            return false;
2560          }
2561        }
2562      }
2563    }
2564
2565    // If CPSR is not killed nor re-defined, we should check whether it is
2566    // live-out. If it is live-out, do not optimize.
2567    if (!isSafe) {
2568      MachineBasicBlock *MBB = CmpInstr->getParent();
2569      for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
2570               SE = MBB->succ_end(); SI != SE; ++SI)
2571        if ((*SI)->isLiveIn(ARM::CPSR))
2572          return false;
2573    }
2574
2575    // Toggle the optional operand to CPSR.
2576    MI->getOperand(5).setReg(ARM::CPSR);
2577    MI->getOperand(5).setIsDef(true);
2578    assert(!isPredicated(MI) && "Can't use flags from predicated instruction");
2579    CmpInstr->eraseFromParent();
2580
2581    // Modify the condition code of operands in OperandsToUpdate.
2582    // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2583    // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2584    for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
2585      OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
2586    return true;
2587  }
2588  }
2589
2590  return false;
2591}
2592
2593bool ARMBaseInstrInfo::FoldImmediate(MachineInstr *UseMI,
2594                                     MachineInstr *DefMI, unsigned Reg,
2595                                     MachineRegisterInfo *MRI) const {
2596  // Fold large immediates into add, sub, or, xor.
2597  unsigned DefOpc = DefMI->getOpcode();
2598  if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
2599    return false;
2600  if (!DefMI->getOperand(1).isImm())
2601    // Could be t2MOVi32imm <ga:xx>
2602    return false;
2603
2604  if (!MRI->hasOneNonDBGUse(Reg))
2605    return false;
2606
2607  const MCInstrDesc &DefMCID = DefMI->getDesc();
2608  if (DefMCID.hasOptionalDef()) {
2609    unsigned NumOps = DefMCID.getNumOperands();
2610    const MachineOperand &MO = DefMI->getOperand(NumOps-1);
2611    if (MO.getReg() == ARM::CPSR && !MO.isDead())
2612      // If DefMI defines CPSR and it is not dead, it's obviously not safe
2613      // to delete DefMI.
2614      return false;
2615  }
2616
2617  const MCInstrDesc &UseMCID = UseMI->getDesc();
2618  if (UseMCID.hasOptionalDef()) {
2619    unsigned NumOps = UseMCID.getNumOperands();
2620    if (UseMI->getOperand(NumOps-1).getReg() == ARM::CPSR)
2621      // If the instruction sets the flag, do not attempt this optimization
2622      // since it may change the semantics of the code.
2623      return false;
2624  }
2625
2626  unsigned UseOpc = UseMI->getOpcode();
2627  unsigned NewUseOpc = 0;
2628  uint32_t ImmVal = (uint32_t)DefMI->getOperand(1).getImm();
2629  uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
2630  bool Commute = false;
2631  switch (UseOpc) {
2632  default: return false;
2633  case ARM::SUBrr:
2634  case ARM::ADDrr:
2635  case ARM::ORRrr:
2636  case ARM::EORrr:
2637  case ARM::t2SUBrr:
2638  case ARM::t2ADDrr:
2639  case ARM::t2ORRrr:
2640  case ARM::t2EORrr: {
2641    Commute = UseMI->getOperand(2).getReg() != Reg;
2642    switch (UseOpc) {
2643    default: break;
2644    case ARM::SUBrr: {
2645      if (Commute)
2646        return false;
2647      ImmVal = -ImmVal;
2648      NewUseOpc = ARM::SUBri;
2649      // Fallthrough
2650    }
2651    case ARM::ADDrr:
2652    case ARM::ORRrr:
2653    case ARM::EORrr: {
2654      if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
2655        return false;
2656      SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
2657      SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
2658      switch (UseOpc) {
2659      default: break;
2660      case ARM::ADDrr: NewUseOpc = ARM::ADDri; break;
2661      case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
2662      case ARM::EORrr: NewUseOpc = ARM::EORri; break;
2663      }
2664      break;
2665    }
2666    case ARM::t2SUBrr: {
2667      if (Commute)
2668        return false;
2669      ImmVal = -ImmVal;
2670      NewUseOpc = ARM::t2SUBri;
2671      // Fallthrough
2672    }
2673    case ARM::t2ADDrr:
2674    case ARM::t2ORRrr:
2675    case ARM::t2EORrr: {
2676      if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
2677        return false;
2678      SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
2679      SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
2680      switch (UseOpc) {
2681      default: break;
2682      case ARM::t2ADDrr: NewUseOpc = ARM::t2ADDri; break;
2683      case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
2684      case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
2685      }
2686      break;
2687    }
2688    }
2689  }
2690  }
2691
2692  unsigned OpIdx = Commute ? 2 : 1;
2693  unsigned Reg1 = UseMI->getOperand(OpIdx).getReg();
2694  bool isKill = UseMI->getOperand(OpIdx).isKill();
2695  unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg));
2696  AddDefaultCC(AddDefaultPred(BuildMI(*UseMI->getParent(),
2697                                      UseMI, UseMI->getDebugLoc(),
2698                                      get(NewUseOpc), NewReg)
2699                              .addReg(Reg1, getKillRegState(isKill))
2700                              .addImm(SOImmValV1)));
2701  UseMI->setDesc(get(NewUseOpc));
2702  UseMI->getOperand(1).setReg(NewReg);
2703  UseMI->getOperand(1).setIsKill();
2704  UseMI->getOperand(2).ChangeToImmediate(SOImmValV2);
2705  DefMI->eraseFromParent();
2706  return true;
2707}
2708
2709static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
2710                                        const MachineInstr *MI) {
2711  switch (MI->getOpcode()) {
2712  default: {
2713    const MCInstrDesc &Desc = MI->getDesc();
2714    int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
2715    assert(UOps >= 0 && "bad # UOps");
2716    return UOps;
2717  }
2718
2719  case ARM::LDRrs:
2720  case ARM::LDRBrs:
2721  case ARM::STRrs:
2722  case ARM::STRBrs: {
2723    unsigned ShOpVal = MI->getOperand(3).getImm();
2724    bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
2725    unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2726    if (!isSub &&
2727        (ShImm == 0 ||
2728         ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
2729          ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
2730      return 1;
2731    return 2;
2732  }
2733
2734  case ARM::LDRH:
2735  case ARM::STRH: {
2736    if (!MI->getOperand(2).getReg())
2737      return 1;
2738
2739    unsigned ShOpVal = MI->getOperand(3).getImm();
2740    bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
2741    unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2742    if (!isSub &&
2743        (ShImm == 0 ||
2744         ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
2745          ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
2746      return 1;
2747    return 2;
2748  }
2749
2750  case ARM::LDRSB:
2751  case ARM::LDRSH:
2752    return (ARM_AM::getAM3Op(MI->getOperand(3).getImm()) == ARM_AM::sub) ? 3:2;
2753
2754  case ARM::LDRSB_POST:
2755  case ARM::LDRSH_POST: {
2756    unsigned Rt = MI->getOperand(0).getReg();
2757    unsigned Rm = MI->getOperand(3).getReg();
2758    return (Rt == Rm) ? 4 : 3;
2759  }
2760
2761  case ARM::LDR_PRE_REG:
2762  case ARM::LDRB_PRE_REG: {
2763    unsigned Rt = MI->getOperand(0).getReg();
2764    unsigned Rm = MI->getOperand(3).getReg();
2765    if (Rt == Rm)
2766      return 3;
2767    unsigned ShOpVal = MI->getOperand(4).getImm();
2768    bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
2769    unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2770    if (!isSub &&
2771        (ShImm == 0 ||
2772         ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
2773          ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
2774      return 2;
2775    return 3;
2776  }
2777
2778  case ARM::STR_PRE_REG:
2779  case ARM::STRB_PRE_REG: {
2780    unsigned ShOpVal = MI->getOperand(4).getImm();
2781    bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
2782    unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2783    if (!isSub &&
2784        (ShImm == 0 ||
2785         ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
2786          ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
2787      return 2;
2788    return 3;
2789  }
2790
2791  case ARM::LDRH_PRE:
2792  case ARM::STRH_PRE: {
2793    unsigned Rt = MI->getOperand(0).getReg();
2794    unsigned Rm = MI->getOperand(3).getReg();
2795    if (!Rm)
2796      return 2;
2797    if (Rt == Rm)
2798      return 3;
2799    return (ARM_AM::getAM3Op(MI->getOperand(4).getImm()) == ARM_AM::sub)
2800      ? 3 : 2;
2801  }
2802
2803  case ARM::LDR_POST_REG:
2804  case ARM::LDRB_POST_REG:
2805  case ARM::LDRH_POST: {
2806    unsigned Rt = MI->getOperand(0).getReg();
2807    unsigned Rm = MI->getOperand(3).getReg();
2808    return (Rt == Rm) ? 3 : 2;
2809  }
2810
2811  case ARM::LDR_PRE_IMM:
2812  case ARM::LDRB_PRE_IMM:
2813  case ARM::LDR_POST_IMM:
2814  case ARM::LDRB_POST_IMM:
2815  case ARM::STRB_POST_IMM:
2816  case ARM::STRB_POST_REG:
2817  case ARM::STRB_PRE_IMM:
2818  case ARM::STRH_POST:
2819  case ARM::STR_POST_IMM:
2820  case ARM::STR_POST_REG:
2821  case ARM::STR_PRE_IMM:
2822    return 2;
2823
2824  case ARM::LDRSB_PRE:
2825  case ARM::LDRSH_PRE: {
2826    unsigned Rm = MI->getOperand(3).getReg();
2827    if (Rm == 0)
2828      return 3;
2829    unsigned Rt = MI->getOperand(0).getReg();
2830    if (Rt == Rm)
2831      return 4;
2832    unsigned ShOpVal = MI->getOperand(4).getImm();
2833    bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
2834    unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2835    if (!isSub &&
2836        (ShImm == 0 ||
2837         ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
2838          ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
2839      return 3;
2840    return 4;
2841  }
2842
2843  case ARM::LDRD: {
2844    unsigned Rt = MI->getOperand(0).getReg();
2845    unsigned Rn = MI->getOperand(2).getReg();
2846    unsigned Rm = MI->getOperand(3).getReg();
2847    if (Rm)
2848      return (ARM_AM::getAM3Op(MI->getOperand(4).getImm()) == ARM_AM::sub) ?4:3;
2849    return (Rt == Rn) ? 3 : 2;
2850  }
2851
2852  case ARM::STRD: {
2853    unsigned Rm = MI->getOperand(3).getReg();
2854    if (Rm)
2855      return (ARM_AM::getAM3Op(MI->getOperand(4).getImm()) == ARM_AM::sub) ?4:3;
2856    return 2;
2857  }
2858
2859  case ARM::LDRD_POST:
2860  case ARM::t2LDRD_POST:
2861    return 3;
2862
2863  case ARM::STRD_POST:
2864  case ARM::t2STRD_POST:
2865    return 4;
2866
2867  case ARM::LDRD_PRE: {
2868    unsigned Rt = MI->getOperand(0).getReg();
2869    unsigned Rn = MI->getOperand(3).getReg();
2870    unsigned Rm = MI->getOperand(4).getReg();
2871    if (Rm)
2872      return (ARM_AM::getAM3Op(MI->getOperand(5).getImm()) == ARM_AM::sub) ?5:4;
2873    return (Rt == Rn) ? 4 : 3;
2874  }
2875
2876  case ARM::t2LDRD_PRE: {
2877    unsigned Rt = MI->getOperand(0).getReg();
2878    unsigned Rn = MI->getOperand(3).getReg();
2879    return (Rt == Rn) ? 4 : 3;
2880  }
2881
2882  case ARM::STRD_PRE: {
2883    unsigned Rm = MI->getOperand(4).getReg();
2884    if (Rm)
2885      return (ARM_AM::getAM3Op(MI->getOperand(5).getImm()) == ARM_AM::sub) ?5:4;
2886    return 3;
2887  }
2888
2889  case ARM::t2STRD_PRE:
2890    return 3;
2891
2892  case ARM::t2LDR_POST:
2893  case ARM::t2LDRB_POST:
2894  case ARM::t2LDRB_PRE:
2895  case ARM::t2LDRSBi12:
2896  case ARM::t2LDRSBi8:
2897  case ARM::t2LDRSBpci:
2898  case ARM::t2LDRSBs:
2899  case ARM::t2LDRH_POST:
2900  case ARM::t2LDRH_PRE:
2901  case ARM::t2LDRSBT:
2902  case ARM::t2LDRSB_POST:
2903  case ARM::t2LDRSB_PRE:
2904  case ARM::t2LDRSH_POST:
2905  case ARM::t2LDRSH_PRE:
2906  case ARM::t2LDRSHi12:
2907  case ARM::t2LDRSHi8:
2908  case ARM::t2LDRSHpci:
2909  case ARM::t2LDRSHs:
2910    return 2;
2911
2912  case ARM::t2LDRDi8: {
2913    unsigned Rt = MI->getOperand(0).getReg();
2914    unsigned Rn = MI->getOperand(2).getReg();
2915    return (Rt == Rn) ? 3 : 2;
2916  }
2917
2918  case ARM::t2STRB_POST:
2919  case ARM::t2STRB_PRE:
2920  case ARM::t2STRBs:
2921  case ARM::t2STRDi8:
2922  case ARM::t2STRH_POST:
2923  case ARM::t2STRH_PRE:
2924  case ARM::t2STRHs:
2925  case ARM::t2STR_POST:
2926  case ARM::t2STR_PRE:
2927  case ARM::t2STRs:
2928    return 2;
2929  }
2930}
2931
2932// Return the number of 32-bit words loaded by LDM or stored by STM. If this
2933// can't be easily determined return 0 (missing MachineMemOperand).
2934//
2935// FIXME: The current MachineInstr design does not support relying on machine
2936// mem operands to determine the width of a memory access. Instead, we expect
2937// the target to provide this information based on the instruction opcode and
2938// operands. However, using MachineMemOperand is the best solution now for
2939// two reasons:
2940//
2941// 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
2942// operands. This is much more dangerous than using the MachineMemOperand
2943// sizes because CodeGen passes can insert/remove optional machine operands. In
2944// fact, it's totally incorrect for preRA passes and appears to be wrong for
2945// postRA passes as well.
2946//
2947// 2) getNumLDMAddresses is only used by the scheduling machine model and any
2948// machine model that calls this should handle the unknown (zero size) case.
2949//
2950// Long term, we should require a target hook that verifies MachineMemOperand
2951// sizes during MC lowering. That target hook should be local to MC lowering
2952// because we can't ensure that it is aware of other MI forms. Doing this will
2953// ensure that MachineMemOperands are correctly propagated through all passes.
2954unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr *MI) const {
2955  unsigned Size = 0;
2956  for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
2957         E = MI->memoperands_end(); I != E; ++I) {
2958    Size += (*I)->getSize();
2959  }
2960  return Size / 4;
2961}
2962
2963unsigned
2964ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
2965                                 const MachineInstr *MI) const {
2966  if (!ItinData || ItinData->isEmpty())
2967    return 1;
2968
2969  const MCInstrDesc &Desc = MI->getDesc();
2970  unsigned Class = Desc.getSchedClass();
2971  int ItinUOps = ItinData->getNumMicroOps(Class);
2972  if (ItinUOps >= 0) {
2973    if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
2974      return getNumMicroOpsSwiftLdSt(ItinData, MI);
2975
2976    return ItinUOps;
2977  }
2978
2979  unsigned Opc = MI->getOpcode();
2980  switch (Opc) {
2981  default:
2982    llvm_unreachable("Unexpected multi-uops instruction!");
2983  case ARM::VLDMQIA:
2984  case ARM::VSTMQIA:
2985    return 2;
2986
2987  // The number of uOps for load / store multiple are determined by the number
2988  // registers.
2989  //
2990  // On Cortex-A8, each pair of register loads / stores can be scheduled on the
2991  // same cycle. The scheduling for the first load / store must be done
2992  // separately by assuming the address is not 64-bit aligned.
2993  //
2994  // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
2995  // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
2996  // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
2997  case ARM::VLDMDIA:
2998  case ARM::VLDMDIA_UPD:
2999  case ARM::VLDMDDB_UPD:
3000  case ARM::VLDMSIA:
3001  case ARM::VLDMSIA_UPD:
3002  case ARM::VLDMSDB_UPD:
3003  case ARM::VSTMDIA:
3004  case ARM::VSTMDIA_UPD:
3005  case ARM::VSTMDDB_UPD:
3006  case ARM::VSTMSIA:
3007  case ARM::VSTMSIA_UPD:
3008  case ARM::VSTMSDB_UPD: {
3009    unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands();
3010    return (NumRegs / 2) + (NumRegs % 2) + 1;
3011  }
3012
3013  case ARM::LDMIA_RET:
3014  case ARM::LDMIA:
3015  case ARM::LDMDA:
3016  case ARM::LDMDB:
3017  case ARM::LDMIB:
3018  case ARM::LDMIA_UPD:
3019  case ARM::LDMDA_UPD:
3020  case ARM::LDMDB_UPD:
3021  case ARM::LDMIB_UPD:
3022  case ARM::STMIA:
3023  case ARM::STMDA:
3024  case ARM::STMDB:
3025  case ARM::STMIB:
3026  case ARM::STMIA_UPD:
3027  case ARM::STMDA_UPD:
3028  case ARM::STMDB_UPD:
3029  case ARM::STMIB_UPD:
3030  case ARM::tLDMIA:
3031  case ARM::tLDMIA_UPD:
3032  case ARM::tSTMIA_UPD:
3033  case ARM::tPOP_RET:
3034  case ARM::tPOP:
3035  case ARM::tPUSH:
3036  case ARM::t2LDMIA_RET:
3037  case ARM::t2LDMIA:
3038  case ARM::t2LDMDB:
3039  case ARM::t2LDMIA_UPD:
3040  case ARM::t2LDMDB_UPD:
3041  case ARM::t2STMIA:
3042  case ARM::t2STMDB:
3043  case ARM::t2STMIA_UPD:
3044  case ARM::t2STMDB_UPD: {
3045    unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands() + 1;
3046    if (Subtarget.isSwift()) {
3047      int UOps = 1 + NumRegs;  // One for address computation, one for each ld / st.
3048      switch (Opc) {
3049      default: break;
3050      case ARM::VLDMDIA_UPD:
3051      case ARM::VLDMDDB_UPD:
3052      case ARM::VLDMSIA_UPD:
3053      case ARM::VLDMSDB_UPD:
3054      case ARM::VSTMDIA_UPD:
3055      case ARM::VSTMDDB_UPD:
3056      case ARM::VSTMSIA_UPD:
3057      case ARM::VSTMSDB_UPD:
3058      case ARM::LDMIA_UPD:
3059      case ARM::LDMDA_UPD:
3060      case ARM::LDMDB_UPD:
3061      case ARM::LDMIB_UPD:
3062      case ARM::STMIA_UPD:
3063      case ARM::STMDA_UPD:
3064      case ARM::STMDB_UPD:
3065      case ARM::STMIB_UPD:
3066      case ARM::tLDMIA_UPD:
3067      case ARM::tSTMIA_UPD:
3068      case ARM::t2LDMIA_UPD:
3069      case ARM::t2LDMDB_UPD:
3070      case ARM::t2STMIA_UPD:
3071      case ARM::t2STMDB_UPD:
3072        ++UOps; // One for base register writeback.
3073        break;
3074      case ARM::LDMIA_RET:
3075      case ARM::tPOP_RET:
3076      case ARM::t2LDMIA_RET:
3077        UOps += 2; // One for base reg wb, one for write to pc.
3078        break;
3079      }
3080      return UOps;
3081    } else if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3082      if (NumRegs < 4)
3083        return 2;
3084      // 4 registers would be issued: 2, 2.
3085      // 5 registers would be issued: 2, 2, 1.
3086      int A8UOps = (NumRegs / 2);
3087      if (NumRegs % 2)
3088        ++A8UOps;
3089      return A8UOps;
3090    } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3091      int A9UOps = (NumRegs / 2);
3092      // If there are odd number of registers or if it's not 64-bit aligned,
3093      // then it takes an extra AGU (Address Generation Unit) cycle.
3094      if ((NumRegs % 2) ||
3095          !MI->hasOneMemOperand() ||
3096          (*MI->memoperands_begin())->getAlignment() < 8)
3097        ++A9UOps;
3098      return A9UOps;
3099    } else {
3100      // Assume the worst.
3101      return NumRegs;
3102    }
3103  }
3104  }
3105}
3106
3107int
3108ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
3109                                  const MCInstrDesc &DefMCID,
3110                                  unsigned DefClass,
3111                                  unsigned DefIdx, unsigned DefAlign) const {
3112  int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3113  if (RegNo <= 0)
3114    // Def is the address writeback.
3115    return ItinData->getOperandCycle(DefClass, DefIdx);
3116
3117  int DefCycle;
3118  if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3119    // (regno / 2) + (regno % 2) + 1
3120    DefCycle = RegNo / 2 + 1;
3121    if (RegNo % 2)
3122      ++DefCycle;
3123  } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3124    DefCycle = RegNo;
3125    bool isSLoad = false;
3126
3127    switch (DefMCID.getOpcode()) {
3128    default: break;
3129    case ARM::VLDMSIA:
3130    case ARM::VLDMSIA_UPD:
3131    case ARM::VLDMSDB_UPD:
3132      isSLoad = true;
3133      break;
3134    }
3135
3136    // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3137    // then it takes an extra cycle.
3138    if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
3139      ++DefCycle;
3140  } else {
3141    // Assume the worst.
3142    DefCycle = RegNo + 2;
3143  }
3144
3145  return DefCycle;
3146}
3147
3148int
3149ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
3150                                 const MCInstrDesc &DefMCID,
3151                                 unsigned DefClass,
3152                                 unsigned DefIdx, unsigned DefAlign) const {
3153  int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3154  if (RegNo <= 0)
3155    // Def is the address writeback.
3156    return ItinData->getOperandCycle(DefClass, DefIdx);
3157
3158  int DefCycle;
3159  if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3160    // 4 registers would be issued: 1, 2, 1.
3161    // 5 registers would be issued: 1, 2, 2.
3162    DefCycle = RegNo / 2;
3163    if (DefCycle < 1)
3164      DefCycle = 1;
3165    // Result latency is issue cycle + 2: E2.
3166    DefCycle += 2;
3167  } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3168    DefCycle = (RegNo / 2);
3169    // If there are odd number of registers or if it's not 64-bit aligned,
3170    // then it takes an extra AGU (Address Generation Unit) cycle.
3171    if ((RegNo % 2) || DefAlign < 8)
3172      ++DefCycle;
3173    // Result latency is AGU cycles + 2.
3174    DefCycle += 2;
3175  } else {
3176    // Assume the worst.
3177    DefCycle = RegNo + 2;
3178  }
3179
3180  return DefCycle;
3181}
3182
3183int
3184ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
3185                                  const MCInstrDesc &UseMCID,
3186                                  unsigned UseClass,
3187                                  unsigned UseIdx, unsigned UseAlign) const {
3188  int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3189  if (RegNo <= 0)
3190    return ItinData->getOperandCycle(UseClass, UseIdx);
3191
3192  int UseCycle;
3193  if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3194    // (regno / 2) + (regno % 2) + 1
3195    UseCycle = RegNo / 2 + 1;
3196    if (RegNo % 2)
3197      ++UseCycle;
3198  } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3199    UseCycle = RegNo;
3200    bool isSStore = false;
3201
3202    switch (UseMCID.getOpcode()) {
3203    default: break;
3204    case ARM::VSTMSIA:
3205    case ARM::VSTMSIA_UPD:
3206    case ARM::VSTMSDB_UPD:
3207      isSStore = true;
3208      break;
3209    }
3210
3211    // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3212    // then it takes an extra cycle.
3213    if ((isSStore && (RegNo % 2)) || UseAlign < 8)
3214      ++UseCycle;
3215  } else {
3216    // Assume the worst.
3217    UseCycle = RegNo + 2;
3218  }
3219
3220  return UseCycle;
3221}
3222
3223int
3224ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
3225                                 const MCInstrDesc &UseMCID,
3226                                 unsigned UseClass,
3227                                 unsigned UseIdx, unsigned UseAlign) const {
3228  int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3229  if (RegNo <= 0)
3230    return ItinData->getOperandCycle(UseClass, UseIdx);
3231
3232  int UseCycle;
3233  if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3234    UseCycle = RegNo / 2;
3235    if (UseCycle < 2)
3236      UseCycle = 2;
3237    // Read in E3.
3238    UseCycle += 2;
3239  } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3240    UseCycle = (RegNo / 2);
3241    // If there are odd number of registers or if it's not 64-bit aligned,
3242    // then it takes an extra AGU (Address Generation Unit) cycle.
3243    if ((RegNo % 2) || UseAlign < 8)
3244      ++UseCycle;
3245  } else {
3246    // Assume the worst.
3247    UseCycle = 1;
3248  }
3249  return UseCycle;
3250}
3251
3252int
3253ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3254                                    const MCInstrDesc &DefMCID,
3255                                    unsigned DefIdx, unsigned DefAlign,
3256                                    const MCInstrDesc &UseMCID,
3257                                    unsigned UseIdx, unsigned UseAlign) const {
3258  unsigned DefClass = DefMCID.getSchedClass();
3259  unsigned UseClass = UseMCID.getSchedClass();
3260
3261  if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
3262    return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
3263
3264  // This may be a def / use of a variable_ops instruction, the operand
3265  // latency might be determinable dynamically. Let the target try to
3266  // figure it out.
3267  int DefCycle = -1;
3268  bool LdmBypass = false;
3269  switch (DefMCID.getOpcode()) {
3270  default:
3271    DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
3272    break;
3273
3274  case ARM::VLDMDIA:
3275  case ARM::VLDMDIA_UPD:
3276  case ARM::VLDMDDB_UPD:
3277  case ARM::VLDMSIA:
3278  case ARM::VLDMSIA_UPD:
3279  case ARM::VLDMSDB_UPD:
3280    DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
3281    break;
3282
3283  case ARM::LDMIA_RET:
3284  case ARM::LDMIA:
3285  case ARM::LDMDA:
3286  case ARM::LDMDB:
3287  case ARM::LDMIB:
3288  case ARM::LDMIA_UPD:
3289  case ARM::LDMDA_UPD:
3290  case ARM::LDMDB_UPD:
3291  case ARM::LDMIB_UPD:
3292  case ARM::tLDMIA:
3293  case ARM::tLDMIA_UPD:
3294  case ARM::tPUSH:
3295  case ARM::t2LDMIA_RET:
3296  case ARM::t2LDMIA:
3297  case ARM::t2LDMDB:
3298  case ARM::t2LDMIA_UPD:
3299  case ARM::t2LDMDB_UPD:
3300    LdmBypass = 1;
3301    DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
3302    break;
3303  }
3304
3305  if (DefCycle == -1)
3306    // We can't seem to determine the result latency of the def, assume it's 2.
3307    DefCycle = 2;
3308
3309  int UseCycle = -1;
3310  switch (UseMCID.getOpcode()) {
3311  default:
3312    UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
3313    break;
3314
3315  case ARM::VSTMDIA:
3316  case ARM::VSTMDIA_UPD:
3317  case ARM::VSTMDDB_UPD:
3318  case ARM::VSTMSIA:
3319  case ARM::VSTMSIA_UPD:
3320  case ARM::VSTMSDB_UPD:
3321    UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
3322    break;
3323
3324  case ARM::STMIA:
3325  case ARM::STMDA:
3326  case ARM::STMDB:
3327  case ARM::STMIB:
3328  case ARM::STMIA_UPD:
3329  case ARM::STMDA_UPD:
3330  case ARM::STMDB_UPD:
3331  case ARM::STMIB_UPD:
3332  case ARM::tSTMIA_UPD:
3333  case ARM::tPOP_RET:
3334  case ARM::tPOP:
3335  case ARM::t2STMIA:
3336  case ARM::t2STMDB:
3337  case ARM::t2STMIA_UPD:
3338  case ARM::t2STMDB_UPD:
3339    UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
3340    break;
3341  }
3342
3343  if (UseCycle == -1)
3344    // Assume it's read in the first stage.
3345    UseCycle = 1;
3346
3347  UseCycle = DefCycle - UseCycle + 1;
3348  if (UseCycle > 0) {
3349    if (LdmBypass) {
3350      // It's a variable_ops instruction so we can't use DefIdx here. Just use
3351      // first def operand.
3352      if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
3353                                          UseClass, UseIdx))
3354        --UseCycle;
3355    } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
3356                                               UseClass, UseIdx)) {
3357      --UseCycle;
3358    }
3359  }
3360
3361  return UseCycle;
3362}
3363
3364static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
3365                                           const MachineInstr *MI, unsigned Reg,
3366                                           unsigned &DefIdx, unsigned &Dist) {
3367  Dist = 0;
3368
3369  MachineBasicBlock::const_iterator I = MI; ++I;
3370  MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator());
3371  assert(II->isInsideBundle() && "Empty bundle?");
3372
3373  int Idx = -1;
3374  while (II->isInsideBundle()) {
3375    Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
3376    if (Idx != -1)
3377      break;
3378    --II;
3379    ++Dist;
3380  }
3381
3382  assert(Idx != -1 && "Cannot find bundled definition!");
3383  DefIdx = Idx;
3384  return II;
3385}
3386
3387static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
3388                                           const MachineInstr *MI, unsigned Reg,
3389                                           unsigned &UseIdx, unsigned &Dist) {
3390  Dist = 0;
3391
3392  MachineBasicBlock::const_instr_iterator II = MI; ++II;
3393  assert(II->isInsideBundle() && "Empty bundle?");
3394  MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
3395
3396  // FIXME: This doesn't properly handle multiple uses.
3397  int Idx = -1;
3398  while (II != E && II->isInsideBundle()) {
3399    Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
3400    if (Idx != -1)
3401      break;
3402    if (II->getOpcode() != ARM::t2IT)
3403      ++Dist;
3404    ++II;
3405  }
3406
3407  if (Idx == -1) {
3408    Dist = 0;
3409    return nullptr;
3410  }
3411
3412  UseIdx = Idx;
3413  return II;
3414}
3415
3416/// Return the number of cycles to add to (or subtract from) the static
3417/// itinerary based on the def opcode and alignment. The caller will ensure that
3418/// adjusted latency is at least one cycle.
3419static int adjustDefLatency(const ARMSubtarget &Subtarget,
3420                            const MachineInstr *DefMI,
3421                            const MCInstrDesc *DefMCID, unsigned DefAlign) {
3422  int Adjust = 0;
3423  if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) {
3424    // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
3425    // variants are one cycle cheaper.
3426    switch (DefMCID->getOpcode()) {
3427    default: break;
3428    case ARM::LDRrs:
3429    case ARM::LDRBrs: {
3430      unsigned ShOpVal = DefMI->getOperand(3).getImm();
3431      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3432      if (ShImm == 0 ||
3433          (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
3434        --Adjust;
3435      break;
3436    }
3437    case ARM::t2LDRs:
3438    case ARM::t2LDRBs:
3439    case ARM::t2LDRHs:
3440    case ARM::t2LDRSHs: {
3441      // Thumb2 mode: lsl only.
3442      unsigned ShAmt = DefMI->getOperand(3).getImm();
3443      if (ShAmt == 0 || ShAmt == 2)
3444        --Adjust;
3445      break;
3446    }
3447    }
3448  } else if (Subtarget.isSwift()) {
3449    // FIXME: Properly handle all of the latency adjustments for address
3450    // writeback.
3451    switch (DefMCID->getOpcode()) {
3452    default: break;
3453    case ARM::LDRrs:
3454    case ARM::LDRBrs: {
3455      unsigned ShOpVal = DefMI->getOperand(3).getImm();
3456      bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3457      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3458      if (!isSub &&
3459          (ShImm == 0 ||
3460           ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3461            ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3462        Adjust -= 2;
3463      else if (!isSub &&
3464               ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
3465        --Adjust;
3466      break;
3467    }
3468    case ARM::t2LDRs:
3469    case ARM::t2LDRBs:
3470    case ARM::t2LDRHs:
3471    case ARM::t2LDRSHs: {
3472      // Thumb2 mode: lsl only.
3473      unsigned ShAmt = DefMI->getOperand(3).getImm();
3474      if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
3475        Adjust -= 2;
3476      break;
3477    }
3478    }
3479  }
3480
3481  if (DefAlign < 8 && Subtarget.isLikeA9()) {
3482    switch (DefMCID->getOpcode()) {
3483    default: break;
3484    case ARM::VLD1q8:
3485    case ARM::VLD1q16:
3486    case ARM::VLD1q32:
3487    case ARM::VLD1q64:
3488    case ARM::VLD1q8wb_fixed:
3489    case ARM::VLD1q16wb_fixed:
3490    case ARM::VLD1q32wb_fixed:
3491    case ARM::VLD1q64wb_fixed:
3492    case ARM::VLD1q8wb_register:
3493    case ARM::VLD1q16wb_register:
3494    case ARM::VLD1q32wb_register:
3495    case ARM::VLD1q64wb_register:
3496    case ARM::VLD2d8:
3497    case ARM::VLD2d16:
3498    case ARM::VLD2d32:
3499    case ARM::VLD2q8:
3500    case ARM::VLD2q16:
3501    case ARM::VLD2q32:
3502    case ARM::VLD2d8wb_fixed:
3503    case ARM::VLD2d16wb_fixed:
3504    case ARM::VLD2d32wb_fixed:
3505    case ARM::VLD2q8wb_fixed:
3506    case ARM::VLD2q16wb_fixed:
3507    case ARM::VLD2q32wb_fixed:
3508    case ARM::VLD2d8wb_register:
3509    case ARM::VLD2d16wb_register:
3510    case ARM::VLD2d32wb_register:
3511    case ARM::VLD2q8wb_register:
3512    case ARM::VLD2q16wb_register:
3513    case ARM::VLD2q32wb_register:
3514    case ARM::VLD3d8:
3515    case ARM::VLD3d16:
3516    case ARM::VLD3d32:
3517    case ARM::VLD1d64T:
3518    case ARM::VLD3d8_UPD:
3519    case ARM::VLD3d16_UPD:
3520    case ARM::VLD3d32_UPD:
3521    case ARM::VLD1d64Twb_fixed:
3522    case ARM::VLD1d64Twb_register:
3523    case ARM::VLD3q8_UPD:
3524    case ARM::VLD3q16_UPD:
3525    case ARM::VLD3q32_UPD:
3526    case ARM::VLD4d8:
3527    case ARM::VLD4d16:
3528    case ARM::VLD4d32:
3529    case ARM::VLD1d64Q:
3530    case ARM::VLD4d8_UPD:
3531    case ARM::VLD4d16_UPD:
3532    case ARM::VLD4d32_UPD:
3533    case ARM::VLD1d64Qwb_fixed:
3534    case ARM::VLD1d64Qwb_register:
3535    case ARM::VLD4q8_UPD:
3536    case ARM::VLD4q16_UPD:
3537    case ARM::VLD4q32_UPD:
3538    case ARM::VLD1DUPq8:
3539    case ARM::VLD1DUPq16:
3540    case ARM::VLD1DUPq32:
3541    case ARM::VLD1DUPq8wb_fixed:
3542    case ARM::VLD1DUPq16wb_fixed:
3543    case ARM::VLD1DUPq32wb_fixed:
3544    case ARM::VLD1DUPq8wb_register:
3545    case ARM::VLD1DUPq16wb_register:
3546    case ARM::VLD1DUPq32wb_register:
3547    case ARM::VLD2DUPd8:
3548    case ARM::VLD2DUPd16:
3549    case ARM::VLD2DUPd32:
3550    case ARM::VLD2DUPd8wb_fixed:
3551    case ARM::VLD2DUPd16wb_fixed:
3552    case ARM::VLD2DUPd32wb_fixed:
3553    case ARM::VLD2DUPd8wb_register:
3554    case ARM::VLD2DUPd16wb_register:
3555    case ARM::VLD2DUPd32wb_register:
3556    case ARM::VLD4DUPd8:
3557    case ARM::VLD4DUPd16:
3558    case ARM::VLD4DUPd32:
3559    case ARM::VLD4DUPd8_UPD:
3560    case ARM::VLD4DUPd16_UPD:
3561    case ARM::VLD4DUPd32_UPD:
3562    case ARM::VLD1LNd8:
3563    case ARM::VLD1LNd16:
3564    case ARM::VLD1LNd32:
3565    case ARM::VLD1LNd8_UPD:
3566    case ARM::VLD1LNd16_UPD:
3567    case ARM::VLD1LNd32_UPD:
3568    case ARM::VLD2LNd8:
3569    case ARM::VLD2LNd16:
3570    case ARM::VLD2LNd32:
3571    case ARM::VLD2LNq16:
3572    case ARM::VLD2LNq32:
3573    case ARM::VLD2LNd8_UPD:
3574    case ARM::VLD2LNd16_UPD:
3575    case ARM::VLD2LNd32_UPD:
3576    case ARM::VLD2LNq16_UPD:
3577    case ARM::VLD2LNq32_UPD:
3578    case ARM::VLD4LNd8:
3579    case ARM::VLD4LNd16:
3580    case ARM::VLD4LNd32:
3581    case ARM::VLD4LNq16:
3582    case ARM::VLD4LNq32:
3583    case ARM::VLD4LNd8_UPD:
3584    case ARM::VLD4LNd16_UPD:
3585    case ARM::VLD4LNd32_UPD:
3586    case ARM::VLD4LNq16_UPD:
3587    case ARM::VLD4LNq32_UPD:
3588      // If the address is not 64-bit aligned, the latencies of these
3589      // instructions increases by one.
3590      ++Adjust;
3591      break;
3592    }
3593  }
3594  return Adjust;
3595}
3596
3597
3598
3599int
3600ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3601                                    const MachineInstr *DefMI, unsigned DefIdx,
3602                                    const MachineInstr *UseMI,
3603                                    unsigned UseIdx) const {
3604  // No operand latency. The caller may fall back to getInstrLatency.
3605  if (!ItinData || ItinData->isEmpty())
3606    return -1;
3607
3608  const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
3609  unsigned Reg = DefMO.getReg();
3610  const MCInstrDesc *DefMCID = &DefMI->getDesc();
3611  const MCInstrDesc *UseMCID = &UseMI->getDesc();
3612
3613  unsigned DefAdj = 0;
3614  if (DefMI->isBundle()) {
3615    DefMI = getBundledDefMI(&getRegisterInfo(), DefMI, Reg, DefIdx, DefAdj);
3616    DefMCID = &DefMI->getDesc();
3617  }
3618  if (DefMI->isCopyLike() || DefMI->isInsertSubreg() ||
3619      DefMI->isRegSequence() || DefMI->isImplicitDef()) {
3620    return 1;
3621  }
3622
3623  unsigned UseAdj = 0;
3624  if (UseMI->isBundle()) {
3625    unsigned NewUseIdx;
3626    const MachineInstr *NewUseMI = getBundledUseMI(&getRegisterInfo(), UseMI,
3627                                                   Reg, NewUseIdx, UseAdj);
3628    if (!NewUseMI)
3629      return -1;
3630
3631    UseMI = NewUseMI;
3632    UseIdx = NewUseIdx;
3633    UseMCID = &UseMI->getDesc();
3634  }
3635
3636  if (Reg == ARM::CPSR) {
3637    if (DefMI->getOpcode() == ARM::FMSTAT) {
3638      // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
3639      return Subtarget.isLikeA9() ? 1 : 20;
3640    }
3641
3642    // CPSR set and branch can be paired in the same cycle.
3643    if (UseMI->isBranch())
3644      return 0;
3645
3646    // Otherwise it takes the instruction latency (generally one).
3647    unsigned Latency = getInstrLatency(ItinData, DefMI);
3648
3649    // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
3650    // its uses. Instructions which are otherwise scheduled between them may
3651    // incur a code size penalty (not able to use the CPSR setting 16-bit
3652    // instructions).
3653    if (Latency > 0 && Subtarget.isThumb2()) {
3654      const MachineFunction *MF = DefMI->getParent()->getParent();
3655      if (MF->getFunction()->hasFnAttribute(Attribute::OptimizeForSize))
3656        --Latency;
3657    }
3658    return Latency;
3659  }
3660
3661  if (DefMO.isImplicit() || UseMI->getOperand(UseIdx).isImplicit())
3662    return -1;
3663
3664  unsigned DefAlign = DefMI->hasOneMemOperand()
3665    ? (*DefMI->memoperands_begin())->getAlignment() : 0;
3666  unsigned UseAlign = UseMI->hasOneMemOperand()
3667    ? (*UseMI->memoperands_begin())->getAlignment() : 0;
3668
3669  // Get the itinerary's latency if possible, and handle variable_ops.
3670  int Latency = getOperandLatency(ItinData, *DefMCID, DefIdx, DefAlign,
3671                                  *UseMCID, UseIdx, UseAlign);
3672  // Unable to find operand latency. The caller may resort to getInstrLatency.
3673  if (Latency < 0)
3674    return Latency;
3675
3676  // Adjust for IT block position.
3677  int Adj = DefAdj + UseAdj;
3678
3679  // Adjust for dynamic def-side opcode variants not captured by the itinerary.
3680  Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
3681  if (Adj >= 0 || (int)Latency > -Adj) {
3682    return Latency + Adj;
3683  }
3684  // Return the itinerary latency, which may be zero but not less than zero.
3685  return Latency;
3686}
3687
3688int
3689ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3690                                    SDNode *DefNode, unsigned DefIdx,
3691                                    SDNode *UseNode, unsigned UseIdx) const {
3692  if (!DefNode->isMachineOpcode())
3693    return 1;
3694
3695  const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
3696
3697  if (isZeroCost(DefMCID.Opcode))
3698    return 0;
3699
3700  if (!ItinData || ItinData->isEmpty())
3701    return DefMCID.mayLoad() ? 3 : 1;
3702
3703  if (!UseNode->isMachineOpcode()) {
3704    int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
3705    if (Subtarget.isLikeA9() || Subtarget.isSwift())
3706      return Latency <= 2 ? 1 : Latency - 1;
3707    else
3708      return Latency <= 3 ? 1 : Latency - 2;
3709  }
3710
3711  const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
3712  const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode);
3713  unsigned DefAlign = !DefMN->memoperands_empty()
3714    ? (*DefMN->memoperands_begin())->getAlignment() : 0;
3715  const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode);
3716  unsigned UseAlign = !UseMN->memoperands_empty()
3717    ? (*UseMN->memoperands_begin())->getAlignment() : 0;
3718  int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
3719                                  UseMCID, UseIdx, UseAlign);
3720
3721  if (Latency > 1 &&
3722      (Subtarget.isCortexA8() || Subtarget.isLikeA9() ||
3723       Subtarget.isCortexA7())) {
3724    // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
3725    // variants are one cycle cheaper.
3726    switch (DefMCID.getOpcode()) {
3727    default: break;
3728    case ARM::LDRrs:
3729    case ARM::LDRBrs: {
3730      unsigned ShOpVal =
3731        cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
3732      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3733      if (ShImm == 0 ||
3734          (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
3735        --Latency;
3736      break;
3737    }
3738    case ARM::t2LDRs:
3739    case ARM::t2LDRBs:
3740    case ARM::t2LDRHs:
3741    case ARM::t2LDRSHs: {
3742      // Thumb2 mode: lsl only.
3743      unsigned ShAmt =
3744        cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
3745      if (ShAmt == 0 || ShAmt == 2)
3746        --Latency;
3747      break;
3748    }
3749    }
3750  } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) {
3751    // FIXME: Properly handle all of the latency adjustments for address
3752    // writeback.
3753    switch (DefMCID.getOpcode()) {
3754    default: break;
3755    case ARM::LDRrs:
3756    case ARM::LDRBrs: {
3757      unsigned ShOpVal =
3758        cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
3759      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3760      if (ShImm == 0 ||
3761          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3762           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
3763        Latency -= 2;
3764      else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
3765        --Latency;
3766      break;
3767    }
3768    case ARM::t2LDRs:
3769    case ARM::t2LDRBs:
3770    case ARM::t2LDRHs:
3771    case ARM::t2LDRSHs: {
3772      // Thumb2 mode: lsl 0-3 only.
3773      Latency -= 2;
3774      break;
3775    }
3776    }
3777  }
3778
3779  if (DefAlign < 8 && Subtarget.isLikeA9())
3780    switch (DefMCID.getOpcode()) {
3781    default: break;
3782    case ARM::VLD1q8:
3783    case ARM::VLD1q16:
3784    case ARM::VLD1q32:
3785    case ARM::VLD1q64:
3786    case ARM::VLD1q8wb_register:
3787    case ARM::VLD1q16wb_register:
3788    case ARM::VLD1q32wb_register:
3789    case ARM::VLD1q64wb_register:
3790    case ARM::VLD1q8wb_fixed:
3791    case ARM::VLD1q16wb_fixed:
3792    case ARM::VLD1q32wb_fixed:
3793    case ARM::VLD1q64wb_fixed:
3794    case ARM::VLD2d8:
3795    case ARM::VLD2d16:
3796    case ARM::VLD2d32:
3797    case ARM::VLD2q8Pseudo:
3798    case ARM::VLD2q16Pseudo:
3799    case ARM::VLD2q32Pseudo:
3800    case ARM::VLD2d8wb_fixed:
3801    case ARM::VLD2d16wb_fixed:
3802    case ARM::VLD2d32wb_fixed:
3803    case ARM::VLD2q8PseudoWB_fixed:
3804    case ARM::VLD2q16PseudoWB_fixed:
3805    case ARM::VLD2q32PseudoWB_fixed:
3806    case ARM::VLD2d8wb_register:
3807    case ARM::VLD2d16wb_register:
3808    case ARM::VLD2d32wb_register:
3809    case ARM::VLD2q8PseudoWB_register:
3810    case ARM::VLD2q16PseudoWB_register:
3811    case ARM::VLD2q32PseudoWB_register:
3812    case ARM::VLD3d8Pseudo:
3813    case ARM::VLD3d16Pseudo:
3814    case ARM::VLD3d32Pseudo:
3815    case ARM::VLD1d64TPseudo:
3816    case ARM::VLD1d64TPseudoWB_fixed:
3817    case ARM::VLD3d8Pseudo_UPD:
3818    case ARM::VLD3d16Pseudo_UPD:
3819    case ARM::VLD3d32Pseudo_UPD:
3820    case ARM::VLD3q8Pseudo_UPD:
3821    case ARM::VLD3q16Pseudo_UPD:
3822    case ARM::VLD3q32Pseudo_UPD:
3823    case ARM::VLD3q8oddPseudo:
3824    case ARM::VLD3q16oddPseudo:
3825    case ARM::VLD3q32oddPseudo:
3826    case ARM::VLD3q8oddPseudo_UPD:
3827    case ARM::VLD3q16oddPseudo_UPD:
3828    case ARM::VLD3q32oddPseudo_UPD:
3829    case ARM::VLD4d8Pseudo:
3830    case ARM::VLD4d16Pseudo:
3831    case ARM::VLD4d32Pseudo:
3832    case ARM::VLD1d64QPseudo:
3833    case ARM::VLD1d64QPseudoWB_fixed:
3834    case ARM::VLD4d8Pseudo_UPD:
3835    case ARM::VLD4d16Pseudo_UPD:
3836    case ARM::VLD4d32Pseudo_UPD:
3837    case ARM::VLD4q8Pseudo_UPD:
3838    case ARM::VLD4q16Pseudo_UPD:
3839    case ARM::VLD4q32Pseudo_UPD:
3840    case ARM::VLD4q8oddPseudo:
3841    case ARM::VLD4q16oddPseudo:
3842    case ARM::VLD4q32oddPseudo:
3843    case ARM::VLD4q8oddPseudo_UPD:
3844    case ARM::VLD4q16oddPseudo_UPD:
3845    case ARM::VLD4q32oddPseudo_UPD:
3846    case ARM::VLD1DUPq8:
3847    case ARM::VLD1DUPq16:
3848    case ARM::VLD1DUPq32:
3849    case ARM::VLD1DUPq8wb_fixed:
3850    case ARM::VLD1DUPq16wb_fixed:
3851    case ARM::VLD1DUPq32wb_fixed:
3852    case ARM::VLD1DUPq8wb_register:
3853    case ARM::VLD1DUPq16wb_register:
3854    case ARM::VLD1DUPq32wb_register:
3855    case ARM::VLD2DUPd8:
3856    case ARM::VLD2DUPd16:
3857    case ARM::VLD2DUPd32:
3858    case ARM::VLD2DUPd8wb_fixed:
3859    case ARM::VLD2DUPd16wb_fixed:
3860    case ARM::VLD2DUPd32wb_fixed:
3861    case ARM::VLD2DUPd8wb_register:
3862    case ARM::VLD2DUPd16wb_register:
3863    case ARM::VLD2DUPd32wb_register:
3864    case ARM::VLD4DUPd8Pseudo:
3865    case ARM::VLD4DUPd16Pseudo:
3866    case ARM::VLD4DUPd32Pseudo:
3867    case ARM::VLD4DUPd8Pseudo_UPD:
3868    case ARM::VLD4DUPd16Pseudo_UPD:
3869    case ARM::VLD4DUPd32Pseudo_UPD:
3870    case ARM::VLD1LNq8Pseudo:
3871    case ARM::VLD1LNq16Pseudo:
3872    case ARM::VLD1LNq32Pseudo:
3873    case ARM::VLD1LNq8Pseudo_UPD:
3874    case ARM::VLD1LNq16Pseudo_UPD:
3875    case ARM::VLD1LNq32Pseudo_UPD:
3876    case ARM::VLD2LNd8Pseudo:
3877    case ARM::VLD2LNd16Pseudo:
3878    case ARM::VLD2LNd32Pseudo:
3879    case ARM::VLD2LNq16Pseudo:
3880    case ARM::VLD2LNq32Pseudo:
3881    case ARM::VLD2LNd8Pseudo_UPD:
3882    case ARM::VLD2LNd16Pseudo_UPD:
3883    case ARM::VLD2LNd32Pseudo_UPD:
3884    case ARM::VLD2LNq16Pseudo_UPD:
3885    case ARM::VLD2LNq32Pseudo_UPD:
3886    case ARM::VLD4LNd8Pseudo:
3887    case ARM::VLD4LNd16Pseudo:
3888    case ARM::VLD4LNd32Pseudo:
3889    case ARM::VLD4LNq16Pseudo:
3890    case ARM::VLD4LNq32Pseudo:
3891    case ARM::VLD4LNd8Pseudo_UPD:
3892    case ARM::VLD4LNd16Pseudo_UPD:
3893    case ARM::VLD4LNd32Pseudo_UPD:
3894    case ARM::VLD4LNq16Pseudo_UPD:
3895    case ARM::VLD4LNq32Pseudo_UPD:
3896      // If the address is not 64-bit aligned, the latencies of these
3897      // instructions increases by one.
3898      ++Latency;
3899      break;
3900    }
3901
3902  return Latency;
3903}
3904
3905unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr *MI) const {
3906   if (MI->isCopyLike() || MI->isInsertSubreg() ||
3907      MI->isRegSequence() || MI->isImplicitDef())
3908    return 0;
3909
3910  if (MI->isBundle())
3911    return 0;
3912
3913  const MCInstrDesc &MCID = MI->getDesc();
3914
3915  if (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR)) {
3916    // When predicated, CPSR is an additional source operand for CPSR updating
3917    // instructions, this apparently increases their latencies.
3918    return 1;
3919  }
3920  return 0;
3921}
3922
3923unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
3924                                           const MachineInstr *MI,
3925                                           unsigned *PredCost) const {
3926  if (MI->isCopyLike() || MI->isInsertSubreg() ||
3927      MI->isRegSequence() || MI->isImplicitDef())
3928    return 1;
3929
3930  // An instruction scheduler typically runs on unbundled instructions, however
3931  // other passes may query the latency of a bundled instruction.
3932  if (MI->isBundle()) {
3933    unsigned Latency = 0;
3934    MachineBasicBlock::const_instr_iterator I = MI;
3935    MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
3936    while (++I != E && I->isInsideBundle()) {
3937      if (I->getOpcode() != ARM::t2IT)
3938        Latency += getInstrLatency(ItinData, I, PredCost);
3939    }
3940    return Latency;
3941  }
3942
3943  const MCInstrDesc &MCID = MI->getDesc();
3944  if (PredCost && (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR))) {
3945    // When predicated, CPSR is an additional source operand for CPSR updating
3946    // instructions, this apparently increases their latencies.
3947    *PredCost = 1;
3948  }
3949  // Be sure to call getStageLatency for an empty itinerary in case it has a
3950  // valid MinLatency property.
3951  if (!ItinData)
3952    return MI->mayLoad() ? 3 : 1;
3953
3954  unsigned Class = MCID.getSchedClass();
3955
3956  // For instructions with variable uops, use uops as latency.
3957  if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
3958    return getNumMicroOps(ItinData, MI);
3959
3960  // For the common case, fall back on the itinerary's latency.
3961  unsigned Latency = ItinData->getStageLatency(Class);
3962
3963  // Adjust for dynamic def-side opcode variants not captured by the itinerary.
3964  unsigned DefAlign = MI->hasOneMemOperand()
3965    ? (*MI->memoperands_begin())->getAlignment() : 0;
3966  int Adj = adjustDefLatency(Subtarget, MI, &MCID, DefAlign);
3967  if (Adj >= 0 || (int)Latency > -Adj) {
3968    return Latency + Adj;
3969  }
3970  return Latency;
3971}
3972
3973int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
3974                                      SDNode *Node) const {
3975  if (!Node->isMachineOpcode())
3976    return 1;
3977
3978  if (!ItinData || ItinData->isEmpty())
3979    return 1;
3980
3981  unsigned Opcode = Node->getMachineOpcode();
3982  switch (Opcode) {
3983  default:
3984    return ItinData->getStageLatency(get(Opcode).getSchedClass());
3985  case ARM::VLDMQIA:
3986  case ARM::VSTMQIA:
3987    return 2;
3988  }
3989}
3990
3991bool ARMBaseInstrInfo::
3992hasHighOperandLatency(const TargetSchedModel &SchedModel,
3993                      const MachineRegisterInfo *MRI,
3994                      const MachineInstr *DefMI, unsigned DefIdx,
3995                      const MachineInstr *UseMI, unsigned UseIdx) const {
3996  unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
3997  unsigned UDomain = UseMI->getDesc().TSFlags & ARMII::DomainMask;
3998  if (Subtarget.isCortexA8() &&
3999      (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
4000    // CortexA8 VFP instructions are not pipelined.
4001    return true;
4002
4003  // Hoist VFP / NEON instructions with 4 or higher latency.
4004  unsigned Latency
4005    = SchedModel.computeOperandLatency(DefMI, DefIdx, UseMI, UseIdx);
4006  if (Latency <= 3)
4007    return false;
4008  return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
4009         UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
4010}
4011
4012bool ARMBaseInstrInfo::
4013hasLowDefLatency(const TargetSchedModel &SchedModel,
4014                 const MachineInstr *DefMI, unsigned DefIdx) const {
4015  const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
4016  if (!ItinData || ItinData->isEmpty())
4017    return false;
4018
4019  unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
4020  if (DDomain == ARMII::DomainGeneral) {
4021    unsigned DefClass = DefMI->getDesc().getSchedClass();
4022    int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
4023    return (DefCycle != -1 && DefCycle <= 2);
4024  }
4025  return false;
4026}
4027
4028bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr *MI,
4029                                         StringRef &ErrInfo) const {
4030  if (convertAddSubFlagsOpcode(MI->getOpcode())) {
4031    ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
4032    return false;
4033  }
4034  return true;
4035}
4036
4037// LoadStackGuard has so far only been implemented for MachO. Different code
4038// sequence is needed for other targets.
4039void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
4040                                                unsigned LoadImmOpc,
4041                                                unsigned LoadOpc,
4042                                                Reloc::Model RM) const {
4043  MachineBasicBlock &MBB = *MI->getParent();
4044  DebugLoc DL = MI->getDebugLoc();
4045  unsigned Reg = MI->getOperand(0).getReg();
4046  const GlobalValue *GV =
4047      cast<GlobalValue>((*MI->memoperands_begin())->getValue());
4048  MachineInstrBuilder MIB;
4049
4050  BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4051      .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY);
4052
4053  if (Subtarget.GVIsIndirectSymbol(GV, RM)) {
4054    MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4055    MIB.addReg(Reg, RegState::Kill).addImm(0);
4056    unsigned Flag = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant;
4057    MachineMemOperand *MMO = MBB.getParent()->
4058        getMachineMemOperand(MachinePointerInfo::getGOT(), Flag, 4, 4);
4059    MIB.addMemOperand(MMO);
4060    AddDefaultPred(MIB);
4061  }
4062
4063  MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4064  MIB.addReg(Reg, RegState::Kill).addImm(0);
4065  MIB.setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
4066  AddDefaultPred(MIB);
4067}
4068
4069bool
4070ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
4071                                     unsigned &AddSubOpc,
4072                                     bool &NegAcc, bool &HasLane) const {
4073  DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
4074  if (I == MLxEntryMap.end())
4075    return false;
4076
4077  const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
4078  MulOpc = Entry.MulOpc;
4079  AddSubOpc = Entry.AddSubOpc;
4080  NegAcc = Entry.NegAcc;
4081  HasLane = Entry.HasLane;
4082  return true;
4083}
4084
4085//===----------------------------------------------------------------------===//
4086// Execution domains.
4087//===----------------------------------------------------------------------===//
4088//
4089// Some instructions go down the NEON pipeline, some go down the VFP pipeline,
4090// and some can go down both.  The vmov instructions go down the VFP pipeline,
4091// but they can be changed to vorr equivalents that are executed by the NEON
4092// pipeline.
4093//
4094// We use the following execution domain numbering:
4095//
4096enum ARMExeDomain {
4097  ExeGeneric = 0,
4098  ExeVFP = 1,
4099  ExeNEON = 2
4100};
4101//
4102// Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
4103//
4104std::pair<uint16_t, uint16_t>
4105ARMBaseInstrInfo::getExecutionDomain(const MachineInstr *MI) const {
4106  // If we don't have access to NEON instructions then we won't be able
4107  // to swizzle anything to the NEON domain. Check to make sure.
4108  if (Subtarget.hasNEON()) {
4109    // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
4110    // if they are not predicated.
4111    if (MI->getOpcode() == ARM::VMOVD && !isPredicated(MI))
4112      return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4113
4114    // CortexA9 is particularly picky about mixing the two and wants these
4115    // converted.
4116    if (Subtarget.isCortexA9() && !isPredicated(MI) &&
4117        (MI->getOpcode() == ARM::VMOVRS || MI->getOpcode() == ARM::VMOVSR ||
4118         MI->getOpcode() == ARM::VMOVS))
4119      return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4120  }
4121  // No other instructions can be swizzled, so just determine their domain.
4122  unsigned Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
4123
4124  if (Domain & ARMII::DomainNEON)
4125    return std::make_pair(ExeNEON, 0);
4126
4127  // Certain instructions can go either way on Cortex-A8.
4128  // Treat them as NEON instructions.
4129  if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
4130    return std::make_pair(ExeNEON, 0);
4131
4132  if (Domain & ARMII::DomainVFP)
4133    return std::make_pair(ExeVFP, 0);
4134
4135  return std::make_pair(ExeGeneric, 0);
4136}
4137
4138static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
4139                                            unsigned SReg, unsigned &Lane) {
4140  unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
4141  Lane = 0;
4142
4143  if (DReg != ARM::NoRegister)
4144   return DReg;
4145
4146  Lane = 1;
4147  DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
4148
4149  assert(DReg && "S-register with no D super-register?");
4150  return DReg;
4151}
4152
4153/// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
4154/// set ImplicitSReg to a register number that must be marked as implicit-use or
4155/// zero if no register needs to be defined as implicit-use.
4156///
4157/// If the function cannot determine if an SPR should be marked implicit use or
4158/// not, it returns false.
4159///
4160/// This function handles cases where an instruction is being modified from taking
4161/// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
4162/// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
4163/// lane of the DPR).
4164///
4165/// If the other SPR is defined, an implicit-use of it should be added. Else,
4166/// (including the case where the DPR itself is defined), it should not.
4167///
4168static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
4169                                       MachineInstr *MI,
4170                                       unsigned DReg, unsigned Lane,
4171                                       unsigned &ImplicitSReg) {
4172  // If the DPR is defined or used already, the other SPR lane will be chained
4173  // correctly, so there is nothing to be done.
4174  if (MI->definesRegister(DReg, TRI) || MI->readsRegister(DReg, TRI)) {
4175    ImplicitSReg = 0;
4176    return true;
4177  }
4178
4179  // Otherwise we need to go searching to see if the SPR is set explicitly.
4180  ImplicitSReg = TRI->getSubReg(DReg,
4181                                (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
4182  MachineBasicBlock::LivenessQueryResult LQR =
4183    MI->getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
4184
4185  if (LQR == MachineBasicBlock::LQR_Live)
4186    return true;
4187  else if (LQR == MachineBasicBlock::LQR_Unknown)
4188    return false;
4189
4190  // If the register is known not to be live, there is no need to add an
4191  // implicit-use.
4192  ImplicitSReg = 0;
4193  return true;
4194}
4195
4196void
4197ARMBaseInstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
4198  unsigned DstReg, SrcReg, DReg;
4199  unsigned Lane;
4200  MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
4201  const TargetRegisterInfo *TRI = &getRegisterInfo();
4202  switch (MI->getOpcode()) {
4203    default:
4204      llvm_unreachable("cannot handle opcode!");
4205      break;
4206    case ARM::VMOVD:
4207      if (Domain != ExeNEON)
4208        break;
4209
4210      // Zap the predicate operands.
4211      assert(!isPredicated(MI) && "Cannot predicate a VORRd");
4212
4213      // Make sure we've got NEON instructions.
4214      assert(Subtarget.hasNEON() && "VORRd requires NEON");
4215
4216      // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
4217      DstReg = MI->getOperand(0).getReg();
4218      SrcReg = MI->getOperand(1).getReg();
4219
4220      for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
4221        MI->RemoveOperand(i-1);
4222
4223      // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
4224      MI->setDesc(get(ARM::VORRd));
4225      AddDefaultPred(MIB.addReg(DstReg, RegState::Define)
4226                        .addReg(SrcReg)
4227                        .addReg(SrcReg));
4228      break;
4229    case ARM::VMOVRS:
4230      if (Domain != ExeNEON)
4231        break;
4232      assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
4233
4234      // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
4235      DstReg = MI->getOperand(0).getReg();
4236      SrcReg = MI->getOperand(1).getReg();
4237
4238      for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
4239        MI->RemoveOperand(i-1);
4240
4241      DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
4242
4243      // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
4244      // Note that DSrc has been widened and the other lane may be undef, which
4245      // contaminates the entire register.
4246      MI->setDesc(get(ARM::VGETLNi32));
4247      AddDefaultPred(MIB.addReg(DstReg, RegState::Define)
4248                        .addReg(DReg, RegState::Undef)
4249                        .addImm(Lane));
4250
4251      // The old source should be an implicit use, otherwise we might think it
4252      // was dead before here.
4253      MIB.addReg(SrcReg, RegState::Implicit);
4254      break;
4255    case ARM::VMOVSR: {
4256      if (Domain != ExeNEON)
4257        break;
4258      assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
4259
4260      // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
4261      DstReg = MI->getOperand(0).getReg();
4262      SrcReg = MI->getOperand(1).getReg();
4263
4264      DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
4265
4266      unsigned ImplicitSReg;
4267      if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
4268        break;
4269
4270      for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
4271        MI->RemoveOperand(i-1);
4272
4273      // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
4274      // Again DDst may be undefined at the beginning of this instruction.
4275      MI->setDesc(get(ARM::VSETLNi32));
4276      MIB.addReg(DReg, RegState::Define)
4277         .addReg(DReg, getUndefRegState(!MI->readsRegister(DReg, TRI)))
4278         .addReg(SrcReg)
4279         .addImm(Lane);
4280      AddDefaultPred(MIB);
4281
4282      // The narrower destination must be marked as set to keep previous chains
4283      // in place.
4284      MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
4285      if (ImplicitSReg != 0)
4286        MIB.addReg(ImplicitSReg, RegState::Implicit);
4287      break;
4288    }
4289    case ARM::VMOVS: {
4290      if (Domain != ExeNEON)
4291        break;
4292
4293      // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
4294      DstReg = MI->getOperand(0).getReg();
4295      SrcReg = MI->getOperand(1).getReg();
4296
4297      unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
4298      DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
4299      DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
4300
4301      unsigned ImplicitSReg;
4302      if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
4303        break;
4304
4305      for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
4306        MI->RemoveOperand(i-1);
4307
4308      if (DSrc == DDst) {
4309        // Destination can be:
4310        //     %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
4311        MI->setDesc(get(ARM::VDUPLN32d));
4312        MIB.addReg(DDst, RegState::Define)
4313           .addReg(DDst, getUndefRegState(!MI->readsRegister(DDst, TRI)))
4314           .addImm(SrcLane);
4315        AddDefaultPred(MIB);
4316
4317        // Neither the source or the destination are naturally represented any
4318        // more, so add them in manually.
4319        MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
4320        MIB.addReg(SrcReg, RegState::Implicit);
4321        if (ImplicitSReg != 0)
4322          MIB.addReg(ImplicitSReg, RegState::Implicit);
4323        break;
4324      }
4325
4326      // In general there's no single instruction that can perform an S <-> S
4327      // move in NEON space, but a pair of VEXT instructions *can* do the
4328      // job. It turns out that the VEXTs needed will only use DSrc once, with
4329      // the position based purely on the combination of lane-0 and lane-1
4330      // involved. For example
4331      //     vmov s0, s2 -> vext.32 d0, d0, d1, #1  vext.32 d0, d0, d0, #1
4332      //     vmov s1, s3 -> vext.32 d0, d1, d0, #1  vext.32 d0, d0, d0, #1
4333      //     vmov s0, s3 -> vext.32 d0, d0, d0, #1  vext.32 d0, d1, d0, #1
4334      //     vmov s1, s2 -> vext.32 d0, d0, d0, #1  vext.32 d0, d0, d1, #1
4335      //
4336      // Pattern of the MachineInstrs is:
4337      //     %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
4338      MachineInstrBuilder NewMIB;
4339      NewMIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
4340                       get(ARM::VEXTd32), DDst);
4341
4342      // On the first instruction, both DSrc and DDst may be <undef> if present.
4343      // Specifically when the original instruction didn't have them as an
4344      // <imp-use>.
4345      unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
4346      bool CurUndef = !MI->readsRegister(CurReg, TRI);
4347      NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
4348
4349      CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
4350      CurUndef = !MI->readsRegister(CurReg, TRI);
4351      NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
4352
4353      NewMIB.addImm(1);
4354      AddDefaultPred(NewMIB);
4355
4356      if (SrcLane == DstLane)
4357        NewMIB.addReg(SrcReg, RegState::Implicit);
4358
4359      MI->setDesc(get(ARM::VEXTd32));
4360      MIB.addReg(DDst, RegState::Define);
4361
4362      // On the second instruction, DDst has definitely been defined above, so
4363      // it is not <undef>. DSrc, if present, can be <undef> as above.
4364      CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
4365      CurUndef = CurReg == DSrc && !MI->readsRegister(CurReg, TRI);
4366      MIB.addReg(CurReg, getUndefRegState(CurUndef));
4367
4368      CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
4369      CurUndef = CurReg == DSrc && !MI->readsRegister(CurReg, TRI);
4370      MIB.addReg(CurReg, getUndefRegState(CurUndef));
4371
4372      MIB.addImm(1);
4373      AddDefaultPred(MIB);
4374
4375      if (SrcLane != DstLane)
4376        MIB.addReg(SrcReg, RegState::Implicit);
4377
4378      // As before, the original destination is no longer represented, add it
4379      // implicitly.
4380      MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
4381      if (ImplicitSReg != 0)
4382        MIB.addReg(ImplicitSReg, RegState::Implicit);
4383      break;
4384    }
4385  }
4386
4387}
4388
4389//===----------------------------------------------------------------------===//
4390// Partial register updates
4391//===----------------------------------------------------------------------===//
4392//
4393// Swift renames NEON registers with 64-bit granularity.  That means any
4394// instruction writing an S-reg implicitly reads the containing D-reg.  The
4395// problem is mostly avoided by translating f32 operations to v2f32 operations
4396// on D-registers, but f32 loads are still a problem.
4397//
4398// These instructions can load an f32 into a NEON register:
4399//
4400// VLDRS - Only writes S, partial D update.
4401// VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
4402// VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
4403//
4404// FCONSTD can be used as a dependency-breaking instruction.
4405unsigned ARMBaseInstrInfo::
4406getPartialRegUpdateClearance(const MachineInstr *MI,
4407                             unsigned OpNum,
4408                             const TargetRegisterInfo *TRI) const {
4409  if (!SwiftPartialUpdateClearance ||
4410      !(Subtarget.isSwift() || Subtarget.isCortexA15()))
4411    return 0;
4412
4413  assert(TRI && "Need TRI instance");
4414
4415  const MachineOperand &MO = MI->getOperand(OpNum);
4416  if (MO.readsReg())
4417    return 0;
4418  unsigned Reg = MO.getReg();
4419  int UseOp = -1;
4420
4421  switch(MI->getOpcode()) {
4422    // Normal instructions writing only an S-register.
4423  case ARM::VLDRS:
4424  case ARM::FCONSTS:
4425  case ARM::VMOVSR:
4426  case ARM::VMOVv8i8:
4427  case ARM::VMOVv4i16:
4428  case ARM::VMOVv2i32:
4429  case ARM::VMOVv2f32:
4430  case ARM::VMOVv1i64:
4431    UseOp = MI->findRegisterUseOperandIdx(Reg, false, TRI);
4432    break;
4433
4434    // Explicitly reads the dependency.
4435  case ARM::VLD1LNd32:
4436    UseOp = 3;
4437    break;
4438  default:
4439    return 0;
4440  }
4441
4442  // If this instruction actually reads a value from Reg, there is no unwanted
4443  // dependency.
4444  if (UseOp != -1 && MI->getOperand(UseOp).readsReg())
4445    return 0;
4446
4447  // We must be able to clobber the whole D-reg.
4448  if (TargetRegisterInfo::isVirtualRegister(Reg)) {
4449    // Virtual register must be a foo:ssub_0<def,undef> operand.
4450    if (!MO.getSubReg() || MI->readsVirtualRegister(Reg))
4451      return 0;
4452  } else if (ARM::SPRRegClass.contains(Reg)) {
4453    // Physical register: MI must define the full D-reg.
4454    unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
4455                                             &ARM::DPRRegClass);
4456    if (!DReg || !MI->definesRegister(DReg, TRI))
4457      return 0;
4458  }
4459
4460  // MI has an unwanted D-register dependency.
4461  // Avoid defs in the previous N instructrions.
4462  return SwiftPartialUpdateClearance;
4463}
4464
4465// Break a partial register dependency after getPartialRegUpdateClearance
4466// returned non-zero.
4467void ARMBaseInstrInfo::
4468breakPartialRegDependency(MachineBasicBlock::iterator MI,
4469                          unsigned OpNum,
4470                          const TargetRegisterInfo *TRI) const {
4471  assert(MI && OpNum < MI->getDesc().getNumDefs() && "OpNum is not a def");
4472  assert(TRI && "Need TRI instance");
4473
4474  const MachineOperand &MO = MI->getOperand(OpNum);
4475  unsigned Reg = MO.getReg();
4476  assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
4477         "Can't break virtual register dependencies.");
4478  unsigned DReg = Reg;
4479
4480  // If MI defines an S-reg, find the corresponding D super-register.
4481  if (ARM::SPRRegClass.contains(Reg)) {
4482    DReg = ARM::D0 + (Reg - ARM::S0) / 2;
4483    assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
4484  }
4485
4486  assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
4487  assert(MI->definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
4488
4489  // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
4490  // the full D-register by loading the same value to both lanes.  The
4491  // instruction is micro-coded with 2 uops, so don't do this until we can
4492  // properly schedule micro-coded instructions.  The dispatcher stalls cause
4493  // too big regressions.
4494
4495  // Insert the dependency-breaking FCONSTD before MI.
4496  // 96 is the encoding of 0.5, but the actual value doesn't matter here.
4497  AddDefaultPred(BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
4498                         get(ARM::FCONSTD), DReg).addImm(96));
4499  MI->addRegisterKilled(DReg, TRI, true);
4500}
4501
4502bool ARMBaseInstrInfo::hasNOP() const {
4503  return Subtarget.getFeatureBits()[ARM::HasV6KOps];
4504}
4505
4506bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
4507  if (MI->getNumOperands() < 4)
4508    return true;
4509  unsigned ShOpVal = MI->getOperand(3).getImm();
4510  unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
4511  // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
4512  if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
4513      ((ShImm == 1 || ShImm == 2) &&
4514       ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
4515    return true;
4516
4517  return false;
4518}
4519
4520bool ARMBaseInstrInfo::getRegSequenceLikeInputs(
4521    const MachineInstr &MI, unsigned DefIdx,
4522    SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
4523  assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
4524  assert(MI.isRegSequenceLike() && "Invalid kind of instruction");
4525
4526  switch (MI.getOpcode()) {
4527  case ARM::VMOVDRR:
4528    // dX = VMOVDRR rY, rZ
4529    // is the same as:
4530    // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1
4531    // Populate the InputRegs accordingly.
4532    // rY
4533    const MachineOperand *MOReg = &MI.getOperand(1);
4534    InputRegs.push_back(
4535        RegSubRegPairAndIdx(MOReg->getReg(), MOReg->getSubReg(), ARM::ssub_0));
4536    // rZ
4537    MOReg = &MI.getOperand(2);
4538    InputRegs.push_back(
4539        RegSubRegPairAndIdx(MOReg->getReg(), MOReg->getSubReg(), ARM::ssub_1));
4540    return true;
4541  }
4542  llvm_unreachable("Target dependent opcode missing");
4543}
4544
4545bool ARMBaseInstrInfo::getExtractSubregLikeInputs(
4546    const MachineInstr &MI, unsigned DefIdx,
4547    RegSubRegPairAndIdx &InputReg) const {
4548  assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
4549  assert(MI.isExtractSubregLike() && "Invalid kind of instruction");
4550
4551  switch (MI.getOpcode()) {
4552  case ARM::VMOVRRD:
4553    // rX, rY = VMOVRRD dZ
4554    // is the same as:
4555    // rX = EXTRACT_SUBREG dZ, ssub_0
4556    // rY = EXTRACT_SUBREG dZ, ssub_1
4557    const MachineOperand &MOReg = MI.getOperand(2);
4558    InputReg.Reg = MOReg.getReg();
4559    InputReg.SubReg = MOReg.getSubReg();
4560    InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1;
4561    return true;
4562  }
4563  llvm_unreachable("Target dependent opcode missing");
4564}
4565
4566bool ARMBaseInstrInfo::getInsertSubregLikeInputs(
4567    const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg,
4568    RegSubRegPairAndIdx &InsertedReg) const {
4569  assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
4570  assert(MI.isInsertSubregLike() && "Invalid kind of instruction");
4571
4572  switch (MI.getOpcode()) {
4573  case ARM::VSETLNi32:
4574    // dX = VSETLNi32 dY, rZ, imm
4575    const MachineOperand &MOBaseReg = MI.getOperand(1);
4576    const MachineOperand &MOInsertedReg = MI.getOperand(2);
4577    const MachineOperand &MOIndex = MI.getOperand(3);
4578    BaseReg.Reg = MOBaseReg.getReg();
4579    BaseReg.SubReg = MOBaseReg.getSubReg();
4580
4581    InsertedReg.Reg = MOInsertedReg.getReg();
4582    InsertedReg.SubReg = MOInsertedReg.getSubReg();
4583    InsertedReg.SubIdx = MOIndex.getImm() == 0 ? ARM::ssub_0 : ARM::ssub_1;
4584    return true;
4585  }
4586  llvm_unreachable("Target dependent opcode missing");
4587}
4588