ARMBaseInstrInfo.cpp revision 224145
1//===- ARMBaseInstrInfo.cpp - ARM Instruction Information -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Base ARM implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "ARMBaseInstrInfo.h"
15#include "ARM.h"
16#include "ARMAddressingModes.h"
17#include "ARMConstantPoolValue.h"
18#include "ARMHazardRecognizer.h"
19#include "ARMMachineFunctionInfo.h"
20#include "ARMRegisterInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalValue.h"
24#include "llvm/CodeGen/LiveVariables.h"
25#include "llvm/CodeGen/MachineConstantPool.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineInstrBuilder.h"
28#include "llvm/CodeGen/MachineJumpTableInfo.h"
29#include "llvm/CodeGen/MachineMemOperand.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/CodeGen/PseudoSourceValue.h"
32#include "llvm/MC/MCAsmInfo.h"
33#include "llvm/Support/BranchProbability.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/ADT/STLExtras.h"
38
39#define GET_INSTRINFO_CTOR
40#include "ARMGenInstrInfo.inc"
41
42using namespace llvm;
43
44static cl::opt<bool>
45EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
46               cl::desc("Enable ARM 2-addr to 3-addr conv"));
47
48/// ARM_MLxEntry - Record information about MLA / MLS instructions.
49struct ARM_MLxEntry {
50  unsigned MLxOpc;     // MLA / MLS opcode
51  unsigned MulOpc;     // Expanded multiplication opcode
52  unsigned AddSubOpc;  // Expanded add / sub opcode
53  bool NegAcc;         // True if the acc is negated before the add / sub.
54  bool HasLane;        // True if instruction has an extra "lane" operand.
55};
56
57static const ARM_MLxEntry ARM_MLxTable[] = {
58  // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
59  // fp scalar ops
60  { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
61  { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
62  { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
63  { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
64  { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
65  { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
66  { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
67  { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
68
69  // fp SIMD ops
70  { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
71  { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
72  { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
73  { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
74  { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
75  { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
76  { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
77  { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
78};
79
80ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
81  : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
82    Subtarget(STI) {
83  for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
84    if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
85      assert(false && "Duplicated entries?");
86    MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
87    MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
88  }
89}
90
91// Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
92// currently defaults to no prepass hazard recognizer.
93ScheduleHazardRecognizer *ARMBaseInstrInfo::
94CreateTargetHazardRecognizer(const TargetMachine *TM,
95                             const ScheduleDAG *DAG) const {
96  if (usePreRAHazardRecognizer()) {
97    const InstrItineraryData *II = TM->getInstrItineraryData();
98    return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
99  }
100  return TargetInstrInfoImpl::CreateTargetHazardRecognizer(TM, DAG);
101}
102
103ScheduleHazardRecognizer *ARMBaseInstrInfo::
104CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
105                                   const ScheduleDAG *DAG) const {
106  if (Subtarget.isThumb2() || Subtarget.hasVFP2())
107    return (ScheduleHazardRecognizer *)
108      new ARMHazardRecognizer(II, *this, getRegisterInfo(), Subtarget, DAG);
109  return TargetInstrInfoImpl::CreateTargetPostRAHazardRecognizer(II, DAG);
110}
111
112MachineInstr *
113ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
114                                        MachineBasicBlock::iterator &MBBI,
115                                        LiveVariables *LV) const {
116  // FIXME: Thumb2 support.
117
118  if (!EnableARM3Addr)
119    return NULL;
120
121  MachineInstr *MI = MBBI;
122  MachineFunction &MF = *MI->getParent()->getParent();
123  uint64_t TSFlags = MI->getDesc().TSFlags;
124  bool isPre = false;
125  switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
126  default: return NULL;
127  case ARMII::IndexModePre:
128    isPre = true;
129    break;
130  case ARMII::IndexModePost:
131    break;
132  }
133
134  // Try splitting an indexed load/store to an un-indexed one plus an add/sub
135  // operation.
136  unsigned MemOpc = getUnindexedOpcode(MI->getOpcode());
137  if (MemOpc == 0)
138    return NULL;
139
140  MachineInstr *UpdateMI = NULL;
141  MachineInstr *MemMI = NULL;
142  unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
143  const MCInstrDesc &MCID = MI->getDesc();
144  unsigned NumOps = MCID.getNumOperands();
145  bool isLoad = !MCID.mayStore();
146  const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0);
147  const MachineOperand &Base = MI->getOperand(2);
148  const MachineOperand &Offset = MI->getOperand(NumOps-3);
149  unsigned WBReg = WB.getReg();
150  unsigned BaseReg = Base.getReg();
151  unsigned OffReg = Offset.getReg();
152  unsigned OffImm = MI->getOperand(NumOps-2).getImm();
153  ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm();
154  switch (AddrMode) {
155  default:
156    assert(false && "Unknown indexed op!");
157    return NULL;
158  case ARMII::AddrMode2: {
159    bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
160    unsigned Amt = ARM_AM::getAM2Offset(OffImm);
161    if (OffReg == 0) {
162      if (ARM_AM::getSOImmVal(Amt) == -1)
163        // Can't encode it in a so_imm operand. This transformation will
164        // add more than 1 instruction. Abandon!
165        return NULL;
166      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
167                         get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
168        .addReg(BaseReg).addImm(Amt)
169        .addImm(Pred).addReg(0).addReg(0);
170    } else if (Amt != 0) {
171      ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
172      unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
173      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
174                         get(isSub ? ARM::SUBrs : ARM::ADDrs), WBReg)
175        .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc)
176        .addImm(Pred).addReg(0).addReg(0);
177    } else
178      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
179                         get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
180        .addReg(BaseReg).addReg(OffReg)
181        .addImm(Pred).addReg(0).addReg(0);
182    break;
183  }
184  case ARMII::AddrMode3 : {
185    bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
186    unsigned Amt = ARM_AM::getAM3Offset(OffImm);
187    if (OffReg == 0)
188      // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
189      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
190                         get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
191        .addReg(BaseReg).addImm(Amt)
192        .addImm(Pred).addReg(0).addReg(0);
193    else
194      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
195                         get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
196        .addReg(BaseReg).addReg(OffReg)
197        .addImm(Pred).addReg(0).addReg(0);
198    break;
199  }
200  }
201
202  std::vector<MachineInstr*> NewMIs;
203  if (isPre) {
204    if (isLoad)
205      MemMI = BuildMI(MF, MI->getDebugLoc(),
206                      get(MemOpc), MI->getOperand(0).getReg())
207        .addReg(WBReg).addImm(0).addImm(Pred);
208    else
209      MemMI = BuildMI(MF, MI->getDebugLoc(),
210                      get(MemOpc)).addReg(MI->getOperand(1).getReg())
211        .addReg(WBReg).addReg(0).addImm(0).addImm(Pred);
212    NewMIs.push_back(MemMI);
213    NewMIs.push_back(UpdateMI);
214  } else {
215    if (isLoad)
216      MemMI = BuildMI(MF, MI->getDebugLoc(),
217                      get(MemOpc), MI->getOperand(0).getReg())
218        .addReg(BaseReg).addImm(0).addImm(Pred);
219    else
220      MemMI = BuildMI(MF, MI->getDebugLoc(),
221                      get(MemOpc)).addReg(MI->getOperand(1).getReg())
222        .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred);
223    if (WB.isDead())
224      UpdateMI->getOperand(0).setIsDead();
225    NewMIs.push_back(UpdateMI);
226    NewMIs.push_back(MemMI);
227  }
228
229  // Transfer LiveVariables states, kill / dead info.
230  if (LV) {
231    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
232      MachineOperand &MO = MI->getOperand(i);
233      if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
234        unsigned Reg = MO.getReg();
235
236        LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
237        if (MO.isDef()) {
238          MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
239          if (MO.isDead())
240            LV->addVirtualRegisterDead(Reg, NewMI);
241        }
242        if (MO.isUse() && MO.isKill()) {
243          for (unsigned j = 0; j < 2; ++j) {
244            // Look at the two new MI's in reverse order.
245            MachineInstr *NewMI = NewMIs[j];
246            if (!NewMI->readsRegister(Reg))
247              continue;
248            LV->addVirtualRegisterKilled(Reg, NewMI);
249            if (VI.removeKill(MI))
250              VI.Kills.push_back(NewMI);
251            break;
252          }
253        }
254      }
255    }
256  }
257
258  MFI->insert(MBBI, NewMIs[1]);
259  MFI->insert(MBBI, NewMIs[0]);
260  return NewMIs[0];
261}
262
263// Branch analysis.
264bool
265ARMBaseInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
266                                MachineBasicBlock *&FBB,
267                                SmallVectorImpl<MachineOperand> &Cond,
268                                bool AllowModify) const {
269  // If the block has no terminators, it just falls into the block after it.
270  MachineBasicBlock::iterator I = MBB.end();
271  if (I == MBB.begin())
272    return false;
273  --I;
274  while (I->isDebugValue()) {
275    if (I == MBB.begin())
276      return false;
277    --I;
278  }
279  if (!isUnpredicatedTerminator(I))
280    return false;
281
282  // Get the last instruction in the block.
283  MachineInstr *LastInst = I;
284
285  // If there is only one terminator instruction, process it.
286  unsigned LastOpc = LastInst->getOpcode();
287  if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
288    if (isUncondBranchOpcode(LastOpc)) {
289      TBB = LastInst->getOperand(0).getMBB();
290      return false;
291    }
292    if (isCondBranchOpcode(LastOpc)) {
293      // Block ends with fall-through condbranch.
294      TBB = LastInst->getOperand(0).getMBB();
295      Cond.push_back(LastInst->getOperand(1));
296      Cond.push_back(LastInst->getOperand(2));
297      return false;
298    }
299    return true;  // Can't handle indirect branch.
300  }
301
302  // Get the instruction before it if it is a terminator.
303  MachineInstr *SecondLastInst = I;
304  unsigned SecondLastOpc = SecondLastInst->getOpcode();
305
306  // If AllowModify is true and the block ends with two or more unconditional
307  // branches, delete all but the first unconditional branch.
308  if (AllowModify && isUncondBranchOpcode(LastOpc)) {
309    while (isUncondBranchOpcode(SecondLastOpc)) {
310      LastInst->eraseFromParent();
311      LastInst = SecondLastInst;
312      LastOpc = LastInst->getOpcode();
313      if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
314        // Return now the only terminator is an unconditional branch.
315        TBB = LastInst->getOperand(0).getMBB();
316        return false;
317      } else {
318        SecondLastInst = I;
319        SecondLastOpc = SecondLastInst->getOpcode();
320      }
321    }
322  }
323
324  // If there are three terminators, we don't know what sort of block this is.
325  if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I))
326    return true;
327
328  // If the block ends with a B and a Bcc, handle it.
329  if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
330    TBB =  SecondLastInst->getOperand(0).getMBB();
331    Cond.push_back(SecondLastInst->getOperand(1));
332    Cond.push_back(SecondLastInst->getOperand(2));
333    FBB = LastInst->getOperand(0).getMBB();
334    return false;
335  }
336
337  // If the block ends with two unconditional branches, handle it.  The second
338  // one is not executed, so remove it.
339  if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
340    TBB = SecondLastInst->getOperand(0).getMBB();
341    I = LastInst;
342    if (AllowModify)
343      I->eraseFromParent();
344    return false;
345  }
346
347  // ...likewise if it ends with a branch table followed by an unconditional
348  // branch. The branch folder can create these, and we must get rid of them for
349  // correctness of Thumb constant islands.
350  if ((isJumpTableBranchOpcode(SecondLastOpc) ||
351       isIndirectBranchOpcode(SecondLastOpc)) &&
352      isUncondBranchOpcode(LastOpc)) {
353    I = LastInst;
354    if (AllowModify)
355      I->eraseFromParent();
356    return true;
357  }
358
359  // Otherwise, can't handle this.
360  return true;
361}
362
363
364unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
365  MachineBasicBlock::iterator I = MBB.end();
366  if (I == MBB.begin()) return 0;
367  --I;
368  while (I->isDebugValue()) {
369    if (I == MBB.begin())
370      return 0;
371    --I;
372  }
373  if (!isUncondBranchOpcode(I->getOpcode()) &&
374      !isCondBranchOpcode(I->getOpcode()))
375    return 0;
376
377  // Remove the branch.
378  I->eraseFromParent();
379
380  I = MBB.end();
381
382  if (I == MBB.begin()) return 1;
383  --I;
384  if (!isCondBranchOpcode(I->getOpcode()))
385    return 1;
386
387  // Remove the branch.
388  I->eraseFromParent();
389  return 2;
390}
391
392unsigned
393ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
394                               MachineBasicBlock *FBB,
395                               const SmallVectorImpl<MachineOperand> &Cond,
396                               DebugLoc DL) const {
397  ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
398  int BOpc   = !AFI->isThumbFunction()
399    ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
400  int BccOpc = !AFI->isThumbFunction()
401    ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
402
403  // Shouldn't be a fall through.
404  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
405  assert((Cond.size() == 2 || Cond.size() == 0) &&
406         "ARM branch conditions have two components!");
407
408  if (FBB == 0) {
409    if (Cond.empty()) // Unconditional branch?
410      BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
411    else
412      BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
413        .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
414    return 1;
415  }
416
417  // Two-way conditional branch.
418  BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
419    .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
420  BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
421  return 2;
422}
423
424bool ARMBaseInstrInfo::
425ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
426  ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
427  Cond[0].setImm(ARMCC::getOppositeCondition(CC));
428  return false;
429}
430
431bool ARMBaseInstrInfo::
432PredicateInstruction(MachineInstr *MI,
433                     const SmallVectorImpl<MachineOperand> &Pred) const {
434  unsigned Opc = MI->getOpcode();
435  if (isUncondBranchOpcode(Opc)) {
436    MI->setDesc(get(getMatchingCondBranchOpcode(Opc)));
437    MI->addOperand(MachineOperand::CreateImm(Pred[0].getImm()));
438    MI->addOperand(MachineOperand::CreateReg(Pred[1].getReg(), false));
439    return true;
440  }
441
442  int PIdx = MI->findFirstPredOperandIdx();
443  if (PIdx != -1) {
444    MachineOperand &PMO = MI->getOperand(PIdx);
445    PMO.setImm(Pred[0].getImm());
446    MI->getOperand(PIdx+1).setReg(Pred[1].getReg());
447    return true;
448  }
449  return false;
450}
451
452bool ARMBaseInstrInfo::
453SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
454                  const SmallVectorImpl<MachineOperand> &Pred2) const {
455  if (Pred1.size() > 2 || Pred2.size() > 2)
456    return false;
457
458  ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
459  ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
460  if (CC1 == CC2)
461    return true;
462
463  switch (CC1) {
464  default:
465    return false;
466  case ARMCC::AL:
467    return true;
468  case ARMCC::HS:
469    return CC2 == ARMCC::HI;
470  case ARMCC::LS:
471    return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
472  case ARMCC::GE:
473    return CC2 == ARMCC::GT;
474  case ARMCC::LE:
475    return CC2 == ARMCC::LT;
476  }
477}
478
479bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr *MI,
480                                    std::vector<MachineOperand> &Pred) const {
481  // FIXME: This confuses implicit_def with optional CPSR def.
482  const MCInstrDesc &MCID = MI->getDesc();
483  if (!MCID.getImplicitDefs() && !MCID.hasOptionalDef())
484    return false;
485
486  bool Found = false;
487  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
488    const MachineOperand &MO = MI->getOperand(i);
489    if (MO.isReg() && MO.getReg() == ARM::CPSR) {
490      Pred.push_back(MO);
491      Found = true;
492    }
493  }
494
495  return Found;
496}
497
498/// isPredicable - Return true if the specified instruction can be predicated.
499/// By default, this returns true for every instruction with a
500/// PredicateOperand.
501bool ARMBaseInstrInfo::isPredicable(MachineInstr *MI) const {
502  const MCInstrDesc &MCID = MI->getDesc();
503  if (!MCID.isPredicable())
504    return false;
505
506  if ((MCID.TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) {
507    ARMFunctionInfo *AFI =
508      MI->getParent()->getParent()->getInfo<ARMFunctionInfo>();
509    return AFI->isThumb2Function();
510  }
511  return true;
512}
513
514/// FIXME: Works around a gcc miscompilation with -fstrict-aliasing.
515LLVM_ATTRIBUTE_NOINLINE
516static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
517                                unsigned JTI);
518static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
519                                unsigned JTI) {
520  assert(JTI < JT.size());
521  return JT[JTI].MBBs.size();
522}
523
524/// GetInstSize - Return the size of the specified MachineInstr.
525///
526unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
527  const MachineBasicBlock &MBB = *MI->getParent();
528  const MachineFunction *MF = MBB.getParent();
529  const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
530
531  const MCInstrDesc &MCID = MI->getDesc();
532  if (MCID.getSize())
533    return MCID.getSize();
534
535    // If this machine instr is an inline asm, measure it.
536    if (MI->getOpcode() == ARM::INLINEASM)
537      return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI);
538    if (MI->isLabel())
539      return 0;
540  unsigned Opc = MI->getOpcode();
541    switch (Opc) {
542    case TargetOpcode::IMPLICIT_DEF:
543    case TargetOpcode::KILL:
544    case TargetOpcode::PROLOG_LABEL:
545    case TargetOpcode::EH_LABEL:
546    case TargetOpcode::DBG_VALUE:
547      return 0;
548    case ARM::MOVi16_ga_pcrel:
549    case ARM::MOVTi16_ga_pcrel:
550    case ARM::t2MOVi16_ga_pcrel:
551    case ARM::t2MOVTi16_ga_pcrel:
552      return 4;
553    case ARM::MOVi32imm:
554    case ARM::t2MOVi32imm:
555      return 8;
556    case ARM::CONSTPOOL_ENTRY:
557      // If this machine instr is a constant pool entry, its size is recorded as
558      // operand #2.
559      return MI->getOperand(2).getImm();
560    case ARM::Int_eh_sjlj_longjmp:
561      return 16;
562    case ARM::tInt_eh_sjlj_longjmp:
563      return 10;
564    case ARM::Int_eh_sjlj_setjmp:
565    case ARM::Int_eh_sjlj_setjmp_nofp:
566      return 20;
567    case ARM::tInt_eh_sjlj_setjmp:
568    case ARM::t2Int_eh_sjlj_setjmp:
569    case ARM::t2Int_eh_sjlj_setjmp_nofp:
570      return 12;
571    case ARM::BR_JTr:
572    case ARM::BR_JTm:
573    case ARM::BR_JTadd:
574    case ARM::tBR_JTr:
575    case ARM::t2BR_JT:
576    case ARM::t2TBB_JT:
577    case ARM::t2TBH_JT: {
578      // These are jumptable branches, i.e. a branch followed by an inlined
579      // jumptable. The size is 4 + 4 * number of entries. For TBB, each
580      // entry is one byte; TBH two byte each.
581      unsigned EntrySize = (Opc == ARM::t2TBB_JT)
582        ? 1 : ((Opc == ARM::t2TBH_JT) ? 2 : 4);
583      unsigned NumOps = MCID.getNumOperands();
584      MachineOperand JTOP =
585        MI->getOperand(NumOps - (MCID.isPredicable() ? 3 : 2));
586      unsigned JTI = JTOP.getIndex();
587      const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
588      assert(MJTI != 0);
589      const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
590      assert(JTI < JT.size());
591      // Thumb instructions are 2 byte aligned, but JT entries are 4 byte
592      // 4 aligned. The assembler / linker may add 2 byte padding just before
593      // the JT entries.  The size does not include this padding; the
594      // constant islands pass does separate bookkeeping for it.
595      // FIXME: If we know the size of the function is less than (1 << 16) *2
596      // bytes, we can use 16-bit entries instead. Then there won't be an
597      // alignment issue.
598      unsigned InstSize = (Opc == ARM::tBR_JTr || Opc == ARM::t2BR_JT) ? 2 : 4;
599      unsigned NumEntries = getNumJTEntries(JT, JTI);
600      if (Opc == ARM::t2TBB_JT && (NumEntries & 1))
601        // Make sure the instruction that follows TBB is 2-byte aligned.
602        // FIXME: Constant island pass should insert an "ALIGN" instruction
603        // instead.
604        ++NumEntries;
605      return NumEntries * EntrySize + InstSize;
606    }
607    default:
608      // Otherwise, pseudo-instruction sizes are zero.
609      return 0;
610    }
611  return 0; // Not reached
612}
613
614void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
615                                   MachineBasicBlock::iterator I, DebugLoc DL,
616                                   unsigned DestReg, unsigned SrcReg,
617                                   bool KillSrc) const {
618  bool GPRDest = ARM::GPRRegClass.contains(DestReg);
619  bool GPRSrc  = ARM::GPRRegClass.contains(SrcReg);
620
621  if (GPRDest && GPRSrc) {
622    AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
623                                  .addReg(SrcReg, getKillRegState(KillSrc))));
624    return;
625  }
626
627  bool SPRDest = ARM::SPRRegClass.contains(DestReg);
628  bool SPRSrc  = ARM::SPRRegClass.contains(SrcReg);
629
630  unsigned Opc;
631  if (SPRDest && SPRSrc)
632    Opc = ARM::VMOVS;
633  else if (GPRDest && SPRSrc)
634    Opc = ARM::VMOVRS;
635  else if (SPRDest && GPRSrc)
636    Opc = ARM::VMOVSR;
637  else if (ARM::DPRRegClass.contains(DestReg, SrcReg))
638    Opc = ARM::VMOVD;
639  else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
640    Opc = ARM::VORRq;
641  else if (ARM::QQPRRegClass.contains(DestReg, SrcReg))
642    Opc = ARM::VMOVQQ;
643  else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg))
644    Opc = ARM::VMOVQQQQ;
645  else
646    llvm_unreachable("Impossible reg-to-reg copy");
647
648  MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
649  MIB.addReg(SrcReg, getKillRegState(KillSrc));
650  if (Opc == ARM::VORRq)
651    MIB.addReg(SrcReg, getKillRegState(KillSrc));
652  if (Opc != ARM::VMOVQQ && Opc != ARM::VMOVQQQQ)
653    AddDefaultPred(MIB);
654}
655
656static const
657MachineInstrBuilder &AddDReg(MachineInstrBuilder &MIB,
658                             unsigned Reg, unsigned SubIdx, unsigned State,
659                             const TargetRegisterInfo *TRI) {
660  if (!SubIdx)
661    return MIB.addReg(Reg, State);
662
663  if (TargetRegisterInfo::isPhysicalRegister(Reg))
664    return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
665  return MIB.addReg(Reg, State, SubIdx);
666}
667
668void ARMBaseInstrInfo::
669storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
670                    unsigned SrcReg, bool isKill, int FI,
671                    const TargetRegisterClass *RC,
672                    const TargetRegisterInfo *TRI) const {
673  DebugLoc DL;
674  if (I != MBB.end()) DL = I->getDebugLoc();
675  MachineFunction &MF = *MBB.getParent();
676  MachineFrameInfo &MFI = *MF.getFrameInfo();
677  unsigned Align = MFI.getObjectAlignment(FI);
678
679  MachineMemOperand *MMO =
680    MF.getMachineMemOperand(MachinePointerInfo(
681                                         PseudoSourceValue::getFixedStack(FI)),
682                            MachineMemOperand::MOStore,
683                            MFI.getObjectSize(FI),
684                            Align);
685
686  // tGPR is used sometimes in ARM instructions that need to avoid using
687  // certain registers.  Just treat it as GPR here. Likewise, rGPR.
688  if (RC == ARM::tGPRRegisterClass || RC == ARM::tcGPRRegisterClass
689      || RC == ARM::rGPRRegisterClass)
690    RC = ARM::GPRRegisterClass;
691
692  switch (RC->getID()) {
693  case ARM::GPRRegClassID:
694    AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STRi12))
695                   .addReg(SrcReg, getKillRegState(isKill))
696                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
697    break;
698  case ARM::SPRRegClassID:
699    AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRS))
700                   .addReg(SrcReg, getKillRegState(isKill))
701                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
702    break;
703  case ARM::DPRRegClassID:
704  case ARM::DPR_VFP2RegClassID:
705  case ARM::DPR_8RegClassID:
706    AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRD))
707                   .addReg(SrcReg, getKillRegState(isKill))
708                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
709    break;
710  case ARM::QPRRegClassID:
711  case ARM::QPR_VFP2RegClassID:
712  case ARM::QPR_8RegClassID:
713    if (Align >= 16 && getRegisterInfo().needsStackRealignment(MF)) {
714      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1q64Pseudo))
715                     .addFrameIndex(FI).addImm(16)
716                     .addReg(SrcReg, getKillRegState(isKill))
717                     .addMemOperand(MMO));
718    } else {
719      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMQIA))
720                     .addReg(SrcReg, getKillRegState(isKill))
721                     .addFrameIndex(FI)
722                     .addMemOperand(MMO));
723    }
724    break;
725  case ARM::QQPRRegClassID:
726  case ARM::QQPR_VFP2RegClassID:
727    if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
728      // FIXME: It's possible to only store part of the QQ register if the
729      // spilled def has a sub-register index.
730      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo))
731                     .addFrameIndex(FI).addImm(16)
732                     .addReg(SrcReg, getKillRegState(isKill))
733                     .addMemOperand(MMO));
734    } else {
735      MachineInstrBuilder MIB =
736        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
737                       .addFrameIndex(FI))
738        .addMemOperand(MMO);
739      MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
740      MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
741      MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
742            AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
743    }
744    break;
745  case ARM::QQQQPRRegClassID: {
746    MachineInstrBuilder MIB =
747      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
748                     .addFrameIndex(FI))
749      .addMemOperand(MMO);
750    MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
751    MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
752    MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
753    MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
754    MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
755    MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
756    MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
757          AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
758    break;
759  }
760  default:
761    llvm_unreachable("Unknown regclass!");
762  }
763}
764
765unsigned
766ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
767                                     int &FrameIndex) const {
768  switch (MI->getOpcode()) {
769  default: break;
770  case ARM::STRrs:
771  case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
772    if (MI->getOperand(1).isFI() &&
773        MI->getOperand(2).isReg() &&
774        MI->getOperand(3).isImm() &&
775        MI->getOperand(2).getReg() == 0 &&
776        MI->getOperand(3).getImm() == 0) {
777      FrameIndex = MI->getOperand(1).getIndex();
778      return MI->getOperand(0).getReg();
779    }
780    break;
781  case ARM::STRi12:
782  case ARM::t2STRi12:
783  case ARM::tSTRspi:
784  case ARM::VSTRD:
785  case ARM::VSTRS:
786    if (MI->getOperand(1).isFI() &&
787        MI->getOperand(2).isImm() &&
788        MI->getOperand(2).getImm() == 0) {
789      FrameIndex = MI->getOperand(1).getIndex();
790      return MI->getOperand(0).getReg();
791    }
792    break;
793  case ARM::VST1q64Pseudo:
794    if (MI->getOperand(0).isFI() &&
795        MI->getOperand(2).getSubReg() == 0) {
796      FrameIndex = MI->getOperand(0).getIndex();
797      return MI->getOperand(2).getReg();
798    }
799    break;
800  case ARM::VSTMQIA:
801    if (MI->getOperand(1).isFI() &&
802        MI->getOperand(0).getSubReg() == 0) {
803      FrameIndex = MI->getOperand(1).getIndex();
804      return MI->getOperand(0).getReg();
805    }
806    break;
807  }
808
809  return 0;
810}
811
812void ARMBaseInstrInfo::
813loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
814                     unsigned DestReg, int FI,
815                     const TargetRegisterClass *RC,
816                     const TargetRegisterInfo *TRI) const {
817  DebugLoc DL;
818  if (I != MBB.end()) DL = I->getDebugLoc();
819  MachineFunction &MF = *MBB.getParent();
820  MachineFrameInfo &MFI = *MF.getFrameInfo();
821  unsigned Align = MFI.getObjectAlignment(FI);
822  MachineMemOperand *MMO =
823    MF.getMachineMemOperand(
824                    MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
825                            MachineMemOperand::MOLoad,
826                            MFI.getObjectSize(FI),
827                            Align);
828
829  // tGPR is used sometimes in ARM instructions that need to avoid using
830  // certain registers.  Just treat it as GPR here.
831  if (RC == ARM::tGPRRegisterClass || RC == ARM::tcGPRRegisterClass
832      || RC == ARM::rGPRRegisterClass)
833    RC = ARM::GPRRegisterClass;
834
835  switch (RC->getID()) {
836  case ARM::GPRRegClassID:
837    AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
838                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
839    break;
840  case ARM::SPRRegClassID:
841    AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
842                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
843    break;
844  case ARM::DPRRegClassID:
845  case ARM::DPR_VFP2RegClassID:
846  case ARM::DPR_8RegClassID:
847    AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
848                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
849    break;
850  case ARM::QPRRegClassID:
851  case ARM::QPR_VFP2RegClassID:
852  case ARM::QPR_8RegClassID:
853    if (Align >= 16 && getRegisterInfo().needsStackRealignment(MF)) {
854      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1q64Pseudo), DestReg)
855                     .addFrameIndex(FI).addImm(16)
856                     .addMemOperand(MMO));
857    } else {
858      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
859                     .addFrameIndex(FI)
860                     .addMemOperand(MMO));
861    }
862    break;
863  case ARM::QQPRRegClassID:
864  case ARM::QQPR_VFP2RegClassID:
865    if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
866      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
867                     .addFrameIndex(FI).addImm(16)
868                     .addMemOperand(MMO));
869    } else {
870      MachineInstrBuilder MIB =
871        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
872                       .addFrameIndex(FI))
873        .addMemOperand(MMO);
874      MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::Define, TRI);
875      MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::Define, TRI);
876      MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::Define, TRI);
877            AddDReg(MIB, DestReg, ARM::dsub_3, RegState::Define, TRI);
878    }
879    break;
880  case ARM::QQQQPRRegClassID: {
881    MachineInstrBuilder MIB =
882      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
883                     .addFrameIndex(FI))
884      .addMemOperand(MMO);
885    MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::Define, TRI);
886    MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::Define, TRI);
887    MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::Define, TRI);
888    MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::Define, TRI);
889    MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::Define, TRI);
890    MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::Define, TRI);
891    MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::Define, TRI);
892    AddDReg(MIB, DestReg, ARM::dsub_7, RegState::Define, TRI);
893    break;
894  }
895  default:
896    llvm_unreachable("Unknown regclass!");
897  }
898}
899
900unsigned
901ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
902                                      int &FrameIndex) const {
903  switch (MI->getOpcode()) {
904  default: break;
905  case ARM::LDRrs:
906  case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
907    if (MI->getOperand(1).isFI() &&
908        MI->getOperand(2).isReg() &&
909        MI->getOperand(3).isImm() &&
910        MI->getOperand(2).getReg() == 0 &&
911        MI->getOperand(3).getImm() == 0) {
912      FrameIndex = MI->getOperand(1).getIndex();
913      return MI->getOperand(0).getReg();
914    }
915    break;
916  case ARM::LDRi12:
917  case ARM::t2LDRi12:
918  case ARM::tLDRspi:
919  case ARM::VLDRD:
920  case ARM::VLDRS:
921    if (MI->getOperand(1).isFI() &&
922        MI->getOperand(2).isImm() &&
923        MI->getOperand(2).getImm() == 0) {
924      FrameIndex = MI->getOperand(1).getIndex();
925      return MI->getOperand(0).getReg();
926    }
927    break;
928  case ARM::VLD1q64Pseudo:
929    if (MI->getOperand(1).isFI() &&
930        MI->getOperand(0).getSubReg() == 0) {
931      FrameIndex = MI->getOperand(1).getIndex();
932      return MI->getOperand(0).getReg();
933    }
934    break;
935  case ARM::VLDMQIA:
936    if (MI->getOperand(1).isFI() &&
937        MI->getOperand(0).getSubReg() == 0) {
938      FrameIndex = MI->getOperand(1).getIndex();
939      return MI->getOperand(0).getReg();
940    }
941    break;
942  }
943
944  return 0;
945}
946
947MachineInstr*
948ARMBaseInstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
949                                           int FrameIx, uint64_t Offset,
950                                           const MDNode *MDPtr,
951                                           DebugLoc DL) const {
952  MachineInstrBuilder MIB = BuildMI(MF, DL, get(ARM::DBG_VALUE))
953    .addFrameIndex(FrameIx).addImm(0).addImm(Offset).addMetadata(MDPtr);
954  return &*MIB;
955}
956
957/// Create a copy of a const pool value. Update CPI to the new index and return
958/// the label UID.
959static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
960  MachineConstantPool *MCP = MF.getConstantPool();
961  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
962
963  const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
964  assert(MCPE.isMachineConstantPoolEntry() &&
965         "Expecting a machine constantpool entry!");
966  ARMConstantPoolValue *ACPV =
967    static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
968
969  unsigned PCLabelId = AFI->createPICLabelUId();
970  ARMConstantPoolValue *NewCPV = 0;
971  // FIXME: The below assumes PIC relocation model and that the function
972  // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
973  // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
974  // instructions, so that's probably OK, but is PIC always correct when
975  // we get here?
976  if (ACPV->isGlobalValue())
977    NewCPV = new ARMConstantPoolValue(ACPV->getGV(), PCLabelId,
978                                      ARMCP::CPValue, 4);
979  else if (ACPV->isExtSymbol())
980    NewCPV = new ARMConstantPoolValue(MF.getFunction()->getContext(),
981                                      ACPV->getSymbol(), PCLabelId, 4);
982  else if (ACPV->isBlockAddress())
983    NewCPV = new ARMConstantPoolValue(ACPV->getBlockAddress(), PCLabelId,
984                                      ARMCP::CPBlockAddress, 4);
985  else if (ACPV->isLSDA())
986    NewCPV = new ARMConstantPoolValue(MF.getFunction(), PCLabelId,
987                                      ARMCP::CPLSDA, 4);
988  else
989    llvm_unreachable("Unexpected ARM constantpool value type!!");
990  CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
991  return PCLabelId;
992}
993
994void ARMBaseInstrInfo::
995reMaterialize(MachineBasicBlock &MBB,
996              MachineBasicBlock::iterator I,
997              unsigned DestReg, unsigned SubIdx,
998              const MachineInstr *Orig,
999              const TargetRegisterInfo &TRI) const {
1000  unsigned Opcode = Orig->getOpcode();
1001  switch (Opcode) {
1002  default: {
1003    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
1004    MI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
1005    MBB.insert(I, MI);
1006    break;
1007  }
1008  case ARM::tLDRpci_pic:
1009  case ARM::t2LDRpci_pic: {
1010    MachineFunction &MF = *MBB.getParent();
1011    unsigned CPI = Orig->getOperand(1).getIndex();
1012    unsigned PCLabelId = duplicateCPV(MF, CPI);
1013    MachineInstrBuilder MIB = BuildMI(MBB, I, Orig->getDebugLoc(), get(Opcode),
1014                                      DestReg)
1015      .addConstantPoolIndex(CPI).addImm(PCLabelId);
1016    MIB->setMemRefs(Orig->memoperands_begin(), Orig->memoperands_end());
1017    break;
1018  }
1019  }
1020}
1021
1022MachineInstr *
1023ARMBaseInstrInfo::duplicate(MachineInstr *Orig, MachineFunction &MF) const {
1024  MachineInstr *MI = TargetInstrInfoImpl::duplicate(Orig, MF);
1025  switch(Orig->getOpcode()) {
1026  case ARM::tLDRpci_pic:
1027  case ARM::t2LDRpci_pic: {
1028    unsigned CPI = Orig->getOperand(1).getIndex();
1029    unsigned PCLabelId = duplicateCPV(MF, CPI);
1030    Orig->getOperand(1).setIndex(CPI);
1031    Orig->getOperand(2).setImm(PCLabelId);
1032    break;
1033  }
1034  }
1035  return MI;
1036}
1037
1038bool ARMBaseInstrInfo::produceSameValue(const MachineInstr *MI0,
1039                                        const MachineInstr *MI1,
1040                                        const MachineRegisterInfo *MRI) const {
1041  int Opcode = MI0->getOpcode();
1042  if (Opcode == ARM::t2LDRpci ||
1043      Opcode == ARM::t2LDRpci_pic ||
1044      Opcode == ARM::tLDRpci ||
1045      Opcode == ARM::tLDRpci_pic ||
1046      Opcode == ARM::MOV_ga_dyn ||
1047      Opcode == ARM::MOV_ga_pcrel ||
1048      Opcode == ARM::MOV_ga_pcrel_ldr ||
1049      Opcode == ARM::t2MOV_ga_dyn ||
1050      Opcode == ARM::t2MOV_ga_pcrel) {
1051    if (MI1->getOpcode() != Opcode)
1052      return false;
1053    if (MI0->getNumOperands() != MI1->getNumOperands())
1054      return false;
1055
1056    const MachineOperand &MO0 = MI0->getOperand(1);
1057    const MachineOperand &MO1 = MI1->getOperand(1);
1058    if (MO0.getOffset() != MO1.getOffset())
1059      return false;
1060
1061    if (Opcode == ARM::MOV_ga_dyn ||
1062        Opcode == ARM::MOV_ga_pcrel ||
1063        Opcode == ARM::MOV_ga_pcrel_ldr ||
1064        Opcode == ARM::t2MOV_ga_dyn ||
1065        Opcode == ARM::t2MOV_ga_pcrel)
1066      // Ignore the PC labels.
1067      return MO0.getGlobal() == MO1.getGlobal();
1068
1069    const MachineFunction *MF = MI0->getParent()->getParent();
1070    const MachineConstantPool *MCP = MF->getConstantPool();
1071    int CPI0 = MO0.getIndex();
1072    int CPI1 = MO1.getIndex();
1073    const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1074    const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1075    bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1076    bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1077    if (isARMCP0 && isARMCP1) {
1078      ARMConstantPoolValue *ACPV0 =
1079        static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1080      ARMConstantPoolValue *ACPV1 =
1081        static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1082      return ACPV0->hasSameValue(ACPV1);
1083    } else if (!isARMCP0 && !isARMCP1) {
1084      return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1085    }
1086    return false;
1087  } else if (Opcode == ARM::PICLDR) {
1088    if (MI1->getOpcode() != Opcode)
1089      return false;
1090    if (MI0->getNumOperands() != MI1->getNumOperands())
1091      return false;
1092
1093    unsigned Addr0 = MI0->getOperand(1).getReg();
1094    unsigned Addr1 = MI1->getOperand(1).getReg();
1095    if (Addr0 != Addr1) {
1096      if (!MRI ||
1097          !TargetRegisterInfo::isVirtualRegister(Addr0) ||
1098          !TargetRegisterInfo::isVirtualRegister(Addr1))
1099        return false;
1100
1101      // This assumes SSA form.
1102      MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1103      MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1104      // Check if the loaded value, e.g. a constantpool of a global address, are
1105      // the same.
1106      if (!produceSameValue(Def0, Def1, MRI))
1107        return false;
1108    }
1109
1110    for (unsigned i = 3, e = MI0->getNumOperands(); i != e; ++i) {
1111      // %vreg12<def> = PICLDR %vreg11, 0, pred:14, pred:%noreg
1112      const MachineOperand &MO0 = MI0->getOperand(i);
1113      const MachineOperand &MO1 = MI1->getOperand(i);
1114      if (!MO0.isIdenticalTo(MO1))
1115        return false;
1116    }
1117    return true;
1118  }
1119
1120  return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1121}
1122
1123/// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1124/// determine if two loads are loading from the same base address. It should
1125/// only return true if the base pointers are the same and the only differences
1126/// between the two addresses is the offset. It also returns the offsets by
1127/// reference.
1128bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1129                                               int64_t &Offset1,
1130                                               int64_t &Offset2) const {
1131  // Don't worry about Thumb: just ARM and Thumb2.
1132  if (Subtarget.isThumb1Only()) return false;
1133
1134  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1135    return false;
1136
1137  switch (Load1->getMachineOpcode()) {
1138  default:
1139    return false;
1140  case ARM::LDRi12:
1141  case ARM::LDRBi12:
1142  case ARM::LDRD:
1143  case ARM::LDRH:
1144  case ARM::LDRSB:
1145  case ARM::LDRSH:
1146  case ARM::VLDRD:
1147  case ARM::VLDRS:
1148  case ARM::t2LDRi8:
1149  case ARM::t2LDRDi8:
1150  case ARM::t2LDRSHi8:
1151  case ARM::t2LDRi12:
1152  case ARM::t2LDRSHi12:
1153    break;
1154  }
1155
1156  switch (Load2->getMachineOpcode()) {
1157  default:
1158    return false;
1159  case ARM::LDRi12:
1160  case ARM::LDRBi12:
1161  case ARM::LDRD:
1162  case ARM::LDRH:
1163  case ARM::LDRSB:
1164  case ARM::LDRSH:
1165  case ARM::VLDRD:
1166  case ARM::VLDRS:
1167  case ARM::t2LDRi8:
1168  case ARM::t2LDRDi8:
1169  case ARM::t2LDRSHi8:
1170  case ARM::t2LDRi12:
1171  case ARM::t2LDRSHi12:
1172    break;
1173  }
1174
1175  // Check if base addresses and chain operands match.
1176  if (Load1->getOperand(0) != Load2->getOperand(0) ||
1177      Load1->getOperand(4) != Load2->getOperand(4))
1178    return false;
1179
1180  // Index should be Reg0.
1181  if (Load1->getOperand(3) != Load2->getOperand(3))
1182    return false;
1183
1184  // Determine the offsets.
1185  if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
1186      isa<ConstantSDNode>(Load2->getOperand(1))) {
1187    Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
1188    Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
1189    return true;
1190  }
1191
1192  return false;
1193}
1194
1195/// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
1196/// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
1197/// be scheduled togther. On some targets if two loads are loading from
1198/// addresses in the same cache line, it's better if they are scheduled
1199/// together. This function takes two integers that represent the load offsets
1200/// from the common base address. It returns true if it decides it's desirable
1201/// to schedule the two loads together. "NumLoads" is the number of loads that
1202/// have already been scheduled after Load1.
1203bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1204                                               int64_t Offset1, int64_t Offset2,
1205                                               unsigned NumLoads) const {
1206  // Don't worry about Thumb: just ARM and Thumb2.
1207  if (Subtarget.isThumb1Only()) return false;
1208
1209  assert(Offset2 > Offset1);
1210
1211  if ((Offset2 - Offset1) / 8 > 64)
1212    return false;
1213
1214  if (Load1->getMachineOpcode() != Load2->getMachineOpcode())
1215    return false;  // FIXME: overly conservative?
1216
1217  // Four loads in a row should be sufficient.
1218  if (NumLoads >= 3)
1219    return false;
1220
1221  return true;
1222}
1223
1224bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
1225                                            const MachineBasicBlock *MBB,
1226                                            const MachineFunction &MF) const {
1227  // Debug info is never a scheduling boundary. It's necessary to be explicit
1228  // due to the special treatment of IT instructions below, otherwise a
1229  // dbg_value followed by an IT will result in the IT instruction being
1230  // considered a scheduling hazard, which is wrong. It should be the actual
1231  // instruction preceding the dbg_value instruction(s), just like it is
1232  // when debug info is not present.
1233  if (MI->isDebugValue())
1234    return false;
1235
1236  // Terminators and labels can't be scheduled around.
1237  if (MI->getDesc().isTerminator() || MI->isLabel())
1238    return true;
1239
1240  // Treat the start of the IT block as a scheduling boundary, but schedule
1241  // t2IT along with all instructions following it.
1242  // FIXME: This is a big hammer. But the alternative is to add all potential
1243  // true and anti dependencies to IT block instructions as implicit operands
1244  // to the t2IT instruction. The added compile time and complexity does not
1245  // seem worth it.
1246  MachineBasicBlock::const_iterator I = MI;
1247  // Make sure to skip any dbg_value instructions
1248  while (++I != MBB->end() && I->isDebugValue())
1249    ;
1250  if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
1251    return true;
1252
1253  // Don't attempt to schedule around any instruction that defines
1254  // a stack-oriented pointer, as it's unlikely to be profitable. This
1255  // saves compile time, because it doesn't require every single
1256  // stack slot reference to depend on the instruction that does the
1257  // modification.
1258  if (MI->definesRegister(ARM::SP))
1259    return true;
1260
1261  return false;
1262}
1263
1264bool ARMBaseInstrInfo::
1265isProfitableToIfCvt(MachineBasicBlock &MBB,
1266                    unsigned NumCycles, unsigned ExtraPredCycles,
1267                    const BranchProbability &Probability) const {
1268  if (!NumCycles)
1269    return false;
1270
1271  // Attempt to estimate the relative costs of predication versus branching.
1272  unsigned UnpredCost = Probability.getNumerator() * NumCycles;
1273  UnpredCost /= Probability.getDenominator();
1274  UnpredCost += 1; // The branch itself
1275  UnpredCost += Subtarget.getMispredictionPenalty() / 10;
1276
1277  return (NumCycles + ExtraPredCycles) <= UnpredCost;
1278}
1279
1280bool ARMBaseInstrInfo::
1281isProfitableToIfCvt(MachineBasicBlock &TMBB,
1282                    unsigned TCycles, unsigned TExtra,
1283                    MachineBasicBlock &FMBB,
1284                    unsigned FCycles, unsigned FExtra,
1285                    const BranchProbability &Probability) const {
1286  if (!TCycles || !FCycles)
1287    return false;
1288
1289  // Attempt to estimate the relative costs of predication versus branching.
1290  unsigned TUnpredCost = Probability.getNumerator() * TCycles;
1291  TUnpredCost /= Probability.getDenominator();
1292
1293  uint32_t Comp = Probability.getDenominator() - Probability.getNumerator();
1294  unsigned FUnpredCost = Comp * FCycles;
1295  FUnpredCost /= Probability.getDenominator();
1296
1297  unsigned UnpredCost = TUnpredCost + FUnpredCost;
1298  UnpredCost += 1; // The branch itself
1299  UnpredCost += Subtarget.getMispredictionPenalty() / 10;
1300
1301  return (TCycles + FCycles + TExtra + FExtra) <= UnpredCost;
1302}
1303
1304/// getInstrPredicate - If instruction is predicated, returns its predicate
1305/// condition, otherwise returns AL. It also returns the condition code
1306/// register by reference.
1307ARMCC::CondCodes
1308llvm::getInstrPredicate(const MachineInstr *MI, unsigned &PredReg) {
1309  int PIdx = MI->findFirstPredOperandIdx();
1310  if (PIdx == -1) {
1311    PredReg = 0;
1312    return ARMCC::AL;
1313  }
1314
1315  PredReg = MI->getOperand(PIdx+1).getReg();
1316  return (ARMCC::CondCodes)MI->getOperand(PIdx).getImm();
1317}
1318
1319
1320int llvm::getMatchingCondBranchOpcode(int Opc) {
1321  if (Opc == ARM::B)
1322    return ARM::Bcc;
1323  else if (Opc == ARM::tB)
1324    return ARM::tBcc;
1325  else if (Opc == ARM::t2B)
1326      return ARM::t2Bcc;
1327
1328  llvm_unreachable("Unknown unconditional branch opcode!");
1329  return 0;
1330}
1331
1332
1333void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
1334                               MachineBasicBlock::iterator &MBBI, DebugLoc dl,
1335                               unsigned DestReg, unsigned BaseReg, int NumBytes,
1336                               ARMCC::CondCodes Pred, unsigned PredReg,
1337                               const ARMBaseInstrInfo &TII, unsigned MIFlags) {
1338  bool isSub = NumBytes < 0;
1339  if (isSub) NumBytes = -NumBytes;
1340
1341  while (NumBytes) {
1342    unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
1343    unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
1344    assert(ThisVal && "Didn't extract field correctly");
1345
1346    // We will handle these bits from offset, clear them.
1347    NumBytes &= ~ThisVal;
1348
1349    assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
1350
1351    // Build the new ADD / SUB.
1352    unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
1353    BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
1354      .addReg(BaseReg, RegState::Kill).addImm(ThisVal)
1355      .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
1356      .setMIFlags(MIFlags);
1357    BaseReg = DestReg;
1358  }
1359}
1360
1361bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
1362                                unsigned FrameReg, int &Offset,
1363                                const ARMBaseInstrInfo &TII) {
1364  unsigned Opcode = MI.getOpcode();
1365  const MCInstrDesc &Desc = MI.getDesc();
1366  unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
1367  bool isSub = false;
1368
1369  // Memory operands in inline assembly always use AddrMode2.
1370  if (Opcode == ARM::INLINEASM)
1371    AddrMode = ARMII::AddrMode2;
1372
1373  if (Opcode == ARM::ADDri) {
1374    Offset += MI.getOperand(FrameRegIdx+1).getImm();
1375    if (Offset == 0) {
1376      // Turn it into a move.
1377      MI.setDesc(TII.get(ARM::MOVr));
1378      MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
1379      MI.RemoveOperand(FrameRegIdx+1);
1380      Offset = 0;
1381      return true;
1382    } else if (Offset < 0) {
1383      Offset = -Offset;
1384      isSub = true;
1385      MI.setDesc(TII.get(ARM::SUBri));
1386    }
1387
1388    // Common case: small offset, fits into instruction.
1389    if (ARM_AM::getSOImmVal(Offset) != -1) {
1390      // Replace the FrameIndex with sp / fp
1391      MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
1392      MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
1393      Offset = 0;
1394      return true;
1395    }
1396
1397    // Otherwise, pull as much of the immedidate into this ADDri/SUBri
1398    // as possible.
1399    unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
1400    unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
1401
1402    // We will handle these bits from offset, clear them.
1403    Offset &= ~ThisImmVal;
1404
1405    // Get the properly encoded SOImmVal field.
1406    assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
1407           "Bit extraction didn't work?");
1408    MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
1409 } else {
1410    unsigned ImmIdx = 0;
1411    int InstrOffs = 0;
1412    unsigned NumBits = 0;
1413    unsigned Scale = 1;
1414    switch (AddrMode) {
1415    case ARMII::AddrMode_i12: {
1416      ImmIdx = FrameRegIdx + 1;
1417      InstrOffs = MI.getOperand(ImmIdx).getImm();
1418      NumBits = 12;
1419      break;
1420    }
1421    case ARMII::AddrMode2: {
1422      ImmIdx = FrameRegIdx+2;
1423      InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
1424      if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
1425        InstrOffs *= -1;
1426      NumBits = 12;
1427      break;
1428    }
1429    case ARMII::AddrMode3: {
1430      ImmIdx = FrameRegIdx+2;
1431      InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
1432      if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
1433        InstrOffs *= -1;
1434      NumBits = 8;
1435      break;
1436    }
1437    case ARMII::AddrMode4:
1438    case ARMII::AddrMode6:
1439      // Can't fold any offset even if it's zero.
1440      return false;
1441    case ARMII::AddrMode5: {
1442      ImmIdx = FrameRegIdx+1;
1443      InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
1444      if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
1445        InstrOffs *= -1;
1446      NumBits = 8;
1447      Scale = 4;
1448      break;
1449    }
1450    default:
1451      llvm_unreachable("Unsupported addressing mode!");
1452      break;
1453    }
1454
1455    Offset += InstrOffs * Scale;
1456    assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
1457    if (Offset < 0) {
1458      Offset = -Offset;
1459      isSub = true;
1460    }
1461
1462    // Attempt to fold address comp. if opcode has offset bits
1463    if (NumBits > 0) {
1464      // Common case: small offset, fits into instruction.
1465      MachineOperand &ImmOp = MI.getOperand(ImmIdx);
1466      int ImmedOffset = Offset / Scale;
1467      unsigned Mask = (1 << NumBits) - 1;
1468      if ((unsigned)Offset <= Mask * Scale) {
1469        // Replace the FrameIndex with sp
1470        MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
1471        // FIXME: When addrmode2 goes away, this will simplify (like the
1472        // T2 version), as the LDR.i12 versions don't need the encoding
1473        // tricks for the offset value.
1474        if (isSub) {
1475          if (AddrMode == ARMII::AddrMode_i12)
1476            ImmedOffset = -ImmedOffset;
1477          else
1478            ImmedOffset |= 1 << NumBits;
1479        }
1480        ImmOp.ChangeToImmediate(ImmedOffset);
1481        Offset = 0;
1482        return true;
1483      }
1484
1485      // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
1486      ImmedOffset = ImmedOffset & Mask;
1487      if (isSub) {
1488        if (AddrMode == ARMII::AddrMode_i12)
1489          ImmedOffset = -ImmedOffset;
1490        else
1491          ImmedOffset |= 1 << NumBits;
1492      }
1493      ImmOp.ChangeToImmediate(ImmedOffset);
1494      Offset &= ~(Mask*Scale);
1495    }
1496  }
1497
1498  Offset = (isSub) ? -Offset : Offset;
1499  return Offset == 0;
1500}
1501
1502bool ARMBaseInstrInfo::
1503AnalyzeCompare(const MachineInstr *MI, unsigned &SrcReg, int &CmpMask,
1504               int &CmpValue) const {
1505  switch (MI->getOpcode()) {
1506  default: break;
1507  case ARM::CMPri:
1508  case ARM::t2CMPri:
1509    SrcReg = MI->getOperand(0).getReg();
1510    CmpMask = ~0;
1511    CmpValue = MI->getOperand(1).getImm();
1512    return true;
1513  case ARM::TSTri:
1514  case ARM::t2TSTri:
1515    SrcReg = MI->getOperand(0).getReg();
1516    CmpMask = MI->getOperand(1).getImm();
1517    CmpValue = 0;
1518    return true;
1519  }
1520
1521  return false;
1522}
1523
1524/// isSuitableForMask - Identify a suitable 'and' instruction that
1525/// operates on the given source register and applies the same mask
1526/// as a 'tst' instruction. Provide a limited look-through for copies.
1527/// When successful, MI will hold the found instruction.
1528static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
1529                              int CmpMask, bool CommonUse) {
1530  switch (MI->getOpcode()) {
1531    case ARM::ANDri:
1532    case ARM::t2ANDri:
1533      if (CmpMask != MI->getOperand(2).getImm())
1534        return false;
1535      if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
1536        return true;
1537      break;
1538    case ARM::COPY: {
1539      // Walk down one instruction which is potentially an 'and'.
1540      const MachineInstr &Copy = *MI;
1541      MachineBasicBlock::iterator AND(
1542        llvm::next(MachineBasicBlock::iterator(MI)));
1543      if (AND == MI->getParent()->end()) return false;
1544      MI = AND;
1545      return isSuitableForMask(MI, Copy.getOperand(0).getReg(),
1546                               CmpMask, true);
1547    }
1548  }
1549
1550  return false;
1551}
1552
1553/// OptimizeCompareInstr - Convert the instruction supplying the argument to the
1554/// comparison into one that sets the zero bit in the flags register.
1555bool ARMBaseInstrInfo::
1556OptimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, int CmpMask,
1557                     int CmpValue, const MachineRegisterInfo *MRI) const {
1558  if (CmpValue != 0)
1559    return false;
1560
1561  MachineRegisterInfo::def_iterator DI = MRI->def_begin(SrcReg);
1562  if (llvm::next(DI) != MRI->def_end())
1563    // Only support one definition.
1564    return false;
1565
1566  MachineInstr *MI = &*DI;
1567
1568  // Masked compares sometimes use the same register as the corresponding 'and'.
1569  if (CmpMask != ~0) {
1570    if (!isSuitableForMask(MI, SrcReg, CmpMask, false)) {
1571      MI = 0;
1572      for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SrcReg),
1573           UE = MRI->use_end(); UI != UE; ++UI) {
1574        if (UI->getParent() != CmpInstr->getParent()) continue;
1575        MachineInstr *PotentialAND = &*UI;
1576        if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true))
1577          continue;
1578        MI = PotentialAND;
1579        break;
1580      }
1581      if (!MI) return false;
1582    }
1583  }
1584
1585  // Conservatively refuse to convert an instruction which isn't in the same BB
1586  // as the comparison.
1587  if (MI->getParent() != CmpInstr->getParent())
1588    return false;
1589
1590  // Check that CPSR isn't set between the comparison instruction and the one we
1591  // want to change.
1592  MachineBasicBlock::const_iterator I = CmpInstr, E = MI,
1593    B = MI->getParent()->begin();
1594
1595  // Early exit if CmpInstr is at the beginning of the BB.
1596  if (I == B) return false;
1597
1598  --I;
1599  for (; I != E; --I) {
1600    const MachineInstr &Instr = *I;
1601
1602    for (unsigned IO = 0, EO = Instr.getNumOperands(); IO != EO; ++IO) {
1603      const MachineOperand &MO = Instr.getOperand(IO);
1604      if (!MO.isReg()) continue;
1605
1606      // This instruction modifies or uses CPSR after the one we want to
1607      // change. We can't do this transformation.
1608      if (MO.getReg() == ARM::CPSR)
1609        return false;
1610    }
1611
1612    if (I == B)
1613      // The 'and' is below the comparison instruction.
1614      return false;
1615  }
1616
1617  // Set the "zero" bit in CPSR.
1618  switch (MI->getOpcode()) {
1619  default: break;
1620  case ARM::RSBrr:
1621  case ARM::RSBri:
1622  case ARM::RSCrr:
1623  case ARM::RSCri:
1624  case ARM::ADDrr:
1625  case ARM::ADDri:
1626  case ARM::ADCrr:
1627  case ARM::ADCri:
1628  case ARM::SUBrr:
1629  case ARM::SUBri:
1630  case ARM::SBCrr:
1631  case ARM::SBCri:
1632  case ARM::t2RSBri:
1633  case ARM::t2ADDrr:
1634  case ARM::t2ADDri:
1635  case ARM::t2ADCrr:
1636  case ARM::t2ADCri:
1637  case ARM::t2SUBrr:
1638  case ARM::t2SUBri:
1639  case ARM::t2SBCrr:
1640  case ARM::t2SBCri:
1641  case ARM::ANDrr:
1642  case ARM::ANDri:
1643  case ARM::t2ANDrr:
1644  case ARM::t2ANDri:
1645  case ARM::ORRrr:
1646  case ARM::ORRri:
1647  case ARM::t2ORRrr:
1648  case ARM::t2ORRri:
1649  case ARM::EORrr:
1650  case ARM::EORri:
1651  case ARM::t2EORrr:
1652  case ARM::t2EORri: {
1653    // Scan forward for the use of CPSR, if it's a conditional code requires
1654    // checking of V bit, then this is not safe to do. If we can't find the
1655    // CPSR use (i.e. used in another block), then it's not safe to perform
1656    // the optimization.
1657    bool isSafe = false;
1658    I = CmpInstr;
1659    E = MI->getParent()->end();
1660    while (!isSafe && ++I != E) {
1661      const MachineInstr &Instr = *I;
1662      for (unsigned IO = 0, EO = Instr.getNumOperands();
1663           !isSafe && IO != EO; ++IO) {
1664        const MachineOperand &MO = Instr.getOperand(IO);
1665        if (!MO.isReg() || MO.getReg() != ARM::CPSR)
1666          continue;
1667        if (MO.isDef()) {
1668          isSafe = true;
1669          break;
1670        }
1671        // Condition code is after the operand before CPSR.
1672        ARMCC::CondCodes CC = (ARMCC::CondCodes)Instr.getOperand(IO-1).getImm();
1673        switch (CC) {
1674        default:
1675          isSafe = true;
1676          break;
1677        case ARMCC::VS:
1678        case ARMCC::VC:
1679        case ARMCC::GE:
1680        case ARMCC::LT:
1681        case ARMCC::GT:
1682        case ARMCC::LE:
1683          return false;
1684        }
1685      }
1686    }
1687
1688    if (!isSafe)
1689      return false;
1690
1691    // Toggle the optional operand to CPSR.
1692    MI->getOperand(5).setReg(ARM::CPSR);
1693    MI->getOperand(5).setIsDef(true);
1694    CmpInstr->eraseFromParent();
1695    return true;
1696  }
1697  }
1698
1699  return false;
1700}
1701
1702bool ARMBaseInstrInfo::FoldImmediate(MachineInstr *UseMI,
1703                                     MachineInstr *DefMI, unsigned Reg,
1704                                     MachineRegisterInfo *MRI) const {
1705  // Fold large immediates into add, sub, or, xor.
1706  unsigned DefOpc = DefMI->getOpcode();
1707  if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
1708    return false;
1709  if (!DefMI->getOperand(1).isImm())
1710    // Could be t2MOVi32imm <ga:xx>
1711    return false;
1712
1713  if (!MRI->hasOneNonDBGUse(Reg))
1714    return false;
1715
1716  unsigned UseOpc = UseMI->getOpcode();
1717  unsigned NewUseOpc = 0;
1718  uint32_t ImmVal = (uint32_t)DefMI->getOperand(1).getImm();
1719  uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
1720  bool Commute = false;
1721  switch (UseOpc) {
1722  default: return false;
1723  case ARM::SUBrr:
1724  case ARM::ADDrr:
1725  case ARM::ORRrr:
1726  case ARM::EORrr:
1727  case ARM::t2SUBrr:
1728  case ARM::t2ADDrr:
1729  case ARM::t2ORRrr:
1730  case ARM::t2EORrr: {
1731    Commute = UseMI->getOperand(2).getReg() != Reg;
1732    switch (UseOpc) {
1733    default: break;
1734    case ARM::SUBrr: {
1735      if (Commute)
1736        return false;
1737      ImmVal = -ImmVal;
1738      NewUseOpc = ARM::SUBri;
1739      // Fallthrough
1740    }
1741    case ARM::ADDrr:
1742    case ARM::ORRrr:
1743    case ARM::EORrr: {
1744      if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
1745        return false;
1746      SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
1747      SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
1748      switch (UseOpc) {
1749      default: break;
1750      case ARM::ADDrr: NewUseOpc = ARM::ADDri; break;
1751      case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
1752      case ARM::EORrr: NewUseOpc = ARM::EORri; break;
1753      }
1754      break;
1755    }
1756    case ARM::t2SUBrr: {
1757      if (Commute)
1758        return false;
1759      ImmVal = -ImmVal;
1760      NewUseOpc = ARM::t2SUBri;
1761      // Fallthrough
1762    }
1763    case ARM::t2ADDrr:
1764    case ARM::t2ORRrr:
1765    case ARM::t2EORrr: {
1766      if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
1767        return false;
1768      SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
1769      SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
1770      switch (UseOpc) {
1771      default: break;
1772      case ARM::t2ADDrr: NewUseOpc = ARM::t2ADDri; break;
1773      case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
1774      case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
1775      }
1776      break;
1777    }
1778    }
1779  }
1780  }
1781
1782  unsigned OpIdx = Commute ? 2 : 1;
1783  unsigned Reg1 = UseMI->getOperand(OpIdx).getReg();
1784  bool isKill = UseMI->getOperand(OpIdx).isKill();
1785  unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg));
1786  AddDefaultCC(AddDefaultPred(BuildMI(*UseMI->getParent(),
1787                                      *UseMI, UseMI->getDebugLoc(),
1788                                      get(NewUseOpc), NewReg)
1789                              .addReg(Reg1, getKillRegState(isKill))
1790                              .addImm(SOImmValV1)));
1791  UseMI->setDesc(get(NewUseOpc));
1792  UseMI->getOperand(1).setReg(NewReg);
1793  UseMI->getOperand(1).setIsKill();
1794  UseMI->getOperand(2).ChangeToImmediate(SOImmValV2);
1795  DefMI->eraseFromParent();
1796  return true;
1797}
1798
1799unsigned
1800ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
1801                                 const MachineInstr *MI) const {
1802  if (!ItinData || ItinData->isEmpty())
1803    return 1;
1804
1805  const MCInstrDesc &Desc = MI->getDesc();
1806  unsigned Class = Desc.getSchedClass();
1807  unsigned UOps = ItinData->Itineraries[Class].NumMicroOps;
1808  if (UOps)
1809    return UOps;
1810
1811  unsigned Opc = MI->getOpcode();
1812  switch (Opc) {
1813  default:
1814    llvm_unreachable("Unexpected multi-uops instruction!");
1815    break;
1816  case ARM::VLDMQIA:
1817  case ARM::VSTMQIA:
1818    return 2;
1819
1820  // The number of uOps for load / store multiple are determined by the number
1821  // registers.
1822  //
1823  // On Cortex-A8, each pair of register loads / stores can be scheduled on the
1824  // same cycle. The scheduling for the first load / store must be done
1825  // separately by assuming the the address is not 64-bit aligned.
1826  //
1827  // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
1828  // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
1829  // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
1830  case ARM::VLDMDIA:
1831  case ARM::VLDMDIA_UPD:
1832  case ARM::VLDMDDB_UPD:
1833  case ARM::VLDMSIA:
1834  case ARM::VLDMSIA_UPD:
1835  case ARM::VLDMSDB_UPD:
1836  case ARM::VSTMDIA:
1837  case ARM::VSTMDIA_UPD:
1838  case ARM::VSTMDDB_UPD:
1839  case ARM::VSTMSIA:
1840  case ARM::VSTMSIA_UPD:
1841  case ARM::VSTMSDB_UPD: {
1842    unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands();
1843    return (NumRegs / 2) + (NumRegs % 2) + 1;
1844  }
1845
1846  case ARM::LDMIA_RET:
1847  case ARM::LDMIA:
1848  case ARM::LDMDA:
1849  case ARM::LDMDB:
1850  case ARM::LDMIB:
1851  case ARM::LDMIA_UPD:
1852  case ARM::LDMDA_UPD:
1853  case ARM::LDMDB_UPD:
1854  case ARM::LDMIB_UPD:
1855  case ARM::STMIA:
1856  case ARM::STMDA:
1857  case ARM::STMDB:
1858  case ARM::STMIB:
1859  case ARM::STMIA_UPD:
1860  case ARM::STMDA_UPD:
1861  case ARM::STMDB_UPD:
1862  case ARM::STMIB_UPD:
1863  case ARM::tLDMIA:
1864  case ARM::tLDMIA_UPD:
1865  case ARM::tSTMIA:
1866  case ARM::tSTMIA_UPD:
1867  case ARM::tPOP_RET:
1868  case ARM::tPOP:
1869  case ARM::tPUSH:
1870  case ARM::t2LDMIA_RET:
1871  case ARM::t2LDMIA:
1872  case ARM::t2LDMDB:
1873  case ARM::t2LDMIA_UPD:
1874  case ARM::t2LDMDB_UPD:
1875  case ARM::t2STMIA:
1876  case ARM::t2STMDB:
1877  case ARM::t2STMIA_UPD:
1878  case ARM::t2STMDB_UPD: {
1879    unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands() + 1;
1880    if (Subtarget.isCortexA8()) {
1881      if (NumRegs < 4)
1882        return 2;
1883      // 4 registers would be issued: 2, 2.
1884      // 5 registers would be issued: 2, 2, 1.
1885      UOps = (NumRegs / 2);
1886      if (NumRegs % 2)
1887        ++UOps;
1888      return UOps;
1889    } else if (Subtarget.isCortexA9()) {
1890      UOps = (NumRegs / 2);
1891      // If there are odd number of registers or if it's not 64-bit aligned,
1892      // then it takes an extra AGU (Address Generation Unit) cycle.
1893      if ((NumRegs % 2) ||
1894          !MI->hasOneMemOperand() ||
1895          (*MI->memoperands_begin())->getAlignment() < 8)
1896        ++UOps;
1897      return UOps;
1898    } else {
1899      // Assume the worst.
1900      return NumRegs;
1901    }
1902  }
1903  }
1904}
1905
1906int
1907ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
1908                                  const MCInstrDesc &DefMCID,
1909                                  unsigned DefClass,
1910                                  unsigned DefIdx, unsigned DefAlign) const {
1911  int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
1912  if (RegNo <= 0)
1913    // Def is the address writeback.
1914    return ItinData->getOperandCycle(DefClass, DefIdx);
1915
1916  int DefCycle;
1917  if (Subtarget.isCortexA8()) {
1918    // (regno / 2) + (regno % 2) + 1
1919    DefCycle = RegNo / 2 + 1;
1920    if (RegNo % 2)
1921      ++DefCycle;
1922  } else if (Subtarget.isCortexA9()) {
1923    DefCycle = RegNo;
1924    bool isSLoad = false;
1925
1926    switch (DefMCID.getOpcode()) {
1927    default: break;
1928    case ARM::VLDMSIA:
1929    case ARM::VLDMSIA_UPD:
1930    case ARM::VLDMSDB_UPD:
1931      isSLoad = true;
1932      break;
1933    }
1934
1935    // If there are odd number of 'S' registers or if it's not 64-bit aligned,
1936    // then it takes an extra cycle.
1937    if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
1938      ++DefCycle;
1939  } else {
1940    // Assume the worst.
1941    DefCycle = RegNo + 2;
1942  }
1943
1944  return DefCycle;
1945}
1946
1947int
1948ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
1949                                 const MCInstrDesc &DefMCID,
1950                                 unsigned DefClass,
1951                                 unsigned DefIdx, unsigned DefAlign) const {
1952  int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
1953  if (RegNo <= 0)
1954    // Def is the address writeback.
1955    return ItinData->getOperandCycle(DefClass, DefIdx);
1956
1957  int DefCycle;
1958  if (Subtarget.isCortexA8()) {
1959    // 4 registers would be issued: 1, 2, 1.
1960    // 5 registers would be issued: 1, 2, 2.
1961    DefCycle = RegNo / 2;
1962    if (DefCycle < 1)
1963      DefCycle = 1;
1964    // Result latency is issue cycle + 2: E2.
1965    DefCycle += 2;
1966  } else if (Subtarget.isCortexA9()) {
1967    DefCycle = (RegNo / 2);
1968    // If there are odd number of registers or if it's not 64-bit aligned,
1969    // then it takes an extra AGU (Address Generation Unit) cycle.
1970    if ((RegNo % 2) || DefAlign < 8)
1971      ++DefCycle;
1972    // Result latency is AGU cycles + 2.
1973    DefCycle += 2;
1974  } else {
1975    // Assume the worst.
1976    DefCycle = RegNo + 2;
1977  }
1978
1979  return DefCycle;
1980}
1981
1982int
1983ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
1984                                  const MCInstrDesc &UseMCID,
1985                                  unsigned UseClass,
1986                                  unsigned UseIdx, unsigned UseAlign) const {
1987  int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
1988  if (RegNo <= 0)
1989    return ItinData->getOperandCycle(UseClass, UseIdx);
1990
1991  int UseCycle;
1992  if (Subtarget.isCortexA8()) {
1993    // (regno / 2) + (regno % 2) + 1
1994    UseCycle = RegNo / 2 + 1;
1995    if (RegNo % 2)
1996      ++UseCycle;
1997  } else if (Subtarget.isCortexA9()) {
1998    UseCycle = RegNo;
1999    bool isSStore = false;
2000
2001    switch (UseMCID.getOpcode()) {
2002    default: break;
2003    case ARM::VSTMSIA:
2004    case ARM::VSTMSIA_UPD:
2005    case ARM::VSTMSDB_UPD:
2006      isSStore = true;
2007      break;
2008    }
2009
2010    // If there are odd number of 'S' registers or if it's not 64-bit aligned,
2011    // then it takes an extra cycle.
2012    if ((isSStore && (RegNo % 2)) || UseAlign < 8)
2013      ++UseCycle;
2014  } else {
2015    // Assume the worst.
2016    UseCycle = RegNo + 2;
2017  }
2018
2019  return UseCycle;
2020}
2021
2022int
2023ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
2024                                 const MCInstrDesc &UseMCID,
2025                                 unsigned UseClass,
2026                                 unsigned UseIdx, unsigned UseAlign) const {
2027  int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
2028  if (RegNo <= 0)
2029    return ItinData->getOperandCycle(UseClass, UseIdx);
2030
2031  int UseCycle;
2032  if (Subtarget.isCortexA8()) {
2033    UseCycle = RegNo / 2;
2034    if (UseCycle < 2)
2035      UseCycle = 2;
2036    // Read in E3.
2037    UseCycle += 2;
2038  } else if (Subtarget.isCortexA9()) {
2039    UseCycle = (RegNo / 2);
2040    // If there are odd number of registers or if it's not 64-bit aligned,
2041    // then it takes an extra AGU (Address Generation Unit) cycle.
2042    if ((RegNo % 2) || UseAlign < 8)
2043      ++UseCycle;
2044  } else {
2045    // Assume the worst.
2046    UseCycle = 1;
2047  }
2048  return UseCycle;
2049}
2050
2051int
2052ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
2053                                    const MCInstrDesc &DefMCID,
2054                                    unsigned DefIdx, unsigned DefAlign,
2055                                    const MCInstrDesc &UseMCID,
2056                                    unsigned UseIdx, unsigned UseAlign) const {
2057  unsigned DefClass = DefMCID.getSchedClass();
2058  unsigned UseClass = UseMCID.getSchedClass();
2059
2060  if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
2061    return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
2062
2063  // This may be a def / use of a variable_ops instruction, the operand
2064  // latency might be determinable dynamically. Let the target try to
2065  // figure it out.
2066  int DefCycle = -1;
2067  bool LdmBypass = false;
2068  switch (DefMCID.getOpcode()) {
2069  default:
2070    DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
2071    break;
2072
2073  case ARM::VLDMDIA:
2074  case ARM::VLDMDIA_UPD:
2075  case ARM::VLDMDDB_UPD:
2076  case ARM::VLDMSIA:
2077  case ARM::VLDMSIA_UPD:
2078  case ARM::VLDMSDB_UPD:
2079    DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
2080    break;
2081
2082  case ARM::LDMIA_RET:
2083  case ARM::LDMIA:
2084  case ARM::LDMDA:
2085  case ARM::LDMDB:
2086  case ARM::LDMIB:
2087  case ARM::LDMIA_UPD:
2088  case ARM::LDMDA_UPD:
2089  case ARM::LDMDB_UPD:
2090  case ARM::LDMIB_UPD:
2091  case ARM::tLDMIA:
2092  case ARM::tLDMIA_UPD:
2093  case ARM::tPUSH:
2094  case ARM::t2LDMIA_RET:
2095  case ARM::t2LDMIA:
2096  case ARM::t2LDMDB:
2097  case ARM::t2LDMIA_UPD:
2098  case ARM::t2LDMDB_UPD:
2099    LdmBypass = 1;
2100    DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
2101    break;
2102  }
2103
2104  if (DefCycle == -1)
2105    // We can't seem to determine the result latency of the def, assume it's 2.
2106    DefCycle = 2;
2107
2108  int UseCycle = -1;
2109  switch (UseMCID.getOpcode()) {
2110  default:
2111    UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
2112    break;
2113
2114  case ARM::VSTMDIA:
2115  case ARM::VSTMDIA_UPD:
2116  case ARM::VSTMDDB_UPD:
2117  case ARM::VSTMSIA:
2118  case ARM::VSTMSIA_UPD:
2119  case ARM::VSTMSDB_UPD:
2120    UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
2121    break;
2122
2123  case ARM::STMIA:
2124  case ARM::STMDA:
2125  case ARM::STMDB:
2126  case ARM::STMIB:
2127  case ARM::STMIA_UPD:
2128  case ARM::STMDA_UPD:
2129  case ARM::STMDB_UPD:
2130  case ARM::STMIB_UPD:
2131  case ARM::tSTMIA:
2132  case ARM::tSTMIA_UPD:
2133  case ARM::tPOP_RET:
2134  case ARM::tPOP:
2135  case ARM::t2STMIA:
2136  case ARM::t2STMDB:
2137  case ARM::t2STMIA_UPD:
2138  case ARM::t2STMDB_UPD:
2139    UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
2140    break;
2141  }
2142
2143  if (UseCycle == -1)
2144    // Assume it's read in the first stage.
2145    UseCycle = 1;
2146
2147  UseCycle = DefCycle - UseCycle + 1;
2148  if (UseCycle > 0) {
2149    if (LdmBypass) {
2150      // It's a variable_ops instruction so we can't use DefIdx here. Just use
2151      // first def operand.
2152      if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
2153                                          UseClass, UseIdx))
2154        --UseCycle;
2155    } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
2156                                               UseClass, UseIdx)) {
2157      --UseCycle;
2158    }
2159  }
2160
2161  return UseCycle;
2162}
2163
2164int
2165ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
2166                             const MachineInstr *DefMI, unsigned DefIdx,
2167                             const MachineInstr *UseMI, unsigned UseIdx) const {
2168  if (DefMI->isCopyLike() || DefMI->isInsertSubreg() ||
2169      DefMI->isRegSequence() || DefMI->isImplicitDef())
2170    return 1;
2171
2172  const MCInstrDesc &DefMCID = DefMI->getDesc();
2173  if (!ItinData || ItinData->isEmpty())
2174    return DefMCID.mayLoad() ? 3 : 1;
2175
2176  const MCInstrDesc &UseMCID = UseMI->getDesc();
2177  const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
2178  if (DefMO.getReg() == ARM::CPSR) {
2179    if (DefMI->getOpcode() == ARM::FMSTAT) {
2180      // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
2181      return Subtarget.isCortexA9() ? 1 : 20;
2182    }
2183
2184    // CPSR set and branch can be paired in the same cycle.
2185    if (UseMCID.isBranch())
2186      return 0;
2187  }
2188
2189  unsigned DefAlign = DefMI->hasOneMemOperand()
2190    ? (*DefMI->memoperands_begin())->getAlignment() : 0;
2191  unsigned UseAlign = UseMI->hasOneMemOperand()
2192    ? (*UseMI->memoperands_begin())->getAlignment() : 0;
2193  int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
2194                                  UseMCID, UseIdx, UseAlign);
2195
2196  if (Latency > 1 &&
2197      (Subtarget.isCortexA8() || Subtarget.isCortexA9())) {
2198    // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
2199    // variants are one cycle cheaper.
2200    switch (DefMCID.getOpcode()) {
2201    default: break;
2202    case ARM::LDRrs:
2203    case ARM::LDRBrs: {
2204      unsigned ShOpVal = DefMI->getOperand(3).getImm();
2205      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2206      if (ShImm == 0 ||
2207          (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
2208        --Latency;
2209      break;
2210    }
2211    case ARM::t2LDRs:
2212    case ARM::t2LDRBs:
2213    case ARM::t2LDRHs:
2214    case ARM::t2LDRSHs: {
2215      // Thumb2 mode: lsl only.
2216      unsigned ShAmt = DefMI->getOperand(3).getImm();
2217      if (ShAmt == 0 || ShAmt == 2)
2218        --Latency;
2219      break;
2220    }
2221    }
2222  }
2223
2224  if (DefAlign < 8 && Subtarget.isCortexA9())
2225    switch (DefMCID.getOpcode()) {
2226    default: break;
2227    case ARM::VLD1q8:
2228    case ARM::VLD1q16:
2229    case ARM::VLD1q32:
2230    case ARM::VLD1q64:
2231    case ARM::VLD1q8_UPD:
2232    case ARM::VLD1q16_UPD:
2233    case ARM::VLD1q32_UPD:
2234    case ARM::VLD1q64_UPD:
2235    case ARM::VLD2d8:
2236    case ARM::VLD2d16:
2237    case ARM::VLD2d32:
2238    case ARM::VLD2q8:
2239    case ARM::VLD2q16:
2240    case ARM::VLD2q32:
2241    case ARM::VLD2d8_UPD:
2242    case ARM::VLD2d16_UPD:
2243    case ARM::VLD2d32_UPD:
2244    case ARM::VLD2q8_UPD:
2245    case ARM::VLD2q16_UPD:
2246    case ARM::VLD2q32_UPD:
2247    case ARM::VLD3d8:
2248    case ARM::VLD3d16:
2249    case ARM::VLD3d32:
2250    case ARM::VLD1d64T:
2251    case ARM::VLD3d8_UPD:
2252    case ARM::VLD3d16_UPD:
2253    case ARM::VLD3d32_UPD:
2254    case ARM::VLD1d64T_UPD:
2255    case ARM::VLD3q8_UPD:
2256    case ARM::VLD3q16_UPD:
2257    case ARM::VLD3q32_UPD:
2258    case ARM::VLD4d8:
2259    case ARM::VLD4d16:
2260    case ARM::VLD4d32:
2261    case ARM::VLD1d64Q:
2262    case ARM::VLD4d8_UPD:
2263    case ARM::VLD4d16_UPD:
2264    case ARM::VLD4d32_UPD:
2265    case ARM::VLD1d64Q_UPD:
2266    case ARM::VLD4q8_UPD:
2267    case ARM::VLD4q16_UPD:
2268    case ARM::VLD4q32_UPD:
2269    case ARM::VLD1DUPq8:
2270    case ARM::VLD1DUPq16:
2271    case ARM::VLD1DUPq32:
2272    case ARM::VLD1DUPq8_UPD:
2273    case ARM::VLD1DUPq16_UPD:
2274    case ARM::VLD1DUPq32_UPD:
2275    case ARM::VLD2DUPd8:
2276    case ARM::VLD2DUPd16:
2277    case ARM::VLD2DUPd32:
2278    case ARM::VLD2DUPd8_UPD:
2279    case ARM::VLD2DUPd16_UPD:
2280    case ARM::VLD2DUPd32_UPD:
2281    case ARM::VLD4DUPd8:
2282    case ARM::VLD4DUPd16:
2283    case ARM::VLD4DUPd32:
2284    case ARM::VLD4DUPd8_UPD:
2285    case ARM::VLD4DUPd16_UPD:
2286    case ARM::VLD4DUPd32_UPD:
2287    case ARM::VLD1LNd8:
2288    case ARM::VLD1LNd16:
2289    case ARM::VLD1LNd32:
2290    case ARM::VLD1LNd8_UPD:
2291    case ARM::VLD1LNd16_UPD:
2292    case ARM::VLD1LNd32_UPD:
2293    case ARM::VLD2LNd8:
2294    case ARM::VLD2LNd16:
2295    case ARM::VLD2LNd32:
2296    case ARM::VLD2LNq16:
2297    case ARM::VLD2LNq32:
2298    case ARM::VLD2LNd8_UPD:
2299    case ARM::VLD2LNd16_UPD:
2300    case ARM::VLD2LNd32_UPD:
2301    case ARM::VLD2LNq16_UPD:
2302    case ARM::VLD2LNq32_UPD:
2303    case ARM::VLD4LNd8:
2304    case ARM::VLD4LNd16:
2305    case ARM::VLD4LNd32:
2306    case ARM::VLD4LNq16:
2307    case ARM::VLD4LNq32:
2308    case ARM::VLD4LNd8_UPD:
2309    case ARM::VLD4LNd16_UPD:
2310    case ARM::VLD4LNd32_UPD:
2311    case ARM::VLD4LNq16_UPD:
2312    case ARM::VLD4LNq32_UPD:
2313      // If the address is not 64-bit aligned, the latencies of these
2314      // instructions increases by one.
2315      ++Latency;
2316      break;
2317    }
2318
2319  return Latency;
2320}
2321
2322int
2323ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
2324                                    SDNode *DefNode, unsigned DefIdx,
2325                                    SDNode *UseNode, unsigned UseIdx) const {
2326  if (!DefNode->isMachineOpcode())
2327    return 1;
2328
2329  const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
2330
2331  if (isZeroCost(DefMCID.Opcode))
2332    return 0;
2333
2334  if (!ItinData || ItinData->isEmpty())
2335    return DefMCID.mayLoad() ? 3 : 1;
2336
2337  if (!UseNode->isMachineOpcode()) {
2338    int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
2339    if (Subtarget.isCortexA9())
2340      return Latency <= 2 ? 1 : Latency - 1;
2341    else
2342      return Latency <= 3 ? 1 : Latency - 2;
2343  }
2344
2345  const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
2346  const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode);
2347  unsigned DefAlign = !DefMN->memoperands_empty()
2348    ? (*DefMN->memoperands_begin())->getAlignment() : 0;
2349  const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode);
2350  unsigned UseAlign = !UseMN->memoperands_empty()
2351    ? (*UseMN->memoperands_begin())->getAlignment() : 0;
2352  int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
2353                                  UseMCID, UseIdx, UseAlign);
2354
2355  if (Latency > 1 &&
2356      (Subtarget.isCortexA8() || Subtarget.isCortexA9())) {
2357    // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
2358    // variants are one cycle cheaper.
2359    switch (DefMCID.getOpcode()) {
2360    default: break;
2361    case ARM::LDRrs:
2362    case ARM::LDRBrs: {
2363      unsigned ShOpVal =
2364        cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
2365      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2366      if (ShImm == 0 ||
2367          (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
2368        --Latency;
2369      break;
2370    }
2371    case ARM::t2LDRs:
2372    case ARM::t2LDRBs:
2373    case ARM::t2LDRHs:
2374    case ARM::t2LDRSHs: {
2375      // Thumb2 mode: lsl only.
2376      unsigned ShAmt =
2377        cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
2378      if (ShAmt == 0 || ShAmt == 2)
2379        --Latency;
2380      break;
2381    }
2382    }
2383  }
2384
2385  if (DefAlign < 8 && Subtarget.isCortexA9())
2386    switch (DefMCID.getOpcode()) {
2387    default: break;
2388    case ARM::VLD1q8Pseudo:
2389    case ARM::VLD1q16Pseudo:
2390    case ARM::VLD1q32Pseudo:
2391    case ARM::VLD1q64Pseudo:
2392    case ARM::VLD1q8Pseudo_UPD:
2393    case ARM::VLD1q16Pseudo_UPD:
2394    case ARM::VLD1q32Pseudo_UPD:
2395    case ARM::VLD1q64Pseudo_UPD:
2396    case ARM::VLD2d8Pseudo:
2397    case ARM::VLD2d16Pseudo:
2398    case ARM::VLD2d32Pseudo:
2399    case ARM::VLD2q8Pseudo:
2400    case ARM::VLD2q16Pseudo:
2401    case ARM::VLD2q32Pseudo:
2402    case ARM::VLD2d8Pseudo_UPD:
2403    case ARM::VLD2d16Pseudo_UPD:
2404    case ARM::VLD2d32Pseudo_UPD:
2405    case ARM::VLD2q8Pseudo_UPD:
2406    case ARM::VLD2q16Pseudo_UPD:
2407    case ARM::VLD2q32Pseudo_UPD:
2408    case ARM::VLD3d8Pseudo:
2409    case ARM::VLD3d16Pseudo:
2410    case ARM::VLD3d32Pseudo:
2411    case ARM::VLD1d64TPseudo:
2412    case ARM::VLD3d8Pseudo_UPD:
2413    case ARM::VLD3d16Pseudo_UPD:
2414    case ARM::VLD3d32Pseudo_UPD:
2415    case ARM::VLD1d64TPseudo_UPD:
2416    case ARM::VLD3q8Pseudo_UPD:
2417    case ARM::VLD3q16Pseudo_UPD:
2418    case ARM::VLD3q32Pseudo_UPD:
2419    case ARM::VLD3q8oddPseudo:
2420    case ARM::VLD3q16oddPseudo:
2421    case ARM::VLD3q32oddPseudo:
2422    case ARM::VLD3q8oddPseudo_UPD:
2423    case ARM::VLD3q16oddPseudo_UPD:
2424    case ARM::VLD3q32oddPseudo_UPD:
2425    case ARM::VLD4d8Pseudo:
2426    case ARM::VLD4d16Pseudo:
2427    case ARM::VLD4d32Pseudo:
2428    case ARM::VLD1d64QPseudo:
2429    case ARM::VLD4d8Pseudo_UPD:
2430    case ARM::VLD4d16Pseudo_UPD:
2431    case ARM::VLD4d32Pseudo_UPD:
2432    case ARM::VLD1d64QPseudo_UPD:
2433    case ARM::VLD4q8Pseudo_UPD:
2434    case ARM::VLD4q16Pseudo_UPD:
2435    case ARM::VLD4q32Pseudo_UPD:
2436    case ARM::VLD4q8oddPseudo:
2437    case ARM::VLD4q16oddPseudo:
2438    case ARM::VLD4q32oddPseudo:
2439    case ARM::VLD4q8oddPseudo_UPD:
2440    case ARM::VLD4q16oddPseudo_UPD:
2441    case ARM::VLD4q32oddPseudo_UPD:
2442    case ARM::VLD1DUPq8Pseudo:
2443    case ARM::VLD1DUPq16Pseudo:
2444    case ARM::VLD1DUPq32Pseudo:
2445    case ARM::VLD1DUPq8Pseudo_UPD:
2446    case ARM::VLD1DUPq16Pseudo_UPD:
2447    case ARM::VLD1DUPq32Pseudo_UPD:
2448    case ARM::VLD2DUPd8Pseudo:
2449    case ARM::VLD2DUPd16Pseudo:
2450    case ARM::VLD2DUPd32Pseudo:
2451    case ARM::VLD2DUPd8Pseudo_UPD:
2452    case ARM::VLD2DUPd16Pseudo_UPD:
2453    case ARM::VLD2DUPd32Pseudo_UPD:
2454    case ARM::VLD4DUPd8Pseudo:
2455    case ARM::VLD4DUPd16Pseudo:
2456    case ARM::VLD4DUPd32Pseudo:
2457    case ARM::VLD4DUPd8Pseudo_UPD:
2458    case ARM::VLD4DUPd16Pseudo_UPD:
2459    case ARM::VLD4DUPd32Pseudo_UPD:
2460    case ARM::VLD1LNq8Pseudo:
2461    case ARM::VLD1LNq16Pseudo:
2462    case ARM::VLD1LNq32Pseudo:
2463    case ARM::VLD1LNq8Pseudo_UPD:
2464    case ARM::VLD1LNq16Pseudo_UPD:
2465    case ARM::VLD1LNq32Pseudo_UPD:
2466    case ARM::VLD2LNd8Pseudo:
2467    case ARM::VLD2LNd16Pseudo:
2468    case ARM::VLD2LNd32Pseudo:
2469    case ARM::VLD2LNq16Pseudo:
2470    case ARM::VLD2LNq32Pseudo:
2471    case ARM::VLD2LNd8Pseudo_UPD:
2472    case ARM::VLD2LNd16Pseudo_UPD:
2473    case ARM::VLD2LNd32Pseudo_UPD:
2474    case ARM::VLD2LNq16Pseudo_UPD:
2475    case ARM::VLD2LNq32Pseudo_UPD:
2476    case ARM::VLD4LNd8Pseudo:
2477    case ARM::VLD4LNd16Pseudo:
2478    case ARM::VLD4LNd32Pseudo:
2479    case ARM::VLD4LNq16Pseudo:
2480    case ARM::VLD4LNq32Pseudo:
2481    case ARM::VLD4LNd8Pseudo_UPD:
2482    case ARM::VLD4LNd16Pseudo_UPD:
2483    case ARM::VLD4LNd32Pseudo_UPD:
2484    case ARM::VLD4LNq16Pseudo_UPD:
2485    case ARM::VLD4LNq32Pseudo_UPD:
2486      // If the address is not 64-bit aligned, the latencies of these
2487      // instructions increases by one.
2488      ++Latency;
2489      break;
2490    }
2491
2492  return Latency;
2493}
2494
2495int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
2496                                      const MachineInstr *MI,
2497                                      unsigned *PredCost) const {
2498  if (MI->isCopyLike() || MI->isInsertSubreg() ||
2499      MI->isRegSequence() || MI->isImplicitDef())
2500    return 1;
2501
2502  if (!ItinData || ItinData->isEmpty())
2503    return 1;
2504
2505  const MCInstrDesc &MCID = MI->getDesc();
2506  unsigned Class = MCID.getSchedClass();
2507  unsigned UOps = ItinData->Itineraries[Class].NumMicroOps;
2508  if (PredCost && MCID.hasImplicitDefOfPhysReg(ARM::CPSR))
2509    // When predicated, CPSR is an additional source operand for CPSR updating
2510    // instructions, this apparently increases their latencies.
2511    *PredCost = 1;
2512  if (UOps)
2513    return ItinData->getStageLatency(Class);
2514  return getNumMicroOps(ItinData, MI);
2515}
2516
2517int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
2518                                      SDNode *Node) const {
2519  if (!Node->isMachineOpcode())
2520    return 1;
2521
2522  if (!ItinData || ItinData->isEmpty())
2523    return 1;
2524
2525  unsigned Opcode = Node->getMachineOpcode();
2526  switch (Opcode) {
2527  default:
2528    return ItinData->getStageLatency(get(Opcode).getSchedClass());
2529  case ARM::VLDMQIA:
2530  case ARM::VSTMQIA:
2531    return 2;
2532  }
2533}
2534
2535bool ARMBaseInstrInfo::
2536hasHighOperandLatency(const InstrItineraryData *ItinData,
2537                      const MachineRegisterInfo *MRI,
2538                      const MachineInstr *DefMI, unsigned DefIdx,
2539                      const MachineInstr *UseMI, unsigned UseIdx) const {
2540  unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
2541  unsigned UDomain = UseMI->getDesc().TSFlags & ARMII::DomainMask;
2542  if (Subtarget.isCortexA8() &&
2543      (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
2544    // CortexA8 VFP instructions are not pipelined.
2545    return true;
2546
2547  // Hoist VFP / NEON instructions with 4 or higher latency.
2548  int Latency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx);
2549  if (Latency <= 3)
2550    return false;
2551  return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
2552         UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
2553}
2554
2555bool ARMBaseInstrInfo::
2556hasLowDefLatency(const InstrItineraryData *ItinData,
2557                 const MachineInstr *DefMI, unsigned DefIdx) const {
2558  if (!ItinData || ItinData->isEmpty())
2559    return false;
2560
2561  unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
2562  if (DDomain == ARMII::DomainGeneral) {
2563    unsigned DefClass = DefMI->getDesc().getSchedClass();
2564    int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
2565    return (DefCycle != -1 && DefCycle <= 2);
2566  }
2567  return false;
2568}
2569
2570bool
2571ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
2572                                     unsigned &AddSubOpc,
2573                                     bool &NegAcc, bool &HasLane) const {
2574  DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
2575  if (I == MLxEntryMap.end())
2576    return false;
2577
2578  const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
2579  MulOpc = Entry.MulOpc;
2580  AddSubOpc = Entry.AddSubOpc;
2581  NegAcc = Entry.NegAcc;
2582  HasLane = Entry.HasLane;
2583  return true;
2584}
2585